
PHYSICAL REVIEW FLUIDS 6, 104602 (2021)
Editors’ Suggestion

Nonequilibrium turbulent dissipation in buoyant axisymmetric plume
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We report existence of nonequilibrium turbulent dissipations in buoyant axisymmetric
plumes at infinite Reynolds number limit. The plume statistical equations remain form
invariant under one translation parameterized by a0 and two unequal stretching transforma-
tions parameterized by a1 and a2 of flow variables, except the pressure-strain-rate equation.
The dissipation coefficients, unlike Kolmogorov theory, in the scaling of dissipations εu

of velocity fluctuation u′ and εθ of thermal fluctuation θ ′ evolve linearly with spreading
rate dδ/dz. The spreading rate is expressed as inversely proportional to local Reynolds
number Reδ raised to the exponent m = 3(a1 − a2)/(a1 + a2), a1 �= −a2 and is varying
with Reδ for m �= 0. The components of Reynolds stress tensor have different streamwise
(s) evolutions as (w′2)s = (v′2)s ∝ (dδ/dz)2(u′2)s and (u′v′)s ∝ dδ/dz(u′2)s unless dδ/dz
is a constant, which holds only if m = 0 giving a1 = a2. This implies that Kolmogorov
equilibrium theory (m = 0) is intertwined inextricably with complete self-preservation.
There is a direct universal relationship between turbulent dissipation and entrainment
coefficient α as dδ/dz ∝ α, the proportionality constant depends on integrals of mean axial
velocity, temperature difference, and turbulent stresses. The power exponent in power-law
streamwise evolutions of flow quantities are specified by the ratio a2/a1 and differs from
the conventional results unless m = 0. Both the local axial velocity and temperature differ-
ence widths are increasing with the increase of vertical distance from the source, as same
power-law scaling exponents but differ due to different prefactors. However, the spreading
rates and entrainment coefficient decrease in the non-Kolmogorov dissipation region,
which occurs when m �= 0 preferably lying in (0,1] (a2/a1 ∈ [1/2, 1)). Similar trends of
spreading rate and entrainment were also measured experimentally in planar jet [Cafiero
and Vassilicos, Proc. R. Soc. London A 475, 20190038 (2019)] and established theoret-
ically in planar jet and plume [Layek and Sunita, Phys. Rev. Fluids 3, 124605 (2018);
Layek and Sunita, Phys. Fluids 30, 115105 (2018)].

DOI: 10.1103/PhysRevFluids.6.104602

I. INTRODUCTION

Turbulent plumes are ubiquitous in nature and industries. Plumes are generated under gravity
due to the density (temperature) differences between the source fluid and the fluid in the ambient
environment, and spread by entraining the nonturbulent ambient fluid into the plume. The buoyancy
force causes the plume to deflect vertically against gravity when the ambient environment is stagnant
and is heavier than the plume. The density or temperature of the ambient can be either constant,
called an unstratified (neutral) environment, or can vary with the vertical distance, called a stratified
environment. Here we study turbulent round (axisymmetric) buoyant plume in neutral ambient. So
the plume is generated by a pure buoyancy source where the buoyancy flux is a constant at the source
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and is conserved as the plume elevates, that is, vertical gradient of buoyancy flux vanishes. The
source Richardson’s number Ri0 ≈ 1 or the volume and momentum fluxes are zero at the source and
increase as the plume rises upwards. The plume velocity and the active temperature fields interact
with each other, which results in the turbulent kinetic energy (TKE) production (see Refs. [1–3]).

Since the earliest work of Zel’dovich [4] followed by Schmidt [5] on free convection turbulent
flows, researchers primarily focused on the self-similar behavior of turbulent plumes at different
vertical stations far away from the source. Batchelor [1] in his partial theoretical analysis and Rouse
et al. [6] obtained solutions of both the planar and the axisymmetric turbulent plumes by considering
them to be of self-preserving nature separable into a scaling function and a self-preserving profile
function. Further, the scaling functions were assumed beforehand as power laws of streamwise
distance independent of cross-stream variations. On dimensional grounds the exact values of the
power exponent were determined from the model equations. However, even now determining the
profile functions, which depend on a new independent variable called as similarity variable is very
difficult analytically, particularly for higher-order correlations due to the closure problem. Yih [7]
obtained the forms of the self-preserving profile functions of mean velocity and mean temperature
difference, but that too only for some special cases. Another approach is the modified equilibrium
similarity hypothesis by George [8] in which although the solutions are assumed to be separable
and self-preserving as discussed above, but the form of scaling function is not predicted a priori.
The scaling relations are set up keeping the equations self-similar. These relations with some
assumptions on spreading rate and dissipation laws provide the desired scaling laws [8,9]. However,
whatever the approach, the assumption of Kolmogorov equilibrium similarity hypothesis in the
inertial range of turbulence is the cornerstone assumption in obtaining the conventional power-law
scalings and the self-preserving functions. According to the Kolmogorov equilibrium similarity
hypothesis in the inertial range, dissipations of turbulent kinetic energy k and turbulent thermal
intensity kθ obey the laws ε = Cε (k)3/2/δ and εθ = Cεθ

(k)1/2kθ /δ, where δ is the local width of the
flow and the dissipation coefficients Cε and Cεθ

are constants of order unity and may vary from one
flow to another.

The significance of Kolmogorov similarity hypothesis is that complete self-preservation holds
in the region specified. By complete self-preservation we mean that all the averaged equations,
Reynolds stress balance equations, turbulent kinetic energy equation, pressure-strain-rate equation
(which appears due to the continuity equation) maintain self-similarity. This also indicates that the
components of Reynolds stress tensor scale in the same way with the streamwise distance above the
virtual origin as the turbulent kinetic energy, i.e., (u′2)s ∼ (v′2)s ∼ (w′2)s ∼ (u′v′)s ∼ (k)s. Further,
the dissipations of normal stress tensor εu, εv , and εw scale in the same way as the dissipation of
turbulent kinetic energy ε. At the centerline, εu = εv = εw = 2ε/3 and the dissipation of Reynolds
shear stress εuv = 0.

The conventional scaling laws of the centerline axial velocity uc and the centerline mean tem-
perature (density) difference θc of the unstratified axisymmetric plume were obtained as uc ∝ z−1/3

and gβθc ∝ z−5/3, β is constant thermal expansion coefficient. Also, the plume spreading rates were
found to remain constant with increasing vertical height z of the plume. The unstratified plumes
generated in the laboratory by different experimental techniques (see Refs. [2,5,6,10–12]) verified
the power-law forms of the scaling functions and that the profiles functions are self-preserving far
from boundaries. However, the spreading rates of plumes for different experiments are not found
same (see Refs. [2,6,12]), so it is inferred that the scaling laws might depend on source conditions.
This is in contrast to the classical equilibrium similarity hypothesis for free shear turbulent flows by
Townsend [13], but agrees with the modified hypothesis by George [8]. Nevertheless, the differences
are sometimes attributed to the limitations in experimental setups and errors in measurements [14].

The entrainment assumption pioneered by Taylor [15] (see Refs. [14,16–18]) is another widely
used approach to study various kinds of plumes. In this approach, it was assumed that the radial
velocity at the edge of the steady plume is directly proportional to the axial velocity. The propor-
tionality constant is the entrainment parameter, which lacks uniqueness for different experiments.

104602-2



NONEQUILIBRIUM TURBULENT DISSIPATION IN …

This approach also reported the conventional scaling laws of centerline velocity, active scalar, and
plume widths using complete similarity hypothesis of Kolmogorov. It is shown first time in Layek
and Sunita [19] that conventional scaling laws and constant entrainment coefficient can occur in
planar plume if and only if turbulent dissipations obey Kolmogorov equilibrium law. Otherwise,
for non-Kolmogorov dissipations the entrainment parameter can vary with the streamwise distance.
Based on a model on entrainment assumption, Lane-Serff [20] mentioned that in jets and plumes the
energy dissipation is ε = αU 3/R where U is mean centerline speed, R is radius of plume/jet, and α

is the entrainment constant, which is different for plumes and jets. The dissipation rate would differ
in general if the entrainment constant differed in different circumstances. The recent theoretical and
experimental studies [19,21,22] on the existence of non-Kolmogorov turbulence dissipation implied
that this direct link between entrainment and dissipation may hold in general irrespective of the
scaling law followed by turbulent energy dissipation.

It is well known that Kolmogorov theory maintains complete self-similarity for isotropic inertial
range turbulence. However, there exist measurements which showed that components of a flow
variable scale in different ways, and these scalings are physically relevant. So, Kolmogorov theory
has limitations although it has had great impact. Researchers are continually exploring what lies
beyond Kolmogorov. The theoretical and experimental studies [8,9,19,21,22] showed that turbulent
dissipations would follow the Kolmogorov equilibrium laws in jets and plumes only if the spreading
rates do not vary with the streamwise distance. However, Kotsovinos [23] and later Bradshaw
[24] found an increase in the spreading rate of turbulent jet with increase in streamwise distance.
It is suggested that this may not support the Kolmogorov’s theory of equilibrium dissipation
(see Ref. [21]).

Layek and Sunita [19,21,25] found self-similar behavior of statistical equations subject to in-
variance of the conserved quantity in jets, wakes, and plumes even when complete self-preservation
does not hold, called the partial or incomplete self-similarity. In this situation, the dissipation laws
occur with nonconstant dissipation coefficient Cε ∝ dδ/dz. In a particular case when local Reynolds

number Reδ (= k
1/2
s δ/ν, k is mean TKE) is not a constant but varies with streamwise distance,

then Cε ∝ (ReG/Reδ )m with m �= 0, where ReG = (u0z0/ν) is the global/inlet Reynolds number,
subscript “0” indicates flow velocity and width at the source. It implies that in this case the spreading
rate dδ/dz ∝ (ReG/Reδ )m and is valid only for a range of values of m. This particular distinction of
dissipation coefficient Cε is observed experimentally and found by the direct numerical simulations
(DNS) (Refs. [22,26,27]), particularly and most preferably for m = 1, and is also established
theoretically [19,21,25]. Nedic et al. [26] recorded the non-Kolmogorov scaling in axisymmetric
wake for a very long distance from the source, that is about 50 times the square root of wake source
area. Caifero and Vassilicos obtained this non-Kolmogorov scaling experimentally in planar jet in a
region downstream of x ≈ 20h to x ≈ 140h, h is the size of the nozzle exit section.

However, although the statements of the non-Kolmogorov dissipation laws are the same in
Refs. [22,27] and Layek and Sunita [21,25], the scaling laws of the statistical quantities differ in
these works for m �= 0 and m �= 1. The differences are primarily due to different scaling of turbulent
kinetic energy for m �= 0. Note that Refs. [19,21] found ks = u2

s , while Cafiero and Vassilicos [22]
found ks = u2

s dδ/dx. However, Layek and Sunita [19,21] stressed the preference of Cε ∝ dδ/dx
over ∝ (ReG/Reδ )m, as it would include the turbulent flows where local Reynolds number is not
varying with streamwise distance.

