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We report on a series of fully resolved simulations of the flow around a rigid sphere
translating steadily near a wall, either in a fluid at rest or in the presence of a uniform
shear. Nonrotating and freely rotating spheres subject to a torque-free condition are both
considered to evaluate the importance of spin-induced effects. The separation distance
between the sphere and wall is varied from values at which the wall influence is weak
down to gaps of half the sphere radius. The Reynolds number based on the sphere diameter
and relative velocity with respect to the ambient fluid spans the range 0.1–250, and the
relative shear rate defined as the ratio of the shear-induced velocity variation across the
sphere to the relative velocity is varied from −0.5 to +0.5, so that the sphere either leads
the fluid or lags behind it. The wall-induced interaction mechanisms at play in the various
flow regimes are analyzed qualitatively by examining the flow structure, especially the
spanwise and streamwise vorticity distributions. Variations of the drag and lift forces at
low-but-finite and moderate Reynolds number are compared with available analytical and
semiempirical expressions, respectively. In more inertial regimes, empirical expressions
for the two force components are derived based on the numerical data, yielding accurate
fits valid over a wide range of Reynolds number and wall-sphere separations for both
nonrotating and torque-free spheres.

DOI: 10.1103/PhysRevFluids.6.104309

I. INTRODUCTION

Determining the forces acting on particles moving parallel to a wall in a shear flow is of primary
importance to understand and predict many features of wall-bounded particle-laden flows. In partic-
ular, the wall-normal force component governs crucial phenomena characterizing the dynamics and
transfer properties in these flows, such as particle deposition, resuspension, saltation, and near-wall
preferential concentration. This force, albeit usually small in magnitude, plays a central role in
separation techniques involving nearly neutrally buoyant particles, such as field-flow fractionation
or crossflow filtration. Considering very dilute suspensions in which interparticle or wall-particle
collisions and direct hydrodynamic interactions play little role, quantitative predictions of how the
particles move within the fluid and how in turn their presence possibly affects the flow require
accurate expressions for the forces acting on an isolated particle to be available. The present work
aims at contributing to this goal by considering a variety of near-wall configurations and flow
regimes, identifying the dominant physical mechanisms at play in each of them, and providing
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accurate fits for the drag and lift components of the force acting on a spherical particle translating
with respect to the wall and obeying either a nonrotating or a torque-free condition.

Due to its symmetrical shape and to the reversibility of Stokes equations, a sphere does not
experience any lift force in the creeping-flow regime [1]. Therefore, this force arises through inertial
effects associated with the ambient shear and/or the sphere translation and/or rotation with respect
to the ambient flow. In a fluid with kinematic viscosity ν, inertial effects associated with these three
contributions become comparable to viscous effects at a distance r from the sphere center such that

r ∼ O(L̃u), r ∼ O(L̃ω ), r ∼ O(L̃�), (1)

respectively. In (1), L̃u = ν/|Urel|, L̃ω = (ν/γ )1/2, and L̃� = (ν/�)1/2 are the so-called Oseen,
Saffman, and Magnus lengths, respectively, Urel, γ and � denoting the relative (or slip) velocity
between the sphere and fluid, the shear rate in the undisturbed flow, and the norm of the sphere
rotation rate �, respectively. The slip, shear and rotation Reynolds numbers based on the particle
diameter d may then be defined as d/L̃u = |Urel|d/ν, (d/L̃ω )2 = γ d2/ν, and (d/L̃�)2 = �d2/ν,
respectively. In an unbounded shear flow, the vorticity generated at the sphere surface is advected
asymmetrically in the wake by the ambient shear, yielding a transverse pressure gradient at distances
of O(L̃ω ) downstream from the sphere, which results in a lift force directed toward the high- (low-)
velocity side if the sphere lags behind (leads) the fluid. A similar mechanism is involved at distances
of O(L̃�) in the wake of a spinning sphere translating in a fluid at rest, and results in a Magnus or
spin-induced lift force. A closed-form expression was obtained for this force in [2], assuming the
slip and rotation Reynolds numbers to be small. If the sphere obeys a torque-free condition, as
freely moving particles usually do if they do not collide with another particle or a wall, the spinning
rate remains slow, implying L̃� > max(L̃u, L̃ω ). In this case, the parameter ε = L̃u/L̃ω determines
whether inertial effects are rather dominated by the ambient shear (ε > 1) or the particle slip (ε < 1).
Saffman [3,4] considered a small sphere translating in an unbounded linear shear flow and obtained
the shear-induced lift force in closed form in the limit ε � 1, assuming the slip and shear Reynolds
numbers to be small. His prediction was extended to finite ε in [5] and [6], the results revealing that
the lift force strongly decreases as the relative influence of the sphere translation increases, i.e., as
ε decreases. Experiments [7] and simulations [8] have confirmed these predictions down to ε ≈ 0.4
for particles with slip Reynolds numbers up to unity. Further insight into the shear-induced lift force
in an unbounded fluid at higher Reynolds number was obtained through numerical studies [9,10],
revealing in particular that the distribution of the viscous stresses in the recirculating flow region
at the back of the sphere makes this force reverse beyond a slip Reynolds number of some tens.
Influence of the sphere rotation on the drag and lift forces in inertia-dominated regimes has also
been examined, both for an imposed spinning motion and a torque-free condition [9,11].

When the flow is bounded by a single flat wall, the separation distance L̃ from the sphere center
to the wall competes with the above three visco-inertial length scales through the ratios

Lu = L̃/L̃u = L̃|Urel|
ν

, Lω = L̃/L̃ω = L̃γ 1/2

ν1/2
, L� = L̃/L̃� = L̃�1/2

ν1/2
, (2)

which may be thought of as Reynolds numbers based on L̃ rather than on the particle size. In the
sense of matched asymptotic expansions, the wall is located in the inner region of the disturbance
if max(Lu, Lω, L�) < 1 (strictly speaking � 1), while it stands in the outer region otherwise.
Fundamental results were established by Cox and Brenner [12] in the former case, showing in
particular that, owing to the screening effect exerted by the wall, the leading-order estimate of the
lift force may then be obtained through a regular expansion procedure. This work also enlightened
the manner in which the generalized reciprocal theorem may be employed to obtain the lift force in
the form of a volume integral solely involving creeping-flow solutions past the sphere.

Asymptotic predictions for the slip-induced lift force acting on rigid spheres sedimenting close
to a vertical wall in a fluid at rest in the low-Reynolds-number regime were obtained in [13] (based
on the results of [12]) and [14], assuming that the wall lies in the inner and outer regions of
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the disturbance, respectively. In this configuration, the lift force always tend to repel the particle
from the wall and decreases gradually with increasing Lu. Considering the physical origin of
the wall-particle interaction responsible for this force, which directly stems from wall-induced
corrections to the flow in the wake region, the prediction of [14] was extended in a semiempirical
manner up to slip Reynolds numbers of O(100), based on experiments performed with contaminated
nearly spherical air bubbles [15]. Fully resolved simulations [16,17] subsequently confirmed this
semiempirical prediction.

Still in the low-but-finite Reynolds number regime, predictions for the shear-induced lift force
in the presence of a wall standing in the inner region of the disturbance were also obtained in [13],
for both neutrally buoyant and negatively or positively buoyant particles. These results were then
extended to the case of a wall standing in the outer region, first in the limit ε � 1 [18], and then for
arbitrary ε [5,19]. These predictions were found to be valid up to slip Reynolds numbers of order
unity in experiments performed under conditions ε � 1 [20,21]. They bridge the gap between those
of [13] and [6] (hence [3] in the limit ε � 1), the latter being recovered in the limit where the wall
is moved to infinity. While the slip-induced and shear-induced contributions to the lift superimpose
linearly when the wall stands in the inner region, they are intrinsically coupled otherwise, owing
to the nonlinear nature of the Oseen equation. Both contributions are directed away from the wall
if the sphere lags behind the fluid, which is the case for a negatively (positively) buoyant particle
in an upward (downward) shear flow near a vertical wall. Conversely, if the sphere leads the fluid,
as for a light (heavy) particle in an upward (downward) shear flow, the shear-induced contribution
tends to attract it toward the wall. In this case, the total lift force is attractive for large enough
separations, but becomes repulsive again for short separations. This is because the wall influence
gradually weakens the shear-induced contribution as the separation decreases, making the slip effect
eventually dominant very close to the wall. In the above studies, the wall was considered sufficiently
distant from the particle for the latter to be shrunk to a point. Obviously, this approximation is
not tenable when the separation becomes of the order of a few sphere radii or less. Higher-order
corrections accounting for the sphere finite size were obtained through the “reflection” technique
[22] (see also Appendix A of [23]), but this approach cannot deal with situations in with the gap is
less than typically the sphere radius. The combined use of exact creeping-flow solutions based on
bispherical coordinates and the generalized reciprocal theorem allowed rational fits for the various
contributions to the lift force to be obtained down to very small separations for both nonrotating and
torque-free spheres [23–25]. The limit case of a sphere held fixed on the wall, and that of a freely
sliding and rolling sphere were worked out in [26] and [27], respectively.

Numerical studies of hydrodynamic forces in near-wall configurations are quite scarce, presum-
ably because they demand accurate boundary-fitted grids or refined immersed boundary techniques
to properly capture the flow within the wall-particle gap. Variations of the slip- and shear-induced
drag and lift forces in the low-but-finite Reynolds number regime with the wall located in either
region of the disturbance were recently explored for both neutrally buoyant particles [28] and
arbitrarily buoyant particles [29]. The characteristics of the slip-induced lift force in a wall-bounded
fluid at rest were examined in detail in [16] and [17] down to small gaps and from Reynolds numbers
of O(1) up to a few hundred. The same range of separations and Reynolds numbers was considered
in [17] for a sphere held fixed with respect to the wall in a linear shear flow, a very specific choice
corresponding to Lu = L2

ω. Near-wall forces acting on a sphere forced to spin in a fluid at rest were
determined in [30] over a quite similar range of parameters, together with those experienced by a
sphere immersed in a shear flow which either slides on the wall or spins very close to it.

From the above review it appears that no study has considered inertia-dominated regimes for an
arbitrarily translating and possibly freely rotating rigid sphere immersed in a wall-bounded shear
flow, a situation of particular relevance to the widely encountered case of buoyant particles moving
near a vertical wall. This is the problem addressed in the present work. The same problem was
recently considered in [31] for spherical bubbles with a clean, i.e., shear-free, surface. Compared
to the rigid sphere case, this difference in the dynamic boundary condition at the particle surface is
known to affect the magnitude of the wall-induced forces in the low-Reynolds-number regime, but
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FIG. 1. Schematic of a sphere moving in a wall-bounded linear shear flow.

not the manner they vary with the flow parameters [22]. This is no longer the case beyond Reynolds
numbers of a few units, due to the much larger amount of vorticity produced at the sphere surface
when the no-slip condition applies. In particular this difference results in the fact that the flow does
not separate past a spherical bubble even at large Reynolds number while it does past a rigid sphere
beyond a Reynolds number of O(10).

In what follows we report on the results of fully resolved simulations of the flow past a freely
translating and possibly rotating sphere. The sphere is immersed in a wall-bounded linear shear
flow, may either lead the fluid or lag behind it, and obeys a nonrotating or a torque-free condition.
In Sec. II we formulate the problem, specify the considered range of parameters and outline the
numerical approach which is essentially similar to that employed in [31]. Section III summarizes
theoretical and semiempirical expressions for the forces acting on a sphere in an unbounded shear
flow and in wall-bounded configurations. Numerical results are first used in Sec. IV to examine
the physical mechanisms induced by the presence of the wall and the corresponding alterations of
the near-sphere flow in the various regimes. Variations of the drag and lift forces with the flow
parameters are analyzed in Sec. V. Empirical fits reproducing the observed variations in specific
regimes or throughout the entire parameter range of the simulations are established. A summary
of the main outcomes, especially regarding these empirical fits of direct interest in applications, is
provided in Sec. VI.

II. STATEMENT OF THE PROBLEM AND OUTLINE OF THE SIMULATION APPROACH

We define a Cartesian coordinate system (Oxyz) with the origin located at the center of the
sphere, as illustrated in Fig. 1. We assume that the sphere moves parallel to a single planar wall with
a translational velocity V = V ez and a rotational velocity � = −�ey. The wall is located at x = −L̃
and ex denotes the wall-normal unit vector pointing into the fluid. In the reference frame translating
with the sphere, the undisturbed flow is a one-dimensional linear shear flow with a velocity profile
u∞ = [γ (L̃ + x) − V ]ez and a spanwise vorticity ω∞ = −γ ey. The relative (or slip) velocity of the
fluid with respect to the sphere is then U rel = (γ L̃ − V )ez. The fluid velocity and pressure fields
in the presence of the sphere are denoted by u and p, respectively, and ω = ∇ × u denotes the
vorticity.

Assuming the fluid to be Newtonian and considering the flow as incompressible, the continuity
and Navier-Stokes equations read

∇ · u = 0 ;
∂u
∂t

+ u · ∇u = − 1

ρ
∇p + ν∇2u, (3a,b)
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with ρ and ν the fluid density and kinematic viscosity, respectively. Boundary conditions at the
sphere surface, at the wall, and in the far field read, respectively,

u =

⎧⎪⎨
⎪⎩

� × r for r = d/2,

−V ez for x = −L̃,

u∞ = [γ (L̃ + x) − V ]ez for r → ∞,

(4)

where r = (x2 + y2 + z2)1/2 denotes the distance to the sphere center, and d is the sphere diameter.
With the above boundary conditions, the steady flow field past the sphere depends on four

characteristic parameters, namely, the slip Reynolds number, Re, the dimensionless shear rate, Sr,
the dimensionless sphere rotation rate, Rr, and the normalized wall distance, LR. These control
parameters are defined as

Re = |Urel|d
ν

, Sr = γ d

Urel
, Rr = �d

Urel
, LR = 2L̃

d
, (5)

with Urel = U rel · ez and � = −� · ey. Under the torque-free condition, Rr is entirely determined
by the other three parameters and is no longer an independent control parameter. Considering that
the slip velocity Urel may either be positive or negative while γ and � are always positive, Sr and
Rr change sign with Urel. A positive (negative) Sr indicates that the sphere lags (leads) the fluid, the
former case corresponding to the flow configuration sketched in Fig. 1. In most of this work, Re, Sr,
and LR are varied in the range [0.1, 250], [−0.5, 0.5], and [1.5, 8], respectively. Hence ε is up to 2.2
for Re = 0.1 and becomes less than 1 as soon as Re > 0.5, and even less than 0.1 beyond Re = 50.
In an unbounded fluid, the shear-induced transverse force is proportional to Sr, so that its sign
changes with that of Urel. In the presence of a nearby wall, three different regimes are encountered.
If Sr � 1, the transverse force results primarily from the particle relative translation with respect to
the wall, which at low-but-finite Reynolds number makes it proportional to Re. In contrast, when
Sr � 1, i.e., the slip velocity is small compared to the shear-induced velocity variation at the particle
scale, the dominant contribution to the transverse force is proportional to Sr2. This regime, relevant
to small nearly neutrally buoyant particles, will not be considered here (it was recently specifically
examined in [28,32] in the low-Re range, with applications to inertial microfluidics in mind). The
near-wall transverse force does not change sign with Urel in the above two regimes, being repulsive
in both cases. In contrast, it may change sign when Sr � 1, which is the regime we are primarily
interested in.

