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In the present work we show how the subgrid-scale (SGS) energy transfer among
resolved scales in large eddy simulations (LESs) and its wave number distribution can
be obtained from the evolving LES velocity fields. This information, supplemented by the
known asymptotic properties of energy flux in the inertial range, when cast in the form of
a spectral eddy viscosity, allows self-contained simulations without use of extraneous SGS
models. The method is tested in LESs of isotropic turbulence at high Reynolds number
where the inertial range dynamics is expected and for lower-Reynolds-number decaying
turbulence under conditions of the classical Comte-Bellot–Corrsin experiments.
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I. INTRODUCTION

The large eddy simulation (LES) equations for an incompressible flow are obtained by applying
a filtering operation to the Navier-Stokes equations
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where ui = (u1, u2, u3) = (u, v,w), p, and ν are the velocity, pressure, and kinematic viscosity,
respectively, and τi j is the subgrid-scale (SGS) stress tensor

τi j = uiu j − ui u j . (3)

The LES equations have the form of the Navier-Stokes equations for the filtered velocity ui plus
the additional force term which is the divergence of the subgrid-scale stress tensor (3) and which is
required to close the LES equations. Large eddy simulation procedures differ in how the SGS stress
tensor is expressed (or modeled) in terms of the filtered velocity ui, but all SGS models aspire to the
same goal. That goal is to obtain flow quantities for resolved scales as close as possible to those that
would be obtained from filtered results of fully resolved DNS, if such DNS could be performed.
Note that the meaning of “as close as possible” can be made more precise by using a method
developed by Toosi and Larsson [1] to compute a relative error between LES results and direct
numerical simulation (DNS) benchmarks. In constructing SGS models a large number of different
approaches have been tried (see reviews and monographs [2–9]) but no clear consensus on the best
SGS model or the best route to develop better models has been reached. This is partially because
there are more pressing practical needs for modeling wall bounded flows in complex geometries,
wall modeling for high-Reynolds-number or high-Mach-number incompressible or compressible
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flows, and models accounting for additional physical phenomena such as heat transfer and chemical
reactions. Each of those phenomena presents a different modeling challenge and a unified modeling
framework may not exist. Another factor may be that common SGS modeling approaches rely
on physical analogies (between eddy viscosity and molecular viscosity), mathematical identities
(the dynamic procedure), or properties of discretization errors (implicit LES), which may not
be sufficient to fully capture the physics of nonlinear interactions in turbulence responsible for
SGS processes. Because of that we believe that it is beneficial to consider modeling approaches
that explicitly account for physical properties of interscale interactions deduced from theory and
observed in numerical simulations of turbulent flows. Such an approach to SGS modeling was
introduced by Kraichnan [10] and developed further by Chollet and Lesieur [11]. In both cases
two different analytical theories of turbulence [the test field model (TFM) and eddy damped
quasinormal Markovian (EDQNM) approximation] were used to compute the SGS energy transfer.
The computed SGS transfer is then normalized to cast it in a form of a wave-number-dependent eddy
viscosity which can be used directly in LES. A good overview of these approaches can be found
in [8,12]. More recently, a similar approach to SGS modeling has been proposed by Domaradzki
[13], the main difference being that the total SGS transfer is computed not from analytical theories
but from LES velocity fields being advanced in the simulations. The method was implemented in
LES of high-Reynolds-number isotropic turbulence and evaluated for several classical spectral eddy
viscosity models, with the total SGS transfer serving as a constraint for models. It was shown that
the performance of models depends on their ability to capture not only the total SGS dissipation
(which is enforced by the method) but also the distribution of the SGS dissipation among scales of
motion (which is enforced by a model). In the present paper we show that in addition to the total
SGS transfer it is also possible to extract the wave-number dependence of the spectral eddy viscosity
from evolving LES fields, allowing for nearly autonomous LESs. An ideal, fully autonomous LES
can be defined as a simulation that produces the same quality results within a resolved range of
scales like DNS and uses only the same information that is available to DNS. In other words, in
the ideal case the inputs (geometry of a domain, initial and boundary conditions, and the value
of the kinematic viscosity) to and outputs from LES and DNS (physical quantities in the resolved
range) are the same, the only difference being numerical resolution in DNS and LES. Because of
the chaotic nature of turbulence comparisons between DNS and LES, results should be understood
as comparisons between statistically averaged quantities. In the present work we cannot claim a
fully autonomous LES because we rely also on the asymptotic behavior of energy flux in isotropic
turbulence as an input, which would not be needed in fully resolved DNS. However, the properties
of the energy flux for isotropic turbulence are well known from theoretical and DNS investigations
[6,12,14–16]. Since they are well established and noncontroversial we feel that it is justified to
call the presented approach a nearly or semiautonomous LES. The fundamental strength of this
approach is that it is based on the physics of interscale energy transfers in turbulence, offering a
major advantage over models relying primarily on phenomenological considerations.

II. SGS MODELING PROCEDURE AND NUMERICAL METHODS

In this section we provide a summary description of the SGS modeling approach and numerical
methods used in this research which are elaborated on in more detail in the recent paper [13].

For testing the proposed procedure we choose isotropic, homogeneous turbulence simulated
using pseudospectral Fourier methods. The flow is assumed to be contained in a cube of side L = 2π

and periodic boundary conditions in all three spatial directions are imposed on the independent
variables. The domain is discretized in physical space using N uniformly spaced grid points in each
direction resulting in a mesh size �x = L/N and a total of N3 grid points. The independent variables
are transformed between physical and spectral space using the discrete Fourier transform

u(k) = 1

N3

∑
x

u(x) exp(−ik · x) (4)
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and the inverse transform

u(x) =
∑

k

u(k) exp(ik · x), (5)

where x are the mesh points in physical space and k are the discrete wave numbers with components
ki = ±ni�k, with ni = 0, 1, 2, . . . , N/2; i = 1, 2, 3; and �k = 2π/L = 1. The distinction between
the physical and spectral representations for a given quantity is made through its argument x or k,
respectively.