The varying nature of dissipation coefficient and its dependence on source conditions in various
turbulent flows provide substantial evidence of nonuniversality of turbulent energy dissipation
(see also Refs. [28–30]). Here Lumley’s [31] remark on the nongenerality of Kolmogorov laws
for turbulent dissipations and his emphasis on their remodelling are worth mentioning. Lumley’s
premonition about the abandonment of Kolmogorov law for passive scalar dissipation in case
of failure of the law for energy dissipation is found to be true and established theoretically by
Layek and Sunita [19], where the dissipation of turbulent scalar (thermal) fluctuation, which is an
active contaminant in plume, obeys non-Kolmogorov law in the regimes where turbulent energy
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FIG. 1. Axisymmetric plume flow definition.

dissipation is non-Kolmogorov so that both Cε and Cεθ
vary with the local Reynolds number as

Cε ∝ (ReG/Reδ )m ∝ Cεθ
with m �= 0. In general this is true when Cε ∝ dδ/dz ∝ Cεθ

.
The essence of this work is to establish the relation between the dissipation and spreading

rate in axisymmetric plume, which in other way, provides a link between entrainment and dissi-
pation representing both Kolmogorov and non-Kolmogorov regions of turbulent dissipations. The
dissipation distinction appears due to different axial evolutions of components of Reynolds stress
tensor, pressure-strain-rate tensor, etc., giving an incomplete/partial self-similarity of incompress-
ible pressure-strain-rate equation. The main implications of nonequilibrium scaling are due to the
change of streamwise scaling exponents. It is shown that the classical turbulence closure models
are not valid in the non-Kolmogorov region. Symmetry-based eddy viscosity closure is designed to
explore the profiles in non-Kolmogorov regions.

II. FLOW DESCRIPTION OF TURBULENT ROUND BUOYANT PLUME

Consider a steady axisymmetric plume with no swirl, which is formed due to the difference in
local mean temperature of a stream of fluid at temperature T0 (reference temperature) issued through
a circular source into a quiescent ambient and Ta is the constant temperature of the ambient. The
axial distance z is vertical opposite to the direction of gravitational acceleration g, and r is the radial
direction perpendicular to the direction of plume source. The prime of a variable denotes turbulent
fluctuation and a bar over a variable denotes its average. Here the initial Richardson number Ri0 ≈ 1,
so the flow is a plume from the outset (see Refs. [10,12]). The local mean axial velocity u is in the
vertical direction z, v is the mean cross-stream velocity, which is in radial direction r, w is the mean
velocity in the azimuthal direction ϕ and T is the local mean temperature. The velocity fluctuations
u′, v′, and w′ are in z, r, and ϕ directions, respectively, p′ is the pressure fluctuation and θ ′ is
the temperature fluctuation. Due to axisymmetry, the flow variables are dependent only on z and
r coordinates and hence ∂/∂ϕ = 0. For no swirl w = 0, u′w′ = 0, and v′w′ = 0. A sketch of the
axisymmetric plume is given in Fig. 1.

The mean continuity, mean momentum, and mean temperature difference equations of the steady
axisymmetric plume with zero free stream pressure gradient, boundary layer approximations, and
Boussinesq assumption for natural convection with constant ambient temperature denoted by Ta are
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expressed by [2]

∂u

∂z
+ 1

r

∂ (rv)

∂r
= 0, (1a)

u
∂u

∂z
+ v

∂u
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r

∂ (ru′v′)
∂r
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∂
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)
, (1b)

u
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∂z
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∂z
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r

∂ (rv′θ ′)
∂r

+ κ
∂

∂r

(
r
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)
. (1c)

Here βθ (z, r) = β[T (z, r) − Ta] = [ρa − ρ(z, r)]/ρ0 � 1, where β = 1/T0 is the coefficient of
thermal expansion and is considered as constant, ρ(z, r) is the local mean density, ρa is the constant
ambient density, and ρ0 the reference density. u′θ ′ and v′θ ′ are turbulent heat fluxes in the axial
and radial directions, respectively, and u′v′ is the Reynolds shear stress. Due to the Boussinesq
approximation, the temperature (density) appears in the mean momentum equation only when
multiplied by the acceleration due to gravity g. The terms multiplied by the kinematic fluid viscosity
ν and the thermal diffusivity κ = ν/σ , where σ the molecular Prandtl number are viscous and
molecular thermal dissipation, respectively. At high enough Reynolds number these terms in the
equations can be neglected. The term involving (u′2 − v′2) in Eq. (1b) and the diffusion due to the
axial turbulent heat flux u′θ ′ in Eq. (1c) are found to be very small under traditional analysis and
boundary layer approximations and they are therefore usually neglected.

The boundary conditions are

u = uc,
∂u

∂r
= 0, θ = θc,

∂θ

∂r
= 0, u′v′ = 0, v′θ ′ = 0 at r = 0, (2a)

u = 0,
∂u

∂r
= 0, θ = 0,

∂θ

∂r
= 0, u′v′ = 0, v′θ ′ = 0, at r = ±∞. (2b)

The Reynolds stress model under boundary layer and Boussinesq approximations (see Ref. [2])
is given by

u
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The terms u′2, v′2, and w′2 are the Reynolds normal stresses in the z, r, and ϕ direc-
tions, respectively. The terms involving kinematic viscosity ν denote viscous diffusions and
are neglected at the infinite-Reynolds-number limit; εu, εv , εw, and εuv are the components of
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homogeneous-dissipation; the gradients of triple velocity correlations u′2v′, u′w′2, v′3, and w′2v′

denote turbulent diffusions, pu = p′
ρ0

∂u′
∂z , pv = p′

ρ0

∂v′
∂r , pw = p′

ρ0
( 1

r
∂w′
∂ϕ

+ v′
r ), and puv = p′

ρ0
( ∂u′

∂r + ∂v′
∂z )

are the pressure-strain-rate terms. Here the velocity-pressure gradients Pv = v′
ρ0

∂ p′
∂r = 1

ρ0

∂ p′v′
∂r − pv

and Pw = 1
ρ0

w′
r

∂ p′
∂ϕ

= 1
ρ0r ( ∂ p′w′

∂ϕ
+ p′v′) − pw. Note that ∂ p′w′

∂ϕ
= 0 because of axial symmetry of the

plume.
The mean balance equation for the intensity of temperature fluctuations under boundary layer

approximations is given by

u
∂kθ

∂z
+ v

∂kθ

∂r
= κ

r

∂

∂r

(
r
∂kθ

∂r

)
− 1

r

∂rv′kθ

∂r
− u′θ ′ ∂θ

∂z
− v′θ ′ ∂θ

∂r
− εθ , (4)

where kθ with kθ = θ ′2/2 is the mean of the intensity of temperature fluctuation θ ′ and εθ is the
dissipation of kθ . The first term in right-hand side of Eq. (4) involving κ is the molecular thermal
diffusion.

The turbulent kinetic energy equation under boundary layer and Boussinesq approximations is
given by

u
∂k

∂z
+ v

∂k

∂r
= ν

r

∂

∂r

(
r
∂k

∂r

)
− 1

r

∂ (rv′k + p′v′/ρ0)

∂r
− u′v′ ∂u

∂r
− (u′2 − v′2)

∂u

∂z
+ βgu′θ ′ − ε. (5)

The integral form of the mean continuity Eq. (1a), mean momentum Eq. (1b), and mean temperature
difference Eq. (1c) multiplied by gβ are obtained as

d

dz
Q(z) = −[rv(z, r)]∞0 , (6a)

d

dz
M(z) =

∫ ∞

0
gβθrdr, (6b)

d

dz
BF (z) = 0, (6c)

where Q(z) is the kinematic volume flux, M(z) is the kinematic momentum flux, and BF (z) is the
kinematic buoyancy flux and are given by

Q(z) = 2π

∫ ∞

0
urdr, (7a)

M(z) = Mm + M f = 2π

∫ ∞

0
u2rdr + 2π

∫ ∞

0
(u′2 − v′2)rdr, (7b)

BF (z) = BFm + BFf = 2π

∫ ∞

0
gβθurdr + 2π

∫ ∞

0
gβu′θ ′rdr. (7c)

Here Mm = 2π
∫ ∞

0 u2rdr, M f = 2π
∫ ∞

0 (u′2 − v′2)rdr, BFm = 2π
∫ ∞

0 gβθurdr, and BFf =
2π

∫ ∞
0 gβu′θ ′rdr. Note that since the ambient temperature Ta is a constant, the square of the local

buoyancy frequency N2 given by N2 = gβ dTa(z)
dz is zero and BF is a constant in z equal to the

buoyancy flux at the source of the plume BF0(say). Note that if Ta was not a constant but varied
as a function of z, then BF and N2 would have been varied with z. Here we shall discuss the scaling
laws for plume in unstratified ambient only at the infinite-Reynolds-number limit.

III. ANALYSIS

We adopt Lie symmetry analysis which delivers self-similar solutions under which the above
statistical equations remain invariant. Note that Layek and Sunita [19] predicted theoretically
by adopting Lie symmetry group theory on the statistical turbulent model equations of a planar

104602-6



NONEQUILIBRIUM TURBULENT DISSIPATION IN …

turbulent pure plume that dissipations of turbulent kinetic energy and turbulent thermal fluctuation,
and entrainment coefficients are different from Kolmogorov and called as non-Kolmogorov. Here we
extend the same sort of analysis to turbulent round buoyant plume in unstratified stagnant ambient
for identifications of new scaling laws, spreading rate, and dissipation laws. However, instead of
considering only the budget equation of turbulent kinetic energy and equation of intensity of thermal
fluctuation, we have considered in addition the budget equation of individual Reynolds stresses, also
called as Reynolds stress model. The Reynolds stress model is necessary as one can determine the
scaling of individual Reynolds stress components and pressure-strain-rate components and their
contributions in turbulence dynamics.

