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Self-consistent closure theory for passive scalar turbulence has been developed on the
basis of the Hessian of the scalar field. As a primitive indicator of spatial structure of the
scalar, we employ the Hessian into the core of the theory to properly characterize the time
scale intrinsic to the scalar field itself. The resultant closure model is now endowed with
several realistic features, i.e., the scale locality of the interscale interaction, the detailed
conservation, and the memory-fading effect. Applying the current theory to the inertial-
convective range eventually leads to self-consistent derivation of the Obukhov-Corrsin
spectrum with its universal constant consistent with numerical and experimental data.
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I. INTRODUCTION

There are in nature a number of phenomena realizing highly disordered flows of gases and
liquids, where turbulence plays indispensable roles in transporting varieties of physical properties,
e.g., energy, mass, chemicals, charge, etc. While these transported properties themselves can
actively change the flow properties in general, many fundamental aspects can be studied from their
passive convection. From there, passively convected scalar has been studied as the simplest model
of transportation phenomena caused by turbulence, providing a prototypical understanding of the
turbulence-mixing effect [1]. In the case of sufficiently high Reynolds and Péclet numbers, one
may observe a well-developed inertial-convective range where scalar statistics represent universal
scaling laws irrespective of the large- and small-scale mechanisms of both velocity and scalar fields,
which is achieved by the classical Kolmogorov-Obukhov-Corrsin theory using a dimensional anal-
ysis [2–4]. Let θ be a homogeneous isotropic scalar field subjected to incompressible homogeneous
isotropic turbulence. An extension of Kolmogorov’s analysis [2] to scalar turbulence yields

〈[θ (x + r) − θ (x)]2〉 ∝ ε−1/3χr2/3 (1.1)

for spatial separation r within the inertial-convective range, where ε and χ are the mean dissipation
rates of energy and scalar variance. An equivalent statement may be made in the Fourier space: the
scalar variance spectrum Eθ (k) satisfying 1

2 〈θ2〉 = ∫ ∞
0 Eθ (k)dk may take a universal −5/3 power

law—the Obukhov-Corrsin spectrum—within the inertial-convective range,

Eθ (k) = Kθ ε
−1/3χk−5/3, (1.2)

where Kθ is often referred to as the Obukhov-Corrsin constant. Since its discovery in Refs. [3,4],
a number of works have examined and supported its universality from both experimental and
numerical aspects [5–10].
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Besides the primitive knowledge of the passive scalar turbulence based on a dimensional
analysis, more profound understanding can be reached via dynamical equations of the scalar
statistics. Second-order moment closure may be one successful category of such attempts, which
enables quantitative description of the energy and scalar variance spectra on the basis of their
dynamical modeling [11]. The eddy-damped quasinormal Markovian (EDQNM) model may be
a typical example realizing simple spectral closure on scalar turbulence with the help of ad hoc
eddy-damping terms [12,13]. On the other hand, there are more self-consistent approaches based
on the nature of the exact governing laws: abridged Lagrangian-history direct-interaction approxi-
mation (ALHDIA [14,15]) and Lagrangian-renormalization approximation (LRA [16,17]) theories
enable systematic derivations of the closure models of the scalar variance without relying on any
empirical parameters. (There is another approach by Ref. [18] combining Kraichnan’s perturbation
method [19] and Kaneda’s Lagrangian treatment, which finally reduces to a rederivation of the LRA
model.) Due to their Lagrangian formalism properly removing the sweeping effect, both models
successfully depicted the scale-local transfer of the scalar variance, reproducing the −5/3 power
law of Eq. (1.2). Then the Lagrangian formalism should be firmly recognized as a key ingredient
for the self-consistent closure of passive-scalar turbulence. (There is an interesting attempt to extract
a Lagrangian time scale from EDQNM on scalar flux, which partially incorporates the Lagrangian
framework into classical EDQNM [20].) For a more comprehensive review of self-consistent turbu-
lence closure, the authors refer the readers to Secs. III and IV of Ref. [11], where the significance
of the Lagrangian picture is well summarized with the history of theoretical developments.

In spite of these remarkable successes, Lagrangian closure applied to passive scalar turbulence
often suffers from its deficiency arising from the nature of the passive scalar itself; unlike the vectors
and tensors, the scalar field does not reflect distortion of fluid elements, which makes the memory-
fading effect caused by fluid’s random straining indescribable. To see a rough sketch of the problem,
we consider the governing equation of the passive scalar θ :

(∂t + ui∂i )θ = κ�θ, (1.3)

where u is the fluid velocity field and κ is the diffusion coefficient. In this paper we take summation
for repeated indices of tensors and vectors. Now the Lagrangian derivative of θ may vanish in the
inertial-convective range (essentially equivalent to a limit case κ → 0), so the scalar value may be
conserved along the Lagrangian trajectory. In the framework of turbulence closure, this is cast into
the long-time memory effect of the scalar correlation. As a result, in the Lagrangian closure based
on the scalar field, the memory of the scalar field survives for a long time exceeding the turbulence
time scale, which indeed disagrees with the Kolmogorov-Obukhov-Corrsin theory. Then, eventually,
conventional Lagrangian closure overestimates the turbulence-mixing effect of the scalar, lacking a
quantitative predictability in the scalar-variance spectrum. As carefully remarked by Refs. [16,21],
turbulence closure may be improved by alternative choice of the representative variables properly
representing the physics of our concern, which is a central issue to be addressed in the present
work. A pioneering work of the rotation-invariant strain-based LRA (RI-LRA [22]) chooses the
pure-strain statistics as alternative representatives to conventional Lagrangian velocity statistics,
which is essentially inspired by the idea of strain-based ALHDIA (SBALHDIA) [23]. Application
of RI-LRA to two-dimensional passive scalar turbulence yields, with the help of direct numerical
simulation (DNS) data and some additional approximations, better prediction of the scalar-variance
spectrum in the viscous-convective range, which is substantially due to consideration of the random
straining motion of fluid. Likewise, modification on the representatives still has some possibilities
to improve predictability of the scalar-closure models.

This paper provides a self-consistent closure theory of three-dimensional (3D) passive scalar
turbulence on the basis of LRA. In contrast to RI-LRA focusing on the velocity statistics, we modify
the representatives of scalar field; instead of the scalar field itself, we treat its second-order derivative
which effectively characterizes local scalar distribution via Hessian matrix. Unlike the scalar itself,
its Hessian matrix can reflect the fluid’s turbulent motion, realizing the memory-fading effect of the
scalar statistics. Then we reach an alternative theory—hereafter referred to as Hessian-based LRA
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or simply HBLRA—which offers a self-consistent closure model for scalar statistics. Based on the
Hessian of rank 2, its two-point statistics become eventually rank-4 correlation tensors. Whereas
they are constructed from such complex quantities, the resultant closure equations are simple and
feasible enough in the actual calculation. A prototypical idea is briefly applied to an inertial-particle
problem in our recent work [24], while more comprehensive and generalized discussions may be
given in the present paper focusing on passive scalar turbulence. Finally, as the first step among
various possible applications, we apply HBLRA to the Obukhov-Corrsin spectrum and present its
analytical solution accompanied by universal memory-fading functions of the scalar. In Sec. II we
provide the general formulation of HBLRA. In Sec. III, the Obukhov-Corrsin spectrum of the scalar-
variance spectrum is derived by applying HBLRA to the inertial-convective range of well-developed
turbulence, where the universal Obukhov-Corrsin constant is theoretically derived by full analysis
of HBLRA equations.

II. FORMULATION

In the present study, we focus our attention on homogeneous turbulence in three-dimensional
Euclidean space, so Fourier analysis offers a convenient platform for the forthcoming discussions.
We utilize the Fourier transformation defined by the following integral operation F |kx×:

F |kx × = (2π )−3
∫

d3x exp[−ik · x] ×, (2.1)

which provides a one-to-one mapping from an arbitrary field function f (x) to the corresponding
Fourier spectrum f (k) (the same main symbol employed for simple notation); i.e., f (k) = F |kx f (x).

A. Scalar field

Applying the Fourier transformation to Eq. (1.3) yields the scalar dynamical equation in the
Fourier space:

(∂t + κk2)θ (k, t ) = 1

i
ka[k; p, q]ua(p, t )θ (q, t ), (2.2)

where [k; p, q] ≡ ∫∫
d3 p d3q δ3(k − p − q)× represents a convolution in the wave-number space.

