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A nonintrusive data assimilation methodology is developed to improve the statistical
predictions of large-eddy simulations (LES). The ensemble-variational (EnVar) approach
aims to minimize a cost function that is defined as the discrepancy between LES predictions
and reference statistics from experiments or, in the present demonstration, independent di-
rect numerical simulations (DNS). This methodology is applied to adjust the Smagorinsky
subgrid model and obtain data assimilated LES (DA-LES) which accurately estimate the
statistics of turbulent channel flow. To separately control the mean and fluctuations of the
modeled subgrid tensor, and ultimately the first- and second-order flow statistics, two types
of model corrections are considered. The first one optimizes the wall-normal profile of the
Smagorinsky coefficient, while the second one introduces an adjustable steady forcing
in the momentum equations to independently act on the mean flow. Using these two
elements, the data assimilation procedure can satisfactorily modify the subgrid model and
accurately recover reference flow statistics. In a posteriori testing, the retrieved subgrid
model significantly outperforms more elaborate baseline models such as dynamic and
mixed models. The robustness of the present data assimilation methodology is assessed by
changing the Reynolds number and considering grid resolutions that are away from usual
recommendations. Taking advantage of the stochastic formulation of EnVar, the developed
framework also provides the uncertainty of the retrieved model.
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I. INTRODUCTION

Numerical predictions of turbulent flows at high Reynolds numbers generally require modeling of
a least a fraction of the turbulent scales to be computationally tractable. Reynolds-averaged Navier-
Stokes (RANS) and large-eddy simulation (LES) are among the most popular approaches to address
this modeling challenge. In contrast to direct numerical simulation (DNS) where all flow scales
down to the Kolmogorov eddies are resolved, both RANS and LES invoke modeling assumptions:
RANS computes the mean flow only, and models all the turbulent scales. LES [1–3], however,
resolves the largest turbulent scales, and requires a representation of the effect of the unresolved,
or subgrid scales, on the resolved ones. While LES requires a large computational cost compared
to RANS modeling, its predictions include the unsteady evolution of the large turbulent scales,
which enables a better evaluation of large-scale coherent phenomena and intermittent flows, for
example, strong flow separation, recirculation, vortex shedding, and transition, compared to RANS
[4–7]. LES is thus a valuable tool for the numerical investigation of flows with such characteristics,
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although the accuracy of its predictions may still be impacted by the modeling of the subgrid scales.
In the present work, we will introduce a data-assimilation approach to infuse LES with available
statistical observations to improve the fidelity of LES, and will assess performance in canonical
turbulent channel flow.

Whether RANS or LES modeling is considered, the accuracy of predictions are partly determined
by the quality of modeling the unresolved turbulent scales. RANS requires a closure relationship
for the Reynolds stress tensor, while LES models the subgrid tensor. This tensor arises from spatial
filtering of the Navier-Stokes equations and accounts for the interactions between resolved and
subgrid scales. In parallel with more traditional approaches to improve turbulence modeling [8,9],
there is a growing interest in rigorously employing reference data from DNS or experiments to en-
hance the fidelity of RANS or LES predictions through data assimilation techniques [10]. Generally
speaking, data assimilation enables the merging of experimental and numerical approaches and to
overcome their inherent limitations, namely the scarcity of experimental data and the uncertainties
in modeling and in the inputs of simulations [11]. Incidentally, as an alternative to DNS [12–18],
recent studies have explored the possibilities of relying on LES for flow reconstruction and state es-
timation through data assimilation [19–22]. However, contrary to RANS where a number of studies
exploited data assimilation to adjust turbulence models [23–29], the potential of data assimilation
to enhance LES modeling has not been investigated to a similar extent, with very few exceptions
[20,30].

In Ref. [20], adjoint-based data assimilation [31] was adopted to optimize a spatially-varying
coefficient in the location uncertainty model [32] based on synthetic particle image velocimetry
(PIV)-like measurements of the flow past a cylinder at Re = 3900. In a more usual framework in
terms of LES formulation [30], adjoint-based optimization was used to adjust a deep neural network
that represents the divergence of the subgrid tensor relying on filtered velocity fields obtained by
DNS of freely decaying isotropic turbulence.

In data assimilation, a cost function is defined as the sum of the squared discrepancies between
observations and a numerical estimation. While the adjoint technique, which was employed in
the above studies, is efficient at evaluating the gradient of the cost function with respect to high-
dimensional control vectors, i.e., the quantities being optimized, it generally requires significant
resources to implement and to use. This is particularly true for unsteady problems, because the
storage of the forward flow solution is required for the backward-in-time integration of the adjoint
model over the whole considered time window [18,33]. The computational burden is thus very large
for 3D flows, which is perhaps at the origin of the short time-window considered in Ref. [20] and of
the restriction of the the assimilation to pairs of consecutive instants in Ref. [30]. As an alternative
to adjoint-based optimization, we propose use of stochastic data assimilation to infer corrections
to subgrid models for LES; specifically, we adopt ensemble-based variational data assimilation
(EnVar) [15,34–40]. In the EnVar approach, the data assimilation problem is still formulated as
the minimization of a cost function that measures the discrepancies between available observations
and a numerical approach. Instead of relying on an adjoint model, however, the minimization
is performed based on an ensemble representation of the considered control vector. The EnVar
approach may thus be considered as merging the robustness of variational techniques with the ease
of implementation of more usual ensemble-based approaches such as the ensemble Kalman filter
[41].

An EnVar-based methodology for the optimization of subgrid models will be introduced and
assessed in canonical turbulent channel flow [42,43]. Building on the popular Smagorinsky model
[44], the developed data assimilation procedure will be used to infer corrections to this baseline
model, and to obtain what we term data-assimilated LES (DA-LES) predictions. Contrary to
previous studies [20,30] where detailed instantaneous velocity fields were employed, we here
investigate the possibility of relying on more limited data, namely statistical quantities. In other
words, instead of targeting the reproduction of a specific spatio-temporal flow realization through
LES, we here aim to optimize the Smagorinsky model to accurately recover reference statistics for
turbulent channel flows.
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Two types of data assimilation experiments will be performed in this study. We will first consider
filtered statistical quantities, such as the mean of the subgrid tensor, as observations to adjust the
Smagorinsky model. In this case, we attempt to improve the performance of LES in a manner
similar to a priori testing [3,45]. This approach does not fully take into account the impact of
discretization on LES predictions [46–48]. The importance of numerical methods in LES is well
established, and was reaffirmed in recent studies that applied deep learning to subgrid modeling
[30,49]: calibrating a subgrid model without taking into account the specific discretization likely
leads to poor performance of the actual LES solver. In a second set of experiments, more commonly
available statistics such as the mean flow and/or the Reynolds stresses will be employed as
observations. Such time-averaged quantities are more representative of actual measurements that
can be generated from experiments and that are of direct interest for industrial applications. These
data assimilation experiments take into account the implementation of the LES fully, including
discretization, and enhance LES predictions according to a posteriori testing. Our observation data
are obtained from independent DNS, but can equally be from experimental measurements.

In addition to the data assimilation technique itself and the type of considered observations,
another important aspect of the present methodology is the choice of the correction to the subgrid
model. This choice has to be related to the nature of the observations to ensure the well-posedness
of the data assimilation problem. The most ideal and detailed correction could consist of adding a
spatial- and time-dependent term to the divergence of the subgrid tensor, which would offer maximal
flexibility to address the functional deficiencies of the subgrid model. However, as discussed in
Ref. [20], even if instantaneous field data are available, the very large dimension of such a correction
would make its identification through data assimilation computationally expensive. In addition,
translating the result to a predictive engineering approach would remain challenging.

Considering more constrained corrections, a natural choice in the case of the Smagorinsky
model is to optimize the so-called Smagorinsky coefficient Cs. Since in the case of turbulent
channel flow statistical inhomogeneity occurs in the wall-normal direction y only, data assim-
ilation may be formulated as identifying an optimal profile Cs(y) given reference statistics.
However, this choice can not overcome all limitations of the Smagorinsky model. In particular,
as suggested by [50,51] and confirmed in the present study, it may be of interest to have the
ability to independently adjust the dissipation of resolved mean and turbulent kinetic energies
to improve the estimation of both first- and second-order statistics. Partly inspired by recent
studies on the application of data assimilation to RANS modeling [29], we consider the in-
troduction of a steady forcing term σ (y) in the momentum equations which allows a separate
adjustment of the mean of the subgrid tensor, and thus of the predicted mean flow. It will be
confirmed in the present study that the simultaneous consideration of the coefficient Cs(y) and
of the forcing σ (y) as control vectors in the data assimilation procedure indeed provides an
efficient correction to the Smagorinsky model to accurately reproduce statistical quantities of
interest.

In Sec. II, the characteristics of the present LES solver are first provided and the different
subgrid models that are adopted in this study are specified. The Smagorinsky model forms the
baseline model in the data assimilation procedure. In addition, the dynamic model [52,53] and a
mixed model based on the scale-similarity hypothesis [54] will be used to further benchmark the
proposed methodology. The design of an appropriate correction form to the Smagorinsky model
is also discussed in this section. The proposed EnVar data assimilation approach for optimizing
subgrid models is detailed in Sec. III, with a particular emphasis on ensemble generation. The
DA-LES method is then first applied in Sec. IV considering filtered statistics as observations.
Through the corresponding data assimilation experiments, the sensitivity of the LES predictions
to changes in the coefficient Cs(y) is evaluated, along with the impact of discretization errors and
the limitations of adjusting Cs(y) alone. In Sec. V, the DA-LES procedure is further assessed using
statistical observations that are directly accessible from experiments, i.e., unfiltered data. Variations
in the grid resolution and Reynolds number are carried out to confirm the efficacy and robustness of
the proposed procedure. Finally, conclusions are provided in Sec. VI.
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TABLE I. Summary of the different grids adopted in this study, including the target Reτ , number of grid
points, and spatial resolution in every direction

Grid Reτ Nx Ny Nz �x∗ �z∗ �y∗
min �y∗

max

DNS590 590 444 256 554 8 4 0.4 12
LES590f 590 72 192 92 50 20 0.5 15
LES590c 590 54 192 54 70 35 0.5 15
LES1000 1000 90 320 90 70 35 0.5 15

II. LES MODELING AND LIMITATIONS

A. Governing equations and numerical method

We consider the turbulent flow of an incompressible Newtonian fluid in a channel [42,43]. The
governing equations for large-eddy simulations (LES) are derived from the Navier-Stokes equations
through the application of a low-pass filter to retain large-scale contributions only [1,3]. The velocity
component ui in Cartesian coordinates is thus decomposed as

ui = ui + u′
i, (1)

where the overbar refers to resolved scales, while the remaining term u′
i includes small-scale, or

subgrid effects. When statistical quantities are evaluated, the Reynolds decomposition is adopted,

ui = 〈ui〉 + u′′
i , (2)

where 〈·〉 denotes ensemble averaging and u′′
i is the associated fluctuation.

