
PHYSICAL REVIEW FLUIDS 6, 104306 (2021)

Numerical calculation of the particle–fluid–particle stress
in random arrays of fixed particles

Min Wang
Fluid Dynamics and Solid Mechanics Group, Theoretical Division, Los Alamos National Laboratory,

Los Alamos, New Mexico 87545, USA

Yunchao Yang
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville,

Florida 32611, USA

Duan Z. Zhang *

Fluid Dynamics and Solid Mechanics Group, Theoretical Division, Los Alamos National Laboratory,
Los Alamos, New Mexico 87545, USA

S. Balachandar
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville,

Florida 32611, USA

(Received 25 January 2021; accepted 6 October 2021; published 22 October 2021)

Based on the nearest particle statistics [Zhang, J. Fluid Mech. 910, A16 (2021)], the
phase interaction force in a multiphase flow is decomposed into a particle–mean-field
force and the divergence of the particle–fluid–particle (PFP) stress. The PFP stress is
proportional to the correlation product of the distance from a particle to its nearest neighbor
and the force on the particle conditionally averaged on the nearest-neighbor location. In
this work, a functional form of the stress is obtained corrected to the first order of the ratio
between the interparticle distance and the macroscopic length scale of the flow. Particle-
resolved numerical simulations are used to calculate the PFP stress in random arrays of
fixed particles and to explore the physics represented by the stress. The numerical results
show that the PFP stress is attractive along the direction of the flow and is repulsive in the
directions perpendicular to the flow. In the flow regime simulated, this PFP stress can be
considered as a macroscopic representation of the drafting–kissing–tumbling mechanism.
The Reynolds stress for the fluid phase is also calculated and compared with the PFP stress.
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I. INTRODUCTION

In many engineering calculations of multiphase flows, drag force is the primary force considered
between the phases. Effects of particle volume fraction, Reynolds number, and Mach number have
been considered in drag force models [1–7]. Spatial inhomogeneity is not usually considered in the
models. It is now known [8–10] that such force models are insufficient, and particle–fluid–particle
(PFP) interactions in an inhomogeneous flow need to be considered. The lack of representation of
mean-field gradient has also been pointed out by Lhuillier [11] for Stokesian suspensions. Nott et al.
[12] showed that in a Stokesian suspension, the viscous force on a particle can be written as a sum
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of forces from the particles in the suspension. The multiparticle interaction is represented by the
resistance coefficients. The force on a particle can be decomposed as effective pair interactions,
and then a particle phase stress, similar to the virial stress in molecular dynamics, can be defined
based on the Taylor expansion of the weighting function [12,13] in the volume average. The phase
interaction force in a Stokesian suspension is then expressed as a drag force plus a divergence of
the particle phase stress. However, as pointed out by the authors, such force decomposition and the
stress definition are only valid for Stokes flows and are not valid for flows with finite Reynolds
numbers. Given that the drag force in a linear inhomogeneous Stokesian suspension needs to be
supplemented with a divergence of a stress, there is reason to expect that a similar stress also exists
and plays an important role in a multiphase flow with a finite Reynolds number.

Furthermore, it is known that an average drag force model does not sufficiently describe for-
mation of mesoscale structures [14,15] and their dynamics, such as the drafting–kissing–tumbling
motions [16,17] among the particles. The macroscopic models representing these mesoscale mech-
anisms have not been well studied. A force vector can only be used to represent the phase
interaction in a certain direction, while mesoscale particle structures formed by PFP interac-
tions are three-dimensional objects. The deformation and evolution of a three-dimensional object
need to be described by a tensor. A stress tensor is needed to drive their motions. Fox et al.
[9,10] proposed a two-fluid model based on kinetic theory and showed that a stress account-
ing for fluid mediated particle interactions, or PFP interactions, is needed for the hyperbolicity
of the equations. How to define such a stress in a general multiphase flow is a challenging
modeling issue. Adding to the difficulty is the long-range hydrodynamic interactions among the
particles in a disperse multiphase flow that often result in divergent integrals in the study of
effective quantities. In a linear system, the renormalization method has been used by Batchelor
[18], Batchelor and Green [19], and Jeffrey [20] to calculate the average quantities in the di-
lute particle limit. Its extension to finite volume fractions and nonlinear problems has not been
successful.