Then, in the Eulerian picture, the scalar distribution is developed by the bilinear coupling between
velocity and scalar. Following Ref. [16], the Lagrangian picture is introduced using the Lagrangian
position function ψ (x′, t ; x, t ′) governed by ∂tψ (x′, t ; x, t ′) + ∂ ′

j[u j (x′, t ) ψ (x′, t ; x, t ′)] = 0 and
its initial condition ψ (x, t ′; x′, t ′) = δ3(x − x′) (see Appendix A). Its Fourier space component
ψ (k′′, t ; k, t ′) obeys

∂tψ (k′′, t ; k, t ′) = ik′′
b [k′′; −p, q]ub(p, t )ψ (q, t ; k, t ′), (2.3)

with ψ (k′, t ′; k, t ′) = δ3(k′ − k) [in this paper we define ψ (k′, t ; k, t ′) ≡ (2π )3F−k′
x′ |kxψ (x′, t ;

x, t ′)]. In the Fourier representation, the Lagrangian scalar field reads

θ (k, t ′|t ) =
∫

ψ (k′′, t ; k, t ′)θ (k′′, t ) d3k′′, (2.4)

which is governed by

∂tθ (k, t ′|t ) = O(κ ), (2.5)

where the bilinear coupling in the Eulerian equation is now lost. In the case of sufficiently high
Péclet number where κ in Eq. (2.5) becomes substantially negligible, the Lagrangian scalar would
keep its value, representing a long-time memory (absence of the memory-fading effect). Due to its
invariance under arbitrary frame transformations, the scalar field does not reflect the distortion and
rotation of the fluid element, but only the translation is cast into the scalar-field dynamics. In order
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to capture the memory fading due to straining motion, we need to extract some nature of the scalar
field that varies under the frame transformation.

B. Hessian field

When focusing on spatial distribution in finite local domains, one may observe some nontrivial
structures of the scalar field caused by turbulence mixing. Such a distribution has the directional
characteristics dependent on frame transformation and thus can be utilized in our closure strategy.
Local distribution of the scalar may be typically characterized by its derivatives. A possibility of
closure based on the scalar gradient has been discussed in Ref. [22], where the distorting motion
of the fluid can be reflected in the Lagrangian evolution of the scalar gradient. Unfortunately this
variable choice yields insufficient memory-fading effect and thus is not suitable to our objective.
Then, other than the gradient vector, the Hessian—defined by ∂i∂ jθ in physical space—may be
the simplest and reasonable variable minimally characterizing the structure of the local scalar
distribution. In addition, the Hessian is capable of characterizing the local maximum, minimum, and
saddle points of the scalar distribution which could provide us more physically relevant properties
compared with the scalar field itself. One thing should be noted, however, is that the Hessian may
be too much sensitive to small-scale structures for its derivative operations. Thereby, in this paper,
we deal with its nonlocal expression �−1∂i∂ jθ to focus our attention on a wider scale range, where
�−1 is the inverse operator of the Laplacian. In the Fourier space, this amounts to normalizing the
Hessian spectrum kik jθ (k, t ) by the wave number:

H (p)
i j (k, t ) = kik j

k2
θ (k, t ), (2.6)

which we term the primary Hessian for its later generalization. The governing equation of the
primary Hessian is simply derived from Eq. (2.2):

(∂t + κk2)H (p)
i j (k, t ) = 1

i
ka[k; p, q]ua(p, t )H (p)

i j (q, t ) + 1

i
ka[k; p, q]Xi j (k, q)ua(p, t )θ (q, t ),

(2.7)

where we split the right-hand side into a convection term (the first term) and the rest. Note that a
geometrical factor Xi j (k, q) ≡ kik j/k2 − qiq j/q2 is traceless (Xii = 0), which guarantees the trace
part of Eq. (2.7) to be the Eulerian-scalar equation (2.2). Following the conventional LRA procedure,
we introduce the Lagrangian variable of the Hessian:

H (p)
i j (k, t ′|t ) =

∫
ψ (k′′, t ; k, t ′)H (p)

i j (k′′, t )d3k′′, (2.8)

which obeys

∂tH
(p)

i j (k, t ′|t )

=
∫

d3k′′ψ (k′′, t ; k, t ′)
{
−κk′′2H (p)

i j (k′′, t ) + 1

i
k′′

a [k′′; p, q]Xi j (k′′, q)ua(p, t )θ (q, t )

}
. (2.9)

Here we should focus on the trace part of Eq. (2.9) reproducing the Lagrangian-scalar equation (2.5).
In other words, the trace part of the Lagrangian Hessian is insensitive to the bilinear coupling
between u and θ . This enables a natural extension of our Hessian Hi j in its trace part; using a
real number ξ , we generalize our Hessian field as

Hi j (k, t ) ≡ Ti j (k)θ (k, t ), Ti j (k) = kik j

k2
− ξδi j . (2.10)

As remarked in Ref. [16], the so-called moment-closure approximation in nonlinear systems de-
mands suitable choices of the representative variables with careful consideration of their physical
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meanings, which will be conducted for passive scalar turbulence in this study. The physical signifi-
cance of the generalized Hessian Hi j depends on ξ ; in addition to the primary Hessian (ξ = 0), one
may define solenoidal (ξ = 1) and traceless Hessians (ξ = 1/3) as physically relevant examples:

Hi j (k, t ) =
{

H (s)
i j (k, t ) = ( kik j

k2 − δi j
)
θ (k, t ) (solenoidal)

H (t)
i j (k, t ) = ( kik j

k2 − 1
3δi j

)
θ (k, t ) (traceless).

(2.11)

The primary Hessian H (p)
i j corresponds to a nonlocal expression in physical space, i.e., �−1∂i∂ jθ ,

which still characterizes the local structure of the scalar distribution; spherical spots may be detected
by its trace part while sheets or filaments by the rest deviatoric components. The traceless Hessian,
the deviatoric part of the primary Hessian, then emphasizes sheetlike or filamentlike structures while
it diminishes in spherical spots or voids. Also, unlike the primary Hessian containing θ in its trace,
the traceless Hessian is completely free from long-time memory of θ , which may lead to the shortest
correlation time scale among others. The solenoidal Hessian represents a divergence-free part of the
primary Hessian whose divergence exactly coincides with the scalar gradient: ∂ j�

−1∂i∂ jθ = ∂iθ .
Thereby the solenoidal Hessian cancels out the contribution from the scalar gradient. Providing
there is any characteristic structure of scalar (spot, sheet, filament, etc.) surrounded by some larger-
scale structure, primary and traceless Hessians may be affected by this larger structure acting like a
background gradient. Thus the solenoidal Hessian may be suitable to quantify local scalar structures
without interference from such larger-scale structures. The Lagrangian variable of the generalized
Hessian Hi j (hereafter we simply call it Hessian) obeys

∂tHi j (k, t ′|t )

=
∫

d3k′′ψ (k′′, t ; k, t ′)
{
−κk′′2Hi j (k′′, t ) + 1

i
k′′

a [k′′; p, q]Xi j (k′′, q)ua(p, t )θ (q, t )

}
, (2.12)

which is identical to Eq. (2.9).
In what follows we should describe all the dynamical equations in terms of a Hessian regarded

as a principal dynamical variable, for which we need to express θ (k, t ) in terms of Hi j (k, t ).
Then we introduce a projection operator, say Z, from the Hessian-valued to scalar-valued functions:
Zi j (k) Hi j (k, t ) = θ (k, t ), where

Zi j (k) ≡ Ti j (k)

T 2
(T ≡ ‖T‖ = √

TabTab), (2.13)

which satisfies Ti j (k)Zi j (k) = 1. Reminding that T is related with ξ by Eq. (2.10), we have T 2 =
3ξ 2 − 2ξ + 1 which takes values 1 (primary), 2/3 (traceless), and 2 (solenoidal). Now Eq. (2.12)
can be rewritten in terms of the Hessian alone:

∂tHi j (k, t ′|t )

=
∫

d3k′′ψ (k′′, t ; k, t ′){−κk′′2Hi j (k′′, t ) + [k′′; p, q]Yi j.a.bc(k′′, q)ua(p, t )Hbc(q, t )}, (2.14)

where Yi j.a.bc(k′′, q) = Xi j (k′′, q)k′′
a Zbc(q)/i.

C. Lagrangian response

Following the LRA procedure, we introduce the response of Hi j (k, t ′|t ) against infinitesimal
disturbance. For this sake, we consider an infinitesimal disturbance δ fθ on the scalar field θ of
Eq. (2.2):

(∂t + κk2)θ (k, t ) = 1

i
ka[k; p, q]ua(p, t )θ (q, t ) + δ fθ (k, t ′)δ(t − t ′). (2.15)
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Multiplying this by Ti j (k) yields a disturbed Eulerian Hessian equation:

(
∂t + κk2

)
Hi j (k, t ) = 1

i
ka[k; p, q]ua(p, t )Hi j (q, t ) + [k; p, q]Yi j.a.mn(k, q)ua(p, t )Hmn(q, t )

+ Ti j (k)δ fθ (k, t ′)δ(t − t ′). (2.16)

The infinitesimal variation δHi j (k, t ) may be written as a linear functional of δ fθ (k′, t ′), which may
be expressed by the functional derivative. We further rewrite this as

δHi j (k, t ′) =
∫

d3k′ δHi j (k, t )

δ fθ (k′, t ′)
δ fθ (k′, t ′) =

∫
d3k′ δHi j (k, t )

δ fθ (k′, t ′)
Zlm(k′)Tlm(k′)δ fθ (k′, t ′), (2.17)

where δ/δ fθ (k′, t ′) is functional derivative operation. Regarding δFi j (k, t ) ≡ Ti j (k)δ fθ (k, t ) as the
disturbance tensor applied to Hi j (k, t ), the Eulerian response function of the Hessian may be

G E
i j.lm(k, t ; k′, t ′) = δHi j (k, t )

δ fθ (k′, t ′)
Zlm(k′). (2.18)

In the same manner, the Lagrangian response function reads

G L
i j.lm(k, t ; k′, t ′) = δHi j (k, t ′|t )