Navier-Stokes equations [Eqs. (1) and (2) with the SGS term neglected] can be transformed into
spectral (Fourier) space (see, e.g., [6,12])

iknun(k, t ) = 0, (6)
(

∂

∂t
+ νk2

)
un(k, t ) = Nn(k, t ) − ikn p(k, t ), (7)

where the wave numbers k are associated with the scales of turbulent motions and Nn is the Fourier
transform of the nonlinear term

Nn(k, t ) = −ik j

∫
dp u j (p, t )un(k − p, t ). (8)

The equation for the energy amplitudes 1
2 |u(k, t )|2 = 1

2 un(k, t )u∗
n(k, t ), where the asterisk denotes

a complex conjugate, follows from (7),

∂

∂t

1

2
|u(k, t )|2 = −2νk2 1

2
|u(k, t )|2 + T (k, t ), (9)

where T (k, t ) is the nonlinear energy transfer

T (k, t ) = Re[u∗
n(k)Nn(k, t )]. (10)

Physical quantities of interest for isotropic turbulence are described in terms of the scalar wave
number k = |k| by averaging over thin spherical shells, e.g., the energy spectrum is defined as

E (k, t ) = 4πk2
〈

1
2 un(k, t )u∗

n(k, t )
〉
, (11)

where 〈· · · 〉 denotes averaging over all modes in a shell of thickness �k centered at k = |k|.
Similarly, shell averaged T (k, t ) provides the classical energy transfer T (k, t ) in the spectral energy
equation

∂

∂t
E (k, t ) = −2νk2E (k, t ) + T (k, t ), (12)

where the first term on the right-hand side is a viscous dissipation spectrum

D(k, t ) = 2νk2E (k, t ). (13)

For brevity, in subsequent formulas, explicit time dependence will be omitted.
The equations are solved using a pseudospectral numerical method of Rogallo [17] in the

implementation of Yeung and Pope [18]. For steady-state cases we use the forcing scheme of
Sullivan et al. [19] in which the sum of squared amplitudes of velocity modes in a sphere of radius
Kf = 3.5�k is kept constant in time. This is accomplished by multiplying all modes in the forced
sphere by the same constant factor at the end of each time step to restore the energy in the sphere to
the value at the beginning of the time step.

A number of turbulence parameters can be obtained from spectral quantities. The integral of E (k)
over k gives the turbulent kinetic energy per unit mass 3

2 u′2, where u′ is the rms turbulent velocity.
The integrated dissipation spectrum gives the dissipation rate of the turbulent kinetic energy ε. The
Taylor microscale is computed as λ = (15u′2ν/ε)1/2 and the microscale Reynolds number is Reλ =
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u′λ/ν. A timescale for the evolution of turbulence is the large eddy turnover time Te = Lint/u′, where
Lint is the integral length scale

Lint = π

2u′2

∫ ∞

0
k−1E (k)dk. (14)

The macroscale Reynolds number is defined as Re = u′Lint/ν.
Large eddy simulation techniques motivate interest in other quantities related to the nonlinear

energy transfer T (k). In spectral LES it is easy and natural to use a spherical, sharp spectral filter
defined by a cutoff wave number kc, separating resolved and subgrid scales. The spectral energy
equation for resolved scales E (kc) ≡ ∫ kc

0 E (k)dk is

∂

∂t
E (kc) ≡ Ė (kc) = −2ν

∫ kc

0
k2E (k)dk + 
(kc), (15)

where the classical energy flux


(kc) =
∫ kc

0
T (k)dk (16)

provides the energy transfer rate from all resolved scales (below kc) to subgrid scales (above kc).
The spectral LES energy equation for scales k � kc is obtained by defining first the energy

transfer T <(k|kc) among resolved modes, where the notation signifies that only modes satisfying
the inequality k � kc, i.e., scales that are fully known in LES with the cutoff kc, are retained in
computing T <(k|kc). The complete spectral energy equation (12) can then be rewritten for LES
scales k � kc as

∂

∂t
E<(k|kc) = T <(k|kc) + TSGS(k|kc) − 2νk2E<(k|kc), k � kc, (17)

where the SGS energy transfer term is

TSGS(k|kc) = T (k) − T <(k|kc), k � kc. (18)

Note that T (k) is the full nonlinear transfer from Eq. (12). Even though its values only in the resolved
range k � kc are needed in Eq. (17), it is computed using all modes, resolved and subgrid scale.

Integrating Eq. (17) over resolved wave numbers gives Eq. (15) for E (kc). Because nonlinear
interactions among any subset of modes obtained using sharp spectral filters are energy conserving,
the term

∫ kc

0 T <(k|kc)dk vanishes and the SGS energy transfer integrated over its wave-number
domain, the so-called total SGS dissipation, satisfies the condition

εSGS(kc) ≡ TSGS(kc) =
∫ kc

0
TSGS(k|kc)dk = 
(kc). (19)

Note that negative values of T (k) signify energy losses at wave numbers k but traditionally the
energy flux 
, the SGS energy transfer TSGS, and the SGS dissipation εSGS are chosen to be positive
if the resolved scales experience energy loss. For consistency with T (k), we are not adopting this
latter convention. When positive values of these quantities are needed we will use absolute values.

Following Kraichnan [10], the SGS spectral energy equation can be formally rewritten as

∂

∂t
E<(k|kc) = T <(k|kc) − 2νeddy(k|kc)k2E<(k|kc) − 2νk2E<(k|kc), (20)

where the SGS energy transfer is expressed in the same functional form as the molecular dissipation
term by introducing the theoretical effective eddy viscosity

νeddy(k|kc) = − TSGS(k|kc)

2k2E<(k|kc)
. (21)
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It should be stressed that the primary physical quantity is the energy transfer across a wave-number
cutoff kc between resolved scales (k < kc) and subgrid scales (k > kc) and the eddy viscosity is a
derived quantity.