With many recent developments on computer technologies and numerical methods, many
particle-resolved calculations have been performed [21–27]. In principle, the numerical results
contain all the information about particle interactions in the multiphase flow, including that needed
to define and calculate the stress. The question about the stress can also be asked from the point
of view of the numerical simulations. What else can we learn from the numerical results other
than calculating the drag force between the phases? The present work shows that the numerical
results can be further processed to obtain the PFP stress, which represents macroscopic effect of
drafting–kissing–tumbling motions at the interparticle scale.

To extract more physical understanding from the particle-resolved numerical results and
to study PFP interactions, one needs a mathematical tool capable of handling long-range in-
teractions, applicable to finite particle volume fractions, and nonlinear systems. Recently, it
is shown [28,29] that the divergence difficulty that arises from the long-range particle inter-
actions can be bypassed by using quantities conditionally averaged on the nearest particle.
Averages thus calculated account for effects from all particles in the flow, not only the bi-
nary interaction between the nearest pair. Similarly to the work of Nott et al. [12], the
phase interaction force is decomposed into a particle–mean-field force and a divergence of
the PFP stress. The averaging method, the force decomposition, and the PFP stress defini-
tion are valid for multiphase flows with finite particle volume fractions and finite Reynolds
numbers.

The PFP stress is defined in a similar form as the virial stress [30] in particulate systems,
but with the related distances and the forces replaced by the corresponding quantities from the
nearest particle statistics to avoid the divergence difficulties from long-range particle interac-
tions. The main objective of the present paper is to numerically calculate the PFP stress and
then study the physics represented by it and the consequence for multiphase flow models. In
the next section, the newly developed nearest particle statistics and the PFP stress [28,29] are
introduced, with details explained in the Appendix. Section III describes the preparation of the
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statistical samples and the numerical simulations. In Sec. IV, we use the ergodicity principle
to calculate the PFP stress, an ensemble averaged quantity, as a volume average in statisti-
cally uniform flows and then study its properties. Although the main objective of this paper
is to study the PFP stress, the numerical results produced can also be used to calculate the
fluid Reynolds stress. Such calculated Reynolds stress are then compared to the PFP stress in
Sec. IV.

II. PHASE INTERACTION FORCE AND THE PFP STRESS

A. The phase interaction force

To clarify the role of the PFP stress in a multiphase flow model, we start by listing the averaged
momentum equations of a two-fluid model obtained from the ensemble phase averaging method
[31–33]. They are

∂

∂t
(θ f ρ f v f ) + ∇ · (θ f ρ f v f v f ) = θ f ∇ · σ f + ∇ · (

θ f σ
Re
f + θpT f

) − np f pf , (1)

∂

∂t
(θpρpvp) + ∇ · (θpρpvpvp) = θp∇ · σ f + ∇ · (

θpσ
Re
p

) + np f pf , (2)

where subscripts f and p denote the fluid and particle phases respectively, ρ is the material density
of the corresponding phase, θ is the volume fraction, v is the average velocity, σ f is the average fluid
stress, σRe is the stress due to velocity fluctuations of the corresponding phase, T f is the average
stress in the fluid phase caused by phase interactions at the length scale of the particle size, np is
the particle number density, and f pf is the average of phase interaction force per particle. In a flow
configuration C , for a particle at position x and time t , the phase interaction force f pf and the stress
T f is defined as [31,32]

f pf (x, t ; C ) =
∮

[σs(z, t ; C ) − σ f (z, t )] · ndSz, (3)

and

T f (x, t ; C ) = 1

Vp

∮
(z − x)[σs(z, t ; C ) − σ f (z, t )] · ndSz, (4)

where Vp is the particle volume, σs(z, t ; C ) is the fluid stress on the surface location z of the particle
centered at position x at time t , σ f (z, t ) is the average fluid stress, and n is the outward unit normal
of the surface element dSz on the particle. The overbars on f pf and T f in (1) and (2) denote the
averages over all the configurations in which x is occupied by a particle center. Although the stress
T f is of interest and computable using particle-resolved numerical simulations, the present work
only focuses on the phase interaction force f pf .