δ fθ (k′, t ′)
Zlm(k′). (2.19)

The functional derivative on Eq. (2.14) yields the equation for the Lagrangian response function
G L

i j.lm(k, t ; k′, t ′):

∂tG
L
i j.lm(k, t ; k′, t ′) = δ

δ fθ (k′, t ′)
∂tHi j (k, t ′|t )Zlm(k′)

=
∫

d3k′′ψ (k′′, t ; k, t ′)[k′′; p, q]Yi j.a.bc(k′′, q)ua(p, t )
δHbc(q, t )

δ fθ (k′, t ′)
Zlm(k′)

−
∫

d3k′′ψ (k′′, t ; k, t ′)κk′′2 δHi j (k′′, t )

δ fθ (k′, t ′)
Zlm(k′)

=
∫

d3k′′ψ (k′′, t ; k, t ′)[k′′; p, q]Yi j.a.bc(k′′, q)ua(p, t )G E
bc.lm(q, t ; k′, t ′)

−
∫

d3k′′ψ (k′′, t ; k, t ′)κk′′2G E
i j.lm(k′′, t ; k′, t ′) (2.20)

for t � t ′, which is accompanied by its initial condition,

G L
i j.lm(k, t ′; k′, t ′) = G E

i j.lm(k, t ′; k′, t ′) = Ti j (k)δ3(k − k′)Zlm(k′). (2.21)

D. Perturbation analysis

Here we review the dynamical equations which our LRA procedures are based on. Then our
system is totally described by the following equations (Eq. (2.22) below may be soon reached by
rewriting θ in the right-side of Eq. (2.2) into Z · H and multiplying both sides by T):

(∂t + κk2)H E
i j (k, t ) = λ

1

i
Ti j (k)kc[k; p, q]Zab(q)uc(p, t )H E

ab (q, t ), (2.22)

(∂t + κk2)G E
i j.lm(k, t ; k′, t ′) = λ

1

i
Ti j (k)kc[k; p, q]Zab(q)uc(p, t )G E

ab.lm(k, t ; k′, t ′) (t � t ′),

(2.23)
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∂tH
L

i j (k, t ′|t ) = λ

∫
d3k′′ψ (k′′, t ; k, t ′)[k′′; p, q]Yi j.a.bc(k′′, q)ua(p, t )H E

bc (q, t )

− κ

∫
d3k′′ψ (k′′, t ; k, t ′)k′′2H E

i j (k′′, t ), (2.24)

∂tG
L
i j.lm(k, t ; k′, t ′) = λ

∫
d3k′′ψ (k′′, t ; k, t ′)[k′′; p, q]Yi j.a.bc(k′′, q)ua(p, t )G E

bc.lm(q, t ; k′, t ′)

− κ

∫
d3k′′ψ (k′′, t ; k, t ′)k′′2G E

i j.lm(k′′, t ; k′, t ′) (t � t ′), (2.25)

∂tψ (k′′, t ; k, t ′) = λik′′
b [k′′; −p, q]ub(p, t )ψ (q, t ; k, t ′), (2.26)

G L
i j.lm(k, t ′; k′, t ′) = G E

i j.lm(k, t ′; k′, t ′) = Ti j (k)δ3(k − k′)Zlm(k′), (2.27)

ψ (k′′, t ′; k, t ′) = δ3(k′′ − k), (2.28)

where we attach the subscripts “L” and “E” on the Lagrangian and Eulerian Hi j for clarity of
notations. Also we attach λ(= 1) as a bookkeeping parameter for later perturbation analysis. Then
we define nonperturbative dynamics by O(λ0) analysis of Eqs. (2.22)–(2.28):

(∂t + κk2)H̃i j (k, t ) = 0, (2.29)

(∂t + κk2)G̃i j.lm(k, t ; k′, t ′) = 0, (t � t ′) (2.30)

G̃i j.lm(k, t ′; k′, t ′) = Ti j (k)δ3(k − k′)Zlm(k′), (2.31)

∂t ψ̃ (k′′, t ; k, t ′) = 0, (2.32)

where we attach a tilde to the main symbols of the original fields. Also note that Eulerian and
Lagrangian equations reduce to identical forms at this stage. In exactly the same manner, we
introduce nonperturbative velocity ũi(k, t ) and response G̃i j (k, t ; k′, t ′) (see Appendix B). Then,
using iterative time integration, both Lagrangian and Eulerian quantities can be expanded in terms
of nonperturbative quantities. As a consequence, all the statistical quantities are expanded by the
nonperturbative statistics; for the nonperturbative Hessian field we have

H̃i j.lm(k, t ; k′, t ′) ≡ 〈H̃i j (k, t )H̃lm(k′, t ′)〉, (2.33)

G̃i j.lm(k, t ; k′, t ′) ≡ 〈G̃i j.lm(k, t ; k′, t ′)〉 = G̃i j.lm(k, t ; k′, t ′), (2.34)

just like for the velocity field Q̃i j (k, t ; k′, t ′) ≡ 〈ũi(k, t )ũ j (k′, t ′)〉 and G̃i j (k, t ; k′, t ′). Note that the
velocity and the Hessian are to be uncorrelated with each other at the nonperturbative stage due to
the absence of the nonlinear coupling between them.

E. Lagrangian renormalization

Now we are prepared to obtain the moment closure equations based on the renormalized per-
turbation analysis. Departing from simple perturbation, renormalized perturbation analysis enables
to describe stochastic relaxation of the correlations, which is the key to a successful closure model
at general Reynolds and Schmidt numbers. The renormalization machinery enables a systematic
derivation of the closed system for the two-time correlations and the averaged responses:

Hi j.lm(k, t ; k′, t ′) ≡ 〈
H L

i j (k, t ′|t )H E
lm (k′, t ′)

〉
, Gi j.lm(k, t ; k′, t ′) ≡ 〈

G L
i j.lm(k, t ; k′, t ′)

〉
(t � t ′),

Qi j (k, t ; k′, t ′) ≡ Pia(k)
〈
uL

a (k, t ′|t )uE
j (k′, t ′)

〉
(t � t ′),

Gi j (k, t ; k′, t ′) ≡ Pia(k)
〈
GL

ab(k, t ; k′, t ′)
〉
Pb j (k′) (t � t ′), (2.35)
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where Pi j (k) (≡ δi j − kik j/k2) is the solenoidal operator. Due to homogeneity, these are
further simplified as Hi j.lm(k, t ; k′, t ′) = δ3(k + k′)Hi j.lm(k; t, t ′), Gi j.lm(k, t ; k′, t ′) = δ3(k −
k′)Gi j.lm(k; t, t ′), Qi j (k, t ; k′, t ′) = δ3(k + k′)Qi j (k; t, t ′), Gi j (k, t ; k′, t ′) = δ3(k + k′)Gi j (k; t, t ′).
In the context of renormalization theories, these statistical variables are treated as the renormalized
variables, while the nonperturbative counterparts are recognized as the bare ones. Renormalized
quantities are obtained as a partial summation of infinite perturbation series, where multiple steps
of triad interactions are incorporated inside. Then, the renormalization may be rephrased as the
replacement of the expansion basis from bare to renormalized ones so that the stochastic relaxation
process can be considered even at finite order (for more details see Appendix C).

Applying renormalization to the moment equations of Hi j.lm(k, t ; k′, t ′), Gi j.lm(k, t ; k′, t ′),
Qi j (k, t ; k′, t ′), and Gi j (k, t ; k′, t ′), these are consistently closed. Here we present the closure
equations of the Hessian statistics:

(∂t + 2κk2)Hi j.lm(k, t, t ) = 2Ti j (k)Tlm(k)[k; p, q]
∫ t

t0

ds Qab(p; t, s){kakbH (q; s, t )GH (−k; t, s)

− kaqbH (−k; s, t )GH (q; t, s)}, (2.36)

(∂t + κk2)Hi j.lm(k; t, t ′) = −[k; p, q]Xi j (k, q)Tlm(k)qaqb

∫ t

t ′
ds Qab(p; t, s)H (−k, t, t ′)

− [k; p, q]Xi j (k, q)Tlm(k)kaqb

∫ t

t0

ds Qab(p; t, s)GH (q; t, s)H (−k; s, t ′)

+ [k; p, q]Xi j (k, q)Tlm(k)kakb

∫ t ′

t0

ds Qab(p; t, s)H (q; t, s)GH (−k; t ′, s),

(2.37)

(∂t + κk2)Gi j.lm(k; t, t ′)

= −[k; p, q]Xi j (k, q)Zlm(k)qaqb

∫ t

t ′
ds Qab(p; t, s)GH (k, t, t ′)

− [k; p, q]Xi j (k, q)Zlm(k)kaqb

∫ t

t0

ds Qab(p; t, s)GH (q; t, s)GH (k; s, t ′) (t � t ′), (2.38)

Gi j.lm(k; t ′, t ′) = Ti j (k)Zlm(k), (2.39)

where H (k; t, t ′) and GH (k; t, t ′) are projected components of Hi j.lm(k; t, t ′) and Gi j.lm(k; t, t ′),

H (k; t, t ′) = Zi j (k)Hi j.lm(k; t, t ′)Zlm(k), (2.40)