It was shown in [13] that the task of modeling TSGS(k|kc) can be productively split into finding
the total SGS transfer or dissipation (19) and separately its distribution in wave numbers k. The total
SGS energy transfer across the cutoff kc is determined by the formula, derived in [13],

TSGS(kc) = 1

1 − b
T res

SGS

(
1

2
kc

)
, (22)

where b is a constant and T res
SGS( 1

2 kc) is the energy transfer computed for the resolved LES modes
(k < kc) and the cutoff 1

2 kc. The expression (22) is obtained using the Germano identity and the
assumption of the infinite inertial range. The Germano identity for SGS energy transfers, integrated
over k < 1

2 kc, is

TSGS
(

1
2 kc

) −
∫ (1/2)kc

0
dk TSGS(k|kc) = T res

SGS

(
1
2 kc

)
. (23)

Note that integrated SGS transfer terms are indicated by a dependence only on the cutoff wave
number but not on k. For instance, the total resolved SGS transfer T res

SGS( 1
2 kc) is found by first

computing k-dependent SGS transfer using the expression (18),

T res
SGS

(
k| 1

2 kc
) = T (k)<(k|kc) − T <

(
k| 1

2 kc
)
, k � 1

2 kc, (24)

where T (k)<(k|kc) is the energy transfer for all resolved modes k < kc and T <(k| 1
2 kc) is the transfer

computed using only modes k < 1
2 kc. Subsequently, (24) is integrated over 0 < k < 1

2 kc,

T res
SGS

(
1
2 kc

) =
∫ (1/2)kc

0
dk T res

SGS

(
k| 1

2 kc
)
, (25)

providing the total SGS transfer for resolved modes across wave number 1
2 kc. By definition, the

quantity (25) can be computed using only resolved modes, known in LES with a cutoff kc. For the
infinite inertial range the energy flux across the spectrum is constant, allowing us to replace
the first term in (23) by TSGS(kc). The second term is a fraction of the total transfer TSGS(kc) because
the integration interval covers only a fraction of a wave-number domain contributing to TSGS(kc),
formally ∫ (1/2)kc

0
dk TSGS(k|kc) = bTSGS(kc), (26)

where b is a constant to be determined. The above substitutions lead directly to the equation (22)
for TSGS(kc). The constant b,

b =
∫ (1/2)kc

0 dk TSGS(k|kc)

TSGS(kc)
, (27)

was determined in [13] using scaling properties of the energy flux 
 introduced by Kraichnan
[20,21] and DNS data from [15,22] and was found to be in the range 0.33–0.40. Once the value of
b is chosen the total SGS energy transfer (19) can be determined uniquely for a given velocity field
using only resolved modes k � kc. Note that changing the constant b in the predicted range changes
the total SGS transfer by at most 10%.

The wave-number distribution of TSGS(k|kc) in [13] was prescribed explicitly through several
spectral shape functions fi(k|kc) for the effective eddy viscosity (21). Specifically, the eddy viscosity
for a shape function fi implemented in actual LES is

νeddy(k|kc) = Cm fi(k|kc), (28)
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where Cm is a model constant. The simplest shape function is f0 = 1, corresponding to a wave-
number-independent eddy viscosity. Other expressions are obtained using formulas for TSGS(k|kc)
computed numerically from analytical theories, assuming an infinite inertial range spectrum k−5/3

[10–12]. For instance, the effective eddy viscosity (21) obtained using the EDQNM approximation
is well fitted by the expression given by Chollet [23],

νeddy(k|kc) = Cm(0.441 + 15.2e−3.03kc/k ) ≡ Cm f1(k|kc), (29)

where f1 is a spectral model shape function. The model constant Cm is computed using a known
total SGS energy transfer as an integral constraint

TSGS(kc) =
∫ kc

0
dk TSGS(k|kc) = −

∫ kc

0
dk νeddy(k|kc)2k2E (k), (30)

which gives

Cm = −TSGS(kc)∫ kc

0 fi(k|kc)2k2E (k)dk
. (31)

In (31) TSGS(kc) is expressed in terms of SGS transfer among resolved scales T res
SGS( 1

2 kc), computed
at each time step in LES with the spectral eddy viscosity given by (28). Since TSGS(kc) and E (k) in
general are time dependent, Cm is also a function of time Cm(t ). Note that once a shape function is
prescribed, the remaining information needed to determine νeddy(k|kc) is obtained from the ongoing
LES. In summary, the modeling procedure comprises two ingredients: (i) determination of the total
SGS transfer TSGS(kc) from the resolved fields and (ii) prescription for a functional form of the
spectral shape function for the eddy viscosity.

There are two main goals of the present work. In a previous paper on this topic [13] it was shown
that a shape function could be computed from the resolved fields and that it was qualitatively similar
to the shape function f1, exhibiting a cusp at the cutoff kc and an approximate plateau at low wave
numbers. Implementing such a numerical shape function led to preliminary but encouraging results
in actual LESs for high-Reynolds-number turbulence. This implies that if a shape function can be
derived from LESs themselves the entire procedure may become autonomous, with no dependence
(or only minimal dependence) on information input extraneous to LES. The first goal of this work is
to investigate in more detail the feasibility of such autonomous LES. The second goal is to address
turbulence at lower Reynolds numbers where assumptions of the inertial range dynamics made in
the model development are no longer applicable.

III. LES OF HIGH-REYNOLDS-NUMBER TURBULENCE

For LES of high-Reynolds-number flows we follow closely methodology used in [13]. The
main difference lies in the implementation of the eddy viscosity shape function. Less important
is increased numerical resolution, from 323 in [13] to 643 modes here, to reduce fluctuations in
computed spectra at higher wave numbers, and adding decaying turbulence cases (in Ref. [13] only
forced cases were considered).

The possibility of an autonomous LES was suggested by the investigation in [13] of a wave-
number distribution of the resolved SGS energy transfer T res

SGS(k| 1
2 kc) [see Eq. (24)]. This quantity,

cast in the form of the k-dependent eddy viscosity (21), was computed from LES data and is shown
in Fig. 1 as fLES(k| 1

2 kc). Large eddy simulations have been performed using the theoretical eddy
viscosity (29), which is also plotted in Fig. 1. Both curves are normalized by their peak values at the
cutoff. The curve obtained from LES data exhibits qualitatively the same behavior as the theoretical
eddy viscosity: an approximate plateau for lower k followed by a cusp as the cutoff wave number is
approached. Quantitatively, however, the plateau values computed from LES data are not uniformly
constant and can be a factor of 2 less than plateau values for the shape function used to generate
those data. A likely explanation for this quantitative inconsistency is that in computing T res