Let us briefly illustrate some flow configurations covered by the above parameter range. Consider
for instance a 1-mm-diameter particle sedimenting in water and assume the particle is twice as dense
as the fluid. Then the standard drag law predicts that its slip Reynolds number is approximately
115. With |Sr| = 0.5, this yields γ ≈ 57 s−1. This is, for instance, the near-wall shear rate in the
laminar flow in a 15-mm-high plane channel, the corresponding Reynolds number ReH based on
the channel height and depth-averaged fluid velocity being ReH ≈ 2200. In the same configuration,
a particle ten times smaller (d = 0.1 mm) has a slip Reynolds number close to 0.55 and the shear
rate corresponding to |Sr| = 0.5 is 27 s−1, the near-wall value reached in a 1.5-mm-high channel
with ReH ≈ 10. Consider now that the largest of the above two particles is immersed in a vertical
turbulent boundary layer and stands 1 mm apart from the wall (which corresponds to LR = 2) in
the logarithmic region. Then, equating γ to the local time-averaged shear rate u∗/(κLR), with κ =
0.4 the von Kármán constant, the associated friction velocity u∗ is close to 2.25 cm s−1, which
corresponds to an outer velocity close to 0.6 m s−1, i.e., ReH ≈ 3 × 104 if the flow takes place in
a 5-cm-high channel. Still with LR = 2, the d = 0.1 mm particle rather stands within the viscous
sublayer. There, the time-averaged shear rate corresponding to |Sr| = 0.5 is γ = u∗2/ν ≈ 27 s−1,
which yields u∗ ≈ 5.2 mm s−1, hence an outer velocity close to 15 cm s−1 corresponding to ReH ≈
7500.

In the present problem, the drag force FD parallel to U rel, i.e., parallel or antiparallel to ez

depending on whether the sphere lags or leads the fluid, the lift force parallel to ex, FL, and the
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torque antiparallel to ey, M, acting on the sphere are defined as

FD = U rel

||U rel|| ·
∫




� · n d
, FL = ex ·
∫




� · n d
, M = −ey ·
∫




r × (� · n) d
, (6)

where � is the stress tensor and n denotes the outward unit normal to the sphere surface 
.
Results concerning the two force components will be expressed in terms of the lift and drag
coefficients, CL and CD, obtained by dividing the corresponding force by πd2ρU 2

rel/8. According
to the above definition, a negative (positive) CL corresponds to a force directed toward (away
from) the wall. In the case of a nonrotating sphere, results concerning the hydrodynamic torque
will be expressed using the torque coefficient CM = M/(πd3ρU 2

rel/16). We use the notations CW
D

(CW
L ) and CU

D (CU
L ) to denote the drag (lift) coefficients in wall-bounded and unbounded flows,

respectively. Situations where the wall lies in the inner or outer region of the disturbance will be
distinguished by superscripts W-in and W-out, respectively. Results for the drag coefficient are
usually given in the form of the relative wall-induced change �CD = (CW

D − CU
D0)/CU

D0, with CU
D0

denoting the drag coefficient on a sphere translating in an unbounded uniform fluid. Drag (lift)
contributions corresponding to the slip-induced effect are denoted with the subscript Du (Lu), while
those corresponding to the shear-induced effect are denoted with the subscript Dω (Lω). Similar
conventions are applied to the rotation rate, Rr.

The three-dimensional flow field past the sphere is computed with the JADIM code developed at
IMFT. The sphere center stands on the axis of a large cylindrical computational domain, one base of
which coincides with the wall. The reader is referred to [31] for numerical aspects concerning the
specificities of the code, the grid system, and the boundary conditions. The only difference between
the present problem and that considered in [31] is the boundary condition at the particle surface,
the shear-free condition suitable for a clean bubble being now replaced by a no-slip condition.
The consequence of this change on the flow field is that stronger velocity gradients, hence larger
levels of vorticity, are encountered around a rigid sphere. The increase in the vorticity magnitude
is modest at low Reynolds number. In contrast it is large at high Reynolds number, especially
within the boundary layer and the near wake, since the vorticity in the former varies like Re1/2

in the presence of a no-slip condition while it becomes Re-independent with a shear-free condition.
However, the boundary layer thickness is of O(dRe−1/2) in both cases. The difference in the vorticity
magnitude has a dramatic influence on the nature of the flow when the Reynolds number exceeds
a few hundred. In particular, in an unbounded domain with the fluid at rest at infinity, the flow
past a steadily translating spherical bubble remains stationary and axisymmetric whatever Re. In
contrast, the axial symmetry of a rigid sphere wake is known to break down at Re ≈ 212, while the
flow becomes unsteady beyond Re ≈ 272 [33]. In [31] the grid was designed in such a way that
the flow was properly described up to Re = 103, especially within the wall and bubble boundary
layers. Here, since we wish to focus on stationary regimes, we consider only Reynolds numbers
up to Re = 250. Similar to [31], the size of the computational domain is varied with Re so as to
minimize confinement effects in all flow regimes. Since no vortex shedding is expected downstream
of the sphere up to the maximum Reynolds number considered here, we keep the domain size
unchanged compared to the bubble case. That is, the radius R∞ and height of the domain from
the sphere center to the top of the cylinder are set to 50d for Re < 1, 40d for 1 � Re < 100,
and 20d for Re � 100, respectively. The grid makes use of 128 uniformly distributed cells along
the azimuthal direction (i.e., the cylinder periphery), while 60 cells are employed to describe the
sphere surface from pole to pole (only half that number was used in the bubble case). Given the
maximum Reynolds number of 250, the thinnest boundary layers expected here are typically twice
as thick as those considered in [31]. Nevertheless, the velocity gradients being larger, we keep the
same discretization in the direction normal to the sphere surface. That is, with R∞ = 20d , the first
node stands a distance 10−3d from this surface in the equatorial plane (x = 0). The grid being
strongly nonuniform in the radial direction, a total of 54 cells is used in that direction irrespective
of R∞, with a typical number of 12 cells standing within the boundary layer at Re = 250. Along
the cylinder axis, the discretization is identical to that used in the bubble case. That is, 58 cells are
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nonuniformly distributed from the pole opposed to the wall (x = d/2, y = z = 0) to the top of the
cylinder (x = R∞), while the number of cells in between the other pole (x = −d/2, y = z = 0) and
the wall is varied from 10 to 40 depending on LR and Re in the manner detailed in [31]. Some
runs were also performed to obtain reference values in an unbounded shear flow. In these cases,
we set L̃ = R∞ (with the aforementioned Re-dependent values of R∞) in order to keep the domain
symmetric.

Comparison with available data and asymptotic predictions available for a clean bubble, together
with grid convergence tests, were presented in [31]. In the rigid sphere case, extensive comparisons
and grid convergence tests in both wall-bounded and unbounded shear flows were reported in [34].
Results obtained with the grid characteristics described above were shown to compare well with
those of [16,17] in the former case and those of [35] (once properly transposed to a rigid sphere)
and [9,11] in the latter case. As will become apparent in Sec. V, the most convincing comparison
in wall-bounded configurations is for the case of a translating particle in a fluid at rest (Figs. 10 and
12), since data from [16] span a parameter range close to that explored here. In wall-bounded shear
flows, available studies ([29] in the low-Re range, [17,30] for moderate-to-large Re) only marginally
overlap the parameter space considered here. Whenever possible, comparisons with these data will
be presented in Sec. V B. In the unbounded shear flow configuration, some comparisons with
Refs. [9,11] for the lift force on a nonrotating sphere will also be provided in Figs. 18 and 19,
while the rotation rate on a torque-free sphere will be compared with the fit based on the results
from [11] in Fig. 21.

To achieve the torque-free condition, the sphere rotation rate Rr is computed through an iterative
approach. First, the steady flow around a nonrotating sphere is determined to obtain the corre-
sponding torque coefficient, CM0. Then the rotation rate is updated as Rr1 = Rr0 + CM0Re/16 and
the corresponding steady flow field is determined to obtain the new torque coefficient, CM1. This
procedure is continued until the torque coefficient becomes less than 0.05CM0. In the Appendix we
show how this procedure converges in a wall-bounded shear flow at two widely different Reynolds
numbers. We also report sensitivity tests proving that the forces acting on the particle, especially
the lift force, only marginally vary (typically by 1% for the latter) when the rotation rate is varied
from the value achieving a torque coefficient of 0.05CM0 to the value corresponding to the strict
torque-free condition.

III. ANALYTICAL SOLUTIONS AND EMPIRICAL PREDICTIONS

A. Unbounded linear shear flow

At low-but-finite Reynolds number, the presence of a uniform shear in an unbounded flow domain
results in a transverse or lift force on a sphere in the direction of U rel × ω. For Sr � 1, the leading-
order force is proportional to (|Sr|/Re)1/2. In the case of a nonrotating sphere, the corresponding
lift coefficient takes the form [5,6]

CU
Lω(Re � 1) = 18

π2
sgn(Sr)εJL(ε), (7)

where ε = L̃u/L̃ω = (|Sr|/Re)1/2 is the ratio of the Oseen and Saffman lengths, and sgn(Sr) =
Sr/|Sr|. Saffman’s original result [3] corresponds to the limit ε � 1 for which JL(ε) → 2.254. In
[6] the prefactor JL(ε) was obtained for arbitrary ε in the form of a three-dimensional integral
which was evaluated numerically for specific values of ε. Based on fully resolved simulations at
low Reynolds number and Sr � 0.5, a useful approximation of JL(ε) was established in [35] in the
form

JL(ε) ≈ 2.254(1 + 0.2ε−2)−3/2. (8)

Assuming Re and ReRr to be small, a rotating sphere translating in a fluid at rest experiences
a transverse force π

8 ρd3� × U rel [2], which yields a lift coefficient CU
L�[Re � 1] = Rr. When

ambient shear and rotation act together, the total lift force including O(Rr) and O(Sr) effects is
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the sum of the two individual contributions, and involves a second-order shear-induced contribution
lowering the lift coefficient by − 11

8 Sr in the limit |Sr| � 1 [3]. Therefore, the total lift coefficient
takes the form

CU
Lω(Re � 1) ≈ 18

π2
sgn(Sr)εJL(ε) − 11

8
Sr + Rr. (9)

If the torque-free condition holds, the leading-order sphere rotation rate in the low-Re regime is half
the undisturbed flow vorticity:

Rr = RrU(Re � 1) ≈ 1
2 Sr. (10)

Consequently, the rotation-induced and second-order shear-induced lift forces combine in a correc-
tion of − 7

8 Sr to (7) [3].
At low-to-moderate Reynolds numbers, the shear-induced lift force predicted by (7) agrees well

with numerical data for nonrotating spheres up Re ≈ 10 [9]. Increasing Re, this force first exhibits
weak positive values up to Re ≈ 50. Beyond this range, it changes sign, owing to the influence of
the standing eddy on the stress distribution at the rear of the sphere. For Re � 50, the numerical
results of [9] and [11] are adequately fitted by the empirical correlation [36]

CU
Lω[Re = O(100)] ≈ −sgn(Sr)|Sr|1/3

{
0.0525 + 0.0575 tanh

[
11.5 log

(
Re

120

)]}
. (11)

The spin-induced lift coefficient CU
L�(Re) remains linearly proportional to the rotation rate at

moderate Reynolds number. Setting CU
L�(Re) = cU

L�(Re)Rr, the coefficient cU
L� is found to be

smaller than unity and nearly independent of the Reynolds number for Re � 1. According to [11],
one has at moderate Re

cU
L�[Re = O(1 − 100)] ≈ 0.55. (12)

In the same range of Reynolds number, the torque-free spin rate normalized by the ambient rotation
rate is found to depend only on Re in the form [11]

Rr = RrU[Re = O(1 − 100)] ≈ f U
� (Re)

Sr

2
(13)

with

f U
� (Re) ≈ 1 − 0.0364Re0.95 for 0.5 � Re � 5 and

f U
� (Re) ≈ 1 − 0.0755Re0.455 for Re > 5. (14)

Available DNS results for torque-free rotating spheres suggest that contributions of shear and
rotation still superpose linearly in the lift force up to Re = 100 [37].

B. Low-Re wall-bounded shear flow

The presence of a nearby wall results in a drag increase, while for reasons mentioned above
it may either increase or decrease the transverse force, depending on the sign of Sr. For Re � 1,
situations where the wall lies in the inner region of the disturbance, i.e., max (Lu, Lω, L�) � 1, were
investigated in [13,22,23,38,39].
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In the case of a nonrotating sphere, the results of [23] indicate that the lift coefficient is
approximately [40]

CW-in
L (Sr, LR)

= 9
8

(
1 + 1

8 L−1
R − 0.413L−2

R + 0.270L−3
R

)
︸ ︷︷ ︸

CW-in
Lu

+ 33
32

(
LR + 17

48 + 0.643L−1
R − 0.280L−2

R

)
Sr + 61

192

(
1 + 0.527L−1

R − 1.200L−2
R + 0.657L−3

R

)
Sr2︸ ︷︷ ︸

CW-in
Lω

.

(15)

Similarly, in the case of a torque-free rotating sphere, one has

CW-in
L (Sr, LR)

= 9
8

(
1 + 3

16 L−1
R − 0.511L−2

R + 0.287L−3
R

)
︸ ︷︷ ︸

CW-in
Lu

+ 33
32

(
LR + 443

528 + 0.258L−1
R − 0.145L−2

R

)
Sr + 55

192

(
1 + 9

16 L−1
R − 1.090L−2

R + 0.568L−3
R

)
Sr2︸ ︷︷ ︸

CW-in
Lω

.