A. Symmetry analysis of statistical equations

Lie symmetry group theory is well documented in standard books [32]. Here we found the
scaling laws of the flow variables with the increase in vertical distance by the symmetry analysis of
Reynolds stress model, turbulent kinetic energy equation, thermal fluctuation equation along with
the mean continuity, mean momentum, and mean temperature difference equations with zero free
stream pressure gradient. Some experimental measurements found the role of pressure-strain-rate

terms in the redistribution of energy by assuming the terms 1
ρ0

∂ p′u′
∂z and 1

ρ0
( ∂ p′u′

∂r + ∂ p′v′
∂z ) negligible

in comparison to the pressure-strain-rate terms (see the work of Hussein et al. [33] for axisymmetric

jet). Here we assume that 1
ρ0

∂ p′u′
∂z � pu and 1

ρ0
( ∂ p′u′

∂r + ∂ p′v′
∂z ) � puv , and therefore the terms 1

ρ0

∂ p′u′
∂z

and 1
ρ0

( ∂ p′u′
∂r + ∂ p′v′

∂z ) can be dropped from the equations in the self-similarity analysis (see also
Ref. [25]). By exploring the symmetry groups, we identify functional forms of streamwise scaling
laws of flow variables theoretically. Note that classical power-law scalings are results of stretching
symmetry groups of flow variables. In particular, we identify whether there exist any other forms
of similarity scaling laws or any other power-law scaling of turbulence quantities other than the
classical power-law scaling. And if other forms exist, what are the symmetry groups underneath
the non-power-law scaling? From the analysis, we found that for the turbulent axisymmetric
plume at the infinite-Reynolds-number limit, the various flow variables evolve through the scaling
symmetry transformations corresponding to the parameters a1, a2 ∈ R, and translation symmetry
transformation with parameter a0 ∈ R satisfying the invariance of the boundary conditions Eq. (2),
constancy of the buoyancy flux Eq. (7c), and the scaling relation θ ′2 ∼ θ2. See the Appendix for
the infinitesimal and global forms of the transformations of the variables. Equations (1a), (1b),
(1c), (3), and (5) are form invariant under the transformations Eqs. (A2a), (A2b), and (A2c). The
analysis reveals that the two stretching parameters are connected with the evolvement of turbulent
flow quantities and the translation parameter along with one of the stretching group parameter decide
the virtual origin of plume. For self-preservation u and θ must maintain the invariance of boundary
conditions Eq. (2) at r = 0, that is, the centerline velocity u(z, 0) denoted by uc and centerline
temperature difference θ (z, 0) denoted by θc must satisfy the following equations:

ξz
duc

dz
− ηu = 0, (8)

ξz
dθc

dz
− ηθ = 0, (9)

where ξz = a0 + a1z, ηu = (a1 − 2a2)u/3, and ηθ = −(a1 + 4a2)θ/3 are the infinitesimal transfor-
mations of z coordinate, u, and θ , respectively. It is found that when a0, a1, and a2 are nonzero then
the above equations will hold if both uc and θc obey a power-law variation with the vertical height,
while when a1 = 0 then they must obey an exponential law.

The present analysis mainly focused on the axial scaling of the flow variables. Note that w′2,
v′w′2, u′w′2, and εw, respectively, admit the same symmetry transformations as v′2, v′3, u′v′2, and
εv (see the Appendix). Hence, they will scale in the same way with the vertical(axial) distance and
are equal on the centerline in the present analysis for the axisymmetric flow. So, we do not discuss
the scaling laws of the variables w′2, v′w′2, u′w′2, and εw in the rest of the analysis.

104602-7



SUNITA AND G. C. LAYEK

B. Self-preserving solutions

We obtain self-preserving solutions of the form U = Us(z) fi(τ ) at the infinite-Reynolds number
limit, where U ≡ (u, v, θ, u′v′, v′θ ′, u′θ ′, u′2, v′2,w′2, kθ , (u′2 − v′2), εu, εv, εw, εθ , pu, pv, pw, puv,

εuv, u′2v′, v′w′2, u′v′2, v′3, k, v′k + p′v′/ρ0, ε). Here Us are scales which are functions of z inde-
pendent of r and ϕ and fi, i = 1, 2, . . . , 27 are self-preserving functions of the similarity variable
τ = r/δ(z), where δ(z) is a function of z independent of r and ϕ. Thus, the solutions are of the forms

u = us f1(τ ), v = vs f2(τ ), θ = θs f3(τ ), u′v′ = (u′v′)s f4(τ ), v′θ ′ = (v′θ ′)s f5(τ ),

u′θ ′ = (u′θ ′)s f6(τ ), . . . , (u′2 − v′2) = (u′2 − v′2)s f11(τ ), . . . and so on. (10)

It is important to note here that the functional forms of Us and δ(z) depend on the values of symmetry
group parameters a0, a1, and a2 maintaining the constancy of buoyancy flux BF . In the case when
a0 �= 0, a1 �= 0, and a2 �= 0, we obtain the general power-law self-preserving solutions U = Us fi(τ ),
where the scaling function Us is of power-law form with the exponent depending on the ratio a2/a1

and the similarity variable τ = r/δ(z), where δ(z) = z0[(z + a)/z0]a2/a1 with a = a0/a1 and z0 is
some initial width of the flow. The streamwise scaling law of axial and radial velocities u and v,
mean temperature difference θ , turbulent shear stress u′v′, and the turbulent axial and radial heat
fluxes u′θ ′, v′θ ′ are obtained as

us = γ

(
BF

z0

)1/3[ z + a

z0

]( 1
3 − 2a2

3a1
)
, vs = γ

(
BF

z0

)1/3[ z + a

z0

]( −2
3 + a2

3a1
)
,

θs = γ 2

(gβ )z0

(
BF

z0

)2/3[ z + a

z0

]−( 1
3 + 4a2

3a1
)
, (u′v′)s = γ 2

(
BF

z0

)2/3[ z + a

z0

]−( 1
3 + a2

3a1
)
,

(u′θ ′)s = γ 3

(gβ )z0

(
BF

z0

)[
z + a

z0

]− 2a2
a1

, (v′θ ′)s = γ 3

(gβ )z0

(
BF

z0

)[
z + a

z0

]−(1+ a2
a1

)
, (11)

where γ is dimensionless parameter that may depend on source conditions and u0 is a constant
velocity scale at z0. From above we can see that the stretching group parameters a1 and a2 by their
ratio a2/a1 mainly decide how the flow is evolving, while the translation parameter a0 along with
parameter a1 decide the virtual origin by their ratio a = a0/a1. Note that the present theoretical
study shows that the ratio a identifying the virtual origin must be same for all flow quantities for the
self-similarity of the equations. However, in literature, the experimental studies reported different
values of virtual origins for different flow quantities. The measurement of Cafiero and Vassilicos
[22] is an exception. The kinematic volume and kinematic momentum fluxes from their definitions
and using the above scaling laws are obtained as

Q(z) = γ z2
0

(
BF

z0

)1/3[ z + a

z0

] 1
3

(
1+ 4a2

a1

)
I1, (12)

M(z) = γ 2z2
0

(
BF

z0

)2/3[ z + a

z0

] 2
3

(
1+ a2

a1

)
(I2 + I f ), (13)

where I1 = 2π
∫ ∞

0 f1τdτ , I2 = 2π
∫ ∞

0 f 2
1 τdτ , and I f = 2π

∫ ∞
0 f11τdτ . The turbulent normal

stresses and intensity of thermal fluctuation scale with the vertical distance as

(u′2)s =
(

γ 3BF

z0

)2/3[ z + a

z0

] 2
3 − 4a2

3a1

, (v′2)s =
(

γ 3BF

z0

)2/3[ z + a

z0

](− 4
3 + 2a2

3a1
)
= (w′2)s,

(kθ )s =
(

γ 3BF

z0

)4/3

(gβz0)2

[
z + a

z0

]−2( 1
3 + 4a2

3a1
)
. (14)
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The turbulent kinetic energy ks = (u′2)s = u2
s . Note that the Reynolds stress tensor components do

not scale as same power law of vertical distance unless a1 = a2. The components of homogeneous
dissipation and the dissipation of thermal fluctuation scale with z as

(εu)s = γ 3

z0

BF

z0

[
z + a

z0

]− 2a2
a1

, (εv )s = γ 3

z0

BF

z0

[
z + a

z0

]−2

= (εw )s, (15)

(εθ )s = γ 5

(gβ )2z3
0

(
BF

z0

)5/3[ z + a

z0

]−( 4
3 + 10a2

3a1
)
. (16)

The streamwise scaling of turbulent energy dissipation εs ∼ (εu)s. Thus, for constant ambient
temperature Ta, the scaling laws of dissipation components εv and εw with the vertical distance
z are same and fixed, while that of εu and εθ vary with varying values of the ratio a2/a1.
Moreover, in general, the streamwise scaling laws of the components of dissipation are not same.
They are same only when the ratio a2/a1 = 1 and additional information are required to deter-
mine the condition under which a2/a1 = 1 holds. We found that in general, (εu)s/(εv )s = [(z +
a)/z0]2(1−a2/a1 ). The pressure-strain components scale with z as pu = γ 3

z0

BF
z0

[(z + a)/z0]−
2a2
a1 f16(τ ),

pv = γ 3

z0

BF
z0

[(z + a)/z0]−2 f17(τ ), and pw = γ 3

z0

BF
z0

[(z + a)/z0]−2 f18(τ ). We will show later that the
relation pu + pv + pw = 0 is not free of the vertical distance and hence not completely self-similar
when a2 �= a1. What does it imply physically? It clearly indicates that the role of the components
of pressure-strain-rate tensor is important and have significant effects (see also Ref. [34]). Further,
the nonsimilarity implies nonequilibrium of flow components and non-Kolmogorov turbulence. The
above expressions for flow variables clearly indicate the role of two stretching group parameters in
the evolution of turbulent flow. While evolving the scaling of flow variables are connected with each
other. We will now discuss this in the following section.

C. Scaling relations

Scaling relations among the flow quantities are significant as it may assist in the modeling of flow
variables to close the underdetermined equations. But before delving into the scaling relationships,
we obtain the centerline scaling laws at τ = 0 (that is at r = 0) of mean axial velocity and mean
temperature difference and the spreading rates. The centerline velocity uc and centerline temperature
difference θc are obtained as

uc = Ku

(
BF

z0

)1/3[ z + a

z0

] 1
3

(
1− 2a2

a1

)
, (17)

θc = Kθ

(gβ )z0

(
BF

z0

)2/3[ z + a

z0

]− 1
3

(
1+ 4a2

a1

)
, (18)

where Ku = γ f1(0) and Kθ = γ 2 f3(0). uc and θc agree with conventional results when a2/a1 = 1
(see Sec. IV B 1). The plume velocity 1/n-width δu/n is defined by u(z,±δu/n) = uc/n = us f1(0)/n
and the plume temperature 1/n-width δθ/n is defined by θ (z,±δθ/n) = θc/n = θs f3(0)/n and are
obtained as

δu/n

z0
= bu/n

[
z + a

z0

] a2
a1

, (19)

δθ/n

z0
= bθ/n

[
z + a

z0

] a2
a1

. (20)

Both the 1/n-widths evolve as a2/a1 power of vertical distance above the virtual origin. However,
they differ for different values of the coefficients bu/n and bθ/n. In jets and plumes, the local widths
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usually grow with distance from source. This is possible here only if the ratio a2/a1 > 0. Moreover,
a2/a1 < 0 would imply decay of local width with vertical distance that is not physically plausible.
So here we consider a2/a1 > 0.