SGS(k| 1
2 kc)
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FIG. 1. Spectral eddy viscosity shape functions. The solid line with circles denotes the analytical expres-
sion (29), the dashed line shows a shape function computed from LES data, and the dotted line shows the
asymptotic plateau value from the EDQNM theory

nonlinear interactions with unresolved scales k > kc are not accounted for, reducing the SGS energy
transfer from the plateau range and thus the level of the eddy viscosity in that range. Nevertheless,
the qualitative similarity of theoretical and computed spectral shape functions suggests that it
should be possible to infer a shape function directly from LES, reducing the dependence of the
method on information extraneous to actual simulations. In this work we propose a hybrid shape
function that retains the cusp behavior obtained from LES data and replaces the computed plateau
by an asymptotic eddy viscosity at k → 0 obtained from theories of inertial range dynamics. In the
asymptotic limit the ratio of the plateau value to the peak value at the cusp is p = 0.37, as obtained
in [11,23] for the spectral eddy viscosity (29). That value is indicated by a horizontal line in Fig. 1.
Operationally, the shape function is computed at each time step from LES data, resetting its values
away from the cutoff to the asymptotic value of 0.37, rescaling from test cutoff 1

2 kc to LES cutoff kc,
and using the rescaled shape function in the next time step in LES. The rescaling is accomplished
using the normalized wave number k/kcutoff , i.e., in the present case

fLES(k|kc) = fLES

(
k

kc

)
= fLES

(
k|1

2
kc

)
. (32)

The proposed hybrid shape function is easy to implement and retains most of the information about
the effects of the local energy transfers. For instance, the cusp in Fig. 1 between the asymptotic value
at k/kcutoff ≈ 0.75 and the peak location at k/kcutoff = 1 is responsible for about 50% of the total
SGS transfer across the cutoff wave number. This local transfer is not modeled but is a result of the
actual interscale interactions operating at a given time step in actual LES. The remainder of the SGS
transfer is caused by more nonlocal interactions and is modeled by a k-independent eddy viscosity.
A constant eddy viscosity acting at large scales is consistent with predictions of turbulence theories
in the presence of scale separation.

The complete procedure is implemented in several steps. In all cases the velocity field is
initialized in spectral space using the prescribed analytical form of the energy spectrum E (k). From
the relation (11) the velocity vector un(k) has length |u(k)| =

√
E (k)/2πk2. The velocity vector

un(k) for a given wave number k is determined as a vector of this length normal to k to enforce the
incompressibility condition. The velocity direction in the plane normal to k is random, obtained by
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TABLE I. Simulated LES cases. In all cases the molecular viscosity is ν = 2.5 × 10−7, the time step is
�t = 0.005, and the total simulation time is T = 10. Turbulence parameters are shown at the initial time for
two different initial spectra (eKolm and ePulse) and at the final time for forced and decaying LES (suffix F and
D, respectively).

Case No. of steps u′2 ε λ Reλ Te

eKolm initial time 1 1.105 0.5709 0.002 69 11 340 1.21
eKolmF 2000 1.232 0.5648 0.002 87 12 770 1.02
eKolmD 2000 0.082 0.0245 0.003 55 4070 2.67
ePulse initial time 1 2.293 1.2159 0.002 74 16 650 0.78
ePulseF 2000 2.260 1.2846 0.002 56 15 460 0.80
ePulseD 2000 0.087 0.0191 0.004 15 4890 3.28

selecting a phase angle for a two-dimensional vector in a plane from a random number generator.
After the velocity is initialized the code advances velocity forward in time. Compared with the DNS
code, for LESs the additional fractional step implements the modeling procedure. Specifically, the
Navier-Stokes equation (7) is supplemented by the eddy viscosity term(

∂

∂t
+ νk2

)
un(k, t ) = Nn(k, t ) − ikn p(k, t ) − νeddy(k, t )k2un(k, t ). (33)

At each time step in simulations the eddy viscosity in Eq. (33) is computed as follows. First, the
SGS transfer TSGS(k| 1

2 kc) is computed from the velocity field in LES, where kc is the LES cutoff
and 1

2 kc is the test cutoff. Total SGS transfer TSGS(kc) for the LES cutoff kc is then computed using
the formula (22) with b = 0.4. The eddy viscosity for the test cutoff is computed as

νeddy
(
k| 1

2 kc
) = − T res

SGS

(
k| 1

2 kc
)

2k2E<
(
k| 1

2 kc
) (34)

and normalized to unity at the test cutoff

fLES
(
k| 1

2 kc
) = νeddy

(
k| 1

2 kc
)

νeddy
(

1
2 kc| 1

2 kc
) . (35)

The normalized function fLES(k| 1
2 kc) is then rescaled to the full LES cutoff kc using the relation (32)

and its values away from the cusp are replaced by the asymptotic value p = 0.37. This last step is
equivalent to drawing a straight horizontal line in Fig. 1 and finding its intercept with the normalized
eddy viscosity, say, at ki < kc. The final, hybrid shape function fLES(k|kc) consists of the constant
plateau p = 0.37 for 0 < k � ki and a cusp for ki < k � kc, which is obtained directly from the
actual SGS transfer in LES. Once the shape function is known, the eddy viscosity is obtained as
νeddy(k|kc) = Cm fLES(k|kc) [see Eq. (28)] with the coefficient Cm given by Eq. (31).

To test these concepts and the proposed method we have performed several forced and decaying
large eddy simulations. More details about simulated cases are provided in Table I. Forcing is
applied for modes with k � 3.5 by resetting at each time step the total energy in the forcing
band to the value at the previous time step. The same forcing implementation was used for cases
eKolmF and ePulseF. Some cases were initialized with the Kolmogorov spectral form k−5/3, with
no prefactors, and were run until a statistically steady state was reached. The simulations were
continued in the steady state to collect statistics. The expectation is that a correct SGS model should
maintain the k−5/3 spectral form in a steady state with an appropriate value of the Kolmogorov
constant. Also, forced turbulence spectra should tend asymptotically toward the Kolmogorov k−5/3

form independently of the initial condition and SGS models should be able to capture this behavior.
To test this expectation we have performed several LESs with a pulse-type initial condition where
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FIG. 2. Results for forced LES. (a) Lines with circles show the initial conditions for energy spectra. The
solid line shows the case eKolmF, the dashed line the case ePulseF, and the dash-dotted line the results of
LES performed with the Chollet-Lesieur spectral model. In this and all subsequent figures thin straight lines
show, as appropriate, a −5/3 slope and a boundary of the forcing band at k = 3. (b) For compensated spectra
horizontal lines mark the expected range of values for the Kolmogorov constant.