(16)

The difference between (15) and (16) indicates an increase of the lift coefficient by 1
2 Sr and a

decrease by − 1
32 Sr2 for large LR, when switching from the zero-rotation condition to the zero-torque

one. The 1
2 Sr-increase is in line with the contribution of the torque-free rotation to the lift force found

in the unbounded case.
Still for a torque-free sphere, the dimensionless rotation rate is approximately [22,38,39]

RrW-in(Sr, LR) ≈ − 3
16 L−4

R

(
1 − 3

8 L−1
R

)
︸ ︷︷ ︸

RrW-in
u

+ 1
2

(
1 − 5

16 L−3
R

)
Sr︸ ︷︷ ︸

RrW-in
ω

, (17)

while the wall-induced variation of the drag force is [22]

�CW-in
D (Sr, LR) = (

9
16 L−1

R − 1
8 L−3

R + 45
256 L−4

R + 1
16 L−5

R

)(
1 − 9

16 L−1
R + 1

8 L−3
R − 45

256 L−4
R − 1

16 L−5
R

)−1︸ ︷︷ ︸
�CW-in

Du

− 5
32

(
L−2

R + 9
16 L−3

R

)
Sr,︸ ︷︷ ︸

�CW-in
Dω

(18)

where �CW-in
D (Sr, LR) = (CW-in

D (Sr, LR) − CU
D0(Re → 0))/CU

D0(Re → 0), with CU
D0(Re → 0) =

24/Re the drag coefficient in the creeping flow limit. Since the leading contribution of the particle
rotation to the drag force is known to be proportional to L−4

R Rr [38], the above O(L−5
R ) − O(L−3

R Sr)
approximation for �CW-in

D (Sr, LR) also holds for a nonrotating sphere.
When the wall lies in the outer region of the disturbance, the relative length scales Lu, Lω, and L�

are no longer small. Hence, in addition to LR, the drag and lift forces depend on these three visco-
inertial length scales. This situation was investigated in the shearless nonrotating case (Lω → 0,
L� → 0) in [14], neglecting the finite size of the particle. The relevant solutions were obtained in
the form of double integrals which can be approximated as [31]

16

9
LR�CW-out

Du (Re � 1) = f ′
D(Lu) ≈ 1

1 + 0.16Lu(Lu + 4)
(19)
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and

8

9
CW-out

Lu (Re � 1) = f ′
L(Lu) ≈

{
[1 + 0.13Lu(Lu + 0.53)]−1 for Lu � 10,

7.95L−2.09
u for Lu > 10,

(20)

with �CW-out
Du (Re � 1) = (CW-out

Du (Lu, LR) − CU
D0(Re → 0))/CU

D0(Re → 0). The two functions f ′
D

and f ′
L describe how the wall-induced drag modification and the transverse force decay as inertial

effects in the bulk become dominant compared to the wall influence.
In the presence of shear, the case of a nonrotating sphere close to a wall standing in the outer

region of the disturbance was worked out in [19]. Again, the solution was obtained in the form of a
volume integral in Fourier space. The value of this integral cannot be obtained in closed form but was
tabulated for various values of Lω and ε = L̃u/L̃ω. These results were fitted in [20] to obtain tractable
estimates of the lift force. This fit was further modified in [31] to take into account the effects of the
finite particle size, which tend to lower the transverse force when the particle gets very close to the
wall. The same argument was used to derive an empirical expression for the drag variation. Making
use of the approximate expressions (7) and (8) for CU

Lω(Re � 1) and of the asymptotic form for
CW-in

Lu in (15), the final expression for the lift force in the case of a nonrotating sphere takes the form

CW
L (Re � 1) ≈ fL(Lω, ε) f ′

L(Lu)CW-in
Lu + hL(Lω, ε)CU

Lω(Re � 1), (21)

with f ′
L(Lu) as given in (20) and

fL(Lω, ε) = e−0.22ε0.8L2.5
ω and hL(Lω, ε) = 1 − e− 11

96 π2 Lω
JL (ε) (1+ 17

48 L−1
R +0.643L−2

R −0.280L−3
R )

. (22a,b)

Due to these empirical prefactors, (21) approaches the inner solution (15) when Lu → 0 and Lω →
0, with the exception of the Sr2-term, usually much smaller than the Sr-term as far as |Sr| � 1.
Similarly, making use of (18) and (19), the total slip-induced near-wall correction to the drag taking
into account the finite size of the sphere may be approximated as

�CW
D (Re � 1) ≈ f ′

D(Lu)�CW-in
D . (23)

C. Approximate expression for the slip-induced transverse force in a fluid at rest
at moderate-to-large Re

No theoretical solution for the hydrodynamic forces can be found when inertial effects are
dominant. However, reliable empirical extensions of the low-Reynolds-number predictions may
be achieved based on accurate data. Several experimental and numerical studies [15–17] examined
the motion of a rigid sphere close to a wall in a quiescent fluid. They revealed that the transverse
force exhibits a faster decay with increasing Lu than predicted by the low-but-finite Re solution. In
[15], experimental observations were performed with fully contaminated spherical bubbles rising
near a wall in a liquid at rest under conditions Re � 100; such bubbles behave essentially as rigid
torque-free spheres. Theoretical considerations about the nature of the particle-wall interaction were
summarized through the semiempirical expression for the transverse force coefficient

CW
Lu[Re = O(1 − 100)] ≈ a2(Re)(LR/3)g(Re)CW-out

Lu (Re � 1), (24)

with

a(Re) = 1 + 0.6Re0.5 − 0.55Re0.08 and g(Re) = −2.0 tanh(0.01Re). (25a,b)

IV. FLOW FIELD AND FUNDAMENTAL MECHANISMS

A. Nonrotating sphere

Figure 2(a) shows how the distribution of the streamwise velocity disturbance along the line
(y = 0, z = 0) perpendicular to the wall, i.e., the x-axis, varies with flow conditions in the case
of a sphere translating in a stagnant fluid. The sphere leading the fluid, Urel is negative, so that
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FIG. 2. Distribution of the streamwise velocity disturbance (u − u∞) · ez/Urel along the x-axis (to magnify
the flow in the gap, the ] − 1, +1[ part of the axis has been cut, so that the sphere is shrunk to a point).
(a) Stagnant fluid (Sr = 0) for different separation distances; (b) linear shear flow for LR = 2. The wall stands
at 2x/d = −1.5, −2, and −4 for LR = 1.5, 2, and 4, respectively. In (a), the fluid domain has arbitrarily been
cut on the left at x/d = −1 irrespective of LR; the black lines (LR = ∞) on the left and right of the particle are
of course symmetric.

negative (positive) normalized velocities correspond to an upward (downward) fluid motion. At
high Reynolds number (Re = 200), the no-slip condition induces a thin boundary layer around the
sphere, within which the disturbance is always negative. Outside this boundary layer, the fluid is
accelerated by the sphere motion, making the disturbance become positive on both sides. Owing
to the finite-gap offered to the fluid, this acceleration is more pronounced on the wall-facing
side and the maximum velocity increases as the wall-sphere separation decreases. In this high-Re
configuration, the velocity disturbance outside the boundary layer remains positive throughout the
gap. Wall-proximity effects sharply decrease as the gap widens and are almost negligible for LR � 4,
which results in a left-right symmetry of the streamwise velocity distribution in Fig. 2(a). The
boundary layer thickens as Re decreases and viscous effects increasingly control the flow in the gap.
For instance, the velocity disturbance keeps a negative sign throughout the gap for LR = 1.5 when
Re = 10, and passes through only a tiny positive maximum for LR = 2 before returning to zero at
the wall. In such cases, the fluid in the gap is essentially entrained by the sphere translation. For
each LR, the velocity disturbance at a given distance from the sphere surface is seen to reach larger
negative values on the wall-facing side compared to the “free” side, illustrating the enhancement of
viscous effects in the gap due to the nearby wall.

The influence of the shear on the disturbance flow is illustrated in Fig. 2(b), based on the results
obtained with two opposite relative shear rates, Sr = ±0.5, for a separation distance LR = 2. In
the moving frame, the presence of a positive (negative) shear, corresponding to the configuration
where the sphere lags (leads) the fluid, accelerates (decelerates) the flow on the wall-facing side,
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while it decelerates (accelerates) it on the opposite side. Consequently, compared to the unsheared
situation, the fluid acceleration is enhanced (reduced) on the wall-facing side by a positive (negative)
shear when Re is large [Re = 100 or 200 in Fig. 2(b)], while the opposite takes place on the “free”
side. At moderate Reynolds number (Re = 10), shear-induced acceleration and deceleration effects
remain significant within the boundary layer and extend beyond it (x/d > 1) on the “free” side. The
shear-induced asymmetry is still present throughout the flow at low Reynolds number (Re = 0.1),
the disturbance velocity remaining negative everywhere (i.e., directed upstream of the local carrying
flow) in this case.

The distribution of the spanwise component of the vorticity disturbance in the symmetry plane
y = 0 is displayed in Fig. 3 for the specific separation LR = 2. Vorticity is generated both at the
sphere surface and at the wall, owing to the no-slip condition on both surfaces. We refer to the
corresponding two contributions in the vorticity field as the “surface” vorticity and “wall” vorticity,
respectively. When the fluid is at rest at infinity, the surface vorticity is advected asymmetrically,
preferentially towards the wall at high Reynolds number [Fig. 3(k)]. A thin layer of wall vorticity,
the strength of which increases with Re, takes place in the lower part of the gap. In the same
panel, it may be noticed that the stagnation point at the back of the sphere stands slightly below
the plane x = 0, i.e., it is shifted towards the wall compared to unbounded flow configuration, in
agreement with previous observations [16]. When the Reynolds number decreases, the thickness of
the two boundary layers increases [e.g., Re = 50 in Fig. 3(h)], reinforcing their interaction. At lower
Reynolds number [Re = 10 and 0.1; Figs. 3(e) and 3(b)], diffusion in the crosswise (x) direction is
sufficiently efficient to allow the surface vorticity to control the wall region, except in the narrowest
part of the gap (|z|/d � 1). In this regime, the vorticity distribution is essentially similar to that
observed in [31] with a spherical bubble, up to a factor 3/2 resulting from the difference in the
magnitude of the Stokeslet (hence the drag force) associated with the two types of bodies. Thus,
the mechanisms responsible for the drag enhancement and the transverse force are similar to those
discussed in [31]. In particular, the gradual slowing down of the fluid displaced by the sphere along
the wall as the downstream distance increases induces a small transverse flow correction directed
away from the wall, which is responsible for the repulsive transverse force acting on the sphere.

In the presence of an ambient shear, a shear-flow type correction has to take place within the
boundary layer for the no-slip condition to be satisfied at the sphere surface, yielding a negative
correction in the spanwise vorticity therein when the sphere lags the fluid. Hence this correction
enhances the primary negative vorticity on the “free” side (x > 0), while it lowers the primary
positive vorticity in the part of the boundary layer facing the wall (x < 0), as Fig. 3(i) confirms.
The process reverses when the sphere leads the fluid, in agreement with Fig. 3(g). The wall vorticity
in the gap is also modified by the shear: it increases (decreases) for Sr > 0 (Sr < 0), owing to the
acceleration (deceleration) of the fluid on the wall-facing side caused by the positive (negative)
shear, as Figs. 3(l) and 3(j) confirm.

The near-wall configuration makes the flow past the sphere intrinsically three-dimensional, even
when the fluid is at rest at infinity. Consequently, the streamwise component of the vorticity, ωz =
ω · ez, is nonzero in the wake, unlike the axisymmetric configuration prevailing in the unbounded
case at low and moderate Re. The ωz-distribution in the unsheared case is shown in Figs. 4(b)
and 4(e) at Re = 200 for the two separations LR = 1.5 and LR = 2.0, respectively. The streamwise
vorticity is concentrated within two elongated vortices standing on both sides of the symmetry
plane y = 0. The fluid located in between the two vortex threads is entrained downwards, bending
the isocontours of the spanwise vorticity towards the wall, as seen in Fig. 3(k). Three-dimensional
effects sharply decrease as LR increases, and so does the strength of ωz as shown by Fig. 4(e). In an
unbounded flow, the axial symmetry in the wake of a sphere is known to break down at a critical
Reynolds number ReSS ≈ 212.6 through a stationary bifurcation [33,41], leading to a stationary
flow with a double-threaded wake structure qualitatively similar to that depicted in Fig. 4(b), and
a symmetry plane whose orientation is selected by some initial disturbance. In the presence of a
nearby wall, the flow structure observed for Re � ReSS results from the combination of the above
two mechanisms, the presence of the wall dictating the orientation of the symmetry plane [16]. The

104309-12



DRAG AND LIFT FORCES ON A RIGID SPHERE …

 

 

 

 

   

 -0.75      -0.6      -0.45      -0.3     -0.15         0        0.15        0.3      0.45       0.6       0.75 

z 
x 

z 
x 

z 
x 

z 
x 

z 
x 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

z 
x 

z 
x 

z 
x 

z 
x 

z 
x 

z 
x 

z 
x 

FIG. 3. Isocontours of the normalized spanwise vorticity disturbance d/(2Urel )(ω − ω∞) · ey in the sym-
metry plane y = 0 for LR = 2. Left column: Sr = −0.5 (Urel < 0); central column: Sr = 0 (Urel < 0); right
column: Sr = 0.5 (Urel > 0). The wall stands at the bottom of each panel. The relative flow with respect to the
sphere is from left to right, i.e., in the z-direction for Sr = 0.5 and in the −z-direction for Sr = 0 and −0.5.
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FIG. 4. Isosurfaces d/(2|Urel|)ω · ez = ±0.25 of the streamwise vorticity in the wake of a sphere moving
parallel to a wall at Re = 200 (the black thread corresponds to positive values). Left column: Sr = −0.5
(Urel < 0); central column: Sr = 0 (Urel < 0); right column: Sr = 0.5 (Urel > 0). The flow with respect to the
sphere is from left to right, i.e., in the z-direction for Sr = 0.5, and in the −z-direction for Sr = 0 and −0.5.
Since (x, y, z) is right-handed, the wall stands at the back of the sphere for Sr = 0.5 and in front of it for Sr = 0
and −0.5.

corresponding wake structure is illustrated in Fig. 5(e) for Re = 250 and two separations, LR = 1.5
and 8. Now, the strength of the streamwise vortices is significant even for LR = 8, owing to the
intrinsic instability of the axisymmetric wake. At such large separations and Reynolds number,
the sign of the streamwise vorticity in each vortex thread is dictated by the slight acceleration of
the fluid in the gap: based on Bernoulli’s theorem, this acceleration is seen to imply a pressure
minimum there, forcing the fluid located within the symmetry plane y = 0 (i.e., in between the two
streamwise vortices) to be deviated toward the wall. Continuity then implies that the fluid must go
away from the wall on the outer side of the streamwise vortices, yielding a transverse force toward
x > 0. Consequently, the wall-interaction and the intrinsic wake instability mechanisms cooperate
when the separation distance decreases, enhancing the strength of the streamwise vortices, as the
comparison between Fig. 5(b) and Figs. 5(e) and 4(b) confirms.

In the presence of a mean shear, the “free” vorticity ω∞ = ∇ × u∞ = −γ ey comes into play. In
an unbounded flow domain, it yields the classical shear-induced lift force associated with the lift
coefficient (7) in the low-Re regime. In the case of a rigid nonrotating sphere, a remarkable feature
is that this force changes sign for Re � 50 [9,11], mostly because of the nearly uniform shear stress
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FIG. 5. Same as Fig. 4 for Re = 250.
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z
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FIG. 6. Isosurfaces of the streamwise vorticity in the wake of a sphere moving in an unbounded linear shear
flow with Sr = 0.5 (the black thread corresponds to the positive value). (a) Re = 50, d/(2|Urel|)ω · ez = ±0.1;
(b) Re = 200, d/(2|Urel|)ω · ez = ±0.25. The relative upstream flow is from left to right, and the free vorticity
−γ lies along the y-direction.

distribution within the recirculation attached to the rear part of the sphere. This change of sign,
which follows that of the streamwise vorticity within each vortex thread, is confirmed in Fig. 6. In
the presence of a nearby wall, a consequence of this change of sign is that, provided Re � 50, the
shear-induced and slip-induced mechanisms cooperate when Sr is negative and act in an antagonistic
manner when Sr is positive, while the reverse happens for Re � 50. The influence of the sign of Sr in
the former case is confirmed in Fig. 4 (Re = 200), since the trailing vortices observed when Sr < 0
[Figs. 4(a) and 4(d)] are thicker than in the unbounded case [Fig. 6(b)], while they are thinner when
Sr > 0 [Figs. 4(c) and 4(f)].

The presence of the double-threaded wake and the variation of its strength with the sign of Sr
have a direct influence on the advection of the surface vorticity downstream of the sphere. Indeed,
according to the direction of the streamwise vorticity in each vortex thread, this wake structure
entrains the fluid standing close to the midplane y = 0 towards (away from) the wall when Sr < 0
(Sr > 0). Since the streamwise vortices are stronger in the former case, so is the resulting bending
of the wake towards the wall [Fig. 3(j)], as compared to its bending toward the fluid interior when
Sr is positive [Fig. 3(l)].