GH (k; t, t ′) = Zi j (k)Gi j.lm(k; t, t ′)Tlm(k). (2.41)

Now Eqs. (2.36)–(2.38) combined with velocity closure (equivalent to Eqs. (2.35)–(2.46) of
Ref. [16]) form a closed set of equations for H, G, Q, and G (F in Ref. [16]). Among the total
dynamical variables, Hessian statistics have a total of 12 degrees of freedom. On the other hand, we
soon realize that only H (k; t, t ′) and GH (k; t, t ′) appear in the right-hand sides of Eqs. (2.36)–(2.38),
suggesting only limited degrees of freedom among all the tensor components are relevant in the total
dynamics. Indeed, [Eq. (2.36)] ×Zi jZlm, [Eq. (2.37)] ×Zi jZlm, [Eq. (2.38)] ×Zi jTlm, and [Eq. (2.39)]
×Zi jTlm lead to a closed set of equations for H (k; t, t ′) and GH (k; t, t ′):

(∂t + 2κk2)H (k; t, t )

= 2[k; p, q]
∫ t

t0

ds Qab(p; t, s){kakbH (q; s, t )GH (−k; t, s) − kaqbH (−k; s, t )GH (q; t, s)},
(2.42)
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(∂t + κk2)H (k; t, t ′)

= − 1

T 2

kakb

k2
[k; p, q]Xab(k, q)qcqd

∫ t

t ′
dsQcd (p; t, s)H (−k, t, t ′)

− 1

T 2

kakb

k2
[k; p, q]Xab(k, q)kcqd

∫ t

t0

ds Qcd (p; t, s)GH (q; t, s)H (−k; s, t ′)

+ 1

T 2

kakb

k2
[k; p, q]Xab(k, q)kckd

∫ t ′

t0

ds Qcd (p; t, s)H (q; t, s)GH (−k; t ′, s), (2.43)

(∂t + κk2)GH (k; t, t ′)

= − 1

T 2

kakb

k2
[k; p, q]Xab(k, q)qcqd

∫ t

t ′
dsQcd (p; t, s)GH (k, t, t ′)

− 1

T 2

kakb

k2
[k; p, q]Xab(k, q)kcqd

∫ t

t ′
ds Qcd (p; t, s)GH (q; t, s)GH (k; s, t ′) (t � t ′), (2.44)

GH (k; t ′, t ′) = 1. (2.45)

Note that a common factor T −2 (T = ‖T‖) appears in every term on the right-hand sides of
Eqs. (2.43) and (2.44). Recalling that T determines representative variables, we find that the choice
of representatives does not alter the structure of equations but determines the characteristic time
scales of H (k; t, t ′) and GH (k; t, t ′) via T −2.

F. Relation to scalar-based LRA

The two-time correlation and response are to be decomposed into the trace and traceless parts:

Hi j.lm(k; t, t ′) = [
Ai j (k; t, t ′) + (

1
3 − ξ

)
δi j(k; t, t ′)

]
Tlm(k), (2.46)

Gi j.lm(k; t, t ′) = [
Bi j (k; t, t ′) + (

1
3 − ξ

)
δi jGθ (k; t, t ′)

]
Zlm(k), (2.47)

where Ai j and Bi j are traceless symmetric tensors; i.e., A j j = B j j = 0.  and Gθ are the Lagrangian
correlation and response of the scalar field which are chosen as the representative variables of
the scalar-based LRA [17]. Then our representative variables Hi j.lm(k; t, t ′) and Gi j.lm(k; t, t ′) are
endowed with ten degrees of freedom from Ai j and Bi j besides the two scalar functions  and Gθ

of the scalar-based LRA. Operations (2.40) and (2.41) yield

H (k; t, t ′) = 1

T 2

kik j

k2
Ai j (k; t, t ′) +

(
1 − 2

3T 2

)
(k; t, t ′), (2.48)

GH (k; t, t ′) = 1

T 2

kik j

k2
Bi j (k; t, t ′) +

(
1 − 2

3T 2

)
Gθ (k; t, t ′). (2.49)

Thus our closure variables H (k; t, t ′) and GH (k; t, t ′) are generalizations of the Lagrangian
scalar statistics (k; t, t ′) and Gθ (k; t, t ′) by incorporating traceless components Ai j (k; t, t ′) and
Bi j (k; t, t ′). Indeed the scalar-based LRA of Ref. [17] is exactly reproduced in the limit case
T 2 → ∞, which is obvious from Eqs. (2.42)–(2.45) and Eqs. (2.48) and (2.49).

III. APPLICATION TO INERTIAL CONVECTIVE RANGE

A. HBLRA for isotropic turbulence

For homogeneous isotropic cases, all the statistical functions take isotropic forms:

H (k; t, t ′) = H (k; t, t ′), (3.1a)
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GH (k; t, t ′) = GH (k; t, t ′), (3.1b)

Qi j (k; t, t ′) = 1
2 Pi j (k)Q(k; t, t ′), (3.1c)

where k = ‖k‖. The resultant equations for H (k; t, t ′) and GH (k; t, t ′) are

(∂t + 2κk2)H (k; t, t )

= 2π

∫∫
�

d p dq kpq(1 − z2)
∫ t

t0

dsQ(p; t, s){H (q; s, t )GH (k; t, s) − H (k; s, t )GH (q; t, s)},
(3.2)

(∂t + κk2)H (k; t, t ′) = − π

T 2

∫∫
�

d p dq kpq(1 − y2)(1 − z2)
∫ t

t ′
ds Q(p; t, s)H (k; t, t ′)

− π

T 2

∫∫
�

d p dq kpq(1 − y2)(1 − z2)
∫ t

t0

ds Q(p; t, s)GH (q; t, s)H (k; s, t ′)

+ π

T 2

∫∫
�

d p dq kpq(1− y2)(1− z2)
∫ t ′

t0

ds Q(p; t, s)H (q; t, s)GH (k; t ′, s),

(3.3)

(∂t + κk2)GH (k; t, t ′) = − π

T 2

∫∫
�

d p dq kpq(1 − y2)(1 − z2)
∫ t

t ′
ds Q(p; t, s){GH (k; t, t ′)

+ GH (q; t, s)GH (k; s, t ′)} (t � t ′), (3.4)

GH (k; t ′, t ′) = 1, (3.5)

where the geometrical factors y ≡ (q2 + k2 − p2)/(2kq), z ≡ (q2 + k2 − p2)/(2kq), and � ≡
{(p, q)| |k − p| � q � k + p} reflect the triad interaction between three wave-number modes;
second-order nonlinearity allows an interaction between three modes when k, p, and q can form
the legs of a triangle. Then three factors x(≡ (p2 + q2 − k2)/(2pq)), y, and z are introduced as
cosines of three interior angles opposite the legs k, p, and q, respectively [16,19]. The integration
domain � arises from an existence condition for such a triangle.

Also note that a common geometrical factor kpq(1 − y2)(1 − z2) appears in the wave-number
integration of Eqs. (3.3) and (3.4). This is indeed equivalent to the one in the time-scale integral of
the velocity-closure model of LRA (see Eqs. (2.50) and (2.52) of Ref. [16]). This geometrical factor
sufficiently reduces both large- and small-scale contributions, which is the very key to reproducing
scale-local interaction consistent with the Kolmogorov-Obukhov-Corrsin theory.

B. Inertial-convective range

Let us apply Eqs. (3.3)–(3.5) to the inertial-convective range. We first assume both velocity and
scalar fields are sustained by some source at sufficiently large scale while viscosity and diffusivity
act at very small scale, so that a broadband inertial-convective range is realized under quasistationary
state. Scale locality of velocity-scalar coupling brings about constant spectral flux of the scalar
variance, yielding a universal scaling law of scalar-variance spectrum in a parallel manner to the
LRA analysis of Ref. [17] where the inertial-range solution of Q had been obtained:

Q(k; t, t ′) = Ko

2π
ε2/3k−11/3g(ε1/3k2/3(t − t ′)), (3.6)

where Ko ≈ 1.72 is the Kolmogorov constant theoretically obtained from LRA analysis, ε =
ν〈(∂iu j )(∂iu j )〉 is the mean dissipation rate of energy, and g is a dimensionless function given by
Fig. 1 [g(0) = 1]. Now we solve the scalar statistics H and GH using Eqs. (3.2)–(3.4) of the present
HBLRA framework. A simple dimensional analysis applied to Eq. (3.4) tells us that GH (k; t, t ′) has
the time scale of the inertial range, i.e., ε−1/3k−2/3, while the same analysis holds for H (k; t, t ′) in
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FIG. 1. Configuration of the dimensionless function g(τ ) obtained from LRA equations of Ref. [17]. g(τ )
is monotonically decaying as the dimensionless time τ passes.