E (k) = const for k � 4 and E (k) = 0 for k > 4. The secondary objective of this research is to
minimize information input into LESs as compared with DNSs for the same physical problem.
Obviously, the geometry, the initial and boundary conditions, and the kinematic viscosity can be
easily matched. However, the initialization for LESs in principle should also include the eddy
viscosity. One possibility is to start LESs with zero eddy viscosity and let it develop in the course
of simulations. Another one is to prescribe an eddy viscosity shape function as a part of the
initialization, as the kinematic viscosity is prescribed. We adopted the latter approach where, for
a given initial velocity field, we run a short precursor no-model LES, i.e., DNS on a coarse LES
grid, extract the numerical shape function at the end of such a run, and incorporate it as a part
of an initialization for an actual LES. This procedure introduces some rudimentary information
about an initial SGS energy transfer for a given field and at the same time is obtained entirely with
information available from DNS. The length of the precursor run was from 10 to 50 time steps, with
no special considerations given to optimize it.

Note that turbulence parameters defined in Sec. II depend on the viscous dissipation ε which
is dominated by the high-wave-number part of the energy spectrum, not available in LES. For
high Reynolds numbers considered in this work the unknown viscous dissipation ε is assumed
to be equal to the energy flux 
 across the spectrum. In decaying LES we estimate 
 through
Eq. (15), as a difference between the energy decay rate for resolved scales and the known viscous
dissipation in that range. In forced LES we estimate 
 = ε in a steady state as a difference between
the measured energy input rate by forcing and the known viscous dissipation in the resolved range.
The viscous dissipation in the resolved range was found to be four orders of the magnitude less
than the estimated ε. Using this estimate, the initial Taylor microscale Reynolds number Reλ in all
cases exceeded 104, confirming that the LESs considered are for high-Reynolds-number turbulence
where the Kolmogorov theory should apply. The simulations were run for a minimum of 2000 time
steps, with �t = 0.005, which corresponds to about eight to twelve large eddy turnover times Te,
depending on the case, and the results were generally averaged over the last third of a runtime.

In Fig. 2 we plot the results of forced LESs for two different initializations: the k−5/3 energy
spectrum and a pulse energy spectrum. In both cases the spectral energy slopes at late times appear
to be in excellent agreement with the −5/3 exponent. For the k−5/3 initial condition we have per-
formed also LES using the classical Chollet-Lesieur spectral model with the Kolmogorov constant
CK = 1.4. Its performance is respectable, but compared with two other cases the model is somewhat
overly dissipative as the cutoff kc is approached. The overall quality of predicted spectral slopes
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FIG. 3. Results for the decaying LES case eKolmD for (a) energy spectra and (b) compensated energy
spectra. The line with circles denotes the initial condition and solid lines show energy spectra at different times
of decay.

can be better evaluated by plotting compensated spectra in the form of a k-dependent Kolmogorov
function

CK (k) = E (k)

ε2/3k−5/3
. (36)

According to experimental and DNS investigations, CK (k) is expected to be a constant with a value
in the range 1.4–2.1 for the perfect Kolmogorov range [24,25]. The function (36) is shown in
Fig. 2(b) for all forced cases and models used. The values of CK (k) are not constant, especially
within the forcing band, but fall within the expected range outside the forcing wave numbers. The
overdissipation of the Chollet-Lesieur model close to the LES cutoff is reflected in values of CK

dropping below the expected range in that region. It is also worth noting that in SGS modeling
sometimes model constants are determined assuming an inertial range with a particular value of the
Kolmogorov constant (e.g., the standard Smagorinsky model or the Chollet-Lesieur spectral model
considered here). For the method described in this paper the Kolmogorov constant, rather than being
an input into the procedure, is one of its predictions.

In Figs. 3 and 4 we show results for LESs with the same initializations but without forcing. The
total energy decreases during the decay to 7.5% and 3.8% of the initial value for cases eKolmD and
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FIG. 4. Results for the decaying LES case ePulseD for (a) energy spectra and (b) compensated energy
spectra. The line with circles denotes the initial condition and solid lines show energy spectra at different times
of decay.
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ePulseD, respectively. In both cases the energy spectra maintain the inertial range slope with correct
values of the Kolmogorov constant CK for wave numbers greater than k ≈ 8 = 0.27kc. For lower
wave numbers slopes become progressively shallower, i.e., larger than −5/3, which is also reflected
in values of CK falling below the typical range. It is clear from the plots that the shallower spectra
are the result of faster energy decay rates for low-wave-number modes than necessary to maintain
the inertial range slope. This behavior can be explained by the fact that the energy spectrum ends
at k = 1 and thus there is no energy flux from larger scales which would normally operate for an
infinite inertial range and feed energy to low-wave-number modes in LES.

Overall, these results demonstrate that the performance of the proposed procedure in LES of
high-Reynolds-number turbulence is quite good. Additionally, results are improved compared with
the results shown in Ref. [13], which were obtained using prescribed functional forms for the eddy
viscosity shape functions.

IV. LES OF LOW-REYNOLDS-NUMBER DECAYING TURBULENCE

The modeling approach developed above relies on asymptotic properties of the energy flux in
the inertial range of high-Reynolds-number turbulence, implying values of constants b ≈ 0.4 and
p ≈ 0.37, for both stationary and decaying flows. At lower Reynolds numbers, when the inertial
range is not present, these assumptions are questionable. For instance, for a cutoff kc in the vicinity
of the dissipation range the energy transfer is dominated by local interactions and, additionally,
viscous dissipation effects cannot be neglected in the kinetic energy balance used to determine
the SGS energy transfer [15,22,26,27]. Under such physical conditions the spectral eddy viscosity
is found to exhibit predominantly the cusp behavior at kc and a negligible level of plateau away
from kc (see [8,12,28]). Additional complications are introduced for decaying turbulence because
the fixed cutoff wave number kc will drift further into the dissipative range as decay progresses,
implying that constants b and p may be changing in time.