For supercritical Reynolds numbers, i.e., Re > ReSS , the above picture still holds when Sr is
negative, since all mechanisms involved in the generation of the streamwise vorticity cooperate.
The only difference is that the magnitude of ωz is increased compared to subcritical conditions,
since the wake instability contributes to reinforce this vorticity component [compare the diameters
of the ωz isosurfaces corresponding to Re = 200 and 250 in Figs. 4(a) and 5(a)]. In contrast, when Sr
is positive, the mechanism associated with the free vorticity and those related to the wall proximity
and wake instability act in an antagonistic manner. Therefore, the resulting sign of the streamwise
vorticity in each vortex thread depends on the magnitude of Sr. For large enough relative shear rates,
this sign follows that found in the unbounded configuration. As the comparison between Figs. 5(c)
and 6(b) shows, this is the case with Sr = 0.5 at Re = 250. In contrast, mechanisms related to the
wall proximity and wake instability dominate when the ambient shear is weak enough. This situation
is illustrated in Fig. 7(b) (Sr = 0.2), where the sign of ωz in each vortex thread is seen to be opposite
to that found in Fig. 5(c) with Sr = 0.5 at the same Reynolds number and separation from the wall.

As the Reynolds number decreases, shear-induced advective effects in the wake weaken and
vorticity diffusion across the wall-particle gap becomes increasingly important. For instance, bend-
ing of the surface vorticity toward or away from the wall is no longer observed in Figs. 3(g)–3(i)
at Re = 50. At Re = 10, the boundary layer is thick enough for the positive vorticity disturbance

z 

y (a)                                        (b)  

z 

y 

FIG. 7. Same as Figs. 5(a) and 5(c) for Sr = ±0.2.
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FIG. 8. Influence of the sphere rotation on the distribution of the streamwise velocity disturbance (u −
u∞) · ez/Urel along the x-axis for LR = 2. (a) Sr = −0.5; (b) Sr = 0.5. The wall stands at position 2x/d = −2,
and the interval ] − 1, +1[ has been cut. The magnitude of the normalized sphere rotation rate 2Rr/Sr = 2�/γ

in the torque-free case is indicated in each panel.

generated on the wall-facing part of the sphere surface to interact directly with the negative wall
vorticity disturbance, similar to the unsheared case. As Re further decreases, viscous diffusion
becomes so strong that the surface vorticity virtually controls the entire wall region. Nevertheless,
influence of the ambient shear is still present, favoring (reducing) the diffusion of the surface
vorticity toward the wall when Sr is negative (positive), as the isocontours in Figs. 3(a)–3(c) reveal.
The surface vorticity being enhanced (reduced) on the wall-facing side for negative (positive) Sr, the
drag acting on the sphere is increased (reduced), which is reflected in the last term in the right-hand
side of (18). The wall- and shear-induced mechanisms both yield a transverse force directed toward
x > 0 if Sr is positive in the low-but-finite Re regime. Hence they act together to produce an
enhanced repulsive force in this configuration, as reflected in (15), whereas their antagonistic action
yields a reduced transverse force when Sr is negative.

B. Torque-free sphere

Figure 8 compares the profiles of the streamwise velocity disturbance along the x-axis in the case
of a torque-free sphere with that of a nonrotating sphere, both with Sr = ±0.5 and LR = 2. Values
of the normalized rotation velocity 2Rr/Sr = 2�/γ indicated in each panel reveal a significant
decrease of the rotation rate as Re increases, Rr typically reducing by a factor of five from Re = 0.1
to Re = 200. A similar tendency has been reported in the unbounded case [11,42]. Rotation being
clockwise for Sr > 0, the streamwise velocity is found to decrease on the wall-facing side and
increase on the opposite side; the reverse happens when Sr is negative. However, the corresponding
changes are minimal and vanish beyond a distance to the sphere surface of the order of its radius.
Analyzing the spatial distribution of the spanwise vorticity disturbance (not shown) leads to the
same conclusion.
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FIG. 9. Isosurfaces d/(2|Urel|)ω · ez = ±0.25 of the streamwise vorticity around a torque-free sphere for
LR = 2 and |Sr| = 0.5.

Things differ at high Reynolds number for the streamwise vorticity component. Figure 9 shows
the structure of the ωz-field in the wake of a torque-free sphere for Sr = ±0.5 and a separation
distance LR = 2. The aforementioned rotation-induced changes in the fluid velocity at the particle
surface lower the actual shear “felt” by the sphere whatever the sign of Sr. Therefore the source
term responsible for the generation of the streamwise vorticity is lowered by the rotation, resulting
in a weaker pair of vortex threads compared to the nonrotating configuration. Comparing Fig. 9 with
its counterpart in the case of a nonrotating sphere [Figs. 4(d) and 4(f)] confirms this conclusion. In
contrast, under supercritical conditions, the generation of ωz for similar levels of |Sr| is essentially
governed by the wake instability, not by the shear around the particle. Consequently, little change is
expected between the nonrotating and torque-free configurations, which Figs. 9(c)–9(d) confirm.

V. HYDRODYNAMIC FORCES

We now discuss the variations of the computed drag and lift forces acting on the sphere with
the various control parameters. Most results were obtained by considering the parameter range
0.1 � Re � 250 and |Sr| � 0.5, within which the flow field in the particle frame is steady for all
considered LR. Numerical data are systematically used to derive empirical or semiempirical force
models. Most of these models are valid only within a specific Re range but we frequently combine
them to obtain empirical fits valid throughout the considered range of Reynolds number.

A. Fluid at rest at infinity

1. Drag

It is known since Faxén’s pioneering work [43] that the presence of a wall increases the drag in
the low-Re limit. This increase, say, �CW

Du = (CW
Du − CU

D0)/CU
D0, with CU

D0 the drag coefficient on a
sphere translating in an unbounded uniform flow, is displayed for various separation distances in
Fig. 10, the two panels of which focus on the Reynolds number ranges 0.1 � Re � 20 and 100 �
Re � 250, respectively. Data for the wall-induced drag increase extracted from [16] and [29], both
for a nonrotating sphere, are also included. Since these references provide CW

Du but not CU
D0, we

used our own results for the latter to compute �CW
Du. This procedure introduces some uncertainty

because �CW
Du is small in most cases and may therefore be sensitive to a small difference in CU

D0.
For instance, a 2% decrease in CU

D0 makes the data of [29] collapse perfectly on present results at
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FIG. 10. Relative wall-induced drag increase �CW
Du for a sphere moving parallel to a wall in a fluid at rest.

(a) Low-to-moderate-Re regime. (b) High-Re regime. � and +: numerical data corresponding to a nonrotating
and a torque-free sphere, respectively; ◦ and •: numerical data from [16] and [29], respectively; solid lines in
(a): zero-Re asymptotic prediction (18); dotted lines: low-but-finite-Re prediction (23); dashed lines: low-to-
moderate-Re semiempirical prediction (27); solid lines in (b): high-Re expression (28).

Re = 0.2. Despite this uncertainty, the estimates for �CW
Du obtained through the above procedure

are found to be in good agreement with present predictions whatever LR and Re. Most results from
the present investigation presented in Fig. 10(a) were obtained by considering a nonrotating sphere
but data corresponding to the torque-free condition are also included for Re � 1. No discernible
difference is found between the two configurations, confirming the vanishingly small effect of the
rotation induced by the torque-free condition on the drag in the range of separations considered here,
in line with a previous remark on the asymptotic prediction (18). Numerical results closely approach
this prediction [solid lines in Fig. 10(a)] at Re = 0.1. Inertial effects become increasingly important
as the Oseen-length-based separation Lu increases, making the drag increase depart from (18). The
decrease in �CW

Du as Re increases is well captured by the low-but-finite-Re expression (23) up to
Re = 1. Following [15], this expression may be extended semiempirically to moderate Reynolds
numbers by noting that the drag increase in this regime is proportional to the square of the maximum
surface vorticity. Variations of this quantity with Re based on the results of [44] are expressed by
the fitting function a(Re) in (25a). We performed specific runs in an unbounded uniform flow to
check this expression and found that, for Re � 10, these variations are more accurately approached
by the fit a(Re) ≈ (1 − 0.12Re1/2 + 0.37Re)1/2 which recovers the leading-order 0.6Re1/2 term of
(25a) at high Reynolds number. However, compared with the unbounded situation, the presence of
a nearby wall tends to decrease the surface vorticity on the wall-facing side, as Fig. 3(e) indicates.
For this reason, we found that a more accurate estimate of the variations of the maximum surface
vorticity in the near-wall configuration at moderate Re is provided by

aW(Re, LR) ≈ {
1 + tanh

(
0.05ReL2

R

)
(0.37Re − 0.12Re1/2)

}1/2
. (26)

Making use of (26), which tends toward the above expression for a(Re) at large distances from
the wall, the low-but-finite-Re wall-induced drag correction (23) may be extended toward moderate
Reynolds numbers in the form

�CW
Du[Re � 10)] ≈ f ′

D(Lu)[aW(Re, LR)]2�CW-in
Du (LR), (27)
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FIG. 11. Wall-induced drag correction �CW
Du for a nonrotating sphere translating parallel to a wall in a fluid

at rest in the range 0.1 � Re � 250. Symbols: numerical data; solid lines: high-Re correction (28); dashed
lines: low-to-moderate-Re correction (27); dotted lines: composite fit (29).

where �CW-in
Du corresponds to the low-Re asymptotic prediction (18) for Sr = 0 and f ′

D is given by
(19). As the dashed lines in Fig. 10(a) show, (27) accurately captures the variations of �CW

Du revealed
by the simulations whatever LR up to Re = 20.

According to (27), the wall-induced drag increase should be vanishingly small beyond Re ≈ 100.
However, as Fig. 10(b) reveals, numerical data in this regime indicate that this increase is still
significant when the particle is close enough to the wall. Within the considered Reynolds number
range (100 � Re � 250), this increase is found to depend only weakly on Re. In contrast, it varies
dramatically with the inverse of the separation distance, increasing from 5% for LR = 2 to 20% for
LR = 1.25. Fitting the results corresponding to Re = 250 yields

�CW
Du[Re = O(100)] ≈ 0.4L−3

R . (28)

Figure 10(b) shows that (28) captures the observed drag increase well for Re � 100. The −3
exponent in (28) is readily understood by noting that there is little direct interaction between the
near-sphere and near-wall vortical regions in this regime [see Fig. 3(k)]. Therefore, the sphere-wall
interaction has an almost inviscid nature, meaning that the sphere perceives the wall essentially as
a free-slip plane and the latter perceives the sphere as an irrotational dipole (associated with its
finite size). The image dipole required to satisfy the nonpenetration condition on a nearby plane is
known to induce an O(L−3

R ) increase in the relative velocity of the fluid at the sphere center, which
in turn increases the viscous dissipation resulting from the sphere motion by a similar amount [45].
Equating the dissipation rate with the rate of work of the drag force then implies that �CW

Du is
proportional to L−3

R .
Figure 11 compares the predictions provided by expressions (27) and (28) with the numerical

data obtained throughout the Re range investigated. Obviously none of them is appropriate in
the intermediate range 20 � Re � 100. For practical purposes, an empirical fit resulting from the
combination of the two models is desirable. Noting that the drag excess predicted by (27) becomes
vanishingly small when the Reynolds number exceeds a few tens, a linear combination of (27) and
(28) with a suitable prefactor in the latter ensuring that its effect vanishes at low Reynolds number
appears to be convenient. Calibrating this prefactor in the intermediate Re range, we obtained

�CW
Du(Re) ≈ �CW

Du[Re � 10] + cDu∞(Re)�CW
Du[Re = O(100)], with

cDu∞(Re) = 1 − e−0.035Re0.75
. (29a,b)

As the dotted lines in Fig. 11 show, this composite expression correctly reproduces the observed
wall-induced drag increase whatever the Reynolds number.
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FIG. 12. Lift coefficient [divided by LR in (a) for a better readability] on a sphere translating parallel to a
wall in a fluid at rest. (a) Regime 0.1 � Re � 100. (b) high-Re regime Re � 100. � and +: present numerical
data for a nonrotating and a torque-free sphere, respectively; and �: numerical data from [16] and [29],
respectively; dotted lines in (a): leading-order term of asymptotic expressions (15) and (16); dashed lines:
approximate low-but-finite Re expression (20); solid lines: low-to-moderate Re prediction (24) with a(Re)
substituted with aW (Re) as given by (26); dotted line in (b): prediction (30) for the lift force in an unbounded
fluid beyond the stationary bifurcation.

2. Transverse force

Numerical data obtained for the wall-induced transverse force are displayed in Fig. 12. Data
from [16] for a nonrotating sphere are also included. The two sets of results are found to be in
excellent agreement throughout the explored parameter space. Close to the low-Re bound of the
domain (Re = 0.2), present results are compared with those of [29]. Again a very good agreement
is observed. Figure 12(a) shows the transverse force coefficient in the range 0.1 � Re � 150.
Most data correspond to a nonrotating sphere, but some of them, obtained at small wall distances
and Reynolds numbers less than unity, correspond to a torque-free sphere. Given the vanishingly
small difference between the results corresponding to these two configurations at small Re and the
similar behavior observed in the moderate-to-high Re regime in [16], it may be concluded that the
sphere rotation associated with the torque-free condition has a negligible effect on the wall-induced
transverse force. Although this effect is reflected in the difference among the prefactors involved in
(15) and (16), the overall difference between the two predictions amounts only to 0.3% for LR = 1.5
and 0.4% for LR = 1.25, confirming the above statement. Numerical results at Re = 0.1 are in good
agreement with these asymptotic predictions, beyond which the transverse force gradually decreases
as inertial effects increase, making the wall move from the inner region of the disturbance to the
outer region. This decrease is well captured by (20) up to Re ≈ 1. Further increasing Re reveals
that the force predicted by this low-but-finite Re approximation decreases too fast. A similar trend
was noticed in [15], leading to the semiempirical extension (24) of the previous prediction. This
extension was obtained by noting that, similar to the wall-induced drag increase, the transverse force
at low-to-moderate Re is proportional to the square of the maximum vorticity at the sphere surface,
and the dependence of this force with respect to Lu varies from L−2

u for Re � 1 to L−4
u for Re � 1.