Eq. (3.3). Thus the following may be allowed as the demanded solution of Eqs. (3.2)–(3.5) in the
inertial-convective range:

H (k; t, t ′) = Kθ

4π
ε−1/3χk−11/3h(ε1/3k2/3(t − t ′)), (3.7a)

GH (k; t, t ′) = gH (ε1/3k2/3(t − t ′)), (3.7b)

where χ = κ〈(∂iθ )(∂iθ )〉, and h(τ ) and gH (τ ) are dimensionless functions [h(0) = gH (0) = 1]. In
what follows, we consider a quasistationary state truly independent from the initial fields at t0, so the
initial time t0 in Eqs. (3.2)–(3.4) is to be taken as an infinite past time, i.e., t0 → −∞. Substituting
the scale-similar solutions (3.7) into Eqs. (3.3) and (3.4) yields

d

dτ
h(τ ) = − Ko

2T 2

∫∫
�̂

d p̂ dq̂ p̂−8/3q̂(1 − y2)(1 − z2)
∫ τ

0
dσ g( p̂2/3σ )h(τ )

− Ko

2T 2

∫∫
�̂

d p̂ dq̂ p̂−8/3q̂(1 − y2)(1 − z2)
∫ ∞

0
dσ g( p̂2/3σ )gH (q̂2/3σ )h(τ − σ )

+ Ko

2T 2

∫∫
�̂

d p̂ dq̂ p̂−8/3q̂−8/3(1 − y2)(1 − z2)

×
∫ ∞

0
dσ g( p̂2/3(τ + σ ))h(q̂2/3(τ + σ ))gH (σ ), (3.8)

d

dτ
gH (τ ) = − Ko

2T 2

∫∫
�̂

d p̂ dq̂ p̂−8/3q̂(1 − y2)(1 − z2)

×
∫ τ

0
dσ g( p̂2/3σ ){gH (τ ) + gH (q̂2/3σ )gH (τ − σ )} (τ � 0), (3.9)

where p̂, q̂ ≡ p/k, q/k. Here note that Kθ disappears from the above equations, so h(τ ) and gH (τ )
can be solved irrespective of Kθ . With the help of Ko ≈ 1.72 and g(τ ) obtained by LRA analysis [17]
and h(0) = gH (0) = 1, the dimensionless Eqs. (3.8) and (3.9) can be numerically solved in terms of
h(τ ) and gH (τ ) whose configurations are given respectively by Figs. 2 and 3. These dimensionless
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FIG. 2. Configuration of the universal function h(τ ) which rapidly decays as |τ | increases. Unlike the
velocity autocorrelation, h(τ ) is asymmetric in time reversing.

functions characterize time scales of the representative variables in the unit of the inertial-range time
scale ε−1/3k−2/3:

Ih = 1

2

∫ ∞

−∞
h(τ )dτ ≈

⎧⎪⎪⎨
⎪⎪⎩

0.816 (primary Hessian)
1.12 (solenoidal Hessian)
0.664 (traceless Hessian)
∞ (scalar),

(3.10)

Ig =
∫ ∞

0
gH (τ )dτ ≈

⎧⎪⎪⎨
⎪⎪⎩

0.748 (primary Hessian)
1.13 (solenoidal Hessian)
0.595 (traceless Hessian)
∞ (scalar),

(3.11)

which are to be compared with
∫ ∞

0 g(τ )dτ = 1.19 [17]; i.e., the Hessian field generally gives shorter
correlation time scales than that of the velocity field. The traceless Hessian loses its memory most
rapidly. This is because the traceless Hessian is completely free from the long-time memory of the
scalar θ . The other two may be rewritten on the basis of the traceless one combined with the scalar
θ as their trace parts:

H (p)
i j = H (t)

i j + 1
3θδi j, (3.12)

H (s)
i j = H (t)

i j − 2
3θδi j, (3.13)

where (t), (p), and (s) stands for “traceless,” “primary,” and “solenoidal” (see Sec. II B). The
solenoidal Hessian has a longer time scale than the primary one for its larger weight on θ .

Now that the dimensionless functions h(τ ) and gH (τ ) had been solved from Eqs. (3.3)–(3.5),
we go for the Obukhov-Corrsin constant Kθ which is to be obtained from the remaining Eq. (3.2).
Note that, however, both sides of Eq. (3.2) trivially vanish in the inertial-convective range, and
we should transform this equation into the spectral flux so that a nontrivial equation for Kθ may
be obtained. Multiplying Eq. (3.2) by 4πk2 yields the dynamical equation for the scalar-variance
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FIG. 3. Configuration of the universal function gH (τ ) which rapidly decays within finite time scale. Unlike
the scalar field preserving long-time memory, the Hessian field loses its memory in the inertial-range time
scale.

spectrum Eθ (k) (≡ 4πk2H (k; t, t )):

(∂t + 2κk2)Eθ (k, t ) = Tθ (k, t ), (3.14)

where the scalar-transport function Tθ (k, t ) reads

Tθ (k, t ) = 1

2

∫∫
�

d p dq Sθ (k; p, q|t ), (3.15)

Sθ (k; p, q|t ) = 8π2k3 pq
∫ t

−∞
ds[(1 − z2)Q(p; t, s){H (q; s, t )GH (k; t, s) − H (k; s, t )GH (q; t, s)}

+ (1 − y2)Q(q; t, s){H (p; s, t )GH (k; t, s) − H (k; s, t )GH (p; t, s)}]. (3.16)

Now the triad interaction between three modes k, p, and q is mediated by Sθ (k; p, q|t ), which is
symmetric under the exchange between p and q; i.e., Sθ (k; p, q|t ) = Sθ (k; q, p|t ). Then the integral
domain � can be reduced to its half:

Tθ (k, t ) =
∫ ∞

0
d p

∫ p+k

max(p,k−p)
dq Sθ (k; p, q|t ). (3.17)

Due to the sine theorem (1 − x2)/k2 = (1 − y2)/p2 = (1 − z2)/q2, detailed conservation holds:

Sθ (k; p, q|t ) + Sθ (p; q, k|t ) + Sθ (q; k, p|t ) = 0, (3.18)

which guarantees the conservation of the scalar variance 〈θ2〉 in the limit κ → ∞. The spectral flux
is defined by

�θ (k, t ) =
∫ ∞

k
dk′

∫ ∞

0
d p′

∫ p′+k′

max(p′,k′−p′ )
dq′ Sθ (k′; p′, q′|t ). (3.19)

In the inertial-convective range, this scalar flux may balance with χ . For further progress we should
calculate �θ (k, t ) of Eq. (3.19) with Eqs. (3.6) and (3.7) substituted, which, however, is an integral
over an infinitely large domain in the wave-number space. Following a similar procedure provided
by Ref. [25] on the velocity statistics, we rewrite Eq. (3.19) as an integral over a finite domain (see
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FIG. 4. Integration domain of Eq. (3.20) in the p-q space.

Appendix D for its derivation):

�θ (k, t ) = k
∫ k

0
d p ln

(
k

p

) ∫ p+k

max(p,k−p)
dq Sθ (k; p, q|t ). (3.20)

Now the integration domain is limited in the gray area in Fig. 4. Then a scale-similar transformation
Sθ (k; p, q|t ) = k−3Sθ (1; p̂, q̂|t ) ( p̂ ≡ p/k, q̂ ≡ q/k) further simplifies the above (see Appendix D),
leading to

�θ (k, t ) =
∫ 1

0
d p̂ ln

(
1

p̂

) ∫ p̂+1

max( p̂,1−p̂)
dq̂ Sθ (1; p̂, q̂|t ). (3.21)

Now the right-hand side is apparently independent from k, suggesting that the spectral flux �θ (k, t )
takes a constant value in the inertial-convective range. Substituting Eq. (3.16) and scale-similar
forms (3.6) and (3.7) into Eq. (3.21), the scalar-flux relation �θ = χ reads

�θ (k, t ) = KoKθχ

∫ 1

0
d p̂ ln

(
1

p̂

) ∫ p̂+1

max( p̂,1−p̂)
dq̂

∫ ∞

0
dτ

× [(1 − z2) p̂−8/3q̂ g( p̂2/3τ ){q̂−11/3h(−q̂2/3τ )gH (τ ) − h(−τ )gH (q̂2/3τ )}
+ (1 − y2)q̂−8/3 p̂ g(q̂2/3τ ){ p̂−11/3h(−p̂2/3τ )gH (τ ) − h(−τ )gH ( p̂2/3τ )}]

= χ, (3.22)

which is now solvable in terms of Kθ . Substituting Ko ≈ 1.72 [17] into the above yields

Kθ ≈

⎧⎪⎪⎨
⎪⎪⎩

1.03 (primary Hessian)
0.754 (solenoidal Hessian)
1.23 (traceless Hessian)
0.337 (scalar),

(3.23)

where the result for scalar is identical to the one obtained by Ref. [17] (Kθ ≈ 0.34). The variation
of the constant value can be understood from that of the time scale of the memory functions h and
gh in Eq. (3.22); shorter memory time scale regulates the magnitude of the scalar flux �θ via time
integration of h and gh, and then the resultant Kθ becomes larger. The memory time scales are given,
in ascending order, by traceless, primary, and solenoidal Hessians which give Kθ in descending
order [see Eqs. (3.11) and (3.10)]. In comparison with experimental and numerical assessments (Kθ
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approximately ranges from 0.6 to 0.9 in pioneering works [5–10]), Hessian-based analyses predict
reasonable values of Kθ . In the case of scalar-based LRA, the infinitely long memory effect then
underestimates Kθ .