To assess the potential effect of these issues on the proposed SGS modeling we consider the
spectral energy equation (15) for two cutoffs kc and akc with a < 1, say, a = 1

2 . Subtracting these
equations gives

Ė (kc) − Ė
(

1
2 kc

) ≡ Ė
(

1
2 kc < k < kc

) = −2ν

∫ kc

(1/2)kc

k2E (k)dk + 
(kc) − 
( 1
2 kc), (37)

which provides the equation for 
(kc),

|
(kc)| = ∣∣
(
1
2 kc

)∣∣ + ∣∣Ė(
1
2 kc < k < kc

)∣∣ − 2ν

∫ kc

(1/2)kc

k2E (k)dk, (38)

where the energy fluxes and the energy decay rate for the range 1
2 kc < k < kc are explicitly written

as positive terms. Note that for wave numbers 1
2 kc and kc in the inertial range the energy decay rates

in (37) are approximately equal (the decay rate is determined by much larger scales k 
 kc) and
the viscous dissipation term in (38) is approximately zero (the viscous dissipation is determined by
much smaller scales k � kc) so that |
(kc)| ≈ |
( 1

2 kc)|. This well-known result for the constancy
of the energy flux in the inertial range was used in Ref. [13] as one of the conditions to relate
the total SGS transfer at kc to the resolved SGS transfer at test cutoff 1

2 kc. The second condition
required in the procedure was the fraction b of the total transfer across kc coming from the the range
k < 1

2 kc, which was determined as b ≈ 0.4 for the inertial range. In a steady state one effect on
the flux at kc is that, compared with the flux at 1

2 kc, it is diminished by the amount of the viscous
dissipation in the range 1

2 kc < k < kc. This is because the second term on the right-hand side of (38)
vanishes in a steady state. The second effect is a diminished fraction b of the total SGS transfer from
scales k < 1

2 kc if the cutoff is outside the inertial range. To assess these effects we have reanalyzed
data from forced DNSs of isotropic turbulence performed with 5123 resolution at Reλ ≈ 200 in our
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FIG. 5. Energy and dissipation spectra for forced DNSs. The solid line shows the energy spectrum and the
dashed line shows the dissipation spectrum; dashed straight vertical lines denote wave-number band boundaries
and the −5/3 slope is indicated by a straight solid line.

previous work [15,27]. The energy and viscous dissipation spectra from those DNSs are plotted in
Fig. 5.

The wave-number domain is divided into spherical bands with band boundaries given in Table II
and marked in Fig. 5 by vertical lines. In Table II column 2 shows the total viscous dissipation in
a band between values of kc in that row and the previous row (the first band is 0 < k < 4). The
next column gives the difference in the fluxes at the band boundaries, which is the energy input

TABLE II. Energy flux decomposition for wave-number bands. Column headings denote the following:
kc, band boundaries; Dissipation, viscous dissipation for a band between kc in that row and the previous row;
|
( 1

2 kc )| − |
(kc )|, energy flux into the band [see Eq. (38)]; 
(kc ), the total energy flux at kc; columns with
headings k = 4, 8, . . . , 128 give contributions to the total flux 
(kc ) from bands with k � kc, actual values and
percentages of 
(kc ); b, the parameter b computed from data in a row kc using Eq. (27).

|
( 1
2 kc )|

kc Dissipation −|
(kc ) 
(kc ) 4 8 16 32 64 128 b

4 0.0300 −2.6619 −2.6619
100%

8 0.0433 −0.0589 −2.7208 −0.8883 −1.8325 0.33
33% 67%

16 0.1284 0.0727 −2.6481 −0.3465 −0.5858 −1.7158 0.35
13% 22% 65%

32 0.3907 0.4074 −2.2407 −0.0679 −0.1351 −0.3495 −1.6882 0.25
3% 6% 16% 75%

64 0.8553 0.8510 −1.3897 0.0038 −0.0024 −0.0191 −0.0693 −1.3026 0.06
−0.3% 0.2% 1.4% 5% 94%

128 0.9366 0.9596 −0.4301 0.0022 0.0030 0.0054 0.0120 0.0164 −0.4692
−0.5% −0.7% −1.3% −2.8% −3.8% 109%

256 1.3207
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into the band due to nonlinear interactions. The total energy flux 
 across kc is provided in the
next column, followed by decomposition of the flux into contributions from all bands below kc for
a given row. For instance, the row for kc = 16 contains information about viscous dissipation in
the band 8 � k � 16 (0.1284), the total energy flux into the band (0.0727), the total flux across
kc = 16 (−2.6481), and contributions to the total flux from the bands 0 � k � 4 (−0.3465), 4 �
k � 8 (−0.5858), and 8 � k � 16 (−1.7158). The last column contains constant b computed from
data in the table according to Eq. (27). Bands corresponding to kc = 8 and 16 are firmly in the
inertial range, away from the dissipation peak located between kc = 32 and 64, and the equality
|
(kc)| = |
( 1

2 kc)| holds within 2–3 %. The constant b for these cutoffs is close to the value of
0.4 predicted by asymptotics. Inspection of values of 
 and viscous dissipation in the table for
kc � 32 shows directly that the relation (38) is satisfied, i.e., the energy flux into the band is balanced
by viscous dissipation [there are some minor discrepancies because the dissipation is computed
from the energy spectrum as 2νk2E (k) rather than from averaging over individual wave-number
modes in a shell 〈|k|2 1

2 un(k, t )u∗
n(k, t )〉]. For the cutoff kc = 32, just before the dissipation peak,

the constant b decreases to 0.25, and for the cutoff kc = 64, after the dissipation peak, the constant
b becomes very small, indicating a preponderance of local energy transfers, i.e., 94% of the flux
across kc = 64 is from scales in the vicinity of the cutoff 1

2 kc � k � kc. This trend is consistent
with the results of analytical theories of turbulence that show increasing contribution from local
interactions for energy spectra with slopes steeper than the −5/3 inertial slope [3]. Additionally, for
cutoff kc = 128 in the dissipation range, negative contributions to the flux are observed for scales
with wave numbers k � 1

2 kc, indicating, albeit small, inverse energy transfer from the dissipative
range to the energy containing range. Such inverse energy transfer has been documented previously
in DNSs for low-Reynolds-number turbulence [26,28,29]. Based on this analysis, values of b smaller
than 0.4 may be required for LESs of turbulence at low Reynolds numbers where the dynamics is
dominated by dissipative rather than inertial effects.