The governing equations for the resolved part ui of the velocity field may be written as

∂ui

∂t
+ ∂

∂x j
(uiu j ) = − ∂ p

∂xi
+ 2ν

∂Si j

∂x j
− ∂τi j

∂x j
,

∂u j

∂x j
= 0, (3)

where the fluid density has been normalized by its constant reference value, p is the filtered pressure
field, ν is the constant fluid kinematic viscosity, Si j refers to the resolved strain-rate tensor. The
subgrid tensor, τi j = uiu j − uiu j , includes the interactions between resolved and subgrid scales and
has to be closed to solve Eq. (3). The different subgrid models for τi j that will be considered in this
study are discussed in Sec. II B.

The computational domain to solve Eq. (3) is a three-dimensional box with streamwise, wall-
normal and spanwise extents equal to 2πδ, 2δ, and πδ, respectively, where δ is the channel half
height. Periodic boundary conditions are imposed in the streamwise and spanwise directions,
while the bottom and top walls correspond to no-slip surfaces. The friction Reynolds number
Reτ = uτ δ/ν, where uτ is the friction velocity, will be set to either Reτ = 590 or Reτ = 1,000
in this study.

Equation (3) is solved in a finite-volume framework using a fractional step algorithm [55];
advection terms are discretized using a second-order Adams-Bashforth scheme and the viscous
terms, including the eddy-viscosity part of the subgrid models discussed in Sec. II B, are treated
implicitly using Crank-Nicolson. This numerical method was extensively validated in previous
studies [16,56,57].

The grid is uniform in the streamwise (x) and spanwise (z) directions, while a hyperbolic
stretching is used for the wall-normal coordinate (y). Various resolutions will be considered and are
detailed in Table I. Quantities are reported in nondimensional form using wall scaling. A superscript
∗ indicates that a reference friction velocity uτ from DNS is adopted, while a superscript + is used
when uτ is obtained from the individual LES calculations.

The first grid DNS590 will be used to perform direct numerical simulation (DNS) at Reτ = 590
from which reference filtered quantities such as the subgrid tensor will be evaluated. Reference
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statistics for Reτ = 1,000 are obtained from the Johns Hopkins Turbulence Databases [58]. For
the LES, two grids will be used when targeting Reτ = 590. First, a relatively fine grid (LES590f)
will be employed, which corresponds to standard recommendations for wall-resolved LES [3,59],
namely �x∗ = 50 and �z∗ = 20, to satisfactorily capture energetic large-scale phenomena in the
buffer layer. In addition, this grid is appropriately refined close to the walls with the first off-wall
grid point located at y∗ = 0.5. The consideration of a coarser grid (LES590c) in the streamwise and
spanwise directions will provide further assessment of the data assimilation procedure of §III. While
the minimum requirements for LES grids suggested in the literature are not unique, the spanwise
resolution of grid LES590c in particular is below most recommendations [3,60]. The calculations at
Reτ = 1,000 are performed on grid LES1000 which corresponds to the same spatial resolution in
wall units as the coarse grid LES590c.

B. Subgrid models

1. Smagorinsky model

In this study, we will primarily rely on the most classical approach to close the subgrid tensor τi j

in Eq. (3), namely the Smagorinsky model [44] which relies on the Boussinesq turbulent viscosity
hypothesis to emulate the essentially forward energy cascade from resolved to subgrid scales. This
approach models the deviatoric part τ d

i j of the subgrid tensor only according to

τ d
i j = −2νsgsSi j, νsgs = (Cs�)2(2Si j Si j )

1
2 , (4)

where Cs is a scalar that may vary in space and time, and � refers to the cutoff scale that is associated
with the filtering operation to obtain the LES equations (3). In this framework, the quantity 1

3τkk is
implicitly integrated into the filtered pressure p in Eq. (3). In the following, note that by definition
τ d

i j = τi j for off-diagonal components. To take into account anisotropy and inhomogeneity effects

in turbulent channel flows, standard adjustments include choosing Cs and the cutoff scale � as

Cs(y
+) = CI{1 − exp[−(y+/25)3]} 1

2 , �(y) = [�x�y(y)�z]
1
3 . (5)

The form of Cs in Eq. (5), which is here a function of the wall-normal coordinate only, enforces
an asymptotic cubic behavior for the eddy viscosity at the walls [1]. It involves the constant CI,
which may be chosen as ∼0.2 from the consideration of isotropic turbulence. The cutoff scale �

corresponds to the cubic root of the volume of a mesh cell at the corresponding wall-normal location
[61]. The Smagorinsky model Eqs. (4) and (5) will be the baseline subgrid model in the following
data assimilation experiments.

2. Dynamic model

Another well-known approach is the dynamic Germano-Lilly model [52,53], which is still
based on the Smagorinsky form Eq. (4) but allows an automatic determination of Cs through the
application of a second level of filtering and the use of the Germano identity [52]. In the case of
turbulent channel flows [62], Cs may be determined through

C2
s (y, t ) =

〈
mi jAd

i j

〉
xz

〈mklmkl〉xz
, (6)

with

Ai j = ũiu j − ũiũ j, mi j = αi j − β̃i j, αi j = −2�̃
2
(2̃Skl S̃kl )

1
2 S̃i j, βi j = −2�

2
(2Skl Skl )

1
2 Si j,

(7)

where the notation ·̃ refers to the application of the second filter, and 〈·〉xz denotes averaging along

the homogeneous directions. The cutoff scale �̃(y) which is associated to the second level of

104607-5



VINCENT MONS, YIFAN DU, AND TAMER A. ZAKI

filtering is chosen as �̃(y) = (2�x�y(y)2�z)
1
3 . This second filtering is performed by applying

a top-hat filter that is approximated by Simpson’s quadrature rule.

3. Mixed model

Even though the dynamic model avoids the need to prescribe the coefficient Cs, it is still restricted
by the Boussinesq hypothesis. While the purely dissipative character of the Smagorinsky model
form is desirable for numerical considerations, it is not necessarily appropriate for wall turbulence
where strong backward energy transfers from subgrid to resolved scales occur [50,63,64]. Moreover,
the subgrid tensor that is predicted by the Smagorinsky model is known to be poorly correlated with
the true one [48]. Therefore, in addition to the above models, we also consider in this study a specific
mixed model that combines the scale-similarity approach proposed in Ref. [54] with a Smagorinsky
contribution to ensure a sufficiently dissipative character of the complete model. It is expressed as

τi j = Csim(ũiu j − ũiũ j ) − 2νsgsSi j, (8)

where Csim is an adjustable constant that weights the scale-similarity contribution in the mixed
model Eq. (8) and may be evaluated as ∼1. The eddy-viscosity part in Eq. (8) corresponds
to the Smagorinsky model Eqs. (4) and (5). The constant CI in Eq. (5) is decreased to 0.141
for the mixed model to emphasize the importance of the scale-similarity contribution relatively
to the eddy-viscosity part. The second level of filtering that is denoted by ·̃ and used to evaluate the
scale-similarity contribution is chosen as the same one that is considered for the dynamic model in
Eqs. (6) and (7).

The dynamic and mixed models will help in the assessment of the performance of the cali-
brated Smagorinsky model Eqs. (4) and (5) through the methodology described in §III. In such
comparisons, the dynamic model will be regarded as the best choice of Cs according to the Germano
identity, and the mixed model is supposed to be better correlated with the true subgrid scale tensor
and allows backward energy transfers [2,54].

C. Minimal correction to adjust LES statistics

We aim to improve the predictions of LES through adjustments of the Smagorinsky model
Eqs. (4) and (5) that rely on the data assimilation methodology that will be detailed in Sec. III.
Specifically, we target the correct estimation of usual statistical quantities such as the mean flow
and the Reynolds stresses. The scalar Cs appears as a leading candidate for adjustment of the
Smagorinsky model. However, an important consideration is whether adjusting Cs alone is sufficient
to accurately predict both mean and second-order statistical quantities. This may be investigated
through the consideration of the subgrid dissipation, namely the energy drain from resolved to sub-
grid scales, whose correct estimation is generally the main goal in functional modeling approaches
for LES [3]. In the framework of wall turbulence, it was proposed in Refs. [50,51] to split the mean
subgrid dissipation εsgs according to

εsgs = −〈τi jSi j〉 = εms + εfs, εms = −〈τi j〉〈Si j〉, εfs = −〈τ ′′
i jS

′′
i j〉. (9)

In Eq. (9), εms quantifies the dissipation of mean resolved kinetic energy 1
2 〈ui〉〈ui〉 through interac-

tions with the subgrid scales, while εfs is its counterpart for the fluctuating, or turbulent resolved
kinetic energy 1

2 〈u′′
i u′′

i 〉. A correct evaluation of εms and εfs may help to ensure the fidelity of the
predicted mean flow and second-order statistics, respectively.

Figure 1 reports these two dissipation rates from the various subgrid models in Sec. II B at Reτ =
590 using the grid LES590c in Table I. These LES predictions are compared with the results of a
DNS that is performed on the grid DNS590 and filtered in the homogeneous directions with a
top-hat filter. Comparisons between the Smagorinsky and dynamic models may help in assessing
the influence of the coefficient Cs on εms and εfs. In the near-wall region (y+ < 50) and slightly
beyond, the dynamic model predicts a value for Cs that is significantly lower than the profile Eq. (5)
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FIG. 1. Smagorinsky coefficient Cs and subgrid dissipations εms and εfs in Eq. (9) evaluated using the
Smagorinsky model ( ), the dynamic model ( ), the mixed model ( ), and filtered DNS ( ) at Reτ =
590. Grid LES590c is used for the LES calculations.

chosen for the Smagorinsky model. As a result, the subgrid dissipation rates that are predicted by
the dynamic model are overall reduced compared to the Smagorinsky model. The latter provides
a satisfactory estimation of the subgrid dissipation of mean kinetic energy εms, while this same
dissipation rate is significantly underestimated by the dynamic model. The converse is true for
the prediction of the subgrid dissipation of turbulent kinetic energy εfs, which is more accurately
predicted by the dynamic model and is overestimated with the Smagorinsky model. Accordingly,
the results in Fig. 1 suggest that it may be difficult to identify an optimal profile for Cs that would
correctly estimate both εms and εfs, and thus both the mean flow and second-order statistics. These
results are in accordance with the discussion in Ref. [51]. Note that, similarly, the mixed model
only matches one, but not both εms and εfs that are predicted from the filtered DNS. Its estimation
of εms is satisfactory; while its prediction of εfs is poor, it has the desirable feature of reproducing
a nonmonotic behavior close to the wall, which originates from the ability of the mixed model to
reproduce backward energy transfers that occur around y+ = 10.