C. Locality of the interscale interaction

Besides a quantitative improvement on the Obukhov-Corrsin constant Kθ , a qualitative difference
should be noted in the physical interpretation of the scalar flux �θ . The right-hand side of Eq. (3.22)
tells us detailed contributions from velocity and scalars of various modes to �θ . Let us focus
on the low-wave-number contribution at p̂(= p/k)  1 which corresponds to the relatively low-
wave-number mode p( k) still within the inertial-convective range. In this scale range, the first of
two integrands becomes dominant, where g( p̂2/3τ ) represents a slow decorrelation of larger eddy
(still within the inertial range) in comparison with Hessian statistics (h(−q̂2/3τ ), gH (τ ), h(−τ ), and
gH (q̂2/3τ )) of finite-time decorrelation. Then the following approximately holds:∫ ∞

0
dτg( p̂2/3τ ){q̂−11/3h(−q̂2/3τ )gH (τ ) − h(−τ )gH (q̂2/3τ )}

≈
∫ ∞

0
dτ {q̂−11/3h(−q̂2/3τ )gH (τ ) − h(−τ )gH (q̂2/3τ )}, (3.24)

implying that the memory of the large-scale fluid’s motion represented by g( p̂2/3τ ) may be screened
out by the scalar decorrelation at mode k (note that p  k ≈ q). In the case of scalar-based LRA,
by contrast, this term becomes

(q̂−11/3 − 1)
∫ ∞

0
dτg( p̂2/3τ ), (3.25)

where the long-time memory of the velocity field from mode p( k) may be cast into the scalar flux
at mode k, precisely due to the absence of the memory-fading effect of the scalar statistics at mode
k. While being consistent with Kolmogorov-Obukhov-Corrsin dimensional analysis, scalar-based
LRA may predict more broadband interaction than HBLRA via interference from a turbulence eddy
at larger scale.

To see more deeper insights, here we quantify the locality (or the nonlocality) of the interscale
interaction in the inertial range following Refs. [17,25]. We may introduce the scale-locality
parameter α of each triad (k, p, q) by

α ≡ max(k, p, q)

min(k, p, q)
= max(1, p̂, q̂)

min(1, p̂, q̂)
. (3.26)

Now Eq. (3.21) may be rewritten as an integration over 1 � α � ∞:

�θ =
∫ ∞

1
Wθ (α)

dα

α
, (3.27)

where

Wθ (α) = ln α

α

∫ α∗

1
Sθ

(
1;

1

α
,

1

β

)
dβ

β2
+ α

∫ α

α∗∗
Sθ

(
1;

1

β
,
α

β

)
dβ ln β

β3
, (3.28)

α∗ = min
(
α,

α

α − 1

)
, α∗∗ = max (1, α − 1). (3.29)

Now Wθ (α) measures the weight of triad interaction where the ratio of maximum to minimum
wave number is α. Figure 5 shows Wθ (α) and Fθ (α)(≡ ∫ α

1 Wθ (α′) dα′) normalized by χ . Here
we employ the case of a solenoidal Hessian representing HBLRA since very similar distributions
are obtained for the rest, primary and traceless. As discussed in Refs. [17,25] for the velocity
field, triad modes of α ≈ 2 may be most prominent among all interactions; namely, an event
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FIG. 5. Wθ (α) peaks at α ≈ 2 while Fθ (α) monotonically increases, tending to unity as α → ∞. Their
asymptotic behaviors Wθ /〈χ〉 ∼ 1 − Fθ /〈χ〉 ∼ α−4/3ln α (HBLRA) and Wθ /〈χ〉 ∼ 1 − Fθ /〈χ〉 ∼ α−2/3ln α

(scalar-based LRA) are obtained.

where some scalar distribution is broken down to half its size may be frequently observed, which,
however, does not necessarily mean that this event dominates the total scalar transfer. HBLRA
explicates via Fθ (α) that interactions of α � 2 occupy only 19% of the total scalar transfer (21%
in the case of the velocity field) and the rest 81% by the tail of α � 2. Whereas being scale
local enough to yield Kolmogorov-Obukhov-Corrsin scaling, this somewhat broadband interaction
requires certainly wide inertial-convective range before reaching the true universality (see similar
discussion in Ref. [25] for the velocity field). In addition, Wθ peaks at 0.78, slightly lower than the
0.87 of the velocity; the scalar field may represent somewhat weaker scale locality than the velocity
field. HBLRA predicts Wθ (α) ∼ α−4/3 ln α for α → ∞ which coincides with that of the velocity
field [25]. Now 1 − Fθ (α) ∼ α−4/3 ln α (α → ∞) and Fθ (α) reaches 0.99 χ at α ≈ 140; i.e., 99% of
the scalar flux at a mode k comes from a spectral band k/140 ∼ 140k. Providing ks and k� represent
the smallest and largest scales of the inertial-convective range, Eq. (3.22) implies that the scale gap
of ks/k� � 1402 ≈ 2 × 104 may be necessary to obtain the Obukhov-Corrsin constant within the
error of a few percent (an identical analysis on the Kolmogorov constant results in ks/k� � 1 × 104).
On the other hand, the scalar-based LRA represents more broadband interaction due to the longer
tail of Wθ (α) ∼ α−2/3 ln α (α → ∞) caused by the large-scale mode of the velocity field. Then
1 − Fθ ∼ α−2/3 ln α and Fθ (α) reaches 0.99 χ when α ≈ 400, which corresponds to the scale gap
of ks/k� � 1.6 × 105. The difference of tails is exactly caused by interference from the large-scale
eddy, which may be elucidated by distribution of the integrand of Eq. (3.21) given by Fig. 6. In both
(a) HBLRA and (b) scalar-based LRA, most of the positive (negative) contribution comes from
q̂ � 1 (q̂ � 1), which implies the positive (negative) scalar transfer from smaller (larger) q mode to
k mode. Triad interactions of α � 2 correspond to the region lower than the red dotted line where
the scale-nonlocal interaction (p  q ≈ k) may be observed in the vicinity of (q̂, p̂) = (1, 0). In
case of (a) HBLRA, Sθ (1; p̂, q̂) behaves as p̂−8/3 for p̂ → 0, while (b) scalar-based LRA shows a
more divergent trend: Sθ (1; p̂, q̂) ∼ p̂−10/3. These asymptotic behaviors originate from divergence
of Q(p; t, s) in Eq. (3.16) for p → 0, not from the scalar properties; HBLRA reduces the convection
effect of the large-scale eddy, precisely due to rapid memory fading of scalar field.

Nonlocal interaction can be further understood using the so-called eddy-diffusivity con-
cept. Let us focus on the high-wave-number contribution to the transport function Tθ (k, t ) of
Eq. (3.15) (see Fig. 7); setting a cutoff wave number kc, one may calculate the contribution from
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FIG. 6. Distributions of integrand in Eq. (3.21) for (a) HBLRA and (b) scalar-based LRA. More divergent
distribution is observed around (q̂, p̂) = (1, 0) in (b), where Q(p; t, s) in Eq. (3.16) diverges as p̂−11/3. Red
dotted lines show α = max(1, p̂, q̂)/ min(1, p̂, q̂) = 2.

� ∪ {(p, q)|p, q > kc � k}, which may be written as T >kc
θ (k, t ). In the case of H (k) � H (p), H (q)

we reach its limit

T >kc
θ (k, t ) = −2κT (kc)k2Eθ (k, t ) (k/q → 0), (3.30)

where

κT (kc) = 4

3
π

∫ ∞

kc

dq
∫ t

−∞
ds q2Q(q; t, s)GH (q; t, s). (3.31)

Note that κT (kc) is independent from k, exactly providing the eddy-diffusivity concept where the
scalar variance diffuses proportionally to its second-order derivative. Then the HBLRA tells us that
the eddy diffusivity originates from the fluid’s random motion and memory fading of the geometry
of the scalar distribution (Hessian) in small scale q � k, which is due to the geometrical basis of
our formulation. The conventional result of Ref. [17] is consistently obtained under a replacement
GH (q; t, s) → Gθ (q; t, s), where the memory fading of the scalar is absent. Supposing that k, kc,

FIG. 7. For symmetry of Sθ (k; p, q) = Sθ (k; q, p) in the scalar-transport function Tθ (k, t ), the above gray
area may be sufficient in calculating the high-wave-number contribution of Eq. (3.15).
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and q are all in the inertial-convective range, we have

κT (kc) ≈ 0.746ε1/3k−4/3
c , (3.32)

which is smaller than that of scalar-based LRA; i.e., 1.02ε1/3k−4/3
c [17]. Then the weaker nonlocal

coupling in HBLRA may be further interpreted as the lower eddy diffusivity. Introducing the eddy
viscosity νT (kc) in a similar way [14,17], we can define the Schmidt number from the effective
viscosity and diffusivity:

νT (kc)

κT (kc)
≈ 0.30, (3.33)

which is now larger than 0.22 of the scalar-based LRA.
While we have so far compared the scalar-based LRA with the HBLRA, similar comparisons

may be made by other closure theories, i.e., ALHDIA, SBALHDIA, and RI-LRA, all of which do
not incorporate the time scale of the scalar itself, representing stronger interference from large-
scale eddies just like the scalar-based LRA does. Not only is there the quantitative difference in
the universal Obukhov-Corrsin constant, but there are essential discrepancies between present and
conventional theories in their physical background, which ultimately arrive back at the incorporation
of the time scale of the scalar itself.