The plume velocity and temperature 1/n-widths spreading rates are obtained as

dδu/n

dz
= bu/n

a2

a1

[
z + a

z0

](−1+ a2
a1

)

,
dδθ/n

dz
= bθ/n

a2

a1

[
z + a

z0

](−1+ a2
a1

)

. (21)

Thus, spreading rates of velocity and temperature difference 1/n-widths are decreasing for 0 <

a2/a1 < 1, are constants for a2/a1 = 1, and are increasing for a2/a1 > 1. For a2/a1 = 1, the
velocity and temperature difference 1/n-widths grow linearly but they differ for different rate of
spreadings bu/n and bθ/n. It should be noted that the experimental measurements of planar jet in
Ref. [22] showed jet width is always growing although its rate of spreading may decrease with
increasing streamwise distance. This is also established theoretically in [21]. On the contrary,
Refs. [23,24] suggested a possible growth in spreading rate of planar jet with increasing distance
from source.

The local Reynolds number Reδ is expressed by

Reδ = usδ

ν
∝ γ z0u0

[
(z + a)

z0

] 1
3 + a2

3a1

. (22)

We see that Reδ is increasing with increasing vertical distance for a2/a1 > −1. While plume
velocity and temperature difference widths would be increasing with streamwise distance only if
a2/a1 > 0. Nevertheless, we consider the ratio a2/a1 > 0 so that both the plume widths and Reδ

increase with increasing vertical distance.
From the above form of the solutions, we can relate the streamwise (s) scaling of flow variables

as

vs ∼ us
dδ

dz
, gβθs ∼ u2

s

δ

dδ

dz
, (u′2 − v′2)s ∼ u2

s ,

u′v′
s ∼ u2

s

dδ

dz
, (v′θ ′)s ∼ usθs

dδ

dz
, (u′θ ′)s ∼ usθs,

(u′2)s ∼ u2
s , (v′2)s ∼ v2

s ∼ (w′2)s, (kθ )s ∼ θ2
s . (23)

It is to be noted that the modeling of the plume statistical quantities for the closure should be done
keeping in mind that the boundary conditions and the above streamwise scaling relations hold.

1. Turbulence dissipation scaling

As discussed in Sec. I, the dissipation laws are decisive in identifying the scaling laws of turbulent
flows. Using the scaling relationships Eq. (23) and the axial scaling laws obtained in the previous
section, we found scaling relationships among the dissipation components, Reynolds stresses, and
plume velocity and temperature (1/n) widths as follows:

(εu)s = Cεu

(u′2)3/2
s

δu/n
, (εv )s = (v′2)3/2

s

δu/n
, and (εw )s = (εv )s, (24a)

(εθ )s = Cεθ

kθ (u′2)1/2
s

δθ/n
. (24b)

The dissipation coefficient Cεu (Cεu ∝ Cεθ
) varies with local velocity spreading rate dδu/n/dz

given by

Cεu ∝ dδu/n

dz
. (25)
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Note that the dissipation coefficient Cε of turbulent energy dissipation ε is proportional to Cεu as
εs ∝ (εu)s. Now since the local Reynolds number Reδ is increasing with increasing vertical distance
z for a2/a1 > 0, we can express the dissipation coefficient Cεu as

Cεu ∝
(

ReG

Reδ

)m

, with m = 3(a1 − a2)

(a1 + a2)
, where a2 �= −a1. (26)

Thus, dδu/n

dz ∝ ( ReG
Reδ

)m. Here the global (inlet) Reynolds number ReG = u0z0/ν. The normal stresses

(u′2)s and (v′2)s are related by

(v′2)s ∝ (Cεu )2(u′2)s. (27)

Thus, we can see that the ratio a2/a1 = 1 only if m = 0. Both the dissipation coefficients Cεu and Cεθ

are constants and from Eq. (24a), (εu)s ∼ (εv )s ∼ (εw )s in agreement with the Kolmogorov equilib-
rium dissipation law for m = 0. The components of normal stress tensor scale in the same way, that
is, (u′2)s ∼ (v′2)s ∼ (w′2)s. Again for m �= 0 and a2/a1 �= 1, both the dissipation coefficients vary
with local Reynolds number raised to a power −m and as power m of the global Reynolds number,
and so incomplete similarity holds. The above analysis reveals that the ratio a2/a1 of two stretching
group parameters is directly involved in the evolvement of turbulent flow and also establishes a
relation between self-similarity and Kolmogorov equilibrium law when a2/a1 = 1, while the ratio
a2/a1 �= 1 gives a nonsimilarity in the flow resulting non-Kolmogorov, nonequilibrium law.

Note that if the stretching parameter a1 = 0 but a0 �= 0 and a2 �= 0 then the flow variables Us
exhibit exponential scaling laws and self-preserving functions fi are functions of τ = r/δ(z) with
δ(z) = z0 exp[a2z/a0z0]. Note that in this case all flow variables undergo a stretching transformation
with parameter a2; however, the coordinate z undergoes translation without any stretching. The
equations in this case are form invariant under one translation (a0) and one stretching (a2) group of
transformations. Although, the exponential streamwise scaling laws of flow variables [Us(z)] satisfy
the scaling relationships given in Eq. (23), the dissipation laws Eqs. (24a) and (24b) hold with the
dissipation coefficients Cεu ∼ Cεθ

∝ ( ReG
Reδ

)m, where m = −3.
Until now, we have obtained general scaling laws of flow variables with the rise of vertical

distance under constant buoyancy flux and zero buoyancy frequency. However, the dissipation laws
of Reynolds stress tensor, which may be either Kolmogorov or non-Kolmogorov, will determine the
exact scaling laws for the specific flow.

D. Pressure-strain-rate equation for non-Kolmogorov turbulence

In the previous section, we identified new scaling laws for m �= 0, that is, for a2 �= a1 and the con-
ventional scalings were obtained when complete self-similarity holds for m = 0 implying a2 = a1.
The main limitation of analyzing only the TKE equation is that one overlooks the scaling behavior of
pressure-strain-rate terms (see Ref. [9]). This is because that the components of pressure-strain-rate
tensor do not appear in the TKE equation. However, the complete similarity of a free shear flow can
be maintained if also the equation which results due to the sum of pressure-strain-rate components
pu, pv , and pw remains self-similar. The equation for pressure-strain-rate components is

pu + pv + pw = 0. (28)

We already found the solutions of pu = (BF γ 3/z2
0 )[(z + a)/z0]−2a2/a1 f16(τ ), pv = (BF γ 3/z2

0 )[(z +
a)/z0]−2 f17(τ ), and pw = γ 3

z0

BF
z0

[(z + a)/z0]−2 f18(τ ). Therefore, from the above equation we write

f16 + j(z)( f17 + f18) = 0, where j(z) =
[

z + a

z0

]−2(1− a2
a1

)
. (29)

We can see that Eq. (29) is not completely free of the streamwise distance z until a2/a1 = 1. Hence,
it is nonsimilar when a2/a1 �= 1, that is, m �= 0 and we call this situation “non-Kolmogorov.” Thus,
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non-Kolmogorov dissipation implies quasiequilibrium or pseudoequilibrium in free shear turbulent
flows. The value of the ratio a2/a1 ∈ (0, 1]. For 0 � a2/a1 < 1, the function j(z) decays with
vertical distance z and finally vanishes. In this case, Eq. (28) holds if the self-preserving function
f16 = 0 when j(z) is negligible. Again, if j(z)−1 is negligible then the function f17 = − f18. When
m = 0 (that is, a2/a1 = 1), j(z) = 1 which implies an approximately equilibrium distribution of
energy in various components and Eq. (28) becomes self-similar. We conclude that there exists a
region where non-Kolmogorov theory holds and is due to nonsimilarity of the pressure-strain-rate
equation and nonequilibrium in streamwise scaling of Reynolds stress tensor and dissipation tensor.
Note that the importance of the pressure-strain-rate equation was also stressed by Johansson et al.
[34] in determining the streamwise scaling laws.

IV. SELF-PRESERVING PROFILE FUNCTIONS

For the solutions of the form of Eq. (10) with the streamwise scaling laws Eq. (11) and assuming
the profile function f1(τ ) = g′/τ , where g′ = dg(τ )/dτ is a function of τ , the self-similar forms of
Eqs. (1a), (1b), and (1c) at the infinite-Reynolds-number limit can be obtained as

f2(τ ) =
(

3q − 1

4

)
g′ − qg

τ
, (30a)

1 − q

2

g′2

τ
− qg

(
g′

τ

)′
= τ f3 − (τ f4)′ +

{
(q − 1)τ f11 + (3q − 1)

4
τ 2 f ′

11

}
, (30b)

−q(gf3)′ = −(τ f5)′ +
{

3q − 1

2
τ f6 + 3q − 1

4
τ 2 f ′

6

}
, (30c)

where q = ( 1
3 + 4a2

3a1
). Here f ′

i (= dfi/dτ ), f ′′
i (= d2 fi/dτ 2), and so on are order derivatives, i =

1, 2, . . . , 11. The boundary conditions Eq. (2) written in self-similarity forms are

f ′
1 = 0, f2 = 0, f4 = 0, and f5 = 0 at τ = 0 and f1 = 0 = f3 as τ → ∞. (31)

Thus, for f1 = g′/τ the boundary conditions f ′
1 = 0 and f2 = 0 at τ = 0 imply g′ = 0 and g = 0.

The above equations are not closed and so modellings are needed to determine the functions fi,
i = 1, 2, . . . , 11.