The above discussion motivates the consideration of additional features of Smagorinsky-like
models to adjust. Specifically, such features must enable independent control of the mean and the
fluctuations of the subgrid tensor τi j , which are involved in εms and εfs, respectively. We here choose
to continue to directly adjust the fluctuations of τi j through the coefficient Cs, and add a stationary
contribution to τi j to control its mean. Due to the present flow symmetries, only 〈τ12〉 is involved
in εms and can directly affect the mean flow. As such, we aim to adjust 〈τ12〉 only, which may be
performed by modifying the LES equations (3) according to

∂ui

∂t
+ ∂

∂x j
(uiu j ) = − 1

ρ

∂ p

∂xi
+ 2ν

∂Si j

∂x j
− ∂τi j

∂x j
− dσ

dy
δi1, (10)

where the supplementary stationary contribution dσ
dy (y) acts only on the (mean) streamwise velocity.

Introducing σ alters the mean of the subgrid tensor according to 〈τ12〉 → 〈τ12〉 + σ . We will thus
rely on the coefficient Cs and/or the forcing σ to optimize LES predictions through the data
assimilation procedure that is described in Sec. III.

III. DATA ASSIMILATION METHOD FOR OPTIMIZING SUBGRID MODELS

A. Control vectors, observations, and objective

The main goal of this study is to faithfully reproduce, using LES, reference statistics. These
statistical data are here evaluated from DNS but may, in principle, be available from experiments.
The present approach, whose outcome will be referred to as data assimilated LES (DA-LES),
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relies on adjustment of the Smagorinsky model Eqs. (4) and (5) through the coefficient Cs and/or
the forcing σ in Eq. (10). These quantities, which here depend on the wall-normal coordinate y
only, are discretized each with Ny grid points in the wall-normal direction. Together they form
the so-called control vector γ , which is thus comprised of either Ny or 2Ny elements, depending
on whether only Cs or σ is considered alone or if both quantities are included in γ . Appropriate
vectors γ are here inferred from reference statistical data, such as the mean flow or the mean subgrid
tensor, and whose nature will vary in the following data assimilation experiments. These reference
data, or observations, are gathered in the vector m. We will observe either one and two statistical
quantities over the whole channel height, at all wall-normal grid points. Accordingly, the size of m
will be either Ny or 2Ny. It should be noted that our data assimilation procedure does not require
observations to be available at all wall-normal grid points and can be performed with sparse data
whose positions do not coincide with grid points, although they were here chosen to coincide for
simplicity.

In the Bayesian formulation of data assimilation [10,65,66], both the control vector γ and the
observations m are considered as random vectors, in the sense of aleatory uncertainties. In this
framework, data assimilation identifies the control vector γ with maximum likelihood conditioned
on the available observations m. Relying on the standard Gaussian assumption, this amounts to
minimizing the cost function

J = 1
2‖γ − γ f‖2

B−1 + 1
2‖m − h(γ )‖2

R−1 . (11)

The first term reflects the knowledge on the control vector prior to the consideration of the
observations in the form of an estimate γ f . At the beginning of the data assimilation procedure, the
estimate γ f corresponds to the standard Smagorinsky model in Sec. II B 1, i.e., using Cs as given in
Eq. (5) and σ = 0. This estimate will be then updated in the iterative procedure that is detailed below
and summarized in Algorithm I. This contribution to the cost also includes the covariance matrix
B which is associated to γ f , with the notation ‖ • ‖2

B−1 = •TB−1•. The second term in Eq. (11)
quantifies the discrepancies between the LES predictions and the considered observations m with
covariance matrix R. The operator h maps the control vector space to the observation space. In
the present case, it includes the LES computation and the extraction of the statistical quantities to
compare with m. If observation locations did not coincide with grid points, then h would also include
an evaluation and interpolation scheme from observation to grid point locations. The methodology
to minimize the cost function J is described in Sec. III B, while the choice of the covariance matrices
B and R is discussed in Sec. III C along with other data assimilation parameters.

Algoritham 1: Summary of the EnVar procedure for data assimilated LES (DA-LES)

Step 1: Initialization;
Initialize the control vector γ f based on the standard Smagorinsky model Eqs. (4) and (5) and set

the covariance matrices B Eq. (22) and R Eq. (27);
Step 2: Generation of initial ensemble;

Generate Nens realizations of γ following a normal distribution with mean γ f and covariance
matrix B to form the matrix Q in Eq. (13);

Step 3: Large-eddy simulations;
Perform Nens + 1 LES calculations to obtain the matrix H in Eq. (14);

Step 4: Proper orthogonal decomposition;
Perform POD step Eqs. (15)–(17);

Step 5: Assimilation;
Linearize the cost function Eq. (11) around γ f and evaluate the assimilated control vector γa through Eq. (19);
Step 6: Iteration cycle;

If performing a new assimilation cycle, set γa → γ f and generate a new ensemble using Eq. (21).
Return to step 3. The total number of iterations is denoted as Nit .
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B. Ensemble-based variational approach

The minimization of the cost function J in Eq. (11) is here performed following an ensemble-
based variational (EnVar) approach [34], where the control vector γ is searched in a subspace
spanned by an ensemble of realizations which are representative of the prior statistics. In this
framework, γ is expressed as

γ = γ f + Ew, B 	 1

NPOD − 1
EET, (12)

where w becomes the new control vector in the minimization process, and E contains a set of NPOD

suitable basis vectors which may be related to the prior covariance matrix B. The matrix E is built
as follows: We first form the matrix Q as

Q = (γ (1) − γ f , γ (2) − γ f , · · · , γ (Nens ) − γ f ), (13)

where γ (1), γ (2), · · · , γ (Nens ) are Nens realizations of γ , or ensemble members following a normal
distribution with mean γ f and covariance B. Using the LES solver, the observations corresponding
to each of these realizations are evaluated and assembled in the matrix H defined as

H = [h(γ (1) ) − h(γ f ), h(γ (2) ) − h(γ f ), · · · , h(γ (Nens ) ) − h(γ f )]. (14)

Evaluating H is thus by far the most demanding part of the present methodology, as it requires the
realization of Nens + 1 LES calculations to compute the flow for each ensemble member and the
estimate γ f . Following Ref. [67], a proper orthogonal decomposition (POD) representation of the
ensemble in observation space is performed by solving the following eigenvalue problem:

1

Nens
HTHv(i) = λ(i)v(i), i ∈ {1, 2, · · · , Nens}, (15)

which corresponds to the method of snapshots [68]. The Nens eigenvalues λ(i) are sorted by
decreasing value, and a set of eigenvectors v(i) is formed according to

V = (v(1), v(2), · · · , v(NPOD )), NPOD = min

{
k

∣∣∣∣
∑k

i=1 λ(i)∑Nens
i=1 λ(i)

� εPOD

}
, (16)

where the parameter 0 < εPOD � 1 is used to control the size and smoothness of the POD basis. The
matrix E in Eq. (12) is finally obtained through

E = QV. (17)

Using Eq. (17) and after linearization around γ f , the cost function J becomes

J̃ = 1
2 (NPOD − 1)wTw + 1

2‖HPODw + h(γ f ) − m‖2
R−1 , HPOD = HV. (18)

Compared to the straightforward choice E = Q, the POD step yields orthogonal vectors to match the
observations and improves the well-posedness of the data assimilation problem. Since J̃ in Eq. (18)
is quadratic, the minimizer, or assimilated vector, wa is easily obtained from

wa = [
(NPOD − 1)I + HT

PODR−1HPOD
]−1

HT
POD[m − h(γ f )], (19)

and the original assimilated control vector is therefore γa = γ f + Ewa. DA-LES thus refers to the
control vector γa and the associated predictions. As the original cost function in Eq. (11) is a
nonlinear least-square problem, it may be beneficial to consider γa as a new estimate γ f and to
perform a new assimilation cycle. If so, then we may exploit the fact that the above procedure not
only provides an optimal control vector γa, but also the covariance matrix Pa of γa, which may be
evaluated as

Pa = QL−1QT, L = (Nens − 1)I + HTR−1H, (20)
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where L corresponds to the Hessian matrix of the quadratic cost function for the choice E = Q.
Using Eq. (20), a new ensemble of Nens realizations of the control vector can be obtained and the
matrix Q updated as

Q ←
√

Nens − 1QL− 1
2 U, (21)

where U is a random mean-preserving orthonormal matrix. If this process is repeated Nit iterations,
then the total computational cost that is associated to the data assimilation procedure can be
evaluated as NCFD = Nit × (Nens + 1) LES calculations. The whole procedure is summarized in
Algorithm I.

C. Ensemble generation and data assimilation parameters

The prior covariance matrix B that is used to generate the first ensemble (step 2 in Algorithm I)
is a usual squared exponential function. In the case where the control vector γ is formed by either
the coefficient Cs or the forcing σ only, the components of B may be expressed as

Bi j = sb(yi )sb(y j )exp

[
−

(
f (yi ) − f (y j )

lc

)2]
, (22)

where sb(yi ) is the standard deviation at the wall-normal location yi of a quantity b which refers to
either C2

s or σ . The consideration of C2
s instead of Cs was preferred because the former is the effective

coefficient that determines the intensity of the Smagorinsky model Eq. (4). The standard deviation
is chosen as sb(yi ) = 1

10 |bf (yi )|, where bf refers to the first-guess value for b. Since the first guess of
the forcing σ is σ f = 0, the value of 〈τ12〉 is added to bf (yi ) for that term. It may be noticed that this
choice for sb(yi ) corresponds to a relatively large level of uncertainty. Significantly increasing this
standard deviation would result in realizations of γ that correspond to variations of the same order
of magnitude or higher than the first-guess γ f itself, which is not desirable in terms of numerical
stability and convergence of the data assimilation procedure. To take into account the wall-normal
change in the lengthscale associated with variations in the flow statistics, in particular the mean flow,
the squared exponential in Eq. (22) does not directly involve y but a transformed variable f (y) =
log10(y∗). The term lc in Eq. (22) may thus be interpreted as a correlation length in logarithmic
scale, and is chosen as unity. Preliminary tests confirmed that this value was appropriate to obtain
smooth realizations of γ , while variations around the latter did not entail significant changes in the
outcome of the data assimilation procedure. In the case where both Cs and σ are included in γ , they
are considered as independent random variables, i.e., cross-correlations between these quantities are
set to zero.

The first ensemble of realizations of γ (step 2 in Algorithm I), which is stored in the matrix Q in
Eq. (13), is constructed such that it spans the same subspace as the Nens dominant eigenvectors of B
in Eq. (22), according to

Q =
√

Nens − 1Wens�
1
2
ensU, B = W�WT, (23)

where the matrices W and � are formed by the eigenvectors and eigenvalues of B, respectively,
while Wens and �ens denote their restriction to the Nens dominant modes. As in Eq. (21), U refers
to a random mean-preserving orthonormal matrix. Subsequent ensembles are then obtained through
Eq. (21) (step 6 in Algorithm I).