In [16] and [17], this extended prediction was found to be in good agreement with numerical results
up to Lu = 100 for 1.5 � LR � 8. Predictions of (24), with the slight change from a(Re) to aW(Re)
as given in (26) are shown in Fig. 12(a). They are seen to capture the variations of the transverse
force well up to Re ≈ 100 for LR < 4. At larger LR, they tend to underestimate the actual force for
Re � 20. However, under such conditions, the residual values of the force are less than 1% of the
low-Re value, making this underestimate of little significance.
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Figure 12(b) shows how CW
Lu behaves for Re � 100. For large enough wall-particle separations,

typically LR � 4, the transverse force is virtually zero up to Re ≈ 200. In this situation, the sphere
is immersed in an almost uniform flow, so that its wake is essentially axisymmetric. The axial
symmetry breaks down when the Reynolds number exceeds the critical value Re = ReSS , giving rise
to a nonzero transverse force at larger Reynolds numbers. The wall plays no role in the occurrence
of this force, nor in its intensity. However, it selects the orientation of the symmetry plane that
characterizes the wake beyond the threshold Reynolds number, hence that of the transverse force,
according to the mechanism discussed in Sec. IV A. The corresponding imperfect bifurcation being
supercritical and of pitchfork type [46], it gives rise to a force growing as the square root of
Re − ReSS close to the threshold. The associated prefactor (≈2.95) was computed exactly through
a weakly nonlinear approach in the case of a translating sphere subject to a slow rotation in a fluid
at rest, this rotation being responsible for the imperfect nature of the bifurcation [46]. An empirical
extension of this prediction to non-negligible Re − ReSS gaps was proposed in [37] in the form

CRe>ReSS

L ≈ 2.95

(
ReSS

Re

)1.5

[(ReSS )−1 − Re−1]1/2. (30)

Figure 12(b) shows that present results corresponding to LR = 8 follow closely this prediction up to
Re = 250, i.e., nearly 20% beyond the threshold. As the wall-sphere separation decreases, the situ-
ation becomes less clear-cut because the flow “felt” by the sphere remains significantly anisotropic,
even for Re � 100. Hence the transverse force maintains a significant nonzero value throughout
the range 100 � Re � ReSS . For low enough separations, the force exhibits little variation with the
Reynolds number in that range and even up to Re = 250. For instance, CW

Lu varies only by ±5%
about a mean value close to 0.1 for LR = 1.5. Under such conditions, no stationary bifurcation
takes place, the wake structure having reached some kind of “asymptotic” state that breaks down
only at much higher Reynolds number with the occurrence of unsteady effects. The case LR = 2
represents an intermediate situation in which the transverse force is seen to increase significantly
beyond Re = 150, almost doubling its value at Re = 250. This variation suggests that the wake
structure changes significantly within this range. This was confirmed in [16], where it was shown
that the size of the double-threaded wake structure grows dramatically from Re = 100 to Re = 200
(their Fig. 12). Since the streamwise vortices act to deflect the fluid toward the wall in the symmetry
plane, the wake it more vigorously tilted in that direction as Re increases, a trend confirmed by the
comparison of Figs. 3(h) and 3(k). This in turn increases the fluid velocity directed toward the flow
interior on the outer side of the streamwise vortices, hence the repelling transverse force.

B. Linear shear flow

1. Drag on a nonrotating sphere

The drag change ratio �CW
D = (CW

D − CU
D0)/CU

D0 is reported in Fig. 13 for different separation
distances and dimensionless shear rates. Let us first consider results obtained in the low-to-moderate
Reynolds number regime (0.1 � Re � 20) with a dimensionless shear rate Sr = ±0.5 [Fig. 13(a)].
For LR � 4, the shear-induced drag modification is negligibly small compared with that resulting
from the presence of the wall. In contrast, for the smallest two separations, the shear is found
to increase (decrease) the drag when the sphere leads (lags) the fluid, which is supported by
the qualitative discussion at the end of Sec. IV A. The asymptotic prediction (18), valid in the
low-Re limit provided the wall stands in the inner region of the disturbance, is in good agreement
with numerical results at Re = 0.1. Compared with the unsheared case, the corresponding relative
variation of �CW

D is approximately 8% for Sr = ±0.5. No explicit theoretical solution for �CW
D

is available for Sr �= 0 when the wall stands in the outer region of the disturbance. However, the
relative influence of the shear is always small under the conditions considered here, and the decrease
of �CW

D up to Re = 1 is satisfactorily captured by (23), as the solid lines in Fig. 13 show. To extend
this estimate to Reynolds numbers of O(10), we merely duplicate the arguments that led to (27) in
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FIG. 13. Relative near-wall drag increase �CW
D for a nonrotating sphere translating parallel to a wall in a

linear shear flow. (a) Low-to-moderate Reynolds number regime for Sr = ±0.5; (b) moderate-to-high Reynolds
number regime for Sr = ±0.2 and ±0.5. Symbols in (a): numerical results for Sr = 0.5 (+) and Sr = −0.5
(×). Dashed lines: asymptotic prediction (19) corresponding to conditions Lu � 1, Lω � 1; solid lines: low-
but-finite-Re semiempirical expression (23); dotted lines: low-to-moderate-Re semiempirical expression (31).
Thick (thin) lines correspond to positive (negative) Sr.

the unsheared case. The empirical counterpart of (27) is thus

�CW
D [Re � 10] ≈ f ′

D(Lu)[aW(Re, LR)]2�CW-in
D (LR, Sr), (31)

with �CW-in
D (LR, Sr), f ′

D(Lu), and aW(Re, LR) as given in (18), (19), and (26), respectively. The
dotted lines in Fig. 13 confirm that the corresponding predictions properly reproduce the variations
of the numerical data up to Re ≈ 10.

Figure 13(b) displays the wall-induced drag force computed for Re � 50. While the drag still
decreases with the Reynolds number up to Re = 100, a systematic increase is observed at higher
Re whatever the distance to the wall. Moreover, in the same high-Re regime, drag variations
are found to be virtually independent of the sign of Sr. However, for Sr = O(1), the magnitude
of the shear, i.e., the norm of Sr, has a significant influence on the drag, with, for instance, a
45% increase of �CW

D at Re = 250 from Sr = ±0.2 to ±0.5. To better analyze these results,
it is appropriate to consider the unbounded configuration first, in order to examine the relative
drag change �CU

Dω(Re, Sr) = (CU
Dω(Re, Sr) − CU

D0(Re))/CU
D0(Re) due solely to the influence of the

ambient shear. Figure 14 shows how �CU
Dω(Re, Sr) varies with both the Reynolds number and

the dimensionless shear rate. An obvious symmetry argument indicates that �CU
Dω(Re, Sr) cannot

depend on the sign of Sr, a constraint confirmed by numerical results. To magnify the shear-induced
drag variations, specific runs were carried out for Sr = 1. While only marginal for |Sr| = 0.2,
the relative shear-induced drag increase is found to reach approximately 20% at Re = 250 with
|Sr| = 1. Within the considered ranges of Sr and Re, �CU

Dω depends almost linearly on Sr and Re
beyond Re ≈ 150, in agreement with the tendency observed in [9]. Fitting the results obtained at
Re = 250 yields

�CU
Dω[Re = O(100)] ≈ 7.5 × 10−4|Sr|Re, (32)

an estimate seen to properly capture the dominant trend revealed by numerical results for Re � 200,
although it overestimates the drag increase at lower Reynolds numbers. A quantitative comparison
with the findings reported in [9] reveals that present values for �CU

Dω are typically twice as
large. We investigated the possible origin of such a large difference, suspecting in particular that
results may be contaminated by artificial confinement effects induced by the outer boundary of
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FIG. 14. Relative drag variation �CU
Dω on a sphere translating at moderate-to-high Reynolds number in an

unbounded shear flow, with respect to the drag in a uniform stream. Symbols: numerical results for Sr > 0 (�),
and Sr < 0 (+); lines: prediction of (32).

the computational domain, especially in the wake region. To check this possibility, we reran the
simulations corresponding to Re = 200 on a domain twice as large as the standard one, i.e., with
the outer boundary located 40d from the sphere center, the radial resolution being kept unchanged
close to the sphere, especially within the boundary layer, by increasing the number of nodes. The
drag was found to vary by less than 0.3% in all cases, inducing variations of �CU

Dω not exceeding
2%. These tests make us confident that present results for the high-Re shear-induced drag increase
are robust, being especially almost independent of the position of the domain outer boundary. In
contrast, we suspect that this issue may have affected the results reported in [9], as that study made
use of an ellipsoidal grid extending only to 10d upstream and downstream of the sphere and 5d in
the direction perpendicular to the incoming flow.

Coming back to the near-wall situation, we first evaluated how the observed drag variation, �CW
D ,

compares with the sum of the slip effect in the shearless case, �CW
Du, and the shear effect in the

unbounded configuration, �CU
Dω, as given by (28) and (32), respectively. It turned out that this

sum consistently overestimates �CW
D , and the shorter the wall-particle separation the larger the

overestimate. This finding implies that the shear-induced drag correction observed in the unbounded
case is actually reduced by the presence of the wall, owing to the modifications the latter imposes on
the wake structure. Keeping Re and Sr fixed and varying LR, we observed that the excess quantity
�CW

Du + �CU
Dω − �CW

D varies as the inverse of the separation. Introducing the shear-induced drag
modification in the presence of the wall, �CW

Dω, such that �CW
D = �CW

Du + �CW
Dω, and fitting the

numerical data yields

�CW
Dω[Re = O(100)] ≈ (

1 − 0.54L−1
R

)
�CU

Dω[Re = O(100)], (33)

with �CU
Dω[Re = O(100)] as given by (32).

The relative difference between the observed drag variation �CW
D and the prediction correspond-

ing to the sum of (28) and (33) is shown in Fig. 15 for Sr = ±0.5. It is seen that, beyond Re ≈ 100,
this difference never exceeds 7%, confirming that the above empirical model properly captures
the near-wall drag variations in the high-Re regime. Numerical results obtained throughout the
range 0.1 � Re � 250, together with the corresponding predictions based on the semiempirical
expressions established above, are displayed in Fig. 16. In a way similar to (29), a purely empirical
expression combining linearly the models previously established in the low-to-moderate Reynolds
number regime [Eq. (31)] and the high-Reynolds number regime [Eqs. (28), (32), and (33)] may be
designed to improve the estimate of the drag increase in the intermediate range 10 � Re � 100. As
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FIG. 15. Comparison for Sr = ±0.5 of the measured near-wall drag increase �CW
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number regime with the prediction �CW
Du[Re = O(100)] + �CW

Dω[Re = O(100)] provided by the empirical
models (28) and (33).

the dotted lines in Fig. 16 show, the composite expression

�CW
D ≈ �CW

D [Re = O(1 − 10)] + cDω∞
{
�CW

Du[Re = O(100)] + �CW
Dω[Re = O(100)]

}
with

cDω∞ = 1 − e−0.035Re0.75
(34a,b)

correctly fits the numerical data throughout the entire range of Reynolds number. Note that some
data from [17,29] (the former for Sr = 0.25) and [30] are also included in Fig. 16 for comparison.
Since the reference drag coefficient CU

D0 is not provided in these works, we again used the procedure
described in Sec. V A 1 to determine �CW

D . The low-Re data from [29] for Re = 0.2 stand slightly
below present predictions. In contrast, those extracted from [17] and [30] stand somewhat above

(a)              (b) 
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FIG. 16. Relative near-wall drag increase �CW
D (Re, Sr, LR) for a nonrotating sphere translating parallel to

a wall in a linear shear flow, throughout the Re range investigated numerically. (a) Sr = ±0.2; (b) Sr = ±0.5.
� and ◦: present numerical data for Sr > 0 and Sr < 0, respectively; � and �: numerical data from [29] for
Sr = −0.2 and Sr = +0.2, respectively; : numerical data from [17] for Sr = 0.25; : numerical data from
[30] for Sr = +0.5. Thick solid lines: high-Re model based on the sum of (28) and (33); thick (thin) dashed
lines: low-to-moderate-Re expression (31) for positive (negative) Sr; thick (thin) dotted lines: composite fit
(34) for positive (negative) Sr.
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FIG. 17. Variations of the lift coefficient CW
L (Re, Sr, LR) for a nonrotating sphere translating parallel to

a wall in a linear shear flow at Re � 2. (a) Sr = ±0.2; (b) Sr = ±0.5. � and ◦: numerical data for Sr > 0
and Sr < 0, respectively; �: numerical data from [29] for a freely rotating sphere (values for LR = 1.5 with
Sr = ±0.2 and LR = 8 with Sr = −0.2 were interpolated from neighboring separations). Dashed lines: inner
solution (15) corresponding to conditions Lu � 1, Lω � 1; solid lines: finite-Re expression (21) with fL and
hL as given by (22a) and (22b), respectively.

them. These differences contrast with the close agreement observed in Fig. 10 in the case of a fluid
at rest. The uncertainty introduced by the indirect procedure used to compute �CW

D is presumably
responsible for the most part of the observed differences. The slightly larger Sr in the series extracted
from [17] also contributes to increase the corresponding �CW

D compared to present results.

2. Lift on a nonrotating sphere

Figure 17 shows the computed lift coefficient CW
L (Re, Sr, LR) up to Re = 2 for various normal-

ized shear rates and separation distances. Variations of CW
L with increasing Re and LR, as well as the

form of the interplay between the shear- and slip-induced contributions, are consistent with those
observed with clean spherical bubbles in [31]. For this reason, the reader is referred to Sec. 6.2.2 of
that reference for a discussion of the physical mechanisms governing the variations of the lift force
with Re, Sr and LR revealed by Fig. 17. The reason why the lift force acting on a rigid sphere or
a clean spherical bubble behave similarly in this regime has been established in [47] and extended
to near-wall configurations in [22,48]. Specifically, these analyses indicate that, to leading order,
shear-, wall-, and the combined lift forces acting on a rigid sphere in the low-but-finite Reynolds
number regime differ from those on a clean spherical bubble only by a prefactor of (3/2)2, 3/2 being
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the strength ratio of the respective Stokeslets. That the lift force on a rigid sphere at a given Sr and
LR is larger than that on a clean bubble by a factor of (3/2)2 = 2.25 may be confirmed by comparing
present data at Re = 0.1 with their counterparts in Fig. 18 of [31]. As expected, the dashed lines
in Fig. 17 indicate that the asymptotic expression (15) corresponding to situations in which the
wall stands in the inner region of the disturbance predicts the computed lift force well for small
enough LR and Re, typically LR < 4 and Re � 0.2 for both shear rates. When LR or Re increases,
the wall shifts to the outer region of the disturbance, and it is no surprise that (15) fails to capture
the variations of the lift coefficient [e.g., with Re = 0.1 and LR = 8, for which Lu and Lω are both
of O(1)]. In contrast, expression (21) [along with (22a) and (22b) for fL and hL, respectively] (solid
lines in Fig. 17) properly accounts for finite-Lω and finite-Lu effects, as it approximates CW

L with
a 10% accuracy at Re = 0.1 whatever LR and Sr. As Re increases, the magnitude of the lift force
decreases, owing to the decrease of the slip-induced contribution. Expression (21) properly captures
this trend for both positive and negative Sr. Predictions remain accurate up to Re = 2 for Sr = ±0.5
but deteriorate somewhat beyond Re ≈ 0.5 for Sr = ±0.2. The reason for this is readily understood
by noting that, under such low-shear conditions, ε ranges from 0.6 for Re = 0.5 down to 0.3 for
Re = 2. For such modest shear levels, the theoretical solution of [19] is known to have a limited
accuracy, as does that of [6] for ε � 0.8 in the unbounded case (see, for instance, the discussion in
[29,35]). Since the fitting functions fL and hL were designed to approach this theoretical solution, it
is no surprise that the accuracy of predictions based on the overall fit (21) involving these functions
deteriorates as ε decreases.

In Fig. 17 we also reported numerical data from [29] for Sr = ±0.2 and Re = 0.2 (the highest
Reynolds number considered in this reference). As no data for a nonrotating sphere in a wall-
bounded shear flow were provided, these data correspond to a freely rotating sphere. Hence, the
expected effect of the particle rotation has to be subtracted to achieve a proper comparison with
present results. In the limit of large separations, the discussion in Sec. III B indicates that the
rotation adds a contribution 1

2 Sr − 1
32 Sr2 to the lift coefficient. Based on this estimate, one expects

the absolute values of CW
L provided in [29] to exceed those obtained in the present study by a

difference close to 0.1 for |Sr| = 0.2 and LR = 8, which Fig. 17 confirms. More precisely, the
difference between these corrected data and present results is less than 3% for both positive and
negative Sr.