The product np f pf in (1) and (2) is the force density appearing in the momentum equations for
both phases with opposite signs. Those equations do not explicitly contain the PFP stress. The PFP
stress �pfp is contained in the force density np f pf as [28,29]

np(x) f pf (x) = np(x) f pm(x) + ∇ · �pfp(x) + O

(
�p

L

)2

, (5)

where f pm is the particle–mean-field interaction force, �p is the typical distance among the particles,
and L is the length scale of the physical problem, or the length scale associated with the gradient of
the macroscopic field. The PFP stress affects both phases with opposite signs.

Although higher-order terms in �p/L have been studied for Stokes flows [29], in the present work
we only study the first two terms in (5) and limit ourselves to disperse multiphase flows with �p � L.
Similarly to the kinetic theory [34,35] for collisional particle-laden flows, the model developed here
is not valid for flows with strong spatial gradients, inside a shock wave for instance.
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In the following we describe and define the particle–mean-field force f pm and the PFP stress. In
general, the phase interaction force (3) is a function of time t . However, in this work of calculating
the force and the PFP stress, we mainly concern about the spatial effects. For brevity, we drop
variable t for time in the rest of the paper. The concepts of the particle–mean-field force f pm and
the PFP stress �pfp are valid for time dependent flows, while the numerical results in the following
sections are obtained from steady uniform flows.

B. Nearest particle statistics

To study PFP interactions, we inevitably encounter the difficulty of the long-range hydrodynamic
interactions among the particles. To avoid the mathematical difficulties associated with the long-
range interactions, which often lead to divergent integrals, we use the nearest particle statistics
[28,29]. We divide the ensemble average process into two steps. In the first step, for a particle
centered at x, we specify a position y and surround it with an infinitesimal volume d3y, then average
over all the configurations in which the volume d3y contains centers of the nearest particles to
obtain the conditional average f

nst
pf (x, y) of the forces f pf (x; C ) acting on the particle at x in these

configurations. Clearly, there is at least one nearest particle for every particle in a configuration.
It is possible that in some configurations the particle at x may have two or more, say, Nx, nearest
particles. For such configurations, their contribution to the average is reduced [28,29] by a factor
1/Nx. The dependence of such conditionally averaged force f

nst
pf (x, y) on y contains information

about particle interactions in the mean field consisting of the surrounding fluid and the particles.
There is no need (actually, impossible in most cases) to separate the effects from the interaction with
the nearest particle and the effects from the interactions with other surrounding particles or the fluid.
The multiparticle effects are inseparably included in the conditionally averaged force f

nst
pf (x, y).

By studying the dependence of this conditionally averaged force on the nearest particle location,
one can explicitly consider the effect of the nearest particle, while the effects from other particles
and the surrounding fluid are implicitly included in the conditionally averaged force. The ensemble
average of the force is then calculated in the second step as the expected value of these conditionally
averaged forces,

f pf (x) =
∫

f
nst
pf (x, y)Pnst (y|x)d3y, (6)

where Pnst (y|x) is the probability density of y being occupied by the center of the nearest particle to
the particle centered at x. This probability contains information about particle distribution around x.
Although, the integration in (6) is over the entire space, the integral converges absolutely because of
the rapid far-field decay of the probability density Pnst (y|x). The rigorous mathematical derivation
of this relation can be found in recent works [28,29].

The conditional average force f
nst
pf (x, y) contains information of the interaction between the

nearest particles with the presence of other particles and the fluid. In principle, one can study
the average force conditional on the second-, third-, and so on, nearest particles to study physics
of multiparticle interactions. This direction is not pursued in this work for two reasons. The first
reason is that this approach is similar to the BBGKY hierarchy [36] in kinetic theories, which has
only limited success in the study of particle suspensions. Although the mathematical difficulty of
divergent integrals for long-range particle interactions is avoided using the nearest particle statistics,
the complexity of multiparticle interactions, especially for nonlinear cases, is still formidable. The
other more important reason is that, for the purpose of calculating the average force f pf , the effects

of multiparticle interactions are already included in the conditionally averaged force f
nst
pf (x, y),

because it is calculated by averaging over the forces with the presence of all particles.
In kinetic theories [9,30,37], the pair distribution function P2(x, y) is defined such that for

differential volumes d3x and d3y surrounding x and y respectively, P2(x, y)d3x d3y is the probable
number of particle pairs with one particle center in d3x and the other in d3y. The number density
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P(y|x) of having particles at y conditional on a particle at x can be calculated from the pair
distribution function as P(y|x) = P2(x, y)/np(x), where np(x) is the particle number density at x.
In this way, P(y|x)d3y is the probable number of particle centers in d3y conditional on x being
occupied by a particle center. These particles are not necessarily the nearest to the particle at x. We
use h2(x, y) to denote the probability that the particle at y is the nearest to the particle at x conditional
on x and y being occupied by a pair of particle centers. We can then write