To make the realizations of γ as appropriate as possible to match the reference statistics in m, the
ensemble members that are obtained by the above procedure are supplemented with a contribution
which is inspired from the nudging technique [69]. When the mean flow is observed and if γ includes
the forcing σ , realizations of the latter are generated as follows:

σ (i) = σ (i),B + σ (i),nud. (24)
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The contribution σ (i),B is obtained as described above, based either on Eq. (21) or Eqs. (22) and
(23), while σ (i),nud corresponds to a nudging-like term of the form

σ (i),nud(y) = −C(i)
nudθ (y), θ (y) =

∫ y

0
[UDNS(y′) − ULES(y′)]dy′, (25)

where UDNS refers to the reference mean flow that is obtained by DNS and included in the
observations m, while ULES is the mean flow that is predicted by LES with the previous estimate
of the control vector γ f . The nudging yields the contribution −dσ (i),nud/dy = C(i)

nud(UDNS − ULES)
in the augmented LES momentum equations (10), and thus facilitates reproducing the reference
DNS mean flow by data assimilation, which was the primary aim when introducing the forcing σ in
Sec. II C. The nudging coefficient C(i)

nud is sampled from a uniform distribution in the range [0, D],
where the upper bound D is chosen so that, on average, the intensity of the nudging contribution
σ (i),nud is consistent with the uncertainties in σ prescribed through Eq. (21) or Eq. (22). Specifically,
D ensures that

0.5D|θmax| = smax, (26)

where θmax corresponds to the maximum value of θ (y) in Eq. (25), while smax refers to the maximum
value of the standard deviation of σ .

The covariance matrix R, which weights the observation term in the cost function J in Eq. (11),
is chosen to be a diagonal matrix according to

Ri j = 0.01‖m − h(γ f )‖2
MM−1

i j , Mi j = �yiδi j, (27)

where Einstein summation convention does not apply in the second equality. The diagonal mass
matrix M accounts for the discretization in the wall-normal direction. Equation (27) amounts to a
statement that the observation term in the cost function can be reduced by two orders of magnitude,
at which point it becomes commensurate with the initial variance which models measurement
noise. Preliminary tests confirmed that this was appropriate to match the observations m, while
still ensuring that the prior term is nonnegligible and effectively regularizing.

An important parameter is the size Nens of the ensemble of simulations that are performed in the
EnVar approach. While it is desirable to set Nens as small as possible due to computational cost, Nens

should be sufficiently large to capture the dominant directions of uncertainties in the control-vector
space. It is suggested from previous studies [15] that EnVar techniques may be efficient even when
the dimension of the control vector is large compared the size of the ensemble by a ratio of the
order of 10 to 1000. In the present case, the dimension of the control vector is at most 2Ny = 640
for the grid LES1000. Accordingly, following Refs. [15,36–40], ensembles of sizes Nens = 20 are
sufficiently large. As will be discussed in Sec. V D, Nens = 10 may be adopted. However, Nens = 20
was selected to ensure convergence of the data assimilation procedure and the robustness of the
reported results. One last parameter is εPOD, which determines the size of the POD basis in Eq. (16)
and is set to 0.999. This choice retains a vast majority of the most energetic modes, while still
removing highly oscillatory and unphysical ones.

IV. DATA ASSIMILATION BASED ON FILTERED OBSERVATIONS

A. Optimizing the coefficient Cs (cases 1 and 2)

In this section, the data assimilation procedure from Sec. III is employed to examine the benefits
and limitations of observing the mean subgrid stress tensor to optimize the Smagorinsky model.
These data assimilation experiments are therefore in the spirit of a priori testing [3]. In contrast,
in Sec. V data assimilation will be performed with observations of statistical quantities such as
the mean flow or the Reynolds stresses, and thus will provide a posteriori assessment of the
enhancement to LES predictions.

We first consider the data assimilation experiment denoted case 1 in Table II. As in the majority of
the calculations, the targeted friction Reynolds number is Reτ = 590. We here rely on the finest LES
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TABLE II. Summary of the data assimilation experiments that are performed in this study. For each case,
the table reports the friction Reynolds number Reτ , the control vector γ , the grid designation (see Table I
for resolution), the observations m, the number of iterations Nit , and the total number of LES NCFD = Nit ×
(Nens + 1) when Nens = 20. Cases 5, 5c, and 6 are also revisited in Sec. V D with alternative data assimilation
parameters (Nens = 10 and Nit = 1, so NCFD = 11), and in Sec. V E.

Case Section Reτ γ Grid m Nit NCFD

1 IV A 590 Cs(y) LES590f 〈τ12〉 4 84
2 IV A 590 Cs(y) LES590f dU/dy, 〈τ12〉 1 21
3 IV B 590 Cs(y), σ (y) LES590f 〈u′′v′′〉, 〈τ12〉 3 63
3c IV B 590 Cs(y), σ (y) LES590c 〈u′′v′′〉, 〈τ12〉 3 63
4 V A 590 σ (y) LES590f dU/dy 2 42
5 V B 590 Cs(y), σ (y) LES590f dU/dy, 〈u′′u′′〉 2 42
5c V B 590 Cs(y), σ (y) LES590c dU/dy, 〈u′′u′′〉 2 42
6 V C 1000 Cs(y), σ (y) LES1000 dU/dy, 〈u′′u′′〉 2 42

grid in Table I (LES590f) for this value of Reτ . The aim of this first data assimilation experiment is
to improve the prediction of the mean subgrid stress tensor. As discussed in Sec. II C, only the mean
of the subgrid shear stress τ12 can directly affect the mean flow U , which may also be inferred from
the governing equation for U obtained by averaging Eq. (10),

ν
d2U

dy2
− dP

dx
− d

dy
(〈u′′v′′〉 + 〈τ12〉 + σ ) = 0, (28)

where dP/dx is the fixed mean pressure gradient, and 〈u′′v′′〉 is the mean resolved shear stress.
Furthermore, it is known that the Smagorinsky model predicts essentially zero diagonal subgrid
stresses [70]. Accordingly, the observation vector m is here formed by 〈τ12〉 alone evaluated from
filtering data from DNS (see Sec. II C). To ensure the validity of the discussion regarding the
functional limitations of the Smagorinsky model in Sec. II C, the control vector γ is the Cs(y)
profile only, and the forcing σ is set as zero in all calculations. The results for this first data
assimilation experiment are illustrated in Figs. 2 and 3. In these figures, as in the rest of this section,
nondimensionalization is based on the reference friction velocity obtained from DNS. This choice
safeguards against misinterpretation of the results, in particular when the mean flow varies primarily
near the wall [48], as will be the case here.

The first guess of the data assimilation procedure, namely the Smagorinsky model Eqs. (4) and
(5), is illustrated with dashed lines in Fig. 2. Below y∗ < 20, the agreement in the mean subgrid
stress 〈τ12〉 between the Smagorinsky model and the reference DNS results is rather satisfactory,
as reported in Fig. 2(b). However, the intensity of 〈τ12〉 appears underestimated beyond y∗ = 20.
We will focus on the ability of the data assimilation procedure to correct this defect through the
adjustment of the coefficient Cs.

In the first main iteration of the data assimilation procedure, based on Eqs. (22) and (23), Nens

realizations of the profile Cs(y) are generated around the standard Smagorinsky proposal Eq. (5).
LES calculations are performed for each of these profiles (steps 1 through 3 in Algorithm I). Before
proceeding further to analyze the assimilated Cs(y) profile that is the outcome of the remaining
steps of the data assimilation procedure, the outputs of these LES calculations are examined to
determine the sensitivity of the LES statistics to variations in Cs(y). The sensitivity of a quantity b
at wall-normal location y2 with respect to variations in the coefficient Cs at y1 is evaluated using

g
[
b(y2),C2

s (y1)
] = cov

[
b(y2),C2

s (y1)
]

s2
C2

s
(y1)

∣∣∣∣E
[
C2

s (y1)
]

E[b(y2)]

∣∣∣∣. (29)
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FIG. 2. Control vector and flow statistics of case 1 for DNS ( ), the Smagorinsky model ( ), and
DA-LES ( , from thin to thick for increasing iteration of the data assimilation procedure).

In this expression, cov, E, and s2 are the covariance, expectation, and variance operators, respec-
tively, which are approximated through ensemble averaging. Equation (29) for g[b(y2),C2

s (y1)] can
be interpreted as a nondimensional gradient based on the following first-order approximation that
relates the variation �b(y2) to the variation �C2

s (y1) that induces the former,

�b(y2)

|b(y2)| 	 g[b(y2),C2
s (y1)]

�C2
s (y1)∣∣C2

s (y1)
∣∣ . (30)

The standard deviation and the nondimensional gradient in Eq. (29) evaluated from the first
ensemble of case 1 are reported in Fig. 3 for the different statistical quantities involved in the mean-
flow Eq. (28). Figures 3(a) and 3(b) confirm the efficacy of the ensemble generation procedure
that is detailed in Sec. III C. Despite the moderate size of the ensemble (Nens=20), the realizations
of C2

s recover the statistics prescribed through the covariance matrix B in Eq. (22): the value for
the standard deviation sC2

s
= 1

10C2
s is satisfactorily recovered over the whole channel [solid line

in Fig. 3(a)]. In addition, the shape of the nondimensional gradient g[C2
s (y2),C2

s (y1)] in Fig. 3(b)
is in agreement with the analytical result g[C2

s (y2),C2
s (y1)] = exp(−{[ f (y1) − f (y2)]/lc}2) which

can be deduced from the definitions Eqs. (22) and (29). Also note that no spurious long-distance
correlation have been introduced. These qualities of the ensemble can be attributed to the sampling
scheme Eq. (23) based on the dominant eigenvectors of B, and provide confidence in the reported
statistics.