Figure 18 summarizes the behavior of CW
L (Re, Sr, LR) for 0.1 � Re � 150 at various normalized

shear rates and separation distances. Some data from [17] (at Sr = 0.25) and [30] are also included
and show very good agreement with present predictions. The lift force is seen to vary sharply
with both the Reynolds number and the separation distance for Re � 10, while at higher Reynolds
number substantial variations only subsist for LR � 2. For larger separations, the magnitude of the
lift force gets close to that found in an unbounded flow (black solid lines in Fig. 18). Indeed, at such
Reynolds numbers the thickness of the boundary layer around the sphere is small enough for the
vortical interaction with the wall to have only a secondary influence on the lift force (see Fig. 3).
Effects caused by the shear may be qualitatively estimated by comparing CW

L (Re, Sr, LR) with its
counterpart in the shearless situation, CW

Lu(Re, LR), shown in Fig. 18 for LR = 1.5 (red solid lines).
Clearly, the slip effect dominates for Re � 10. Influence of the shear becomes more pronounced
or even dominant at lower Reynolds numbers. For large separations, it increases (decreases) the
total lift force well beyond (below) the level reached in the shearless case for Sr > 0 (Sr < 0). The
influence of Sr weakens as LR decreases, the presence of the wall inhibiting the development of the
wake. Selecting for instance LR = 1.5, Re = 1, and Sr = 0.5, the difference between CW

L and CW
Lu is

0.66, three times less than the lift coefficient CU
Lω = 1.93 in the unbounded case. Based on the above

observations, and disregarding the small shear-induced contribution to the lift beyond Re ≈ 10, the
finite-Re expression (21) may be extended to moderate Reynolds numbers in the form

CW
L [Re = O(1 − 100)] ≈ gLCW

Lu[Re = O(1 − 100)] + hLCU
Lω(Re � 1), (35)

with gL(Lω, ε, Re) = e−0.22ε0.8L2.5
ω exp(−0.01Re2 ), (36)
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FIG. 18. Lift coefficient CW
L (Re, Sr, LR) for a nonrotating sphere translating parallel to a wall in a linear

shear flow at Re � 150. (a) Sr = ±0.2; (b) Sr = ±0.5. � and ◦: numerical data for Sr > 0 and Sr < 0,
respectively. : numerical data from [17] for Sr = 0.25; : numerical data from [30]; � data from [11] in
the unbounded configuration. Dashed lines: finite-Re prediction (21); dotted lines: prediction (35); black solid
lines: lift coefficient CU

Lω in an unbounded shear flow (fitted from the results obtained with the present code);
red solid lines: lift coefficient CW

Lu at LR = 1.5 in a wall-bounded fluid at rest.

and CW
Lu[Re = O(1 − 100)], hL and CU

Lω(Re � 1) as provided by (24), (22b), and (7), respectively.
Note that, similar to expressions (21) and (22a) in the low-but-finite Reynolds number regime,
(35) and (36) indicate that the wall and shear effects do not superimpose linearly, as the prefactor
gL for the former involves Sr through the presence of ε and Lω. As shown in Fig. 18, (35) fits
all numerical predictions well throughout the range 0.1 � Re � 100 for LR � 8, with, however, a
slight underestimation of the lift force in the range 5 � Re � 50 for positive Sr.

We now turn to the high-Reynolds-number regime, say, Re � 100. At such Reynolds numbers,
the shear-induced lift force observed in the unbounded case has changed sign, as illustrated in Fig. 6.
This is confirmed in Fig. 19 , the top left panel of which shows in passing that present predictions for
the negative shear-induced lift force obtained with Sr = 0.2 and 0.5 in the limit LR → ∞ (actually
LR = 40) compare well with numerical data from [9] and [11]. For small separations, typically
LR � 2, the slip-induced transverse force discussed in Sec. V A 2 remains non-negligible up to
Re = 200. When the two effects combine, the streamwise vorticity distribution illustrated in Fig. 4
suggests that the two mechanisms act in an antagonistic (cooperative) manner when Sr is positive
(negative). This is confirmed in Fig. 19, where, taking the results corresponding to Sr = 0 (black
line) as reference, a negative Sr is seen to contribute positively to the lift force and vice versa, unlike
the low-to-moderate Reynolds number phenomenology. Moreover, slip- and shear-induced effects
combine in a strongly nonlinear manner. Indeed, for a given magnitude of Sr and a decreasing LR,
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FIG. 19. Variations of the lift coefficient CW
L (Re, Sr, LR) in the range 100 � Re � 250 for a nonrotating

sphere translating parallel to a wall in a linear shear flow. : Sr = +0.2, : Sr = −0.2, : Sr = +0.5,

: Sr = −0.5. Unbounded shear flow: + and + (all panels): Sr = +0.5 and +0.2, respectively; same with × and
× for Sr = −0.5 and −0.2, respectively; and (top left panel): data from [9] for Sr = +0.5 (interpolated) and
Sr = +0.2, respectively; and (top left panel): data from [11] for Sr = +0.4 and Sr = +0.2, respectively.
Black solid line: Sr = 0; green solid (dashed) line: prediction (37) for Sr = +0.2 (−0.2); same with the red
solid (dashed) line for Sr = +0.5 (−0.5).

the shear-induced variation, |CW
L − CW

Lu|, is seen to become significantly larger when Sr is positive
(compare in particular the data pairs corresponding to Sr = ±0.5 at LR = 1.5). For Re � 200 and
Sr = 0, the stationary imperfect bifurcation discussed in Sec. IV A takes place when the separation
is large enough, causing a sharp increase in the transverse force, as the black lines in Fig. 19
confirm for LR � 4. For smaller separations, or for arbitrary separations in the presence of shear,
no bifurcation takes place in this Re range, since the flow past the sphere is fully three-dimensional
whatever Re. This is the reason why the increase in the magnitude of CW

L with Re is much more
gradual in such situations. As the comparison with data corresponding to the unbounded sheared
configuration (crosses) reveals, the wall no longer influences the lift force for LR � 4. Conversely,
for smaller separations, the lift force found for Sr > 0 (Sr < 0) reduces (increases) gradually
compared to its value in an unbounded flow as LR decreases. We sought a correlation capable of
reproducing the above trends. For this purpose, since the shear-induced lift in an unbounded flow
changes sign for Re ≈ 50, we used the expression provided in (11) for CU

Lω[Re = O(100)]. Then
Fig. 12(b) suggests that the slip-induced contribution CW

Lu is almost constant beyond Re = 100 when
no stationary bifurcation takes place (see the data set corresponding to LR = 1.5). This situation also
holds when Sr �= 0, since the wake is three-dimensional whatever Re, similar to the configuration
Sr = 0 when LR is small. Therefore it sounds reasonable to assume that, at a given separation,
CW

Lu(Sr �= 0, Re � 100) is close to CW
Lu(Re = 100) for Sr = 0, as provided by (24) for Re = 100.
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FIG. 20. Variations with Re and LR of the rotation rate RrW of a torque-free sphere translating parallel to
a wall in a fluid at rest. Symbols: numerical results; dashed lines: asymptotic prediction (17) corresponding to
the condition Lu � 1; solid lines: empirical extension (39) of (17) based on the exact zero-Re prediction of
[38,49].

Last, CU
Lω[Re = O(100)] has to be weighted by a prefactor kL(LR, Re), in order to mimic the

increasingly asymmetric magnitude of the lift force according to the sign of Sr when LR becomes
small. We finally obtained

CW
L [Re = O(100)] ≈ CW

Lu(Re = 100) + kLCU
Lω[Re = O(100)], (37)

with kL(LR, Re) = 1 − e−0.034L6
R|Sr|0.75 + [1 + sgn(Sr)]e−0.048L4.5

R |Sr|−1
e−(0.009Re)−4

, (38)

with CW
Lu(Re = 100) and CU

Lω[Re = O(100)] as provided by (24) and (11), respectively. The solid
and dashed lines in Fig. 19 confirm that this correlation properly captures the dramatic variations
induced by the wall on the lift force, including the asymmetry observed between negative and
positive relative shear rates.

3. Effects of sphere rotation

The rotation rate of a torque-free sphere translating parallel to the wall in a fluid at rest is shown
in Fig. 20 for the shortest two separations, LR = 1.5 and 2, over the range 0.1 � Re � 250. RrW

is seen to change from negative at low Reynolds number (in agreement with Faxén’s prediction
(17) [43]) to positive beyond a critical O(1) Reynolds number, RecT . This critical value depends
on LR, and numerical results indicate RecT ≈ 4 for LR = 1.5 and RecT ≈ 2 for LR = 2. The low-Re
numerical values are found to exceed those predicted by (17), especially for LR = 1.5. We compared
the exact creeping-flow values provided in [38] (recomputed from the exact solution of [49]) with
Faxén’s approximate prediction (17) and found that the latter significantly underestimates the former
for LR � 2. A significantly better approximation, reproducing the exact prediction down to LR ≈
1.1, is provided by the semiempirical extension of (17)

RrW(LR, Re � 1) ≈ − 3
16 L−4

R

(
1 − 3

8 L−1
R + 0.9L−3

R

)
, (39)

suggesting that higher-order corrections neglected in Faxén’s solution are required to accurately
estimate RrW at such small separations. As the solid lines in Fig. 20 indicate, numerical results
at Re = 0.1 are in close agreement with (39). For Re > RecT , the rotation rate first increases
up to a maximum (RrW ≈ 0.01 at Re ≈ 5 for LR = 2, RrW ≈ 0.029 at Re ≈ 20 for LR = 1.5),
before exhibiting non-monotonic variations with both the Reynolds number and the separation
distance, especially beyond Re = 100. A qualitatively similar behavior has been reported in [16]
for the torque on a nonrotating sphere in the same range of separations. We hypothesize that subtle
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FIG. 21. Variations with Re and LR of the normalized rotation rate 2RrW/Sr of a torque-free sphere
translating parallel to a wall in a linear shear flow with |Sr| = 0.5. and : numerical data for Sr > 0
and Sr < 0, respectively. Solid lines: inner solution (17) corresponding to conditions Lu � 1, Lω � 1; black
dashed lines: empirical prediction (13)-(14) from [11] in an unbounded shear flow; red dashed lines: empirical
fit (40). Thick and thin lines refer to predictions for Sr = +0.5 and Sr = −0.5, respectively.

variations in the flow structure in the sphere vicinity (see Fig. 3 in [16]) are responsible for this
complex behavior.

Figure 21 summarizes the normalized rotation rate 2RrW/Sr corresponding to the torque-free
condition, as computed for 0.1 � Re � 250 at various separation distances. Only the “strong”
relative shear rate |Sr| = 0.5 is considered, so as to obtain sizable rotation effects. At low Reynolds
numbers and small separations (0.1 � Re � 5, LR � 2), numerical data indicate that spheres mov-
ing under Sr < 0 conditions rotate faster than those moving with Sr > 0. This difference is the
consequence of the opposite signs of the shear- and slip-induced contributions to the sphere rotation
in the low-Reynolds number regime, as is apparent in (17) (in the configuration of Fig. 1, these
two contributions yield clockwise and counterclockwise rotations, respectively). This asymptotic
prediction (solid lines in Fig. 21) is in good agreement with the numerical data up to Re = 0.5. A
slight underestimate (overestimate) is noticed when LR = 1.5 for Sr < 0 (Sr > 0), in line with the
aforementioned underestimate of the slip effect by (17) at short separations. The influence of the sign
of Sr on the magnitude of RrW is seen to reverse at somewhat higher Re, the rotation rate becoming
larger for positive relative shear rates than for negative ones when the Reynolds number exceeds
the critical value Re ≈ 6 (Re ≈ 3) for LR = 1.5 (LR = 2). This change is a direct consequence of
the change of sign of the slip-induced rotation in a fluid at rest, as described above. Thus, when the
sphere is allowed to rotate in the moderately inertial regime, the direction of the slip-induced rotation
is opposite to that found in the low-Re regime, leading to a cooperative (antagonistic) effect with the
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FIG. 22. Influence of the sphere rotation induced by the torque-free condition on the relative drag increase
for |Sr| = 0.5. Symbols � and ◦ refer to Sr = +0.5 and Sr = −0.5, respectively.

shear when Sr is positive (negative). Beyond LR = 2, the normalized rotation rates obtained with
positive and negative Sr are virtually identical, suggesting that the slip effect has become negligible
at such separations compared to that of the shear. Comparing the two panels at LR = 4 and LR = 8
indicates that the shear effect itself is barely affected by the presence of the wall at such separations,
the rotation rates found at a given Re being very close for both values of LR. This conclusion is
reinforced by the good agreement between present results for LR � 4 and the fit (13)-(14) provided
in [11] (black dashed lines in Fig. 21), which is based on numerical results obtained in an unbounded
shear flow. Both sets of results show that the rotation rate gradually decreases as the Reynolds
number increases, and is reduced to approximately 40% (20%) of the low-Re value Rr = 1

2 Sr at
Re = 100 (200). Remarkably, results at the lowest two separations reveal that the rotation rate is
altered by the presence of the wall in a very dissimilar manner depending on the sign of Sr in the
moderate-to-large Reynolds number regime, say, Re � 10: while RrW is significantly larger than the
rotation rate found in an unbounded shear flow when Sr is positive (even for Re � 100), the wall
does not seem to have any significant effect for Re � 10 when Sr is negative.

To account for these various effects, we sought an empirical fit tending toward (17) when Re → 0
[with the empirical modification introduced in (39)] and toward (13)–(14) when LR → ∞, while
taking into account the aforementioned asymmetric sgn(Sr)-dependent influence of the wall at
moderate-to-large Re. We found that the best fit satisfying these requirements is

RrW ≈ − 3

16
f ′
LL−4

R

{
1 − 3

8
L−1

R + 0.9L−3
R

}

+
{

f U
� + 0.5L−4

R tanh

(
Re

2

)
[1 + sgn(Sr)]

}{
1 − 5

16
L−3

R e−0.5Re

}
Sr

2
, (40)

with f ′
L and f U

� as given in (20) and (14), respectively. As the dashed lines in Fig. 21 show, (40)
satisfactorily matches the numerical data throughout the considered range of Re and LR.