Pnst (y|x) = h2(x, y)P(y|x) = h2(x, y)P2(x, y)/np(x). (7)

Using this relation, we can rewrite (6) as

np(x) f pf (x) =
∫

f eb(x, y)P2(x, y)d3y, (8)

where

f eb(x, y) = f
nst
pf (x, y)h2(x, y), (9)

is the effective short-range interaction force because of the rapid far-field decay of h2(x, y)
[28,38,39] and can be regarded as the force on the particle at x from the particle at y through the
effective field consisting of the fluid and the surrounding particles.

C. The PFP stress and the force decomposition

Comparing this effective short-range force f eb with the particle interaction forces in molecular
dynamics, this force contains not only PFP interactions but also the particle-fluid interactions.
Since the potential part of the virial stress in molecular systems represents interactions among the
particles, and its definition requires the interaction forces on a pair of particles be antisymmetric
[30] (Newton’s third law), we decompose f eb into the symmetric part f s and the antisymmetric part
f a. They are

f s(x, r) = 1

2

[
f eb

(
x − r

2
, x + r

2

)
+ f eb

(
x + r

2
, x − r

2

)]
, (10)

and

f a(x, r) = 1

2

[
f eb

(
x − r

2
, x + r

2

)
− f eb

(
x + r

2
, x − r

2

)]
. (11)

If we extend Newton’s third law and consider the PFP interaction force on a particle in the pair as the
component that changes its sign when the particle positions are exchanged, then the antisymmetric
f a defined in (11) is the force. This force can then be used [28,29] (also shown in the Appendix) to
define the PFP stress

�pfp(x) = 1

2

∫
r f a(x, r)P2

(
x − r

2
, x + r

2

)
d3r

= np(x)

2

∫
r f

nst
pf (x, x + r)Pnst (x + r|x)d3r + O(�p/L), (12)

similar to the potential part of the virial stress in molecular dynamics. The second identity of (12) is
obtained using (7) and (9).

Meanwhile, the position exchange should not affect the particle–mean-field interaction force;
therefore, the symmetric force f s defined in (10) is the particle–mean-field force per particle. By
integrating over all possible pairs,

np(x) f pm(x) =
∫

f s(x, r)P2

(
x − r

2
, x + r

2

)
d3r, (13)
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is the averaged particle–mean-field force density. Since f eb is a short-range force, so are the forces
f s and f a defined in (10) and (11). The integrations in (12) and (13) are then guaranteed to converge.

The PFP stress introduced here is different from many stresses introduced for the mixture [8] or
using kinetic theories [9,10,40], because it presents in both the average momentum equations for
the fluid and the particle phases when (5) is used in (1) and (2). The force decomposition is not
unique. For instance, the Stokes drag can also be decomposed into this form using the linearity of
the Stokes flow [12]. The decomposition introduced here has the advantage of its simple physical
meanings for f pm and �pfp as described above and is valid for general disperse multiphase flows
without limitations on volume factions or Reynolds numbers.

In cases of statistically homogeneous flows, as in the most numerical simulations performed
today [7,21–27,41,42], after taking the divergence in (5), the PFP stress term does not contribute
to the phase interaction force f pf , and therefore, is not studied. The models developed from these
works are then for f pm only. With the concept of the PFP stress, we can further interrogate the
numerical results to obtain the stress. The force decomposition (5) also implies that models for
these two closure quantities can be developed individually. Although one can choose to develop a
model for the phase interaction force f pf directly to include the effects of gradients, such as ∇θp, the
PFP stress represents the unique physics of particle interactions mediated by the fluid at the scale of
mean particle distance.