Now considering the other results in Fig. 3, it appears that the outputs of the LES simulations
are not all similarly affected by changes in Cs(y). The mean subgrid shear stress (−〈τ12〉) is well
correlated with C2

s (y) as illustrated in Fig. 3(c), i.e., the reported nondimensional gradient is positive,
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FIG. 3. Statistics of the first ensemble of case 1: (a) standard deviation sb of a quantity b normalized by
its magnitude at the same y location, where b refers to C2

s ( ), 〈τ12〉 ( ), 〈u′′v′′〉 ( ), or U ( ); (b–e)
nondimensional gradient g[b(y2),C2

s (y1)] in Eq. (29), where b refers to C2
s (b), (−〈τ12〉) (c), (−〈u′′v′′〉) (d),

or U (e).

which results from the proportional relationship between the two [cf. Eq. (4)]. The influence of Cs on
〈τ12〉 is also mostly local; one exception is a region very close to the wall (y∗

2 < 10) where (−〈τ12〉)
appears slightly anti-correlated with variations in C2

s around y∗
1 = 100, which is further discussed
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below. In contrast, Fig. 3(d) shows that the sensitivity of the resolved shear stress (−〈u′′v′′〉) to
Cs is mostly nonlocal. The associated nondimensional gradient is overall negative, as increasing
Cs enhances the dissipation of resolved turbulent kinetic energy εfs in Eq. (9). Only variations
in C2

s in the range 30 � y∗
1 � 150 seem to have a significant impact on (−〈u′′v′′〉) and only for

y∗
2 < 30. The same applies for the mean flow U , although the amplitude of g[U (y2),C2

s (y1)] is
significantly smaller compared to the previously discussed nondimensional gradients. This relatively
low sensitivity is also reflected in the small values for the standard deviation of U as reported
in Fig. 3(a), which becomes almost negligible beyond y∗ = 30. Figure 3(e) also indicates that
increasing Cs induces a decrease of U , and thus of dU/dy, close to the wall, which arises from
the relationship between (−〈u′′v′′〉) and U through the mean-flow Eq. (28). This might explain the
slight anticorrelation between (−〈τ12〉) and C2

s that was noted above, as a decrease in dU/dy should
result in lower values for the contribution 〈Si j (2SklSkl )

1
2 〉 when averaging the Smagorinsky form

Eq. (4). In summary, the present analysis suggests that, apart from 〈τ12〉, only the flow statistics in
the near-wall region below y∗ = 30 may be significantly impacted by variations in Cs, and only if
the latter occur in the range 30 � y∗ � 150. This result and its consequences will be revisited during
discussions of the data assimilation experiments.

After having investigated the sensitivity of the flow to Cs(y) using the first ensemble from case
1, we turn to the assimilated states that were computed using the subsequent steps of the data
assimilation procedure. The outcome from the first ensemble (steps 4–5 in Algorithm I) is reported
with the thinnest blue lines in Fig. 2. While enhancing the prediction of the subgrid shear stress
〈τ12〉 compared to the standard Smagorinsky model, the stress remains underestimated compared
to the filtered DNS. To further improve this result, three more iterations of the data assimilation
procedure were performed (step 6 in Algorithm I). As reported in Fig. 2(b), the data assimilation
procedure successfully recovers the reference profile for the mean subgrid shear stress 〈τ12〉, the
final DA-LES results being illustrated with the thickest blue line. It appears from Fig. 2(a) that
this objective has been reached through a large increase in Cs over the entire channel height.
In particular, the value of Cs above y+ = 30 has become significantly larger than the theoretical
value for isotropic turbulence C2

s ∼ 0.04 for the final assimilated state. This large Cs is indicative
of the inadequacy of considering the reference 〈τ12〉 as the sole objective of the data assimilation
procedure while only adjusting Cs. This view is confirmed by the examination of Figs. 2(c) and
2(d), where we report the mean flow and the mean resolved shear stress profiles. The improvement
in terms of 〈τ12〉 for DA-LES has been obtained at the expense of a deterioration in the predicted
mean flow, which is significantly underestimated in the viscous wall region, while it was correctly
evaluated by the standard Smagorinsky model. The large increase in Cs has induced a similar
enhancement in the dissipation of resolved turbulent kinetic energy εfs in Eq. (9), inducing a
decrease in (−〈u′′v′′〉) and thus in U close to the wall. It can also be noted based on Fig. 2(c)
that the mean flow has barely been altered above y∗ = 30 despite the large variations in Cs relative
to its first-guess profile. All these results are in accordance with the discussion of Fig. 3.

Since use of 〈τ12〉 alone as observation in the data assimilation procedure is detrimental to the
accuracy of estimation of other quantities, we consider adding other types of observations. In the
data assimilation experiment 2, the observations m include both the subgrid shear stress 〈τ12〉 and
information regarding the mean flow U . Specifically, the gradient dU/dy is used in the cost function
J in Eq. (11) so that, when discretization in the wall-normal direction is taken into account through
the covariance matrix R in Eq. (27), observations close to the wall are of similar magnitude as
those towards the channel center. In addition, the components of m are normalized so that the
contributions of 〈τ12〉 and dU/dy have the same weight in the cost function. The results for this
data assimilation experiment are reported in Fig. 4. Only one iteration of the data assimilation
procedure was performed and it was sufficient to highlight the difficulties in matching both 〈τ12〉
and dU/dy when only adjusting Cs. The mean flow for DA-LES slightly deteriorates compared to
the standard Smagorinsky model, but to a lesser extent compared to the previously discussed case
1. However, some improvement is achieved in matching 〈τ12〉, even if the discrepancies from the
reference profile remain significant. The difficulties in satisfactorily correcting the LES predictions
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FIG. 4. Control vector and flow statistics of case 2 for DNS ( ), the Smagorinsky model ( ), and
final DA-LES ( ).

in this data assimilation experiment may be quantified thanks to the linearized cost function J̃ in
Eq. (18). Since J̃ is quadratic, its gradient with respect to the control vector w, which arises from the
ensemble representation of the original control vector γ in Eq. (12), is straightforward to compute.
Specifically, we separate the observation term in J̃ into J̃〈τ12〉 for observing 〈τ12〉 and J̃dU/dy for
observing dU/dy; we then compute their gradients with respect to w at w = 0 (i.e., at the first
guess). The normalized scalar product of the gradients is

∇J̃dU/dy · ∇J̃〈τ12〉
‖∇J̃dU/dy‖‖∇J̃〈τ12〉‖

= −0.19, (31)

which confirms that matching the mean flow and the subgrid shear stress are competitive objectives.
The same outcomes applies if, instead of adding the observation of dU/dy, the resolved shear stress
〈u′′v′′〉 had been considered in conjunction with 〈τ12〉, and a similar analysis would have led to

∇J̃〈u′′v′′〉 · ∇J̃〈τ12〉
‖∇J̃〈u′′v′′〉‖‖∇J̃〈τ12〉‖

= −0.15. (32)

Equations (31) and (32) indicate that by targeting 〈τ12〉 in the data assimilation problem, it is not
possible to simultaneously improve the prediction of the other terms in the governing equation for
the mean flow Eq. (28). This point is in accordance with previous discussions on the sensitivity
of the LES statistics with respect to changes in Cs and the fact that 〈u′′v′′〉 and U are relatively
well predicted by the standard Smagorinsky model, in particular close to the wall. The present data
assimilation has thus only found the best compromise between an accurate prediction of 〈τ12〉 and a
correct estimation of the other terms in the mean flow Eq. (28).
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FIG. 5. Control vector and flow statistics of case 3 for DNS ( ), the Smagorinsky model ( ), and
final DA-LES ( ).

The present difficulty in correctly reproducing multiple statistical quantities when only adjusting
Cs seems somewhat analogous to findings in Ref. [29] in the context of data assimilation with
RANS models when preserving the Boussinesq hypothesis. In that case, the authors noted that the
considered model correction may be too conservative and prevents reaching many possible flow
states, making a correct finely-detailed estimation of the observed reference flow difficult. In a
similar way, in the present context, correctly estimating the different contributions in the mean-flow
Eq. (28) requires more flexibility in the adjustment of the subgrid model than offered by variations
in the coefficient Cs alone.

B. Optimizing the coefficient Cs and the forcing σ (cases 3 and 3c)

In accord with the discussion in Sec. II C, the above results suggest the need of a more exhaustive
adjustment of the subgrid tensor, such as a separate control of its mean and fluctuations. We now
consider data assimilation experiment 3 where the control vector γ is formed by the coefficient
Cs and the forcing σ in the momentum equations (10). The observations are the mean subgrid
and resolved shear stresses 〈τ12〉 and 〈u′′v′′〉, which appeared as competitive objectives when
only adjusting Cs according to Eq. (32). Figure 5 illustrates the results for this data assimilation
experiment, and directly reports profiles for the final assimilated state, which was obtained after
three iterations of the data assimilation procedure. As illustrated in Figs. 5(d) and 5(e), DA-LES has
successfully recovered both the observed subgrid and resolved shear stresses, thanks to incorporat-
ing the forcing σ in the control vector. As the intensity of the mean resolved shear stress 〈u′′v′′〉
is slightly underestimated close to the wall with the standard Smagorinsky model, the value of the
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FIG. 6. Control vector and flow statistics of case 3c for DNS ( ), the Smagorinsky model ( ), and
final DA-LES ( ).

coefficient Cs is decreased for DA-LES in this region, inducing a decrease in subgrid dissipation.
To compensate for this reduction in Cs and to match the reference mean subgrid shear stress 〈τ12〉,
whose intensity is also underestimated by the standard Smagorinsky model, the data assimilation
procedure has resulted in significant negative values for the forcing σ .

Despite the fact that DA-LES is able to correctly recover both the subgrid and resolved part
of the shear stress in the present case, and thus the total shear stress 〈u′′v′′〉 = 〈u′′v′′〉 + 〈τ12〉 + σ

as confirmed by Fig. 5(f), it appears from Fig. 5(c) that the discrepancies in the assimilated mean-
velocity profile are still large beyond y+ = 30 and have not been significantly decreased compared to
the standard Smagorinsky model. While this may seem in contradiction with the governing equation
for the mean flow Eq. (28), it is well known that discretization errors in LES may overwhelm the
subgrid model, in particular for second-order methods and when the filter size is the same as the
grid spacing [46,47], as in the present case. The importance of discretization errors in LES was
investigated in Ref. [48] in the case of turbulent channel flow with similar numerical techniques
as the present solver. Accordingly, the LES governing Eq. (10) are not exactly realized and could
include supplementary contributions that interfere with the accuracy of prediction. The present data
assimilation experiment still provides the best achievable mean-flow prediction when both the mean
and fluctuations of the subgrid tensor of the Smagorinsky model Eq. (4) yield accurate total shear
stress and its subgrid and resolved components.

The findings from case 3 are confirmed by data assimilation experiment 3c which adopts a
coarser grid LES590c. The corresponding results are reported in Fig. 6. DA-LES almost perfectly
reproduces both the subgrid and resolved shear stresses through an overall decrease in the value of
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FIG. 7. Control vector and flow statistics of case 4 for DNS ( ), the Smagorinsky model ( ), and
final DA-LES ( ).