A. Closure models maintaining symmetry

We must model the flow quantities which retain symmetry of the equation, so it is called
symmetry-based modeling. The equations are unclosed and additional models are required to solve
them. Note that the additional models can break the symmetries under which the unclosed equations
are form invariant. The classical generalized eddy viscosity hypothesis for the Reynolds stresses
is given by u′

iu
′
j = (2/3)kδi j − νt (∂ui/∂x j + ∂u j/∂xi ), which is valid for isotropic and weakly

anisotropic free shear flows in which at least the streamwise scaling laws are isotropic. For non-
Kolmogorov free shear flows maintaining incomplete similarity, the eddy viscosity hypothesis is
not complete and not accurate. Note that classically isotropic eddy viscosity is specified by νt ∼ ul ,
l is the characteristic length scale of the flow and therefore is valid only for equilibrium dissipations
of Reynolds stresses with plume height. Layek and Sunita [19,21,25] gave a modified eddy viscosity
νt ∼ uldl/dx, which worked well for the Reynolds shear stress −u′v′ when either the Kolmogorov
equilibrium dissipation or the non-Kolmogorov dissipation holds. However, since u′2 and v′2 scale
differently, and the term (u′2 − v′2)s ∼ (u′2)s, the isotropic eddy viscosity hypothesis according
to which (u′2 − v′2) = −4νt∂u/∂z − 2νtv/r is not valid for both the classical and the modified
forms of νt when non-Kolmogorov dissipation holds. Cafiero et al. [35] found that when m = 1 the
mixing length lm ∼ (ReG/Reδ )1/2δ, while the eddy viscosity hypothesis may hold provided eddy
viscosity is unvarying in both the streamwise and cross-stream directions. The existing experimental
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measurements reported that the term involving (u′2 − v′2) is very small in the mean momentum
equation, so the terms within the braces in Eq. (30b) can be neglected. However, they found the
gradient of radial turbulent heat flux in mean temperature difference equation not negligible and
some measurements suggest that the term involving (u′2 − v′2) is not negligible in kinetic energy
productions. Note that the modified form of the eddy viscosity can hold under non-Kolmogorov
dissipations when both the streamwise gradients of (u′2 − v′2) and u′θ ′ are negligible. It appears
that the isotropic eddy viscosity hypothesis is not applicable to free shear flows when the non-
Kolmogorov dissipation holds and the terms involving (u′2 − v′2) are not negligible relative to
the other terms in the mean equations and turbulent kinetic energy equations. The Reynolds stress
equations can serve better in this case, nevertheless, they are also not closed and require modeling
of turbulent diffusions, pressure-rate of strain tensor, etc., to determine the radial variations of the
flow variables, that is, the functions fi(τ ) and are computationally difficult and costly. However, it
is desirable to see how the profiles of mean flow quantities would behave when non-Kolmogorov
scaling laws hold and how they differ from the profiles that correspond to Kolmogorov scaling. For
that here we solve the mean continuity, momentum, and temperature equations with a closure model
of Reynolds shear stress. There exist many crude models, viz. mixing length model, eddy viscosity
model, etc., of the Reynolds shear stress in literature. Here we will analyze the equations under the
modified eddy viscosity approach by neglecting the streamwise gradients of (u′2 − v′2) and u′θ ′.

B. Solutions for modified eddy viscosity hypothesis

The mean continuity, momentum, and temperature difference equations are solved by adopting
the eddy viscosity hypothesis with the modified form of eddy viscosity νt ∝ ucδdδ/dz uniform in
radial direction and by neglecting the terms within the braces in Eqs. (30b) and (30c). Accord-
ing to the eddy viscosity hypothesis u′v′ = −νt∂u/∂r and v′θ ′ = −κt∂θ/∂r, where κt = νt/σt

and σt = Prt = (u′v′∂θ/∂r)/(v′θ ′∂u/∂r), is the constant turbulent Prandtl number when νt =
γ B1/3

F [(z + a)/z0]−2/3+4a2/3a1 according to the modified form. Thus, we have f4 = − f ′
1 = −(g′/τ )′

and f5 = − f ′
3/σt , f ′

3 = df3/dτ . Now following Yih [7] from Eq. (30c) with terms within braces ne-
glected and using f1 = g′/τ , where we choose the form of g = Aωτ 2/(1 + ωτ 2) and f5 = − f ′

3/σt ,
we obtain the forms of the solutions for the axisymmetric plume as

f1 = 2Aω

(1 + ωτ 2)2
and f3 = B

(1 + ωτ 2)Aqσt /2
. (32)

The above forms of solutions hold for two possible choices of Aqσt/2. One for Aqσt/2 = 4, that is,
A = 8/qσt , which implies σt = 2 independent of q from Eq. (30b) with f4 = −(g′/τ )′ and Eq. (6b)
and the other for Aqσt/2 = 3, which implies

A = 6

qσt
and B = 96ω2(3 − 2σt )

qσ 2
t

with σt = 5q − 1

4q
. (33)

We see that here σt depends only on q and hence its value is fixed for a given value of a2/a1. Since
the buoyancy flux BF = BFm is a constant, therefore, for u and θ in Eq. (10) with us and θs given
in Eq. (11), we obtain γ 3

∫ ∞
0 f1 f3τdτ = 1 from the definition of buoyancy flux in Eq. (7c) and

ignoring the second integral BFf . Using this relation for the above solutions of f1 and f3 with A, B
and σt in Eq. (33), we obtain

ω2 = (−1 + 5q)3

9216π (1 + q)γ 3
> 0 provided q > 1/5, that is a2/a1 > −1/10 and γ > 0. (34)

The existing experimental measurements reported the value of turbulent Prandtl number σt ≈ 1,
for example, in George and Shabbir [2] its value ranges from 0.7–1.0. Again, the theoretical study
by Yih [7] found σt = 1.1. Therefore, here we may consider the solutions for Aqσt/2 = 3 with
1/2 < σt = (5q − 1)/4q � 1.1, which also implies 0 < a2/a1 � 1. Thus, from the above analysis,
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we found that the solutions of the axisymmetric plume in the unstratified ambient depend on two
unknown parameters. One is the ratio of symmetry group parameters a1 and a2, and the other is
the dimensionless parameter γ . The value of a2/a1 can be determined from the dissipation laws
Eqs. (24a) and (24b) with dissipation coefficient Eq. (26) for different values of the exponent m.
The parameter γ may depend on conditions at the source of the plume and can be determined from
available experimental measurements. Now we discuss the scaling laws and the profile parameters
under the dissipation relations with m = 3(a1 − a2)/(a1 + a2) taking the specific values as follows.

1. Case 1: Kolmogorov dissipation region

As discussed in the previous section, the dissipation laws Eqs. (24a) and (24b) imply Kol-
mogorov equilibrium dissipation when the value of m = 0 and hence a2/a1 = 1. Consequently,
(εu)s = (εv )s = (εw )s ∝ γ 3

z0

BF
z0

[ z+a
z0

]−2 and (εθ )s ∝ (gβ )−2 γ 5

z3
0

( BF
z0

)5/3[ z+a
z0

]−14/3. The Reynolds stress

components scale in the same way with the vertical distance z, that is, (u′2)s = (v′2)s = (w′2)s ∼
(u)2

s ∝ γ 2( BF
z0

)2/3[ z+a
z0

]−2/3 and (u′v′)s ∼ (u)2
s dδu/dz ∝ γ 2( BF

z0
)2/3[ z+a

z0
]−2/3. In this case, the veloc-

ity and temperature 1/n-widths, centerline mean axial velocity, and centerline mean temperature
difference scale with the vertical distance z as

δu/n

z0
= bu/n

z + a

z0
,

δθ/n

z0
= bθ/n

z + a

z0
, uc = Ku

(
BF

z0

)1/3[ z + a

z0

]− 1
3

,

θc = Kθ

(gβ )−1

z0

(
BF

z0

)2/3[ z + a

z0

]− 5
3

. (35)

The spreading rates dδu/n/dz = bu/n and dδθ/n/dz = bθ/n do not vary with axial (vertical) distance
in agreement to the classical studies. However, there is no general agreement on whether the
axial velocity width is wider than the temperature difference width or otherwise. Note that some
experimental measurements (see Rouse et al. [6] and Papanicolaou and List [12]) calculated the
value of bθ/2 (or bθ/e) higher than bu/2 (or bu/e), while others (George et al. [11], Shabbir and
George [2]) found their behavior just the opposite and this is still controversial. Since a2/a1 = 1,
the value of q = 1/3 + 4a2/3a1 = 5/3 and the solutions Eq. (32) hold for σt = 11/10, with

A = 36

11
and B = 4608ω2

121
, where ω2 = 1331

9216πγ 3
> 0 for γ > 0. (36)

Comparisons with the experimental measurements Refs. [2,6,11,12,36,37] suggest the average
value of γ = 0.0165 for which we obtain bu/2 = 0.110832, bθ/2 = 0.0877956, Ku = 2γ Aω =
3.64183, and Kθ = γ 2B = 11.7893 when m = 0. Thus, in the present study, we found that the
velocity width is wider than the temperature difference width in agreement with the experimen-
tal measurements of Refs. [2,11,36] and are contrary to the measurements of Refs. [6,12,37]
(see Table I).

The velocity and temperature difference (1/e) widths with spreading rate values of bu/e =
0.138702 and bθ/e = 0.108315 are compared with measured data of Papanicolaou and List (PL)
[12] in Fig. 2. The width z0 is equivalent to diameter D in PL [12]. Also, comparisons of the
evolutions of centerline mean axial velocity and centerline mean temperature difference given in
Eq. (35) with the above values of Ku, Kθ , and virtual origin a = −0.5z0 are shown in Figs. 2(c)
and 2(d). We see that the results for temperature difference width, centerline mean axial velocity,
and centerline mean temperature difference with same virtual origin (a = [−0.5z0, 2.5z0]) from the
present theory agree well with the measured data, while the axial velocity width differs significantly
for z/z0 > 40. This is because in contradiction to the present study, bu/e < bθ/e in PL. Again, we can
see from Table I that the centerline value of velocity is about 6.64% lower in SG94 [2] compared
to present study but is larger in PL [12] by about 5.72% and in Ref. [36] by about 6.81% from the
present study. However, the value is considerably higher in WL [37] by about 13.4% and in Ref. [6]
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TABLE I. Comparison of mean flow parameters with the corresponding parameter for the curve fits of
measured data in experiments

bu/2 bθ/2 Ku Kθ

Rouse et al. [6] 0.084 0.095 4.7 11.0
Nakagome and Hirata [36] 0.12 0.105 3.89 11.5
Papanicolaou and List [12] 0.0877 0.093 3.85 14.28 or 11.1
Shabbir and George [2] 0.107 0.10 3.4 9.4
Wang and Law [37] 0.0874182 0.0907485 4.13 11.3
Present study γ = 0.0165
m = 0 (a2/a1 = 1, q = 5/3) 0.110832 0.0877956 3.64183 11.7893
m = 1/2 (a2/a1 = 5/7, q = 9/7) 0.133626 0.105852 3.38443 8.72711
m = 4/5 (a2/a1 = 11/19, q = 21/19) 0.150026 0.118843 3.22012 7.27662
m = 1 (a2/a1 = 1/2, q = 1) 0.162503 0.128727 3.10576 6.4305

roughly by 29%. The centerline value Kθ of temperature difference in the present study is in good
agreement to its value in Refs. [6,36,37] in comparison to SG94 [2] where it is substantially low
by about 20.2%. The shape of the radial profiles calculated from the mean continuity, momentum,
and temperature difference equations with the modified eddy viscosity closure are compared with
measured data of Shabbir and George (SG94) [2] and Papanicolaou and List (PL) [12] in Fig. 3.
We can see that the mean velocity profile of the present study agrees well about the centerline with
SG94 [2] in comparison to PL [12]. The mean temperature difference profile although is in good
agreement to Shabbir and George [2] and differs very small from PL [12]. Note that the difference of
the calculated profile is very large from the fitted profile (not shown here) of Nakagome and Hirata
[36]. The radial profile of radial velocity component is plotted and compared with measured data of
Shabbir and George (SG94) [2] in Fig. 4. It is evident that the measured data and calculated profile
has no agreement beyond τ = 0.10. The same thing was also noted down by Shabbir and George
[2] for the profile calculated by them from the equations. From Fig. 5, we see that the maximum of
the nondimensionalized radial heat flux profile of the present study is 0.0317947 at τ = 0.0650883,
which is comparable to the maximum values 0.0290871 and 0.0312558, respectively, of the curve
fits to the measured data of radial heat flux in Shabbir and George [2] and in Wang and Law
[37], but is much higher than the peak value 0.020–0.025 reported by Papanicolaou and List [12].
However, note that about τ = 0.2 the radial heat flux profile in the present theoretical study differs
from Shabbir and George [2] and Wang and Law [37]. Again the profile for the turbulent shear
stress has a maximum value 0.027236 at τ = 0.0770136 which is comparable to the peak value
0.0262991 of the curve fit of the measured data in Shabbir and George [2] but is much higher
than the peak value 0.0205363 of the curve fit to the measured data in Wang and Law [37]. The
present nondimensionalized shear stress profile differs significantly from the measured data of