When the averaged equations (1) and (2) are applied to a problem, it is often assumed that the in-
terparticle length scale �p is much smaller than the length scale L of the physical problem (�p � L).

Since r is of order �p, the PFP stress is of order �pnp f
nst
pf . Relation (5) shows the effect of the PFP

stress is of order �p/L as the divergence operator ∇ in (5) is of order 1/L. To be correct to this
order in the momentum equations, the effect of gradients of the mean fields on the PFP stress can
be neglected. The PFP stress models developed in statistical homogeneous systems are then valid
to statistically inhomogeneous systems, if an error higher than the first order of �p/L is tolerated.
However, this does not imply that the statistical inhomogeneity has no effect on the force f pm. The
examples include the lift force and the convective derivative terms in the added mass force.

In the following sections, we calculate the PFP stress in statistically steady, homogeneous flows
through arrays of randomly distributed equal-size spheres. These are clearly idealized cases. Most
disperse multiphase flows contain mesoscale structures [14,15,41], and particle distributions are
not random and homogeneous. We limit ourselves to study these idealized cases for three reasons.
First, the PFP stress is a new concept. To understand its properties we choose to start with simple
systems. Second, the PFP stress calculated from a uniform system is applicable in models correct to
the first order of �p/L as mentioned above. Third, most simulations performed today are limited
to the uniform systems. For Stokes flows, simple shear motions have been simulated [41]. For
cases with more general velocity gradients, the deformation of the computational domain, which are
often periodic, has to be considered to accommodate particle motions. Although, a recent technique
[43,44] allows for simulations of uniform velocity gradients with full matrices in a periodic domain,
the effect of particle volume fraction gradient can still not be considered using periodic domains.

III. NUMERICAL SIMULATIONS

Since the calculation of forces on moving particles requires tracking particle-fluid interfaces
and is more difficult, in the work we only study the PFP stress in flows with stationary particles.
We assume that the closure for the PFP stress exists, that is it can be expressed as a function of
the macroscopic quantities. Without a spatial gradient, the stress can only depend on the particle
volume fraction θp, relative velocity vp − v f between the phases, viscosity μ f , density ρ f of the
fluid, and the particle size dp. The only tensor with the dimension of stress can be constructed from
these variables is of form

�pfp = ρ f θp[B1(θp, Re)(vp − v f ) · (vp − v f )I + B2(θp, Re)(vp − v f )(vp − v f )], (14)

104306-6



NUMERICAL CALCULATION OF THE …

FIG. 1. Sample packing with volume fraction 13.41%.

where B1 and B2 are dimensionless coefficients that depend on the particle volume fraction θp

and the particle Reynolds number Re = ρ f |vp − v f |dp/μ f . For systems with moving particles,
the coefficients can also be functions of density ratio between the phases. These coefficients are
calculated in Sec. IV.

A. Configuration setup and particle statistics

The numerical simulation is performed in a cuboid domain containing fixed spherical particles as
illustrated in Fig. 1. Periodic boundary conditions are applied in the x and z directions, and the flow
is in the y direction. For a specified particle volume fraction θp, we first place spherical particles of
diameter dp according to the face-centered cubic lattice in a cuboid. The lattice size of each cube is
given as � = 3

√
(π/3θp) dp, to ensure the particle volume θp. The maximum particle volume fraction

can be accommodated is
√

3π/8 ≈ 0.68 without overlap. To generate random particle distribution,
each particle is subjected to 10 000 random displacements with the maximum magnitude equals
to a fraction (0.05) of the mean gap

√
3�/2 − dp between the particles. If a displacement causes

particles to overlap, then the displacement is discarded, and the particle remains in the original
place. Particles close to a periodic boundary are checked for overlap with the images of the particles
near the opposite boundary. When a particle moves out of the domain, it comes in from the opposite
side of the boundary. In this way, the total particle number remains constant during each random
displacement. Figure 1 shows a random particle distribution generated using this method with the
particle volume fraction 13.41%. The length in the figure is nondimensionalized by the particle
diameter.