Cs and the introduction of a strongly negative forcing σ . Nonetheless, despite the correct estimation
of the total shear stress, the mean flow from DA-LES is only mildly improved compared to the use of
the Smagorinsky model, and the remaining discrepancies are larger than in the previous case, which
can be attributed to the increase in discretization errors that are induced by the use of a coarser
grid. However, one has to remain cautious when interpreting this trend due to the nonmonotonic
decrease of discretization errors in simulations of turbulent channel flows [59]. The results of data
assimilation experiments 3 and 3c still suggest that rather than improving the estimation of the
subgrid tensor, it is more beneficial to directly target statistical quantities of interest. In doing so,
discretization errors would be fully taken into account during the assimilation procedure, and the
LES is directly optimized for accurate prediction of the target statistics. This approach is the subject
of Sec. V.

V. DATA ASSIMILATION USING TARGET FLOW STATISTICS

A. Recovering reference statistics from mean-flow observations (case 4)

The data assimilation experiments in Sec. IV demonstrated that a good estimation of the subgrid
stress tensor does not guarantee the fidelity of LES simulations. Therefore, here only statistical
quantities of interest will be considered as observations m. Data assimilation experiment 4 is
examined in Figs. 7–9. The targeted friction Reynolds number is still Reτ = 590, and the finest
grid LES590f is employed. The reference mean flow from DNS, or more specifically its gradient
dU/dy, is considered as sole observations m. To foster the well-posedness of the data assimilation
problem, and since variations in the coefficient Cs were shown to have only a mild effect on U , the
control vector γ is formed by the forcing σ only while Cs is kept as the profile Eq. (5) in this case.
The final assimilated state is obtained with only 2 main iterations of the data assimilation procedure.
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FIG. 8. Second-order statistics of case 4 for DNS ( ), the Smagorinsky model ( ), and final DA-LES
( ).

The associated computational cost is thus equivalent to NCFD = 42 LES calculations. The fact that
only 2 main iterations are necessary for this and subsequent data assimilation experiments, and that
the associated computational cost may even be lowered, will be discussed in Sec. V D.

As illustrated in Fig. 7(c), the reference mean flow is successfully recovered over the whole
channel height, contrary to previous cases. This result has been achieved through the identification
of an optimal profile for σ with high positive values above y∗ = 40. This height roughly coincides
with the region where the subgrid model does not have a large influence on U , and also where
discrepancies between the true mean flow and its prediction by the standard Smagorinsky model are
significant. Figure 7(d) confirms that this correction to the mean of the subgrid shear stress 〈τ12〉
is almost negligible close to the wall, and starts to move away from the Smagorinsky profile and
even from the reference one at the beginning of the log layer. The impact of the assimilated forcing
σ is also reflected in the resolved shear stress 〈u′′v′′〉 which is reported in Fig. 7(e), with a large
overestimation of its magnitude in the same region. However, the total shear stress 〈u′′v′′〉, which is
more of interest here, is accurately predicted by DA-LES in accordance with the mean-flow Eq. (28),
as illustrated in Fig. 7(f).

While the emphasis was previously placed on the correct estimation of the mean flow and other
quantities that feature in its governing equation, we now turn to the Reynolds normal stresses
from experiment 4 (Fig. 8). Contrary to previous results, nondimensionalization is here based
on the respective friction velocities of the various LES calculations, rather than the reference
DNS, to facilitate comparisons and the distinction between results. Close to the wall, the data
assimilation procedure is beneficial in correcting the initially overestimated component 〈u′′u′′〉 and
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FIG. 9. Production of (a) resolved and (b) total turbulent kinetic energy for DNS ( ), the Smagorinsky
model ( ), and final DA-LES of cases 4 ( ) and 5 ( ). Results in (a) are normalized by Psmag

r , which
refers to the production of resolved turbulent kinetic energy as predicted by the Smagorinsky model.

underestimated 〈v′′v′′〉 and 〈w′′w′′〉 [Figs. 8(a)–8(c)]. However, above y+ ∼ 60, the intensity of
these components is significantly overestimated by DA-LES, which mirrors the elevated profile of
the resolved shear stress in Fig. 7(e). The productions of resolved and total kinetic kinetic energy
are plotted in Fig. 9(a), where the dash-dotted blue line corresponds to present case 4. Due to the
large over-estimation of −〈u′′v′′〉, the production Pr = −〈u′′v′′〉dU/dy of resolved turbulent kinetic
energy 1

2 〈u′′
i u′′

i 〉 is significantly over-estimated, compared to the standard Smagorinsky model.
Nonetheless, the production P = −〈u′′v′′〉dU/dy of total turbulent kinetic energy is satisfactorily
predicted by DA-LES which significantly corrects the estimation by the Smagorinsky model.

It is, however, not necessarily fair to compare the reference full Reynolds stresses with those
obtained from LES, as we here rely on the Smagorinsky model form Eq. (4) which does not model
the trace of the subgrid tensor τi j (see Sec. II B 1) and thus prevents an unambiguous estimation
of the subgrid turbulent kinetic energy [71]. As such, a comparison with the deviatoric part of
Reynolds stress tensor, which is denoted by the superscript d , is provided in Figs. 8(d)– 8(f). Despite
the perceived overestimation of the turbulent kinetic energy, DA-LES significantly improves the
estimation of the deviatoric part of the Reynolds stress tensor compared to the Smagorinsky model
over the whole channel height. The consideration of dU/dy as the sole observed quantity in the data
assimilation procedure thus appears sufficient to already enhance the predicted degree of anisotropy
of the flow. However, it might still be desirable to prevent the overly large increase in the production
Pr of resolved turbulent kinetic energy reported in Fig. 9(a).

B. Recovering reference statistics from mean-flow and Reynolds-stress observations (cases 5 and 5c)

We now consider the data assimilation experiment 5, which differs from the previous one in two
respects: First, the Reynolds stress 〈u′′u′′〉 is included with the mean-flow gradient in the obser-
vations m. This is mainly motivated by the above discussion and to better control the production
Pr . Second, the control vector γ includes both the forcing σ and the coefficient Cs, the latter being
reintroduced to better tackle the consideration of 〈u′′u′′〉 as one of the observed quantities. The final
assimilated state is obtained through two main iterations of the data assimilation procedure, and
the corresponding results are reported in Figs. 9–11 and 13. Figure 9(a) shows that including the
observation of the Reynolds stress component 〈u′′u′′〉 in the data assimilation has indeed mitigated
the increase in the production Pr of resolved kinetic energy compared to case 4. The adjustment of
Pr with respect to the Smagorinsky model even allows DA-LES to roughly recover the reference
DNS profile in the present case. In addition, as in case 4, the production P of total turbulent kinetic
energy is accurately predicted by DA-LES [Fig. 9(b)].
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FIG. 10. Control vector and flow statistics of case 5 for DNS ( ), the dynamic model ( ), the mixed
model ( ), the Smagorinsky model ( ), and final DA-LES ( ).

In addition to comparisons with statistics from the reference DNS and the standard Smagorinsky
model, the present DA-LES is also compared to results from the dynamic and mixed models in
Figs. 10 and 11. The assimilated control vector γ is reported in Figs. 10(a) and 10(b), and shows
that the amplitude of the optimal forcing σ is significantly reduced relative to case 4 [Fig. 7(b)].
While the influence of σ on the resolved shear stress 〈u′′v′′〉 was previously noted, the present lower
value of σ at the start of the log layer leads to a better estimation of the production Pr of resolved
turbulent kinetic energy. The coefficient Cs is only mildly altered by the data assimilation procedure
compared to the standard Smagorinsky model, in particular with a small increase around y+ =
50. Such localized peak is also qualitatively observed in the dynamic model at a similar location,
although the corresponding values significantly differ.

Figure 10(c) indicates that among all considered subgrid models, only DA-LES satisfactorily
predicts the mean velocity U over the whole channel height. The standard Smagorinsky, dynamic
and mixed models predict an erroneous profile for U above the start of the log layer. These
mean-flow profiles would actually collapse close to the channel center if normalized using the same
reference friction velocity. This result further underscores the lack of influence of the subgrid model
in this region as discussed in Sec. IV A, which is here observed even with the mixed model whose
functional form significantly differs from the Smagorinsky and dynamic models.

The profiles of the diagonal Reynolds stress components are reported in Fig. 11 for case 5.
All baseline subgrid models significantly overestimate the intensity of 〈u′′u′′〉 close to the wall.
In contrast, the data assimilation procedure successfully recovers the observed reference profile
apart from a slight overestimation close to the channel center, which also reflects in the unobserved
components 〈v′′v′′〉 and 〈w′′w′′〉. The latter two still seem overall improved compared to the baseline
models, in particular 〈w′′w′′〉. This is confirmed by the examination of the deviatoric part of the
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FIG. 11. Second-order statistics of case 5 for DNS ( ), the dynamic model ( ), the mixed model
( ), the Smagorinsky model ( ), and final DA-LES ( ).

Reynolds stress tensor as illustrated in Figs. 11(d)– 11(f). DA-LES accurately predicts the degree of
anisotropy of the flow over the whole channel height, even close to the channel center. These results
demonstrate the efficacy of the present data assimilation procedure and confirm its validity in terms
of choice of the control vector and observations. The present results also set a benchmark for the
best achievable predictions by eddy-viscosity models in terms of prediction of the mean flow and
the Reynolds stress tensor. Further quantitative assessment of the LES predictions will be provided
in Sec. V D.

The robustness of the above findings is assessed in data assimilation experiment 5c, which adopts
the coarser grid LES590c relative to the previous experiment. Again, only two main iterations of
the data assimilation procedure are performed to obtain the state illustrated in Fig. 12. The profiles
of the assimilated control vector in Figs. 12(a) and 12(b) are similar to those for case 5 [Figs. 10(a)
and 10(b)], with the exception of the value of the coefficient Cs close to the channel center which is
overall lower in the present case. This point will be revisited in Sec. V E to assess its significance
in the context of uncertainty of the assimilated state. As in the previous case 5, the mean flow in
case 5c is best predicted by DA-LES. Concerning the Reynolds stress tensor, only its deviatoric
part and more specifically the components 〈u′′v′′〉d = 〈u′′v′′〉, 〈u′′u′′〉d and 〈v′′v′′〉d are reported in
Figs. 12(d)–12(f) for the sake of conciseness, keeping in mind that 〈w′′w′′〉d = −〈u′′u′′〉d − 〈v′′v′′〉d .
The discrepancies between the baseline subgrid models and the reference profiles for 〈u′′u′′〉d and
〈v′′v′′〉d appear larger than in case 5 [Figs. 11(d) and 11(e)] due to the use of a coarser grid. DA-LES
provides an appreciable improvement in the prediction of these quantities and thus significantly
outperforms the three considered baseline models.
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FIG. 12. Control vector and flow statistics of case 5c for DNS ( ), the dynamic model ( ), the mixed
model ( ), the Smagorinsky model ( ), and final DA-LES ( ).