Ultimately, the steady-state modeling for lower-Reynolds-number turbulence is not expected to
be much different from the case of the inertial range modeling apart from the viscous modification
of the flux relation (38) and possibly values of b lower than those for the inertial range dynamics.
A more interesting case is freely decaying turbulence when all terms in Eq. (38) are nonzero. At
low Reynolds numbers the energy peak, the dissipation peak, and the negative peak of the energy
transfer term T (k) are not widely separated and partially overlap [29]. The principal balance in the
dissipation range kη � 0.3 is between the flux terms and the viscous dissipation term in Eq. (38),
with |Ė ( 1

2 kc < k < kc)| ≈ 0, as in a steady state. However, in LESs of such flows the cutoff wave
number kc is normally located just outside the energy peak but before the dissipation peak, where the
dissipation spectrum −2νk2E (k) and the transfer spectrum T (k) are of the same orders of magnitude
and negative, contributing in tandem to rapid energy removal from the energy containing range. In
that case the energy equation in LES with kc, corresponding to the full energy equation (37), is

Ė
(

1
2 kc < k < kc

) = −2ν

∫ kc

(1/2)kc

k2E (k)dk +
∫ kc

(1/2)kc

TSGS(k|kc)dk − T res
SGS

(
1
2 kc

)
. (39)

Note that for decaying inertial range the viscous dissipation in this equation can be neglected and the
energy decay rate for the range 1

2 kc < k < kc is due to an imbalance between energy transfer to that
range from scales k < 1

2 kc [given by T res
SGS( 1

2 kc), known in LES] and the energy transfer from that
range [given by the integral of modeled TSGS(k|kc)]. For the cutoff wave number kc in the dissipation
range none of the terms on the right-hand side of (39) can be neglected.

Despite these potential difficulties caused at low Reynolds numbers by the presence of viscous
effects and increased complexity of the energy dynamics for decaying turbulence we found out,
surprisingly, that the procedure, without any modifications, performs very well for an established
test case. The test case is provided by the results of the classical experiments of Comte-Bellot
and Corrsin [30] for decaying turbulence behind a grid in a wind tunnel. Among other results,
the authors provided data for energy spectra measured at three times tU0/M = 42, 98, 171, where
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TABLE III. Comparison of turbulence parameters between LES and experiments [30]. The LES was
performed with 643 resolution, initialized with the energy spectrum at U0t/M = 42 shown in Figs. 6 and 7. The
parameters are defined as follows: u′, rms turbulent velocity; ε, dissipation rate; η, Kolmogorov microscale;
λ, Taylor microscale; Lint , integral length scale; and Rλ, microscale Reynolds number. Experimental values are
shown in parentheses, after conversion using a length unit [L] = 0.1 cm. In the first row the experimental data
are at the initial time U0t

M = 42.

U0t
M t (s) u′ ε η λ Lint Rλ

51 0.213 1.93 (2.22) 17.7 (47.40) 0.0037 (0.0029) 0.0643 (0.0484) 0.34 (0.24) 82.7 (71.6)
98 0.498 1.24 (1.28) 5.61 (6.33) 0.0049 (0.0048) 0.0786 (0.0764) 0.40 (0.345) 65.0 (65.3)
171 0.868 0.894 (0.895) 1.85 (1.74) 0.0065 (0.0066) 0.099 (0.102) 0.46 (0.490) 59.0 (60.7)

U0 = 1000 cm/s is a freestream velocity in the wind tunnel and M = 5.08 cm is the grid size. In nu-
merical tests the velocity field is initialized to be consistent with the energy spectrum at tU0/M = 42
and the task is to advance the fields in simulations and compare computed turbulence parameters and
spectra with the experimental spectra at tU0/M = 98, 171. The experimental results are provided in
the dimensional form using cgs units, with the lowest reported wave number ke = 0.15 cm−1 and the
highest ke = 20 cm−1 (the subscript e indicates experimental wave number). Since in pseudospectral
numerical simulations the minimum wave number is by default equal to unity, the experimental data
are converted into simulation data by changing the unit of length from centimeters to a new unit L:
1 cm = kmin

e L, where kmin
e is the numerical value of the minimum experimental wave number to

be represented in the simulations. We extrapolated the Comte-Bellot–Corrsin data to the minimum
wave number kmin

e = 0.1 cm−1, with the maximum wave number kept at kmax
e = 20 cm−1. In new

units the simulation parameters are �k = 10�ke[L−1] = 1[L−1], ν = 0.12νe[L2/s] = 0.0015[L2/s]
(for air, νe = 0.15 cm2/s), and the energy spectrum E = 0.13Ee[L3/s2] and time remains dimen-
sional in seconds. All turbulent quantities can be converted in the same way for a comparison
between simulation and experimental data. Some of such comparisons are collected in Table III.

In Fig. 6(a) we plot experimental energy and dissipation spectra from Comte-Bellot and Corrsin
[30]. The thin vertical line indicates the cutoff wave number selected for simulations (kc = 30,
equivalent to ke = 3 cm−1 in cgs units). For all three time instants in the experiments the viscous
dissipation peak is located outside the resolved range. Because the numerical resolution is unable
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FIG. 6. (a) Experimental energy and viscous dissipation spectra at different times. Lines of the same type
show energy spectra E (k) (with symbols) and dissipation spectra D(k) (without symbols): solid lines and
circles, U0t/M = 42; dashed lines and squares, U0t/M = 98; and dotted lines and triangles, U0t/M = 171.
(b) Time evolution of energy spectra in underresolved DNS. Markers correspond to experimental data and
lines show progression in time from the initial energy spectrum at U0t/M = 42 to the final time at U0t/M = 171
(dotted line).
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FIG. 7. Time evolution of energy spectra in a LES run (a) for time interval U0t/M = [42, 98], continuing
in (b) for time interval U0t/M = [98, 171].

to properly capture the dissipation, attempts at DNS with such a resolution are expected to fail. In
Fig. 6(b) we show the time evolution between the first and the last experimental station obtained in
such underresolved DNS (also known as no-model LES). Because of a lack of sufficient dissipation
at higher wave numbers, the kinetic energy tends to accumulate near the cutoff. The accompanying
trend is increased energy transfer from the low-wave-number range, tilting the energy spectrum in
an unphysical way.