FIG. 2. Comparison of (a) velocity 1/e width and (b) temperature difference 1/e width and centerline
evolution (c) mean axial velocity (d) mean temperature difference (solid curve) with a = −0.5z0 when m = 0
with the measured data (◦) of Papanicolaou and List (PL) [12].
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FIG. 3. Radial profiles of (a) mean axial velocity and (b) mean temperature difference normalized by
their centerline value when m = 0 are compared with the measured data of normalized velocity and tem-
perature/concentration profiles of Shabbir and George (SG94) [2] for both two and three wire probes and
Papanicolaou and List (PL) [12]. The data of PL is obtained by digitization.

Shabbir and George [2] and Wang and Law [37] beyond τ = 0.15. One of the reasons for the
differences of solutions in the present study from experimental measurements is that we obtained the
solutions by neglecting the term due to axial turbulent heat flux in the mean temperature difference
equation. Note that here u2

cdδ/dz is same as u2
c and ucθc is same as ucθcdδ/dz as dδ/dz = 1 for

m = 0 (a2/a1 = 1). If the turbulent shear stress and radial heat flux are made dimensionless by
u2

cdδu/2/dz and ucθcdδθ/2/dz, respectively, and plotted against τ , then the profiles peaks are higher
multiplied by the factor 1/bu/2 and 1/bθ/2, respectively, compared to when they were nondimen-
sionalized by u2

cdδ/dz and ucθcdδ/dz. We obtain Q(z)B−1/3
F z−2

0 (z + a)−5/3 = γ I1 = 0.339292, and
M(z)B−2/3

F z−2
0 (z + a)−4/3 = γ 2I2 = 0.411881, which is about 21% higher than the corresponding

value 0.34 in Shabbir and George [2].

FIG. 4. Radial profile of mean radial velocity when m = 0 compared with the measured data of Shabbir
and George (SG94) [2].
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FIG. 5. Profiles of (a) shear stress made dimensionless by u2
c and (b) radial heat flux made dimensionless

by ucθc when m = 0 are compared with the measured data of Shabbir and George (SG94) [2] and Wang and
Law (WL) [37]. The data of WL is obtained by digitization for comparison.

2. Case 2: Non-Kolmogorov dissipation m �= 0

(i) Turbulent dissipation with Cεu ∼ (ReG/Reδ ), that is, when m = 1 has been observed in many
turbulent flows. Here when m = 1, then a1 = 2a2 and the dissipation laws Eqs. (24a) and (24b)
are non-Kolmogorov (nonequilibrium), that is, (εu)s ∼ (ReG/Reδ )(u′2)3/2

s /δu/n ∝ [ z+a
z0

]−1, (εv )s =
(εw )s ∼ (v′2)3/2

s /δu/n ∝ γ 3

z0

BF
z0

[ z+a
z0

]−2, and (εθ )s ∼ (kθ )s(u′2)1/2
s /δu/n ∝ (gβ )−2 γ 5

z3
0

( BF
z0

)5/3[ z+a
z0

]−3.

The Reynolds stress components are related by (v′2)s = (w′2)s ∼ (ReG/Reδ )2(u′2)s and (u′v′)s ∼
(ReG/Reδ )(u)2

s . In this case, the velocity and temperature 1/n-widths, centerline mean streamwise
velocity, and centerline mean temperature difference scale with the vertical distance z as

δu/n

z0
= bu/n

[
z + a

z0

]1/2

,
δθ/n

z0
= bθ/n

[
z + a

z0

]1/2

, uc = Ku

(
BF

z0

)1/3

,

θc = Kθ

(gβ )−1

z0

(
BF

z0

)2/3[ z + a

z0

]−1

. (37)

Note that classical studies have found that the widths of planar jet, planar plume, and axisymmetric
plume increase linearly with streamwise distance. However, from above results and from the studies
of Cafiero and Vassilicos [22] and Refs. [19,21] we found that when m = 1 the 1/n-widths in the
planar jet, planar, and axisymmetric plumes increase as nonlinear power-law function of streamwise
distance, however, they have different evolutions with power exponents as 2/3, 2/5, and 1/2,
respectively. As discussed in Sec. IV B 1, the present study gives value of bu/n > bθ/n. However, in
planar plume bu/n < bθ/n. The spreading rates of velocity and temperature difference are given by

dδu/n

dz
= bu/n

2

[
z + a

z0

]−1/2

,

dδθ/n

dz
= bθ/n

2

[
z + a

z0

]−1/2

. (38)

We see that the spreading rates of both the velocity 1/n-width and temperature difference 1/n-width
decrease as exponent −1/2 of the vertical distance in contrary to the classical studies of plume (see
Fig. 6). However, this trend of spreading rates is in agreement to the recent experimental measure-
ments of planar jet by Cafiero and Vassilicos [22], which reported an unconventional nonlinear
decrease of jet spreading rate as −1/3 exponent of streamwise distance in the non-Kolmogorov
dissipation region where turbulent energy dissipation coefficient Cε ∝ Re−1

δ . The spreading rate of
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FIG. 6. Spreading rate of velocity half-width (a) axisymmetric plume, (b) planar jet in Refs. [21,22] when
m = 1.

axisymmetric plume with respect to the power of the scaling function decays slowly compared to
the spreading rate of planar plume where it decreases as −3/5 power of streamwise distance. This
difference is mainly attributed to the configuration of the source of the flow. Since in this case
a2/a1 = 1/2, the value of q = 1/3(1 + 4a2/a1) = 1 and the solutions Eq. (32) hold for σt = 1 with

A = 6 and B = 96ω2, where ω2 = 1

288πγ 3
> 0 for γ > 0. (39)

It should be noted that while experimental measurements of non-Kolmogorov turbulence dissipation
have been performed in axisymmetric wake and planar jet, similar measurements have not yet been
reported in plumes/buoyant jets. However, if we take the value of γ = 0.0165 also for m = 1 by
considering that the source conditions are same for both m = 0 and 1, then we find the values
bu/2 = 0.162503, bθ/2 = 0.128727, Ku = γ f1(0) = 2γ Aω = 3.10576, and Kθ = γ 2 f3(0) = γ 2B =
6.4305. We found that the value of bu/2 in axisymmetric plume is greater than the planar plume,
while the value of bθ/2 is smaller in axisymmetric plume compared to the planar plume value in
Layek and Sunita [19]. So, velocity half-width grows faster, while temperature difference half-width
after an initial faster growth evolves slowly in the axisymmetric plume compared to the planar plume
in Layek and Sunita [19]. The centerline evolutions of mean axial velocity and mean temperature
difference given in Eq. (37) with virtual origin set as a = 0 in this case are shown in Fig. 7. We
see that the centerline mean axial velocity remains constant with increasing vertical distance z/z0,

FIG. 7. Centerline evolution when m = 1 of (a) mean axial velocity (b) mean temperature difference.
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FIG. 8. Profiles of (a) mean axial velocity, (b)mean temperature difference, (c) Reynolds shear stress, and
(d) radial heat flux when m = 0, 1/2, and 1.

while centerline temperature difference decay as exponent −1 of z/z0. The values of bu/2 and bθ/2

are higher, the centerline value Ku is comparable, while the centerline value Kθ is much lower than
the corresponding values for m = 0. Note that even if the source conditions are same for m = 0
and m = 1, the value of γ may be different for m = 1 depending on the distance of the region from
the source where this scaling holds (see Ref. [21]). In that case, we may expect different values of
bu/2, bθ/2 and the centerline values of the radial profiles from the above. For the parameter values
Eq. (39), the profile shapes are shown in Fig. 8. The value of Q(z)B−1/3

F z−5/3
0 [(z + a)/z0]−1 = γ I1 =

0.622035 and M(z)B−2/3
F z−4/3

0 [(z + a)/z0]−1 = γ 2I2 = 0.643964.
(ii) When m ∈ (0, 1) then a2/a1 ∈ (1/2, 1), for which both the velocity and temperature differ-

ence width grow with increasing axial distance with power exponent lying in (1/2, 1), while the
rate of spreadings decrease with power exponent lying in (−1/2, 0). The centerline axial velocity
decay with power exponents lying in (−1/3, 0), while centerline temperature difference decay with
power exponents in the range (−5/3,−1). The centerline values Ku and Kθ are maximum when
m = 0 which decrease as m takes on values in (0,1) and are lowest for m = 1 (see Table I). The
profiles for m = 0, 1/2, and 1 are shown in Fig. 8. Although, the scale of δ(z) = z0[(z + a)/z0]a2/a1

changes with changing values of the ratio a2/a1 but with the transformation of the equations in
similarity form with new similarity variable τ = r/δ, the changes will be discerned by the parameter
q = (1 + 4a2/a1)/3 in Eqs. (30a), (30b), and (30c) and hence by a2/a1. In other words, the changes
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in scale in the original variables is absorbed by the parameter q in respect of the new similarity
variables.

Note that non-Kolmogorov turbulent energy dissipation with dissipation coefficient Cε ∝ Re−1/2
δ

was reported in axisymmetric wake. In axisymmetric plume, m = 1/2 implies a2/a1 = 5/7. In this
case, we have

δu/n

z0
= bu/n

[
z + a

z0

]5/7

,
δθ/n

z0
= bθ/n

[
z + a

z0

]5/7

, uc = Ku

(
BF

z0

)1/3[ z + a

z0

]−1/7

,

θc = Kθ

(gβ )−1

z0

(
BF

z0

)2/3[ z + a

z0

]−9/7

. (40)

It is found that the radial profiles are narrowest for m = 0 and widest for m = 1. For a given value
of γ , the peaks of turbulent shear stress and radial heat flux profiles are maximum when m = 1
which decrease as m takes on values less than 1 and are lowest when m = 0 for τ in the range
[0,0.6]. Note that the maximum values of turbulent shear stress when m = 1/2 and 1, respectively,
are 0.0340315 at τ = 0.0928522 and 0.0435641 at τ = 0.112918, while the maximum of turbulent
radial heat flux when m = 1/2 and 1, respectively, are 0.0414003 at τ = 0.0784745 and 0.0559412
at τ = 0.0954332. For the maximum values when m = 0, see Sec. IV B 1.