The improvement in the estimation of single-point statistics using DA-LES will be examined
further in Sec. V D. Here, we turn to the spectral content of the predictions using the Smagorinsky
model and DA-LES in cases 5 and 5c. Figure 13 shows the one-dimensional spanwise spectra of
the resolved streamwise fluctuations Eu′′u′′ (kz ) at two wall-normal heights: at y∗ = 19 which is in
the buffer layer and relatively close to where 〈u′′u′′〉 reaches its maximum value (y∗ 	 14), and at
y∗ = 59 which lies in the log layer. The results in Fig. 13 confirm that, for both cases 5 and 5c,
the improvement in the prediction of the (observed) Reynolds stress 〈u′′u′′〉 between the first-guess
Smagorinsky model and DA-LES also translates in a better scale-by-scale estimation of the flow. To
facilitate comparisons, the relative discrepancies between DNS and LES for estimation of Eu′′u′′ (kz )
are evaluated as

eEu′′u′′ =
∫ ∣∣E+

u′′u′′ DNS(k+
z ) − E+

u′′u′′ LES(k+
z )

∣∣dk+
z∫

E+
u′′u′′ DNS(k+

z )dk+
z

, (33)

where the integrals are performed over the range of spanwise wavenumbers that are resolved by
LES. The value of eEu′′u′′ for the different LES calculations from Fig. 13 are reported in Table III.
From a comparison of cases 5 and 5c (fine and coarse grids, LES590f and LES590c in Table I),
the deterioration in the estimation of the spectra Eu′′u′′ (kz ) is significant for the Smagorinsky model,
in particular with a further overestimation of the energy at relatively large scales (k+

z � 10−1.5),
and discrepancies become overall of the same order magnitude as the energy density itself for
case 5c (eEu′′u′′ � 0.8). While improvements in case 5 through the data assimilation procedure are
already appreciable, they are especially significant in case 5c. The spectra appear improved at

104607-24



ENSEMBLE-VARIATIONAL ASSIMILATION OF …

FIG. 13. One-dimensional spanwise spectra of the resolved streamwise velocity fluctuations Eu′′u′′ (kz ) of
cases 5 and 5c at y∗ = 19 and y∗ = 59. DNS ( ); Smagorinsky model ( ); DA-LES ( ).

all wavenumbers for DA-LES [see Figs. 13(c) and 13(d)], although remaining discrepancies are
still noticeable. Furthermore, the errors eEu′′u′′ are decreased by half compared to the first-guess
Smagorinsky model in case 5c.

All the above results confirm the ability of the present data assimilation procedure to significantly
enhance LES predictions, first in terms of single-point statistics and also in terms of spectral content,
even with grid resolutions that are away from usual recommendations. In particular, as detailed
in Sec. II A and Table I, the grid LES590c for case 5c corresponds to a spanwise resolution of
�z∗ = 35, while usual recommendations are �z∗ ∼ 20 (as in case 5 with grid LES590f). The
streamwise resolution of grid LES590c (�x∗ = 70) is also lower than the guidelines (�x∗ = 50
[3,59]). The good performance of the data assimilation procedure in case 5c may motivate the
consideration of even coarser grids. However, as confirmed by Fig. 13(c), if the spanwise resolution
is further decreased (i.e., further reducing the maximum resolved kz), then energetic scales would
be eliminated from the LES which can not longer be considered wall-resolved. In such case, the

TABLE III. Error on the spanwise spectrum eEu′′u′′ in Eq. (33) for the Smagorinsky and final DA-LES
calculations of cases 5 and 5c.

Model Case 5 Case 5c

y∗ = 19 y∗ = 59 y∗ = 19 y∗ = 59

Smagorinsky 0.39 0.42 0.81 0.84
DA-LES 0.24 0.34 0.46 0.42
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FIG. 14. Control vector and flow statistics of case 6 for DNS ( ), the dynamic model ( ), the mixed
model ( ), the Smagorinsky model ( ), and final DA-LES ( ).

observation of resolved Reynolds stresses (e.g., 〈u′′u′′〉) may become more appropriate than total
ones (e.g., 〈u′′u′′〉), as the difference between the two becomes appreciable.

C. Recovering reference statistics at Reτ = 1,000 (case 6)

The final data assimilation experiment is case 6, where the target friction Reynolds number is
Reτ = 1000. The setup is otherwise similar to case 5c: the employed grid (LES1000) has the same
relatively low resolution in wall units, the control vector γ is formed by both Cs(y) and σ (y), and the
observations include the mean flow gradient dU/dy and the Reynolds stress 〈u′′u′′〉. These reference
statistics are extracted from the Johns Hopkins Turbulence Databases [58]. Figure 14 reports results
for the final assimilated state, which has been obtained in two main iterations of the data assimilation
procedure, along with the predictions obtained with the considered baseline subgrid models. It
appears from Fig. 14(a) that the value of the coefficient Cs has been notably increased compared
with the first-guess Smagorinsky profile Eq. (5) around y+ = 50 through the assimilation of the
observations. This increase in Cs, also compared with case 5c [Fig. 12(a)], is also observed in
the profile that is predicted by the dynamic model. As in previous cases in this section, DA-LES
accurately recovers the reference mean flow in Fig. 14(c). In addition, as reported in Figs. 14(e)
and 14(f), the diagonal components of the deviatoric part of the Reynolds stress tensor are poorly
predicted by all baseline models, while DA-LES provides a large improvement compared with these
profiles over the whole channel height. These results demonstrate the robustness of the present data
assimilation methodology for the considered Reτ . Since Reτ = 1000 may be considered as a lower
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TABLE IV. Errors in Eqs. (34) and (35) and CPU time for LES calculations in cases 5 (Reτ = 590, fine
grid LES590f), 5c (Reτ = 590, coarse grid LES590c) and 6 (Reτ = 1000, coarse grid LES1000).

Case model eU e〈u′′v′′〉 e〈u′′u′′〉d e〈v′′v′′〉d e〈w′′w′′〉d eavg TCPU(h)

5

no-model 9.6 0.2 10.5 8.5 3.2 6.4 89
mixed 3.7 0.2 11.1 7.5 3.8 5.3 110

dynamic 1.9 0.4 12.2 7.7 5.1 5.5 109
Smagorinsky 3.8 0.7 13.6 7.6 6.6 6.5 101

DA-LES (NCFD = 11) 0.7 0.5 6.5 3.8 4.3 3.2 1111
DA-LES (NCFD = 42) 1.2 0.2 5.8 3.4 3.8 2.9 4242

5c

no-model 5.2 0.2 13.1 8.2 9.3 7.2 49
mixed 2.0 0.2 14.9 8.5 9.1 7.0 62

dynamic 4.8 0.6 20.7 10.4 12.8 9.8 60
Smagorinsky 6.4 0.6 19.8 9.2 13.1 9.8 55

DA-LES (NCFD = 11) 1.6 0.3 12.5 4.7 9.2 5.7 605
DA-LES (NCFD = 42) 1.3 0.2 12.2 4.1 8.5 5.3 2310

6

no-model 5.1 0.4 16.1 10.7 6.1 7.7 196
mixed 2.3 0.3 19.8 12.3 7.9 8.5 232

dynamic 3.5 0.6 20.5 11.7 9.0 9.1 232
Smagorinsky 1.7 0.5 19.6 11.0 8.8 8.3 219

DA-LES (NCFD = 11) 1.3 0.5 11.1 6.1 5.0 4.8 2409
DA-LES (NCFD = 42) 0.8 0.5 7.9 4.6 3.3 3.4 9198

bound above which low-Reynolds-number effects in turbulent channel flows are mitigated, and as
most features of the considered statistical quantities should exhibit mild [∝ log(Reτ )] variations
with increasing Reτ [72,73], the data assimilation procedure is expected to perform satisfactorily at
higher Reynolds numbers than considered herein.

D. Further assessment of LES results and computational cost (cases 5, 5c, and 6)

For the three last cases (5, 5c, and 6), the control vector γ was formed by the coefficient Cs

and the forcing σ , and the observations m corresponded to the mean-flow gradient dU/dy and the
Reynolds stress 〈u′′u′′〉. In all three, the data assimilation procedure has significantly enhanced LES
predictions compared to the use of baseline models. In this section, this improvement is further
quantified and we discuss the computational costs for the baseline and DA-LES calculations.

Following Refs. [74,75], Table IV reports error indicators that quantify the discrepancies between
LES and DNS in the estimation of the mean flow U and the components of the deviatoric part of
the Reynolds stress tensor 〈u′′

i u′′
j 〉d , according to

eU =
∫ |U +

LES(y+) − U +
DNS(y+)|dy+∫

U +
DNS(y+)dy+ , e〈u′′

i u′′
j 〉d =

∫ |〈u′′
i u′′

j 〉d +
LES(y+) − 〈u′′

i u′′
j 〉d +

DNS(y+)|dy+∫
1
2 〈u′′

i u′′
i 〉+DNS(y+)dy+ , (34)

where the integrals are performed over the entire channel height. Note that the errors e〈u′′
i u′′

j 〉d are
normalized by the reference total turbulent kinetic energy. An averaged error indicator eavg is also
considered in Table IV, which is based on the error in the mean flow eU and those in the nonzero
components of 〈u′′

i u′′
j 〉d , according to

eavg = 1
5 (eU + e〈u′′v′′〉 + e〈u′′u′′〉d + e〈v′′v′′〉d + e〈w′′w′′〉d ). (35)

In addition to results from LES that have already been discussed in the previous sections,
Table IV reports error indicators for two new sets of LES, which are also illustrated in Fig. 15
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FIG. 15. Flow statistics of cases 5, 5c, and 6 for DNS ( ), no-model calculations ( ), the Smagorin-
sky model ( ), and DA-LES results obtained through NCFD = 11 ( ) or NCFD = 42 ( ).

for cases 5, 5c, and 6. The first set is referred to as no-model simulations, namely LES without
a subgrid model, or implicit LES. These calculations are computationally cheap and indirectly
help to demonstrate the influence of the subgrid model in LES (see Sec. IV A). The other new
results in Table IV and Fig. 15 are from DA-LES, and examine the effect of reducing the number
of ensemble members and iterations of the data assimilation Algorithm 1. Specifically, we perform
DA-LES with Nens = 10 ensemble members and only Nit = 1 iteration of Algorithm 1, and therefore
NCFD = Nit × (Nens + 1) = 11 LES calculations. For comparison, the previous results for cases 5,
5c, and 6 (Sec. V B-V C) were obtained using Nens = 20 and Nit = 2, and therefore NCFD = 42 LES
computations. Those results along with the first-guess Smagorinsky curves are also reproduced in
Fig. 15.