The difference �CW
D� between the relative drag variations �CW

D respectively found in the
torque-free and nonrotating near-wall configurations for a given set of (Re, Sr, LR) is shown in
Fig. 22. Throughout the considered range of parameters, �CW

D� is less than 2%, indicating that
the sphere rotation has only a marginal effect on the drag. Note that �CW

D� is even less than 1% for
Re < 100, the largest influence of the rotation being observed in the high-Reynolds-number regime.
This weak change in the drag force confirms the findings of [16]. It is in line with the comments
made in Sec. IV B regarding the tiny changes induced in the spanwise vorticity field by the sphere
rotation resulting from the torque-free condition. At low Reynolds number, it is also in line with the
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FIG. 23. Influence of the sphere rotation induced by the torque-free condition on the lift force for |Sr| = 0.5
and 0.1 � Re � 150. Closed and open symbols refer to the lift coefficient for torque-free and nonrotating
spheres, respectively. Horizontal solid lines: asymptotic prediction (16) corresponding to conditions Lu �
1, Lω � 1, L� � 1; dashed lines: empirical prediction (41); black solid line: total lift coefficient for a torque-
free sphere in an unbounded shear flow (fitted from the results obtained with the present code).

theoretical predictions (17) and (18) which indicate that the drag force is affected by the particle
rotation only at O(L−8

R ).
Things are somewhat different regarding the lift force. As seen in Fig. 23, the lift force in

the torque-free case (closed symbols) slightly but consistently differs from its counterpart in the
nonrotating case (open symbols) for large enough relative shear rates (here |Sr| = 0.5). The rotation
provides a positive contribution when the sphere lags the fluid (Sr > 0) and vice versa. Whatever
the sign of Sr, this effect reduces as Re increases, in a manner consistent with the variation of
the torque-free rotation rate observed in Fig. 21. The asymptotic prediction (16) derived under
conditions Lu � 1, Lω � 1, L� � 1 is in good agreement with the data obtained at Re = 0.1 up to
LR ≈ 2 for Sr > 0, and LR ≈ 4 for Sr < 0. That the range of accuracy of the asymptotic prediction
is somewhat larger for negative relative shear rates is a property shared with the nonrotating case
(compare the left and right panels in Fig. 17). This is presumably because the nonlinear interaction
between the slip-induced and shear-induced mechanisms contributing to the lift force is somewhat
weaker when the two mechanisms are antagonistic, i.e., when Sr < 0.

To extend empirically the validity of (16) toward moderate Reynolds numbers, the change
CW

L� in the lift force specifically due to the torque-free rotation, which may be thought of as a
Magnus lift component, must first be examined in detail. As Fig. 24 shows, when normalized by
the rotation rate RrW, this change only weakly depends on Re, especially for small separations.
A similar behavior was observed in [11] in an unbounded shear flow. The rough approximation
CU

L�/Rr ≈ 0.55 provided in this reference is in reasonable agreement with present data beyond O(1)
Reynolds numbers, as the solid lines in Fig. 24 show (the difference is larger at low Re, as expected
from the difference between (16) and (15) which predicts CU

L�/Rr ≈ 1 − 1
8 Rr for large separations).

Based on this finding, one can expect the total lift force acting on a torque-free rotating sphere with
Re � 1 to be correctly estimated by superposing linearly the force found in the nonrotating case as
given by (35) and the spin-induced contribution discussed above. This superposition yields

CW
L [Re = O(1 − 100)] ≈ gLCW

Lu[Re = O(1 − 100)] + hLCU
Lω(Re � 1) + 0.55RrW, (41)

with RrW as provided in (40). The dashed lines in Fig. 23 confirm that this linear superposition
fits the numerical data well up to Re ≈ 100, even in the low-Reynolds-number range provided the
separation is not “too” large.
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FIG. 24. Change in the lift coefficient due to the sphere rotation induced by the torque-free rotation. Values
of CW

L� are divided by the rotation rate Rr to provide a better collapse. � and ◦ symbols refer to numerical
data for Sr > 0 and Sr < 0, respectively. Solid lines: approximation CU

L�/Rr ≈ 0.55 established in [11] in an
unbounded shear flow.

In the high-Re regime Re > 100, the total lift force is small, with lift coefficients typically of
O(0.1), i.e., one order of magnitude smaller than in the low-Re regime. However, the relative
contribution of the change CW

L� caused by the torque-free rotation in the total lift force remains
significant, as Fig. 25 shows. Again, for a given Reynolds number and separation distance, CW

L� is
seen to be larger when Sr is positive, especially for LR � 2. Moreover, the qualitative influence of
the sphere rotation is found to depend crucially on the separation distance. Indeed, for Re � 150,
the torque-free condition is seen to decrease the magnitude of the total lift force irrespective of its
sign for LR � 4. This is no longer the case at the smallest two separations, for which lift forces
corresponding to Sr < 0 are still reduced by the rotation while those associated with positive Sr are
enhanced, especially for LR = 1.5. To approach the observed behaviors, we again considered that
rotation-induced effects combine linearly with the slip- and shear-induced contributions predicted
by (37), assuming that the empirical expression (40) for the rotation rate derived at moderate
Reynolds number remains valid up to the upper bound (Re = 250) of the regime considered here.
Figure 24 indicates that the ratio CW

L�/RrW is still close to 0.55 in this regime, although it seems to
rise to slightly larger values (≈0.7) for positive Sr when the separation becomes small. Keeping this
ratio unchanged, we obtain

CW
L [Re = O(100)] ≈ CW

Lu(Re = 100) + kLCU
Lω[Re = O(100)] + 0.55RrW. (42)
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FIG. 25. Influence of the torque-free rotation on the lift force in the high-Reynolds-number regime for
|Sr| = 0.5. Closed and open symbols refer to data obtained with torque-free and nonrotating spheres, respec-
tively. Solid and dashed lines correspond to the prediction of (42) for the torque-free and nonrotating cases,
respectively. The horizontal black dashed line materializes the dividing line CW

L = 0.

As Fig. 25 shows, this fit reproduces the observed trends well throughout the considered Reynolds
number range, although the influence of the torque-free rotation appears to be slightly underes-
timated at small separations when Sr is positive. This successful extension of (37) indicates that
effects of slip, shear and torque-free rotation may still be considered to contribute separately to the
lift force even for O(100) Reynolds numbers, provided of course the influence of the nearby wall is
properly accounted for in the magnitude of each contribution.

An overview of the complex variations of the total lift force in the case of a torque-free particle
is provided in Fig. 26. Numerical data discussed in Fig. 23 (and in Fig. 12 for the unsheared config-
uration) are replotted here against the separation-based Reynolds number Lu = 1

2 LRRe, providing
a complementary view with respect to that offered by the previous plots. As expected, for Sr = 0
[Fig. 26(b)], CL is found to decay sharply as Lu increases, and to become vanishingly small for
Lu � 102 − 103 depending on Re, provided the Reynolds number is less than the threshold value
ReSS ≈ 212 at which the axisymmetric wake becomes unstable. This decay follows the L−2

u predic-
tion of (20) for Re � 1 (solid black line) and sharpens as the Reynolds number further increases up
to Re ≈ ReSS , as accounted for by (24). When the sphere lags behind the fluid [Fig. 26(c)], the slip-
and shear-induced lift forces cooperate up to Re ≈ 50. As Lu increases, so does the shear-induced
contribution, owing to the weakening of the wall-induced asymmetry imposed to the vorticity
disturbance in the particle wake (see Sec. IV A). For Re � 1, this increase in the shear-induced
lift overtakes the decrease of the slip-induced contribution, making the overall force increase with
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FIG. 26. Variations of the lift force vs the separation-based Reynolds number Lu for torque-free spheres
translating at various Reynolds numbers in a wall-bounded flow. (a) Sr = −0.5 (the sphere leads the fluid);
(b) Sr = 0 (the fluid is at rest at infinity); (c) Sr = +0.5 (the sphere lags behind the fluid). Symbols: numerical
results. Solid lines on the right part of each panel: asymptotic value of CL in the unbounded configuration
(Lu → ∞); solid line on the left part of panels (a) and (c): asymptotic prediction (16) evaluated in the limit
LR → 1 (sphere touching the wall); black solid line in (b): prediction (20) from [14] valid for Re � 1 and
Lu � 1.

Lu. At moderate Reynolds number, the shear-induced lift force in the unbounded configuration is
much smaller than in the low-Re regime. Because of this, the growth of this contribution as Lu

increases can no longer compensate for the decrease of the slip-induced contribution, making the
overall lift force decrease sharply with Lu as soon as Re � 2. The shear-induced lift changes sign for
Re � 50, while the spin-induced lift does not. Hence, in the limit Lu � 1 and for larger Reynolds
numbers, the sign of the total lift force depends on the relative magnitude of these two contributions.
The former becoming dominant for Re � 100, the total force becomes negative at large enough Re
and Lu, as illustrated by the purple series (Re = 250). When the sphere leads the fluid [Fig. 26(a)]
and the Reynolds number is low or moderate, the shear- and spin-induced lift contributions are both
attractive, so that only the slip-induced contribution can make the overall lift force repulsive. This
requires the separation to be small enough, as is the case in the range 1 � Re � 50 for the smallest Lu

(according to Fig. 23, this would also be the case at lower Re in the case of a nonrotating particle).
For the reasons reminded above, increasing Lu makes the slip-induced contribution decrease, while
in this Reynolds number range it makes the magnitude of the shear-induced contribution increase.
Therefore the overall lift force becomes negative beyond a (small) critical Lu and keeps on increasing
in magnitude until it asymptotes the value it takes in the unbounded configuration at large enough
Lu. Again, for Re � 50, the sign of the total lift force in the limit Lu � 1 depends on the relative
magnitude of the shear- and spin-induced contributions. The latter is still slightly dominant for
Re = 100, yielding a tiny negative total lift force (pink series) but the former eventually takes over
at larger Reynolds number, making the total force positive at Re = 250 (purple series).

The above comments apply with only little changes to a nonrotating particle. Results in a fluid at
rest are virtually identical (see Fig. 12). With Sr �= 0, the absence of the spin-induced contribution
generally slightly decreases the magnitude of the total lift force. The only exceptions are the regimes
in which this total force is very small, in which case this absence may change its sign. As pointed
about above, this is the case for Sr < 0 at low Reynolds number and Lu � 10−1. For both negative
and positive Sr, this is also the case at very large Lu in an intermediate, Sr-dependent range of
Reynolds number just beyond the critical value at which the shear-induced lift changes sign. In
this regime, the total lift force in the nonrotating case changes sign as soon as the shear-induced
contribution does, i.e., for Re ≈ 50. In contrast, Fig. 26 shows that when the torque-free condition
holds, the spin-induced contribution maintains the sign of the total force unchanged up to Re ≈ 100
for |Sr| = 0.5.
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VI. SUMMARY AND CONCLUDING REMARKS

We computed the flow and the hydrodynamic forces acting on a rigid sphere moving along the
planar wall bounding a linear shear flow over a wide range of Reynolds number and separation
distance, with the sphere either lagging or leading the fluid. We considered both nonrotating and
torque-free spheres in order to quantify effects of the rotation induced by the torque-free constraint
obeyed by freely moving particles. To reveal the slip-wall and shear-wall interaction mechanisms at
stake, we examined several characteristic features of the flow field, especially the spatial distribution
of the spanwise and streamwise vorticity disturbances, before focusing on their influence on the drag
and lift forces.

When the sphere moves in a fluid at rest, low-Reynolds-number asymptotic solutions indicate
an increase of the drag due to the presence of the wall. Additionally, a repulsive transverse force
arises, due to the interaction between the wall and the wake resulting from the vorticity generated
at the sphere surface by the no-slip condition. For a given separation distance, the magnitude of this
repulsive force decreases with the Reynolds number when the wall lies in the outer region of the
disturbance, in line with the conclusions of previous studies. At low-but-finite Reynolds number,
both the drag increase and the transverse force are proportional to the square of the maximum
vorticity at the sphere surface, which increases with the Reynolds number. Present results confirm
these predictions, and support the model (24) proposed in [15] for the transverse force up to O(100)
Reynolds numbers, albeit with a slight change in the evaluation of the surface vorticity aimed at
accounting for the influence of the nearby wall. At larger Reynolds number, the behavior of the
transverse force depends crucially on the separation. For LR � 4, this force is nearly zero from
Reynolds numbers of some tens up to the critical value ReSS ≈ 212 corresponding to the onset of a
stationary nonaxisymmetric wake. Although the wall is not responsible for this change in the wake
structure, it selects the direction of the corresponding lift force, which again tends to repel the sphere
into the fluid for Re > ReSS . Up to Re = 250, the magnitude of this force is accurately estimated by
the heuristic extension (30) of the theoretical prediction derived from a weakly nonlinear analysis.
For smaller separations, the flow past the sphere remains anisotropic whatever the Reynolds number,
making the transverse force keep significant values throughout the Re range explored numerically.
In this situation, the force does not change much beyond Re = 100 when the separation is small
(LR = 1.5), while a mixed situation in which the force increases significantly with the Reynolds
number in the range 150 � Re � 250 takes place at intermediate separations (LR = 2). At low
Reynolds number, asymptotic predictions with the wall standing in the inner region of the dis-
turbance predict that the shear tends to decrease (increase) the drag when the sphere lags (leads) the
fluid, while the reverse holds for the transverse force. For this reason, the latter may switch from
positive to negative at a given separation if the sphere leads the fluid and the relative magnitude of
the shear is large enough. These predictions are confirmed, both qualitatively and quantitatively,
by present numerical results. When the wall stands in the outer region of the disturbance, the
semiempirical expressions of [31] taking into account finite-size effects are found to provide reliable
predictions for both the drag variation and the lift force irrespective of the wall position up to
Re = 2. Whatever Sr and LR, the magnitude of the lift force sharply decreases as the Reynolds
number increases in the range 1 � Re � 10. For LR � 2, only a weak lift force, with a magnitude
close to that found in an unbounded flow, subsists in the moderate-to-high Reynolds number regime
10 � Re � 100. This force keeps significantly larger values at smaller separations, being dominated
by the slip effect rather than the influence of the shear in this Re range. Numerical results allowed
us to obtain the empirical prediction (35)-(36) for the lift force extending the finite-Re prediction
(21) up to Re � 100.

At O(100) Reynolds numbers, considering the unbounded sheared configuration first was found
useful to quantify specific effects induced by the wall. Present results confirm the well-established
reversal of the shear-induced lift beyond Re ≈ 50 [9]. Variations of this “reversed” lift force with
Re and Sr agree well with those reported in the literature, as summarized in [36]. In the same
regime, the drag force is found to increase linearly with Re and |Sr| beyond Re ≈ 150, leading to a
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substantial increase (≈20%) at Re = 250 for |Sr| = 1. When a nearby wall is involved, the above
reversal makes the slip- and shear-related mechanisms contributing to the lift act in an antagonistic
(cooperative) manner for positive (negative) Sr, unlike the situation encountered at lower Reynolds
numbers. Moreover, these mechanisms interact in a highly nonlinear manner, the shear-induced
variation to the lift force observed for a given magnitude of the relative shear rate being significantly
larger when Sr is positive. We could summarize the effect of these complex interactions into the
empirical prediction (37)-(38) which provides an accurate estimate of the near-wall lift force up to
Re = 250.

Only small changes are observed in the flow structure when the sphere rotates in order to satisfy a
torque-free condition. The corresponding rotation rate decreases drastically as Re increases, similar
to the tendency already reported in an unbounded shear flow. However, these small changes subtly
modify the shear stress distribution at the sphere surface, hence the torque acting on it. For this
reason, they are sufficient to make the variations of the rotation rate with respect to Re and Sr
nontrivial in near-wall configurations. First, the slip-induced rotation in a fluid at rest is found
to change sign beyond a critical separation-dependent O(1) Reynolds number. Then, for small
enough separations and Reynolds numbers �10, the rotation rate is influenced by the shear in a
very asymmetric manner, depending on the sign of Sr. Indeed, while the rotation is almost identical
to its counterpart in an unbounded shear flow when Sr is negative, it is significantly larger when Sr is
positive, even for Reynolds numbers of O(100). These findings are summarized in the fit (40), which
predicts the rotation rate well irrespective of the sign of Sr and throughout the range of Reynolds
number explored in this investigation. Finally, present results show that the spin-induced contribu-
tion to the near-wall lift in the torque-free configuration is directly proportional to the rotation rate.
Remarkably, the corresponding prefactor (≈0.55) only weakly varies with the Reynolds number
and is similar to that previously determined in an unbounded shear flow [11]. These findings allow
the fits predicting the lift force on a nonrotating sphere to be extended easily to a torque-free sphere
in the form (41) for moderate Reynolds numbers and (42) for Re � 100.
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FIG. 27. Loads on a sphere rotating and translating at Reynolds number Re = 0.1 in a fluid at rest.
(a) Torque coefficient; (b) spin-induced lift coefficient. �: numerical results. Red and blue lines correspond
to the low-Re solutions CM = 16Rr/Re and CL� = Rr, respectively.
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TABLE I. Torque, drag, and lift coefficients for a rotating sphere translating parallel to a wall in a linear
shear flow at Re = 0.1 and 100 with LR = 1.5 and Sr = 0.5. The first four (six) rows for Re = 0.1 (100)
describe the evolution of the force and torque coefficients during the iterative process. The last four (two) rows
for Re = 0.1 (100) show how these coefficients vary for prescribed rotation rates slightly larger or smaller than
that achieving the torque-free condition.