IV. CONCLUSION

In the present work, we have constructed a closure theory, Hessian-based LRA (HBLRA), for the
passive scalar turbulence on the basis of the Hessian field of the scalar. Unlike the Lagrangian scalar,
the Hessian statistics firmly represents the memory-fading effect caused by random turbulence
motion, which essentially changes the quantitative prediction on scalar statistics. Following the
systematic LRA procedures, a self-consistent closure model is derived for second-order statistics of
the Hessian field. The resultant closure model has realistic features as a physical model such as the
detailed conservation (3.18) and scale locality of the nonlinear interaction, all of which are the very
key to consistency with the Kolmogorov-Obukhov-Corrsin theory. In particular, the scale locality
of the nonlinear self-interaction strictly regulates possible candidates for representatives, and our
Hessian field Hi j successfully meets this physical requirement.

It is worth mentioning the differences between the current HBLRA and pioneering RI-LRA as
another branch of LRA [22]. Let us make below comparisons of the two theories from (i) physical
and (ii) practical aspects.

(i) Physical aspect. The RI-LRA employs a pure strain tensor besides the scalar field so that the
memory fading of the scalar is accounted for by the time scale of the pure straining motion, while
the current HBLRA introduces the time scale of the Hessian of the scalar itself; to be brief, RI-LRA
focuses on the velocity field, while HBLRA focuses on the scalar field. Also the RI-LRA, sharing its
core idea with the SBALHDIA, is specifically designed for physics in a high-wave-number region,
focusing on the strain field associated with the spectral transfer in small-scale range [22,23], so we
cannot tell now about its performance in larger-scale ranges, e.g., inertial-convective and inertial-
diffusive ranges.

(ii) Practical aspect. In the HBLRA, the representative variables to be solved are the Lagrangian
correlation function H and response function GH of the Hessian of the scalar field and the correlation
function Q of the velocity field. Regarding the inertial-convective-range analysis, Q had been
already obtained in Ref. [17], so H and GH can be solved without difficulties just like in Sec. III. On
the other hand, the RI-LRA treats the Lagrangian correlation and response functions of the strain
field and those ( and Gθ ) of the scalar field as its representative variables. Although the latter
two may be trivially solved for their lack in the memory-fading effect (see Sec. II A), the closure
of the former strain statistics has not been achieved yet for mathematical complexities of RI-LRA
formalism. Instead, the strain statistics are estimated with the help of short-time analysis and DNS
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data in Ref. [22]. Then fundamental assessments (solvability of the closure equations, consistency
with dimensional analyses, etc.) are yet to be done for the RI-LRA before its practical applications.

The inertial-convective range has been investigated on the basis of the HBLRA, where the
known Kolmogorov-Obukhov-Corrsin scaling has been obtained as the solution of the theory.
Our self-consistent approach now derives the Obukhov-Corrsin constant Kθ reasonably close to
DNS and experimental values ranging from 0.6 to 0.9 [5–10]. Whereas we have not yet reached
conclusive arguments to decide what is the best representative choice, our three candidates, i.e.,
primary, solenoidal, and traceless Hessians, may have the simplest mathematical significance among
any possibilities (see Sec. II B), which helps us to access their physical interpretations in easy-to-
understand ways. In particular, the solenoidal Hessian may be the most suitable choice in properly
representing local scalar structure (see discussions in Sec. II B), and its resultant Kθ ≈ 0.754 well
agrees with what is obtained by Ref. [10] (Kθ ≈ 0.725). On the other hand, recent large-scale
DNS [26] suggests that the true inertial range, if it exists, could be observed at the scale even
larger than 100η. Therefore the true validation of Obukhov-Corrsin theory, which also relies on the
classical Kolmogorov scaling, may be postponed until even larger-scale DNS in future studies.

Besides the inertial-convective scaling, there are still many aspects to be explored by HBLRA:
physics in the inertial-diffusive and viscous-convective ranges where other scaling laws are expected
as universal features of high- and low-Péclet-number problems subjected to high-Reynolds-number
turbulence [18]. In addition to stationary cases, time-dependent numerical simulations of HBLRA
may further explicate dynamical features of scalar turbulence, e.g., passive scalar stirred by decaying
turbulence or decay of the scalar itself. Not only for simply passive cases, HBLRA may extend its
applicability to more general scalar fields subjected to active interactions; buoyancy-driven turbu-
lence, turbulent chemical reaction, and turbulent particle clustering [24] may be typical examples
where theoretical supports may be even more needed to account for their complex physics. We
believe these applications in future studies may lead us to more sophisticated understanding of
scalar turbulence with the help of true governing law.
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APPENDIX A: LAGRANGIAN POSITION FUNCTION

Although the Lagrangian picture offers an essential platform to some fundamental understand-
ings of fluid mechanics, it often brings about complexities in the actual treatment of physical
properties. Regarding this general issue, the Lagrangian position function enables us to bridge
the gap between the Lagrangian and Eulerian pictures in a feasible manner [16]. The Lagrangian
position function ψ (x′, t ; x, t ′) is defined as a density function of the Lagrangian tracer particle
located on x at time t ′. Then, for an arbitrary physical property φ(x, t ) in the Eulerian representation,
one may introduce its Lagrangian counterpart by

φ(x, t ′|t ) =
∫

d3x′ψ (x′, t ; x, t ′)φ(x′, t ), (A1)

where the Lagrangian field φ(x, t ′|t ) is the value of φ experienced by the Lagrangian tracer particle
passing through the space-time point (x, t ′). For a given turbulent velocity field u(x, t ), ψ (x′, t ; x, t ′)
is governed by

∂tψ (x′, t ; x, t ′) + ∂ ′
j[u j (x′, t )ψ (x′, t ; x, t ′)] = 0 (A2)
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accompanied by its initial condition ψ (x′, t ′; x, t ′) = δ3(x′ − x). Now ψ can be treated as a field in
the Eulerian picture, so one can access the Lagrangian quantities in a similar manner to the Eulerian
analysis.

APPENDIX B: EULERIAN AND LAGRANGIAN VELOCITY FIELDS

In the present study, the Eulerian and Lagrangian velocity fields in Fourier space are governed
by the following set of equations accompanied by Eq. (2.26):

(∂t + νk2)uE
i (k, t ) = λ

1

i
Mi.ab(k)[k; p, q]uE

a (p, t )uE
b (q, t ), (B1)

(∂t + νk2)GE
i j (k, t ; k′, t ′) = 2λ

1

i
Mi.ab(k)[k; p, q]GE

a j (p, t ; k′, t ′)uE
b (q, t ) (t � t ′), (B2)

∂t u
L
i (k, t ′|t ) = λ

∫
d3k′′ψ (k′′, t ; k, t ′)

ik′′
i k′′

a k′′
b

k′′2 [k′′; p, q]uE
a (p, t )uE

b (q, t )

− ν

∫
d3k′′ψ (k′′, t ; k, t ′)k′′2uE

i (k′′, t ), (B3)

∂t G
L
i j (k, t ; k′, t ′) = 2λ

∫
d3k′′ψ (k′′, t ; k, t ′)

ik′′
i k′′

a k′′
b

k′′2 [k′′; p, q]uE
a (p, t )GE

b j (q, t ; k′, t ′)

+ λ

∫
d3k′′� j (k′′, t ; k; k′, t ′)

ik′′
i k′′

a k′′
b

k′′2 [k′′; p, q]uE
a (p, t )uE

b (q, t )

− ν

∫
d3k′′ψ (k′′, t ; k, t ′)k′′2GE

i j (k, t ; k′, t ′)

− ν

∫
d3k′′� j (k′′, t ; k; k′, t ′)k′′2uE

i (k, t ; k′, t ′) (t � t ′), (B4)

∂t� j (k′′, t ; k; k′, t ′) = ik′′
a [k′′; −p, q]GE

a j (p, t ; k′, t ′)ψ (q, t ; k, t ′),

+ ik′′
a [k′′; −p, q]uE

a (p, t )� j (q, t ; k; k′, t ′) (t � t ′), (B5)

GE
i j (k, t ′; k′, t ′) = GL

i j (k, t ′; k′, t ′) = Pi j (k)δ3(k − k′), (B6)

� j (k′′, t ′; k; k′, t ′) = 0, (B7)

where Mi.ab (≡ (Piakb + Pibka)/2) is another solenoidal operator, and � j is the response of the
position function against disturbance applied to the velocity field. Nonperturbative counterparts of
the above read as

(∂t + νk2)ũi(k, t ) = 0, (B8)

(∂t + νk2)G̃i j (k, t ; k′, t ′) = 0 (t � t ′), (B9)

G̃i j (k, t ′; k′, t ′) = Pi j (k)δ3(k − k′), (B10)

�̃ j (k′′, t ; k; k′, t ′) = 0. (B11)

Applying the renormalization procedure of Sec. II E on the basis of Eqs. (B1)–(1.1), we reach the
closure model for Qi j (k; t, t ′) and Gi j (k; t, t ′) identical to Eqs. (2.35)–(2.46) of Ref. [16].
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APPENDIX C: RENORMALIZATION PROCEDURE