The time evolution of the energy spectra in LES obtained using the present modeling procedure
is shown in Fig. 7 and a number of turbulence parameters obtained in LES are compared with
the experimental results in Table III. The comparison between LES and experimental parameters
for two later times in the table is very good. There are discrepancies at the initial time, partly
because the LES results are shown for a somewhat later time than U0t/M = 42, namely, U0t/M =
51, corresponding to the first thin line after the thick black line indicating the initial condition in
Fig. 7(a). This was done to allow the nonlinear interactions to build up to develop correct kinetic
energy decay which is needed to estimate the dissipation rate ε in LES through the kinetic energy
decay rate ∂E/∂t . This quantity shows the largest discrepancy between LES and experiments, which
is best explained using the classical estimate of the energy decay rate (equal to the dissipation
rate) du′2/dt ∼ u′3/Lint . Because of third power in u′, relatively benign differences in that quantity
translate into larger differences for ε. These differences are due to the fact that the kinetic energy
captured in the LES initial condition is necessarily lower than the experimental value, especially
at earlier time (see Fig. 6). However, the experimental data and the numerical data in the first row
for ε are self-consistent in the sense that u′3/Lint = 21.1 and 45.6 for the numerical data and the
experimental data, respectively, values which are relatively close to the corresponding values in
Table III. This indicates that in both cases ε is appropriate for the initial spectra, the full experimental
spectrum, and the truncated LES spectrum in Fig. 6. Most importantly, however, the time evolution
of the energy spectrum is predicted quite well for the first time interval U0t/M = [42, 98]. For
the second time interval U0t/M = [98, 171] the energy peak is somewhat underpredicted at the
final instant but the remainder of the LES curve matches experimental spectra accurately. Overall,
these results demonstrate convincingly that the proposed method is capable of predicting the time
evolution of turbulence for this classical case.

V. CONCLUSION

A previously proposed subgrid-scale modeling procedure [13], based on the interscale energy
transfer among resolved scales in LESs, has been improved by increasing its reliance on information
available directly from known LES fields. The procedure consists of two steps. In the first step,
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the total unknown SGS transfer across a fixed cutoff wave number kc is determined using the
computed SGS transfer within the resolved range for the cutoff 1

2 kc. In the second step a distribution
of SGS transfer among resolved wave numbers k < kc is determined through an eddy viscosity
shape function f (k|kc), normalized to unity at the cutoff kc. The first step remains unchanged from
the original method in [13] and its outcome is a ratio b of the SGS transfer at kc due to scales
below the test cutoff 1

2 kc. The main change is how the shape function is determined. Originally, the
prescribed functional forms of shape functions, suggested by the classical theories of turbulence,
were considered. Such prescribed functions, characterized by a low-wave-number plateau and
a cusp at the cutoff wave number kc, were able to produce energy spectra in good agreement
with the inertial range form when implemented in LESs. In this work the cusp’s functional form
was not prescribed but obtained directly from a k-dependent eddy viscosity computed using the
actual resolved SGS transfer at the test cutoff 1

2 kc. Such a computed eddy viscosity displays
also a low-wave-number plateau but its value is too small because the resolved SGS transfer is
lacking contributions from the nonlocal interactions with modes k > kc. The missing interactions
are accounted for by replacing the computed plateau by a constant value p, representing a constant
asymptotic eddy viscosity acting on large eddies by small eddies in the presence of a spectral gap
(here between 1

2 kc and kc). For such a hybrid shape function the cusp is attributable to primarily
local interactions and its values, greater than the plateau value p, are responsible for about 50% of
the total SGS dissipation. This local transfer is not modeled but is a result of the actual interscale
interactions operating at a given time step in actual LESs.

Tests of the original method were limited to LESs of forced high-Reynolds-number turbulence
because the theoretical background behind the model development relied heavily on the inertial
range dynamics. The procedure, as modified in this work, has been tested also in similar LESs
of forced high-Reynolds-number turbulence and it was extended to decaying turbulence at both
high and low Reynolds numbers. For high Reynolds number forced and decaying turbulence results
met all expectations. The initial k−5/3 spectrum is maintained correctly in LESs and the pulse-
type initial condition evolves to the Kolmogorov form, in both cases with predicted values of the
Kolmogorov constant in a generally accepted range, outside the forcing band. When forcing was
removed for both initial conditions, energy spectra tended to the asymptotic Kolmogorov spectral
form for wave numbers k/kc > 0.27, with correct values of the Kolmogorov constant, while the total
energy decayed by an order of the magnitude. Analyses of DNS results at low Reynolds numbers
suggested that the constants b and p may be affected by the viscous effects and thus may not be
universal. Nevertheless, when the method with both constants unchanged was used in LESs of the
classical Comte-Bellot–Corrsin experiments the agreement between LES and experimental results
was very good. Inspection of the experimental data shows that the LES wave-number cutoff is
below the dissipation peak. This suggests that the method is not strictly dependent on details of the
inertial range dynamics but rather that it may be sufficient for the dynamics to be only approximately
inviscid. However, it is quite likely that the method will require modified constants for cutoffs in the
dissipation range, but this is not a very important issue since for such situations DNSs are entirely
feasible and one can dispense with LES entirely.

One of the secondary motivations behind this research is to explore what is minimum information
input into LES as compared with DNS for the same physical problem. In the Introduction we
postulated a target of fully autonomous LES, defined as a simulation that produces the same quality
results within resolved range of scales as DNS and uses only the same information that is available
to DNS. In the present paper we showed that information about the total SGS transfer and the
partial dependence of the spectral eddy viscosity on k can be extracted from evolving LES fields,
thus moving us in the direction of autonomous LES. At present the method requires constants b and
p. Their values are determined from the asymptotics of the inertial range dynamics and are fixed
for all flows considered in this work, but while required in LES, they are not needed in DNS of
the same flows. We leave for future investigation whether information about constants b and p is
possibly encoded in the resolved LES fields and how to extract it to make the method independent
of any extraneous information input.
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