Table IV does not suggest a clear hierarchy among the LES using baseline subgrid models. For
case 5, which corresponds to Reτ = 590 and the use of the fine grid LES590f, the dynamic and
mixed models provide overall better results (among these two models, the mean flow is better
estimated with the former while turbulence anisotropy is more satisfactorily recovered by the
latter). When employing the coarser grid LES590c (case 5c), the mixed model again provides more
satisfactory results than other baseline models, in particular in terms of mean flow estimation. These
relatively good performances are followed by the no-model calculation. It should be emphasized,
however, that the errors in Eqs. (34) and (35) are integrated over the whole channel height and
that more nuanced conclusions may be drawn when considering local discrepancies. For example,
Fig. 15(e) reports the deviatoric stress 〈u′′u′′〉d for case 5c, and demonstrates that the standard
Smagorinsky model, due to its associated subgrid dissipation, provides a better prediction of the
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flow anisotropy around the peak turbulent kinetic energy than the no-model calculation. Subgrid
dissipation thus still seems desirable to improve the estimation of the flow in the near-wall region.
Further away from the wall, no-model results become better than Smagorinsky ones, which explains
the respective errors of e〈u′′u′′〉d reported in the table. For case 6, the Reynolds number is Reτ = 1000
and a relatively coarse grid was employed, with the same resolution in wall units as in case 5c. The
DA-LES results aside, the no-model calculation may appear to provide the best prediction based
on the average integrated errors eavg. We must emphasize, however, that this measure masks the
local inaccuracy in important dynamical regions. In addition, the no-model computation yields
the most inaccurate prediction of the mean flow. Taken all together, the results of the baseline
LES computations confirm the difficulty in identifying one model that consistently outperforms
the others.

Table IV also confirms the superiority of DA-LES, which systematically outperforms the other
models in the estimation of both the mean flow and turbulence anisotropy. For cases 5, 5c, and
6, using the baseline models yields errors in the mean flow, eU , at least 1.5 folds, and often 4 or
more folds, those from DA-LES. Concerning the diagonal components of the deviatoric part of the
Reynolds stress tensor, the assimilation procedure overall halves the errors e〈u′′

i u′′
j 〉d , in particular

compared to the standard Smagorinsky model which is the first guess of the DA-LES procedure.
This applies to both the assimilated states that are obtained through 11 and 42 LES calculations.
While in Secs. V B and V C results were obtained using 42 LES calculations to ensure the
convergence of the data assimilation procedure, it appears that approximately 10 computations are
sufficient to achieve large improvements with respect to the baseline model. Increasing the number
of ensemble members and/or of iterations of the data assimilation procedure brings only marginal
further improvements. This is well illustrated by Fig. 15, where the results for the assimilated states
obtained through 11 or 42 calculations are very similar.

The computational cost in terms of CPU time TCPU is also reported in Table IV. No-model
calculations set the lowest computational cost for a given configuration. Simulations based on the
Smagorinsky model are associated with an increase by ∼10% in computational cost for the present
implementation, while the dynamic and mixed models correspond to an increase by ∼20% due to
the explicit filtering operations (see Sec. II B). The cost of DA-LES is equivalent to that for NCFD

Smagorinsky calculations (here NCFD = 11 or NCFD = 42). The variations in the computational cost
between cases 5, 5c, and 6 reflect the scaling TCPU ∝ Nt NxNyNz and the changes in the total number
of grid points NxNyNz between cases, while the number of time steps to collect converged statistical
results Nt was kept constant for all calculations.

The DA-LES predictions using NCFD ∼ O(10) outperform baseline models. The associated
computational cost should be viewed in context. First, this cost is less than that associated with other
data-assimilation techniques including adjoint- and ensemble-methods, as demonstrated in previous
studies from ocean and atmospheric sciences [10,41] and aerodynamic applications [12,14,15].
Furthermore, performing on the order of 10 LES remains significantly more affordable than a
single DNS. In the latter, the total number of grid points NxNyNz is typically between 103/2 and
102 larger than for LES, or more [50,76]. Assuming that the number of required time steps scales as
Nt ∝ (NxNyNz )1/3 [60], this results in a computational cost that is 102 to 108/3 larger for DNS than
for LES, which is verified with the present code. Assuming that O(10) computations are performed
for DA-LES, the computational cost remains at least 10 or 105/3 times smaller than that required for
a single DNS.

The gap between the computational cost of DNS and DA-LES becomes larger with Reynolds
number. Common estimations of the required number of grid points for DNS and LES are
(NxNyNz )DNS ∝ Re9/4

L and (NxNyNz )LES ∝ Re1.8
L [60], respectively, where ReL is an integral scale-

based Reynolds number. These requirements lead to TCPU DNS ∝ Re3
L and TCPU LES ∝ Re2.4

L . No
matter the resolution estimates adopted for LES [76,77], the ratio of DNS to LES computational
cost remains TCPU DNS/TCPU LES ∝ Rea

L with a > 0; for the herein quoted ReL dependence, a = 0.6.
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FIG. 16. Ratio between the standard deviation at the end of the data assimilation procedure sa
b and at its

beginning sf
b for a quantity b that refers either to the coefficient C2

s ( ) or the forcing σ ( ) for cases 5 (a),
5c (b), and 6 (c).

As a result, the present data assimilation approach remains significantly less expensive than DNS at
higher Reynolds numbers, by one or more orders of magnitude.

E. Uncertainties in the assimilated control vector γ (cases 5, 5c, and 6)

As emphasized in Sec. III B, the present data assimilation methodology not only provides an
assimilated state, but also the associated uncertainties, or posterior statistics, which are quantified
through the covariance matrix Pa in Eq. (20). While these posterior statistics have been previously
exploited to design new ensembles in the iterative procedure summarized in Algorithm 1, they are
here considered to assess the quality and accuracy in the final assimilated control vectors that have
been obtained in data assimilation experiments 5, 5c, and 6 (NCFD = 42). In these three cases, γ is
formed by the coefficient Cs and the forcing σ , while the observations are the mean-flow gradient
dU/dy and the Reynolds stress 〈u′′u′′〉. The confidence in the retrieved control parameters can be
quantified by the associated standard deviations sa

b(y) evaluated at the end of the data assimilation
procedure, where b refers to either C2

s or σ . However, as the absolute values of these posterior
statistics are inherently dependent on the choice of the prior statistics, which are quantified by the
covariance matrix B in Eq. (22), it is more informative to consider the ratio sa

b/sf
b instead, where sf

b
refers to the prior standard deviation of b. This ratio thus captures the reduction in the uncertainties
in the control vector through the data assimilation procedure, and is reported in Fig. 16 for cases
5, 5c, and 6. In all three experiments, the uncertainty in the coefficient Cs is significantly decreased
only in relatively narrow region around y∗ = 50. This location coincides with the region where
variations in Cs have the largest impact on the flow statistics as discussed in Sec. IV A. In contrast,
elsewhere the ratio sa

b/sf
b remains close to unity in particular at the channel center. This suggests

that the alterations in Cs by the data assimilation procedure should be interpreted cautiously in this
region, in the sense that the assimilated profiles Cs(y) remains uncertain. In particular, the significant
decrease in Cs beyond y∗ = 200 in case 5c [Fig. 12(a)] might not be meaningful, in accordance with
the fact that the sensitivity analysis of Sec. IV A suggests that variations in Cs at the channel center
barely have an influence on the flow. Only the increase in Cs around y∗ = 50 by the data assimilation
procedure, which is observed in the three cases, should be considered as a robust feature. It should
also be noted that this adjustment is somewhat in agreement with the prediction of Cs(y) by the
dynamic model, in particular in cases 5c [Fig. 12(a)] and 6 [Fig. 14(a)].

In comparison, the assimilated forcing σ (y) is generally evaluated with significantly lower
uncertainty. This reflects the ability of σ to directly correct the mean flow. The adjustment of Cs

104607-30



ENSEMBLE-VARIATIONAL ASSIMILATION OF …

remains useful to independently tune the subgrid dissipation εfs of resolved turbulent kinetic energy
and to improve the prediction of second-order statistics.

VI. CONCLUSIONS

An algorithm was developed to infer corrections to LES subgrid models through data assimilation
(DA-LES) of reference statistical quantities. The approach was examined in the context of turbulent
channel flow, with the Smagorinsky model as the baseline subgrid model. The fluctuations and
mean of the subgrid tensor, and ultimately the subgrid dissipation of resolved mean and turbulent
kinetic energies, were independently adjusted through a steady forcing term σ (y) in the momentum
equations and the Smagorinsky coefficient Cs(y), respectively. The data assimilation algorithm
adopts an ensemble-variational (EnVar) approach, which merges the relative strengths of standard
variational and stochastic techniques, namely the robustness of the former and the nonintrusiveness
and ease of implementation of the latter. As in any stochastic data assimilation approach, the EnVar
methodology not only provides an assimilated state, but also the associated uncertainties, which
helps in assessing the quality and robustness of the retrieved model corrections in the present case.

Preliminary data assimilation experiments confirmed the limitations of only optimizing the
profile Cs(y), as recovering first- and second-order statistics yields competitive objectives in this
case. The experiments also confirmed the lack of influence of the subgrid model on the flow above
y+ = 30, which is also the region where dicretization errors become dominant [48]. To disentangle
the adjustment of mean and turbulent subgrid dissipations, and to enable a more profound alteration
of the Smagorinsky structure, a second set of data assimilation experiments simultaneously con-
sidered the coefficient Cs(y) and the forcing σ (y) as control vectors in conjunction with the use of
statistical quantities of interest as observations. These tests confirmed the efficacy of the present
data assimilation procedure in accurately reproducing both first- and second-order single-point
statistics, namely the mean flow and the Reynolds stresses, while also providing some improvement
in terms of spectral content. For these data assimilation experiments, DA-LES systematically
outperformed more sophisticated models, namely the dynamic model and a particular mixed model
variant. DA-LES predictions were robust with respect to the Reynolds number. Interestingly, the
data assimilation procedure was also able to satisfactorily correct the Smagorinsky model when
adopting relatively coarse grids according to the standards for wall-resolved LES. This suggests
that the present methodology can enable, in the future, use of grids for which standard models start
to become deficient, possibly using different observations that are more suitable in the absence of
some of the energetic scales, thus contributing to further alleviating the computational cost of LES.

An important extension of this study is to apply the developed data assimilation procedure
to more complex flow configurations. While turbulent channel flows exhibit only one direction
of statistical inhomogeneity, which here leads to the introduction of one-dimensional adjustable
quantities, the consideration of more elaborate settings would require the definition of two- or
three-dimensional correction forms. While this would lead to a significant increase in the size of
the control vector in the data assimilation procedure, previous studies [15] have illustrated the
robustness of the EnVar approach. However, the present results do not particularly encourage the
consideration of other baseline subgrid models in the data assimilation procedure. Instead, a more
promising alternative that should facilitate both the use of coarser grids and the consideration of
higher Reynolds number flows is the extension of the present methodology to wall modeling [78,79].
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