Again, a2/a1 ∈ (0, 1/2) correspond to values of 1 < m < 3. In this case the plume widths are
increasing, spreading rates and θc are decreasing, however, uc is increasing as power law with the
growth of axial distance which is in contrary to when a2/a1 ∈ [1/2, 1], that is, m ∈ [0, 1]. The radial
profiles for m > 1 are wider than those for m = 1, and the centerline values Ku and Kθ are smaller,
but the peaks of turbulent shear stress and radial heat flux are larger compared to those for m = 1.
Thus, we can say that the profiles are narrowest with maximum centerline values Ku and Kθ and
lowest values of the peaks of shear stress and radial heat flux profiles when m = 0. The width of the
profiles increases while the centerline values of axial velocity and temperature difference continually
decrease and highest peaks of shear stress and radial heat flux profiles continually increase as we
increase the value of m from 0. Note that available experimental measurements for the presence of
nonequilibrium dissipation region in jet and wake flows reported m ∈ [0, 1].

The analysis reveals that there is a difference in the radial profiles of flow quantities when
m �= 0 (non-Kolmogorov turbulence) from when m = 0 (Kolmogorov universal theory). However,
nonequilibrium in vertical (axial) scaling laws and nonsimilarity of pressure-strain-rate equation are
the main physical mechanism behind the non-Kolmogorov turbulence.

V. ENTRAINMENT COEFFICIENT AND ITS LINK WITH SPREADING RATES
AND TURBULENT DISSIPATION

In the classical view entrainment is seen as an engulfment process. Along the interface between
nonturbulent and the turbulent region there are growing vortex motion. These vortices give rise
to engulfment of the ambient fluid leading to coherent structures of various types (see Ref. [38]).
Entrainment typically occurs over a much larger time scales than turbulent timescales and its effects
are obfuscated by turbulent fluctuations and transient effects. It requires the determination of a
turbulent and nonturbulent regions which are arbitrary and hence subject to uncertainty. Nowadays
there is growing an impetus to develop ideal microclimatic ventilation system which requires
understanding entrainment characteristic of ventilation flow.

Morton et al. [16] following Taylor [15] proposed an entrainment approach to the problems
of plume. They assumed that entrainment velocity ve, that is, the radial velocity across r = δ(z),
representing the boundary of the plume over which entrainment of ambient fluid into the plume
occurs, is proportional to centerline mean streamwise velocity, that is, ve = αuc, where α is the
entrainment coefficient. For Kolmogorov dissipation, ve and uc scale in the same way and hence α

is a constant (see also the Refs. [19,21]). However, in general, this is not true. Following Morton
et al. [16] here we can write the conservation Eq. (6a) for nonconstant profiles (see Refs. [18,39])
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as
dQ

dz
= 2α

√
M. (41)

We found that in general α ∼ dδ(z)/dz, and from the present study we know that dδ(z)/dz is not a
constant but evolves as a function of vertical distance when dissipation laws hold with nonconstant
Cεu , that is, when m �= 0 and a2 �= a1. For the classical scaling laws, using Priestley and Ball [40]
conservation equation for mean energy, it was shown by Kaminskii et al. [14] in axisymmetric
plume and Paillat and Kaminskii [17] in planar plume that α although is a constant in z but varies
with the local Richardson number. Following them here we show that α can be related to the local
Richardson number Ri = BF Q2

M5/2 , which is a constant for m = 0 but evolves as a function of z when
m �= 0.

The integral form of mean kinetic energy equation is given by

dE

dz
= 2BFm + 2

∫ ∞

0
u′v′ ∂u

∂r
rdr − 2

∫ ∞

0
u
∂ (u′2 − v′2)

∂z
rdr

= 2BFm + 2
BFm I4

I6
− J, (42)

where E = 2π
∫ ∞

0 u3rdr, so that E/2 is the flux of mean kinetic energy and J = 2
∫ ∞

0 u ∂ (u′2−v′2 )
∂z rdr.

Here I4 = 2π
∫ ∞

0 f ′
1 f4τdτ and I6 = 2π

∫ ∞
0 f1 f3τdτ . Now using Eqs. (42) and (6b), we have

dQ

dz
= 2

(
Ri

B (A − 1) − QBFm

EM1/2

I4

I6
+ Q

2EM1/2
J + Q

2M1/2

d lnB
dz

)
M1/2, (43)

where A = E
BFm M

dM
dz = I3I5/I6(I2 + I f ) with I3 = 2π

∫ ∞
0 f 3

1 τdτ and I5 = 2π
∫ ∞

0 f3τdτ , B =
QE/M2 = I1I3/(I2 + I f )2, and Ri = BFm Q2

M5/2 ∝ dδ(z)/dz. Since here self-preserving solutions are

obtained by neglecting the terms containing (u′2 − v′2) and u′θ ′ in the mean equations, therefore,
here I f = 0, BFf = 0, and J = 0. This implies that BF = BFm , and M = Mm. Also, note that Shabbir
and George [2] suggested to ignore the integral I f in analysis of axisymmetric plume as they found
its contribution to the kinematic momentum flux very small. Since B is a constant in z, therefore
d lnB

dz = 0. Therefore, we have

dQ

dz
= 2

Ri

B (A − 1 + C)M1/2, (44)

where A, B, C, and Ri are given by

A = I3I5

I6I2
, B = I1I3

I2
2

, C = − I4

I6
, and Ri = Ric

[
(z + a)

z0

]−1+a2/a1

, with Ric = I6I2
1

I5/2
2

. (45)

Now comparing the above equation with Eq. (41), we found the entrainment coefficient α as

α = Ri

B (A − 1 + C)

= αc

[
(z + a)

z0

]−1+a2/a1

, a1 �= 0. (46)

Here the coefficient αc is given by

αc = Ric
B (A − 1 + C) = I1√

I2

[
I5

I2
− (I4 + I6)

I3

]
. (47)

For the above expression, the value of αc depends on the radial profiles of vertical (axial) velocity,
temperature difference, and Reynolds shear stress. We found that I5

I2
− (I4+I6 )

I3
is fixed for each
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TABLE II. Values of the coefficients A, B, and Ric in Eq. (45) and C, αc, and αGc.

A B C Ric αc αGc

Rouse et al. [6] 0.08552
Papanicolaou and List [12] 0.0875
George et al. [11] 0.107583
Yannopoulos [41] (FOA Solns.) 0.10
SOA Solns. 0.0917
Present theory:
γ = 0.0165
m = 0 (a2/a1 = 1, σt = 1.1) 1.2 1.8 0.55 1.05735 0.440561 0.115585
m = 1/2 (a2/a1 = 5/7, σt = 1.05556) 1.2 1.8 0.475 1.09269 0.409758 0.107503
m = 4/5 (a2/a1 = 11/19, σt = 1.02381) 1.2 1.8 0.43 1.12994 0.395481 0.103757
m = 1 (a2/a1 = 1/2, σt = 1) 1.2 1.8 0.4 1.16272 0.387574 0.101683

value of the ratio a2/a1 as it is equal to (1/6)(1 + 4a2/a1) independent of γ . Thus, we can also
write αc = (1/6)(1 + 4a2/a1)I1/

√
I2. Therefore, when a1 = a2, then αc = (5/6)I1/

√
I2, while for

a2/a1 = 1/2, αc = I1/(2
√

I2). A value of γ as discussed in the previous section can be estimated
for comparison of the profile functions obtained here with experimental measurements and hence
a value of αc can be obtained. However, the value of γ estimated from the available experiments
of axisymmetric plume can give only the value of entrainment coefficient for a2/a1 = 1 which
corresponds to m = 0 (Kolmogorov equilibrium dissipation), and further experimental measure-
ments similar to planar jets and axisymmetric wake measurements in Refs. [22,26] are required to
obtain coefficient values α and αc precisely in the non-Kolmogorov dissipation regime with m = 1
of axisymmetric plume. The value of α(= αc) when a2/a1 = 1 (m = 0) and γ = 0.0165 for the
solutions Eq. (32) with Eqs. (33) and (34) of the axisymmetric plume in unstratified ambient is
obtained as 0.440561, which remains constant with the increase in vertical height of the plume. We
can write Eq. (44) as

ducδ
2
u/e

dz
= 2αGδu/euc, (48)

where αG = αδu/e
√

I2/I1. We can write αG = αGc(z + a/z0)(−1+a2/a1 ), where αGc = αcbu/e
√

I2/I1 =
(1/6)(1 + 4a2/a1)bu/e, a1 �= 0. A comparison of αGc with some experimental values is given in
Table II. Table II also contains the values of the parameters A, B, C, Ric, and αc. Note that the
value of A and B are fixed as the ratio a2/a1 of group parameters is varied. We can see that
the obtained value of αGc when a1 = a2(m = 0) lies within the range 0.07–0.16 of entrainment
coefficient obtained by various experimental measurements. When m = 1, here the entrainment
coefficient decreases as α ∝ (z + a)−1/2, while in planar plume α ∝ (z + a)−3/5 and so decays faster
than the axisymmetric plume. This difference is mainly due to the difference in source configuration
of the two plumes. The values of the coefficients αc and αGc change with a change in the value of
γ , which is arbitrary and depends on source conditions. Note that if a1 = 0 but a0 �= 0 and a2 �= 0,
then α = αcExp[a2z/a0z0] with αc is as defined by Eq. (47). We found that dδ(z)/dz can be written
as

dδ

dz
=

√
I2

I1

(
2α − Ri

2

A
B

)
. (49)

Using Eq. (46), we can write

dδ

dz
= α

√
I2

I1

[
2 − A

2(A − 1 + C)

]
, (50)
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or

dδ

dz
= Ri

B

(
3

2
A − 2 + 2C

)√
I2

I1
. (51)

The dissipation coefficient in general is directly proportional to the rate of spreading of plume
velocity/temperature difference width, i.e., Cεu ∝ dδu/n/dz. Again dδu/n/dz = bu/ndδ(z)/dz and
dδθ/n/dz = bθ/ndδ(z)/dz, so here from Eqs. (50) and (51) we can say the plume velocity and
temperature spreading rates are related directly to the entrainment coefficient α (or αG) and local
Richardson number Ri. Therefore, we can write

Cεu ∝ bu/n α
3A + 4C − 4

2(A + C − 1)

√
I2

I1
, (52)

or

Cεu ∝ bu/n
Ri

B

(
3

2
A − 2 + 2C

)√
I2

I1
. (53)

Note that Cεu ∝ Cεθ
∝ Cε . This establishes the well-known result from previous analysis that

dissipation coefficients (Cε , Cεu , Cεθ
) depend on entrainment coefficient. The relations Eqs. (52) and

(53), respectively, between dissipation coefficient and entrainment coefficient and local Richardson
number are universal, that is, the relations hold irrespective of whether the turbulence dissipation is
Kolmogorov or non-Kolmogorov. Note that the entrainment coefficient is not uniform and differs
under changing circumstances. It is obvious that turbulent energy dissipation would change if
entrainment coefficient changes under differing conditions. So, for non-Kolmogorov dissipation
the entrainment coefficient instead of being a constant varies with streamwise distance as a power
law. The power exponent varies as the value of m varies in (0,1]. This is evident in the foregoing
discussion.