Re 2Rr/Sr CM CM/CM0 CD CL

0.1 0.000 35.31 1.000 376.7 2.12
0.883 −4.90 −0.139 377.2 2.27
0.760 0.71 0.020 377.1 2.26
0.778 0.12 0.003 377.0 2.26

0.831 −2.58 −0.073 377.1 2.27
0.805 −1.34 −0.038 377.1 2.27
0.751 1.13 0.032 377.0 2.26
0.725 2.37 0.067 377.0 2.25

100 0.000 0.0291 1.000 1.21 0.118
0.726 −0.0111 −0.382 1.23 0.240
0.449 0.0041 0.142 1.23 0.196
0.551 −0.0014 −0.048 1.23 0.216
0.516 0.0003 0.010 1.23 0.212
0.523 −0.0001 −0.003 1.23 0.213

0.537 −0.0007 −0.025 1.23 0.214
0.506 0.0010 0.034 1.23 0.211

APPENDIX: VALIDATION OF THE PROCEDURE USED TO APPROACH
THE TORQUE-FREE CONDITION

We start by checking the accuracy of the computed torque and Magnus lift force on a sphere
rotating in a unbounded uniform stream. We consider a translation Reynolds number Re = 0.1,
for which the asymptotic solution of [2] is supposed to apply. According to this prediction, the
torque and spin-induced lift coefficients are, up to higher-order corrections, CL� = Rr and CM =
16Re−1Rr, respectively. Figure 27 compares the numerical results for these two coefficients with
the asymptotic prediction over two and a half decades of the rotation rate Rr. Throughout this range
of Rr, the deviation from these predictions is less than 4% for both coefficients.

To assess the iteration procedure used to approach the torque-free condition, we consider the
case of a rigid sphere moving parallel to a wall in a linear shear flow with LR = 1.5 and Sr = 0.5
at two widely different Reynolds numbers, Re = 0.1 and 100. The initial rotation rate Rr0 is set to
zero and the torque computed at iteration n is used to update Rr via the iterative algorithm Rrn+1 =
Rrn + CMnRe/16. In the present tests, iterations are pursued until the magnitude of the torque is
reduced to less than 1% of its initial value (instead of 5% in the runs discussed in the paper). The
results for the torque, drag, and lift coefficients obtained during this iterative process are summarized
in Table I (first four and six rows for Re = 0.1 and 100, respectively). It turns out that the torque-free
condition is achieved to within 1% at both Reynolds numbers in at most five iterations. Moreover,
virtually no variation in the computed drag and lift coefficients takes place when the ratio |CM|/CM0

becomes less than 5%. For instance, decreasing |CM|/CM0 from ∼5% to a vanishingly small value
makes the lift coefficient vary by less than 1.5% at Re = 100. To reconfirm this point, we ran
additional cases with prescribed rotation rates yielding torque coefficients of the order of ±0.05CM0.
These additional data (last four and two rows in Table I for Re = 0.1 and Re = 100, respectively)
confirm that the computed drag and lift coefficients vary only marginally with Rr in this range, the
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variation in CL staying again below 1.5%. Based on these tests, we considered that the criterion
|CM/CM0| < 0.05 properly approximates the torque-free condition in all cases.

[1] F. P. Bretherton, The motion of rigid particles in a shear flow at low Reynolds number, J. Fluid Mech. 14,
284 (1962).

[2] S. I. Rubinow and J. B. Keller, The transverse force on a spinning sphere moving in a viscous fluid,
J. Fluid Mech. 11, 447 (1961).

[3] P. G. Saffman, The lift on a small sphere in a slow shear flow, J. Fluid Mech. 22, 385 (1965).
[4] P. G. Saffman, Corrigendum to “The lift on a small sphere in a slow shear flow”, J. Fluid Mech. 31, 624

(1968).
[5] E. S. Asmolov, Dynamics of a spherical particle in a laminar boundary layer, Fluid Dyn. 25, 886 (1990).
[6] J. B. McLaughlin, Inertial migration of a small sphere in linear shear flows, J. Fluid Mech. 224, 261

(1991).
[7] P. Cherukat, J. B. McLaughlin, and A. L. Graham, The inertial lift on a rigid sphere translating in a linear

shear flow field, Int. J. Multiphase Flow 20, 339 (1994).
[8] P. Cherukat, J. B. McLaughlin, and D. S. Dandy, A computational study of the inertial lift on a sphere in

a linear shear flow field, Int. J. Multiphase Flow 25, 15 (1999).
[9] R. Kurose and S. Komori, Drag and lift forces on a rotating sphere in a linear shear flow, J. Fluid Mech.

384, 183 (1999).
[10] P. Bagchi and S. Balachandar, Shear versus vortex-induced lift force on a rigid sphere at moderate Re,

J. Fluid Mech. 473, 379 (2002).
[11] P. Bagchi and S. Balachandar, Effect of free rotation on the motion of a solid sphere in linear shear flow

at moderate Re, Phys. Fluids 14, 2719 (2002).
[12] R. G. Cox and H. Brenner, The lateral migration of solid particles in Poiseuille flow—I Theory, Chem.

Eng. Sci. 23, 147 (1968).
[13] R. Cox and S. Hsu, The lateral migration of solid particles in a laminar flow near a plane, Int. J. Multiphase

Flow 3, 201 (1977).
[14] P. Vasseur and R. G. Cox, The lateral migration of spherical particles sedimenting in a stagnant bounded

fluid, J. Fluid Mech. 80, 561 (1977).
[15] F. Takemura and J. Magnaudet, The transverse force on clean and contaminated bubbles rising near a

vertical wall at moderate Reynolds number, J. Fluid Mech. 495, 235 (2003).
[16] L. Zeng, S. Balachandar, and P. Fischer, Wall-induced forces on a rigid sphere at finite Reynolds number,

J. Fluid Mech. 536, 1 (2005).
[17] L. Zeng, F. Najjar, S. Balachandar, and P. Fischer, Forces on a finite-sized particle located close to a wall

in a linear shear flow, Phys. Fluids 21, 033302 (2009).
[18] E. S. Asmolov, Lift force exerted on a spherical particle in a laminar boundary layer, Fluid Dyn. 24, 710

(1989).
[19] J. B. McLaughlin, The lift on a small sphere in wall-bounded linear shear flows, J. Fluid Mech. 246, 249

(1993).
[20] F. Takemura, J. Magnaudet, and P. Dimitrakopoulos, Migration and deformation of bubbles rising in a

wall-bounded shear flow at finite Reynolds number, J. Fluid Mech. 634, 463 (2009).
[21] F. Takemura and J. Magnaudet, Lateral migration of a small spherical buoyant particle in a wall-bounded

linear shear flow, Phys. Fluids 21, 083303 (2009).
[22] J. Magnaudet, S. Takagi, and D. Legendre, Drag, deformation and lateral migration of a buoyant drop

moving near a wall, J. Fluid Mech. 476, 115 (2003).
[23] P. Cherukat and J. B. McLaughlin, The inertial lift on a rigid sphere in a linear shear flow field near a flat

wall, J. Fluid Mech. 263, 1 (1994).
[24] P. Cherukat and J. B. McLaughlin, The inertial lift on a rigid sphere in a linear shear flow field near a flat

wall—Corrigendum, J. Fluid Mech. 285, 407 (1995).

104309-39

https://doi.org/10.1017/S002211206200124X
https://doi.org/10.1017/S0022112061000640
https://doi.org/10.1017/S0022112065000824
https://doi.org/10.1017/S0022112068999990
https://doi.org/10.1007/BF01049699
https://doi.org/10.1017/S0022112091001751
https://doi.org/10.1016/0301-9322(94)90086-8
https://doi.org/10.1016/S0301-9322(98)00034-2
https://doi.org/10.1017/S0022112099004164
https://doi.org/10.1017/S0022112002002628
https://doi.org/10.1063/1.1487378
https://doi.org/10.1016/0009-2509(68)87059-9
https://doi.org/10.1016/0301-9322(77)90001-5
https://doi.org/10.1017/S0022112077001840
https://doi.org/10.1017/S0022112003006232
https://doi.org/10.1017/S0022112005004738
https://doi.org/10.1063/1.3082232
https://doi.org/10.1007/BF01051723
https://doi.org/10.1017/S0022112093000114
https://doi.org/10.1017/S0022112009007605
https://doi.org/10.1063/1.3206729
https://doi.org/10.1017/S0022112002002902
https://doi.org/10.1017/S0022112094004015
https://doi.org/10.1017/S0022112095000590


SHI, RZEHAK, LUCAS, AND MAGNAUDET

[25] S. Yahiaoui and F. Feuillebois, Lift on a sphere moving near a wall in a parabolic flow, J. Fluid Mech.
662, 447 (2010).

[26] D. T. Leighton and A. Acrivos, The lift force on a small sphere touching a plane in the presence of a
simple shear flow, Z. Angew. Math. Phys. 36, 174 (1985).

[27] G. P. Krishnan and D. T. Leighton, Inertial lift on a moving sphere in contact with a plane wall in a shear
flow, Phys. Fluids 7, 2538 (1995).

[28] N. Ekanayake, J. D. Berry, A. D. Stickland, D. E. Dunstan, I. L. Muir, S. K. Dower, and D. J. E. Harvie,
Lift and drag forces acting on a particle moving with zero slip in a linear shear flow near a wall, J. Fluid
Mech. A 904, 6 (2020).

[29] N. Ekanayake, J. D. Berry, and D. J. E. Harvie, Lift and drag forces acting on a particle moving in the
presence of slip and shear near a wall, J. Fluid Mech. A 915, 103 (2021).

[30] H. Lee and S. Balachandar, Drag and lift forces on a spherical particle moving on a wall in a shear flow
at finite Re, J. Fluid Mech. 657, 89 (2010).

[31] P. Shi, R. Rzehak, D. Lucas, and J. Magnaudet, Hydrodynamic forces on a clean spherical bubble
translating in a wall-bounded linear shear flow, Phys. Rev. Fluids 5, 073601 (2020).

[32] E. S. Asmolov, A. L. Dubov, T. V. Nizkaya, J. Harting, and O. I. Vinogradova, Inertial focusing of finite-
size particles in microchannels, J. Fluid Mech. 840, 613 (2018).

[33] R. Natarajan and A. Acrivos, The instability of the steady flow past spheres and disks, J. Fluid Mech. 254,
323 (1993).

[34] P. Shi, Hydrodynamic forces on a sphere translating steadily in a wall-bounded linear shear flow, Ph.D.
thesis, Technische Universität Dresden, Dresden, Germany, https://nbn-resolving.org/urn:nbn:de:bsz:14-
qucosa2-742474 (2020).

[35] D. Legendre and J. Magnaudet, The lift force on a spherical bubble in a viscous linear shear flow, J. Fluid
Mech. 368, 81 (1998).

[36] E. Loth, Lift of a solid spherical particle subject to vorticity and/or spin, AIAA J. 46, 801 (2008).
[37] P. Shi and R. Rzehak, Lift forces on solid spherical particles in unbounded flows, Chem. Eng. Sci. 208,

115145 (2019).
[38] A. J. Goldman, R. G. Cox, and H. Brenner, Slow viscous motion of a sphere parallel to a plane wall—I.

Motion through a quiescent fluid, Chem. Eng. Sci. 22, 637 (1967a).
[39] A. J. Goldman, R. G. Cox, and H. Brenner, Slow viscous motion of a sphere parallel to a plane wall—II.

Couette flow, Chem. Eng. Sci. 22, 653 (1967b).
[40] In (15), prefactors expressed in fractional form were derived analytically by Lovalenti in an Appendix to

[23], while those expressed in decimal form originate from the fitted value of the force computed in the
form of a volume integral in the same reference.

[41] D. Fabre, J. Tchoufag, and J. Magnaudet, The steady oblique path of buoyancy-driven disks and spheres,
J. Fluid Mech. 707, 24 (2012).

[42] H. Homann, J. Bec, and R. Grauer, Effect of turbulent fluctuations on the drag and lift forces on a towed
sphere and its boundary layer, J. Fluid Mech. 721, 155 (2013).

[43] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Prentice-Hall, New York, 1965).
[44] J. Magnaudet, M. Rivero, and J. Fabre, Accelerated flows past a rigid sphere or a spherical bubble. Part 1.

Steady straining flow, J. Fluid Mech. 284, 97 (1995).
[45] D. Legendre, J. Magnaudet, and G. Mougin, Hydrodynamic interactions between two spherical bubbles

rising side by side in a viscous liquid, J. Fluid Mech. 497, 133 (2003).
[46] V. Citro, J. Tchoufag, D. Fabre, F. Giannetti, and P. Luchini, Linear stability and weakly nonlinear analysis

of the flow past rotating spheres, J. Fluid Mech. 807, 62 (2016).
[47] D. Legendre and J. Magnaudet, A note on the lift force on a spherical bubble or drop in a low-Reynolds-

number shear flow, Phys. Fluids 9, 3572 (1997).
[48] F. Takemura, S. Takagi, J. Magnaudet, and Y. Matsumoto, Drag and lift forces on a bubble rising near a

vertical wall in a viscous liquid, J. Fluid Mech. 461, 277 (2002).
[49] M. E. O’Neill, A slow motion of viscous liquid caused by a slowly moving solid sphere, Mathematika 11,

67 (1964).

104309-40

https://doi.org/10.1017/S0022112010003307
https://doi.org/10.1007/BF00949042
https://doi.org/10.1063/1.868755
https://doi.org/10.1017/jfm.2020.662
https://doi.org/10.1017/jfm.2021.138
https://doi.org/10.1017/S0022112010001382
https://doi.org/10.1103/PhysRevFluids.5.073601
https://doi.org/10.1017/jfm.2018.95
https://doi.org/10.1017/S0022112093002150
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-742474
https://doi.org/10.1017/S0022112098001621
https://doi.org/10.2514/1.29159
https://doi.org/10.1016/j.ces.2019.08.003
https://doi.org/10.1016/0009-2509(67)80047-2
https://doi.org/10.1016/0009-2509(67)80048-4
https://doi.org/10.1017/jfm.2012.231
https://doi.org/10.1017/jfm.2013.66
https://doi.org/10.1017/S0022112095000280
https://doi.org/10.1017/S0022112003006463
https://doi.org/10.1017/jfm.2016.596
https://doi.org/10.1063/1.869466
https://doi.org/10.1017/S0022112002008388
https://doi.org/10.1112/S0025579300003508