To summarize the core idea of the renormalization, we employ below some symbolic notations;
we denote correlation tensors only by their main symbol, e.g., H stands for Hi j.lm(k; t, t ′). Accord-
ing to Ref. [16], an arbitrary correlation can be closed in the following steps:

(i) Assume both velocity and scalar fields at initial time instant t0, i.e., ui(k, t0) and θ (k, t0), to be
all independent Gaussian random, where the nonperturbative solutions (λ-zero-order solutions) of
velocity and Hessian, say ũi(k, t ) and H̃i j (k, t ), become also independent Gaussian random. Then
an arbitrary correlation, say J , can be expanded in terms of the correlation of the nonperturbative
variables, i.e., H̃, G̃, Q̃, and G̃:

J = J(0)[H̃, G̃, Q̃, G̃] + λJ(1)[H̃, G̃, Q̃, G̃] + O(λ2), (C1)

where J (n)[· · · ] are functionals.
(ii) In the same manner, expand H, G, Q, and G in terms of H̃, G̃, Q̃, and G̃:

H = H̃ + λ2A(2)[H̃, G̃, Q̃] + O(λ4),

G = G̃ + λ2B(2)[H̃, G̃, Q̃] + O(λ4),

Q = Q̃ + λ2C(2)[Q̃, G̃] + O(λ4),

G = G̃ + λ2D(2)[Q̃, G̃] + O(λ4), (C2)

where A(n)[· · · ], B(n)[· · · ], C(n)[· · · ], and D(n)[· · · ] are all functionals (odd orders vanish for the
Gaussianity).

(iii) Invert Eqs. (1.3) (to be precise, there is an ambiguity in the reverse-expansion technique,
which may be mentioned later):

H̃ = H − λ2A(2)[H,G, Q] + O(λ4),

G̃ = G − λ2B(2)[H,G, Q] + O(λ4),

Q̃ = Q − λ2C(2)[Q, G] + O(λ4),

G̃ = G − λ2D(2)[Q, G] + O(λ4). (C3)

(iv) By substituting Eqs. (C3) into Eq. (C1), J can be expressed by representative variables H,
G, Q, and G:

J = J(0)[H,G, Q, G] + λJ(1)[H,G, Q, G] + O(λ2). (C4)

(v) Truncate the renormalized expansion (C4) at the lowest order.
For instance, let the exact dynamical equation of H be ∂tH = λI (I is a triple correlation). Now

the renormalization procedure [steps (i)–(v)] yields

I = λI(1)[H,G, Q] + O(λ2)
truncation−→ λI(1)[H,G, Q], (C5)

which then results in

∂tH = λ2I(1)[H,G, Q]. (C6)

Likewise, dynamical equations for all the representatives can be closed by themselves. So far we
have followed the renormalization procedure of Ref. [27] originally introduced by Kraichnan.
Here we focus on the problem hidden behind the difference between Eulerian and Lagrangian
renormalization. Unlike in the Eulerian formalism, the Lagrangian correlation Hi j.lm(k; t, t ′) is
asymmetric in its Eulerian and Lagrangian labels:

Hi j.lm(k; t, t ′) �= Hlm.i j (−k; t ′, t ), (C7)
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which may cause an uncertainty in the renormalization procedure. Simple perturbation expansions
of them read

H(t, t ′) = H̃(t, t ′) + λ2A[H̃, G̃, Q̃](t, t ′) + O(λ4), (C8a)

H(t ′, t ) = H̃(t ′, t ) + λ2A[H̃, G̃, Q̃](t ′, t ) + O(λ4). (C8b)

Then their reverse expansions are given by

H̃(t, t ′) = H(t, t ′) − λ2A[H,G, Q](t, t ′) + O(λ4), (C9a)

H̃(t ′, t ) = H(t ′, t ) − λ2A[H,G, Q](t ′, t ) + O(λ4). (C9b)

Note that the left-hand sides of Eqs. (C9a) and (C9b) take the same value [H̃(t, t ′) = H̃(t ′, t ) by
definition], while the finite truncation of the right-hand sides results in their difference. In the case of
the lowest-order truncation, this is equivalent to replacing H̃(t, t ′) with either of H(t, t ′) or H(t ′, t ),
where no evident selection rule exists so far. Fortunately, at the lowest-order renormalization, every
H directly inherits one time variable from either of the Lagrangian or Eulerian equations, so we
can avoid the ambiguity given above. This is how we conducted the Lagrangian renormalization in
Sec. II E.

In the more general case, however, the ambiguity problem cannot be removed by such a simple
algorithm. Here we see another renormalization procedure of wider applicability for future progress
of Lagrangian closures. The ambiguity exactly comes from the time asymmetry of the Lagrangian
autocorrelation. Thus we choose its time-symmetric part as an alternative representative to it; i.e.,

HS (t, t ′) ≡ 1
2 [H(t, t ′) + H(t ′, t )], (C10)

where the superscript S stands for time symmetrization. Like we did for H in Sec. II E, HS can be
expanded as

HS (t, t ′) = H̃(t, t ′) + λ2AS[H̃, G̃, Q̃](t, t ′) + O(λ4), (C11)

which is now uniquely reverted as

H̃(t, t ′) = HS (t, t ′) − λ2AS[HS,G, Q](t, t ′) + O(λ4). (C12)

Now the reverse expansion uniquely determines the renormalization at an arbitrary order of trunca-
tion. Then Eqs. (2.42) and (2.43) become

(∂t + 2κk2)H (k; t, t ) = 2[k; p, q]
∫ t

t0

ds Q(p; t, s){kakbHS (q; s, t )GH (−k; t, s)

− kaqbHS (−k; s, t )GH (q; t, s)}, (C13)

(∂t + κk2)H (k; t, t ′) = −[k; p, q]Xab(k, q)Zab(k)qcqd

∫ t

t ′
dsQcd (p; t, s)HS (−k, t, t ′)

− [k; p, q]Xab(k, q)Zab(k)kcqd

∫ t

t0

ds Qcd (p; t, s)GH (q; t, s)HS (−k; s, t ′)

+ [k; p, q]Xab(k, q)Zab(k)kckd

∫ t ′

t0

ds Qcd (p; t, s)HS (q; t, s)GH (−k; t ′, s),

(C14)

while Eq. (2.44) is not to be altered. Following the same procedure in Sec. III, we reach the
Obukhov-Corrsin constant:

Kθ ≈
⎧⎨
⎩

0.989 (primary Hessian)
0.754 (solenoidal Hessian)
1.18 (traceless Hessian),

(C15)

which slightly differs from the previous result of Eq. (3.23).
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Exactly the same problem can be discussed in the velocity closure. In general, Lagrangian
velocity correlation may be asymmetric under the exchange of the Eulerian and Lagrangian labels:

Qi j (k; t, t ′) �= Qji(−k; t ′, t ). (C16)

In Ref. [16], the uncertainty problem is avoided by restricting the domain of Qi j (k; t, t ′) to t � t ′
[also see Eq. (2.35)], which is technically adoptable due to a fortunate situation of the velocity
closure; the LRA equation for Qi j (k; t, t ′) requires only [t ′, t] as its integration domain. In more
general cases (e.g., ALHDIA, SBALHDIA, and HBLRA), however, one needs a wider domain
of time integration where we cannot restrict the domain of definition (ALHDIA and SBALHDIA
define their Lagrangian correlation for arbitrary two times by a discontinuous exchange between
the Eulerian and Lagrangian labels). To develop more unified understanding of the theories, one
can apply the above symmetric renormalization to the velocity closure, which brings about some
modifications to the original LRA equations outside the inertial range.

APPENDIX D: SCALE-SIMILAR REPRESENTATION OF THE SPECTRAL FLUX

Due to the detailed conservation (3.18), the integration (3.19) over the range
{(k′, p′, q′)|k′, p′, q′ > k} vanishes. Then Eq. (3.19) is reduced to

�θ (k, t ) =
∫ ∞

k
dk′

∫ k

0
d p′

∫ p′+k′

max(p′,k′−p′ )
dq′ Sθ (k′; p′, q′|t ). (D1)

In the inertial-convective range, a scale-similar transformation Sθ (k′; p′, q′|t ) = a3Sθ (ak′; ap′, aq′|t )
holds. Here we choose a = k/k′, b = ap′, and q = aq′, so that Eq. (D1) becomes

�θ (k, t ) =
∫ ∞

k
dk′ k

k′

∫ k2/k′

0
db

∫ b+k

max(b,k−b)
dq Sθ (k; b, q|t ). (D2)

By setting p = k2/k′, Eq. (D2) turns into

�θ (k, t ) =
∫ k

0
d p

k

p

∫ p

0
db

∫ b+k

max(b,k−b)
dq Sθ (k; b, q|t ). (D3)

Partial integration by p yields

�θ (k, t ) =
[

k ln

(
p

k

)∫ p

0
db

∫ b+k

max(b,k−b)
dq Sθ (k; b, q|t )

]k

0

−
∫ k

0
d p k ln

(
p

k

)∫ p+k

max(p,k−p)
dq Sθ (k; p, q|t )

= k
∫ k

0
d p ln

(
k

p

)∫ p+k

max(p,k−p)
dq Sθ (k; p, q|t ), (D4)

which coincides with Eq. (3.20).
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