Note that Cafiero and Vassilicos [22] have observed this sort of scaling for entrainment coefficient
in planar jet. They found that in the planar jet, entrainment coefficient in a non-Kolmogorov region
with m = 1 decreases as −1/3 power of streamwise distance. The same result was also established
theoretically by Layek and Sunita [21] in planar jet. The link between entrainment and dissipation
is well known in Kolmogorov dissipation region.

Here we can conclude that the dissipation and entrainment coefficient are related in general.
When dissipation is Kolmogorov (m = 0, a2/a1 = 1) then entrainment coefficient is a constant,
while when the dissipation is non-Kolmogorov (m �= 0, a2/a1 �= 1) the entrainment coefficient
varies with axial distance. The above analysis clearly indicates the importance of the ratio a2/a1 of
the two stretching group parameters that determines the existence of non-Kolmogorov nonequilib-
rium and Kolmogorov equilibrium dissipations. In other words, relationship between Kolmogorov
dissipation and self-similarity is explored through the value of the ratio a2/a1. Thus, the question
arises how the transition occurs from a2/a1 �= 1 to a2/a1 = 1. In grid generated decaying turbulence
it was shown that the nonequilibrium dissipation region is switched over a classical dissipation
region abruptly further downstream distance. This suggests that the transition from nonequilibrium
to equilibrium is caused by a sudden breaking of large scale coherent structures formed due to
the engulfment process of entrainment vortex motion of this boundary-free shear flow. There need
further research works on the fundamental mechanism of turbulence cascade in the depletion of
non-Kolmogorov TKE dissipation and eventually enters the Kolmogorov equilibrium dissipation
region.

VI. CONCLUSIONS

A detailed symmetry analysis for mean equations along with the Reynolds stress model to the
boundary layer flow of an axisymmetric turbulent plume in an unstratified environment is presented,
which garner unconventional and novel scalings of individual components of flow quantities in
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plume. The implications of nonequilibrium dissipation are discussed and quantified in comparison
to classical scaling laws, which are compared with existing data. The new dissipation laws connected
with entrainment coefficient are found, which obey the linear proportionality to the plume spreading
rate and are non-Kolmogorov when spreading rate is nonconstant. The symmetry-based eddy vis-
cosity closure model, which although not work very well at the plume edges is designed relevant to
the present study. Entrainment coefficient is at odds with the classical studies when non-Kolmogorov
dissipation holds but its trend is in agreement with recent experimental and theoretical studies for
planar jet. It has been shown that how two geometric stretching parameters determine the existence
of Kolmogorov and non-Kolmogorov dissipation laws. This work explores four important results,
which are summarized below:

(i) The dissipations laws occur with dissipation coefficient Cε evolving linearly with spreading
rates dδ/dz of plume. A particular case is identified in which the spreading rates can be expressed
in terms of mth power of the ratio of global constant Reynolds number to the local Reynolds
number varying with the streamwise distance, where m = 3(a1 − a2)/(a1 + a2), a1 �= −a2. So,
Cε ∝ dδ/dz ∝ (ReG/Reδ )m. It indicates a dependence of dissipation laws on local Reynolds number
in the region where m �= 0. This is at odds with constant dissipation coefficient of Kolmogorov
universal law, which holds only when the stretching parameters a1 and a2 collapse into one, that
is, when a1 = a2 and the value of m = 0. So, the relation between complete self-similarity and
Kolmogorov laws is established in this study through the two stretching group parameters. On
contrary, non-Kolmogorov laws correspond to incomplete similarity or partial self-preservation in
plume.

(ii) The present theoretical analysis showed different power-law evolutions of components of
flow quantities, in particular, Reynolds stress tensor, pressure-strain-rate tensor, and dissipation
tensor. The pressure-strain-rate relation (sum of the three pressure-strain-rate components equated
to zero) is not similar. This occurs when m �= 0 implying nonequality of the stretching parameters
a1 and a2. As a consequence it gives nonconstant spreading rate and new dissipation laws in contrast
to constant spreading rate of Kolmogorov theory.

(iii) The well-known link between entrainment and dissipation is revisited in the non-
Kolmogorov turbulence. It is established that turbulent dissipation depends on entrainment
coefficient in the non-Kolmogorov region. Entrainment coefficient is directly proportional to the
spreading rates and hence is proportional to dissipation coefficient when non-Kolmogorov dissipa-
tion holds. The constant of proportionality depends mainly on integrals of mean axial velocity up
to order three, mean temperature difference, and turbulent stresses. This implies that entrainment
process and turbulent dissipation are related in general irrespective of whether the dissipation is
Kolmogorov or non-Kolmogorov. The entrainment coefficient decays with the vertical rise of the
plume in the region of non-Kolmogorov dissipation depending upon the ratio of symmetry group
parameters a2/a1(> 0) which support the experimental visualization of entrainment in planar jet
flow. The entrainment coefficient is directly proportional to the local Richardson number, which also
varies with the height of the plume. It is found that the entrainment coefficient decays slowly with
power-law exponent −1/2 in axisymmetric plume than the planar plume in which the power-law
exponent is −3/5 when m = 1.

(iv) It is revealed that the two stretching group parameters a1 and a2 emerged from symmetry
analysis of the model equations of plume, are involved in the evolution and determination of
the occurrence of the Kolmogorov and non-Kolmogorov dissipation laws. It is found that for
Kolmogorov dissipation theory the statistical equations are form invariant under one translation
and one stretching transformation. For non-Kolmogorov theory, the stretching group parameters are
not equal and their ratio can take multiple values but is uniquely determined. Results are agreed with
experimental data and explained physically, in particular, the theoretical prediction of spreading rate
for non-Kolmogorov dissipations is agreed with the flow visualization in jet where local Reynolds
number is increasing.

Thus, the present study focuses the impact of non-Kolmogorov dissipation on scaling laws for
turbulent buoyant plumes. It generalizes the dissipation theory and also showed its dependence
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on varying spreading rate or entrainment coefficient and hence on mean flow parameters. The
analysis reveals that pressure-strain-rate terms introduce pressure forces resulting in partial self-
preservation for a significant range and the non-Kolmogorov dissipation exists in plume. Moreover,
the dissipation of thermal fluctuation follows non-Kolmogorov law when dissipations of Reynolds
stress tensor and TKE are non-Kolmogorov (nonequilibrium), which is consistent with the work of
Layek and Sunita [19] and the premonition of Lumley [31].
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APPENDIX

In the present study we used Lie symmetry group theory for symmetry analysis of turbulent
round plume. See Ref. [42] and the Appendix of Refs. [19,21,25] and the books Cantwell [32] and
Layek [43] for the basics of Lie group theory. Since the number of equations and variables are
large, so here we used the Mathematica software package introtosymmetry.m by Cantwell [32] for
the symmetry analysis. Here we write the simplified infinitesimal transformations ξz, ξr , ηu, ηv , ηθ ,
ηu′v′ , ηu′2 , and η

θ ′2/2 of z, r, u, v, θ , u′v′, u′2, and θ ′2/2, respectively, as follows:

ξz = a0 + a1z, ξr = a2r, ηu = (a1 − 2a2)u/3ηv = (−2a1 + a2)v/3, ηθ = −(a1 + 4a2)θ/3,

ηu′v′ = −(a1 + a2)u′v′/3, ηu′2 = (2a1 − 4a2)u′2/3, η
θ ′2 = −2(a1 + 4a2)θ ′2/3. (A1)

Thus, the equations remain form invariant under one translation group (Ga0 ) with parameter a0 and
two stretching transformations (Ga1 and Ga2 ) with group parameters a1 and a2 and are given by

Ga0 : z̃ = z + a0, r̃ = r, ũ = u, ṽ = v, θ̃ = θ, ũ′v′

= u′v′, ṽ′θ ′ = v′θ ′, ũ′θ ′ = u′θ ′, ũ′2 = u′2, ṽ′2 = v′2,

w̃′2 = w′2, k̃θ = kθ ,
˜(u′2 − v′2) = (u′2 − v′2), ε̃u = εu, ε̃v = εv, ε̃w = εw, ε̃θ = εθ . (A2a)

Ga1 : z̃ = zea1 , r̃ = r, ũ = ea1/3u, ṽ = e−2a1/3v,

θ̃ = e−a1/3θ, ũ′v′ = e−a1/3u′v′, ṽ′θ ′ = e−a1v′θ ′,

ũ′θ ′ = u′θ ′, ũ′2 = e2a1/3u′2, ṽ′2 = e−4a1/3v′2, w̃′2 = e−4a1/3w′2, k̃θ = e−2a1/3kθ ,

˜(u′2 − v′2) = e2a1/3(u′2 − v′2), ε̃u = εu, ε̃v = e−2a1εv,

ε̃w = e−2a1εw, ε̃θ = e−4a1/3εθ . (A2b)

Ga2 : z̃ = z, r̃ = ea2 r, ũ = e−2a2/3u, ṽ = ea2/3v,

θ̃ = e−4a2/3θ, ũ′v′ = e−a2/3u′v′, ṽ′θ ′ = e−a2v′θ ′,

ũ′θ ′ = e−2a2 u′θ ′, ũ′2 = e−4a2/3u′2, ṽ′2 = e2a2/3v′2, w̃′2 = e2a2/3w′2, k̃θ = e−8a2/3kθ ,

˜(u′2 − v′2) = e−4a2/3(u′2 − v′2), ε̃u = e−2a2εu, ε̃v = εv, ε̃w = εw, ε̃θ = e−10a2/3εθ . (A2c)

Note that the infinitesimals forms of Eq. (A1) can be obtained by the Taylor series expansions
of the transformations Eqs. (A2a), (A2b), and (A2c) about the symmetry group parameters ε = 0,
where ε ≡ (a0, a1, a2) and then neglecting the terms containing second and higher orders of ε.
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The infinitesimals ξi and ηU (written after adding the infinitesimals for each parameter) then forms
a characteristic system using the Lie invariance principle and invariance surface condition (see the
Appendix of Refs. [19,21] and the book in Ref. [32]). Solving the characteristic system, the invariant
solutions are obtained.
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