For homogeneous and isotropic particle distributions, both the nearest particle probability
h2(x, y) and the pair distribution function P2(x, y) are only functions of particle separation r =
|y − x|. We then write h2(x, y) = h2(r) and P2(x, y) = n2

pg(r), where g(r) is the radial distribution
function. The probability density P(y|x) of finding a particle at y conditional on a particle at x is
P(y|x) = P2(x, y)/np = npg(r). The probability density of finding the nearest particle at y knowing
a particle already at x becomes Pnst (y|x) = npg(r)h2(r). For a random distribution of equal-size

104306-7



WANG, YANG, ZHANG, AND BALACHANDAR

FIG. 2. Comparison of radial distribution function g(r) and probability h2(x, y).

spheres with diameter dp, Torquato et al. [38,39] calculated the nearest-neighbor distribution
function H (r) defined such that for an infinitesimal dr and a given sphere, H (r)dr is the probability
of finding its nearest neighbor in the distances between r and r + dr. In the case of isotropic and
homogeneous suspension of spheres, this function is related to the probability of nearest particle h2

as H (r) = 4πr2Pnst (y|x) = 4πr2npg(r)h2(r).
For hard spheres Torquato et al. [38,39] found the analytical solution for function H (r),

H (r) = 24θp

dp
(Cex2 + Cf x + Cg) exp{−θp[8Ce(x3 − 1) + 12Cf (x2 − 1) + 24Cg(x − 1)]}, (15)

where

x = r

dp
, Ce = 1 + θp

(1 − θp)3
, Cf = − θp(3 + θp)

2(1 − θp)3
, and Cg = θ2

p

2(1 − θp)3
. (16)

Using this solution, and the solution [45] for the radial distribution function g(r), we can calculate
h2(r) analytically. To assess the quality of the random particle assemblies generated above, we
numerically calculate the radial distribution function g(r) and the nearest particle probability h2(r)
to compare with the analytical results in Fig. 2.

To obtain numerical results of the radial distribution function g(r) and probability h2(x, y) in the
figure, we generated Nen = 200, 30, 10, and 5 configurations for particle volume fractions 1.68%,
5.65%, 13.41%, and 26.22%, with Np = 64, 216, 512, and 1000 equal-size particles respectively.
We then surround every particle with 20 layers of spherical shells of thickness �r = dp/5, and then
loop through all the particles in all configurations and count the number Ni, (i = 1, 2, . . . , 20), of
particles in the shells and the numbers Nnst,i of the nearest particles in the shells. The numerical
results of the probability h2(r) and radial distribution function g(r) are calculated as

h2(ri) = Nnst,i

Ni
, g(ri ) = Ni

4πr2
i np�rNenNp

, (17)

with ri = dp + (i − 1/2)�r.

B. The numerical solution method

With the particle configurations generated by the method described above, particle–resolved
simulations are carried out. The Navier-Stokes equation is solved using a high-order fluid solver
NEK5000 based on the spectral element method [46]. In this work, the Gauss-Lobatto-Legendre
points using fifth-order polynomials are adopted for velocity interpolation, with six interpolants
in each direction. For the pressure calculation, the third-order Gauss-Lobatto-Legendre points are
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FIG. 3. Comparison of drag coefficients for a single sphere with different Reynolds numbers.

employed. Since the main objective of this work is to calculate the new PFP stress, in this section we
focus on the validation of the numerical method with the calculations of the drag force for a single
sphere and the average drag force in disperse multiphase flows with different volume fractions
and Reynolds numbers. Readers interested in the details of the numerical method and the code
(NEKIBM) are referred to the recent publication [47].

To validate the numerical tool (NEKIBM) used in this work, the flow past a sphere is first
simulated and compared with the empirical relation [48]. In this benchmark calculation, the length
is nondimensionalized by the sphere diameter dp. The fluid domain is 10 × 20 × 10 and divided
into 40 × 80 × 40 spectral elements in x, y, z directions, implying four cells across a particle
diameter or �x = �y = �z = dp/4. The origin of coordinate system is selected as the center of
the domain. A solid sphere is fixed at position (0,−1, 0). The time step used in the calculation is
dt = 10−3Re dp/U where U is the characteristic velocity, and Re is the Reynolds number based
on the particle diameter. The corresponding convection Courant-Friedrichs-Lewy (CFL) number
dt U/�x = 4 × 10−3Re, and the momentum diffusion CFL number dt μ f /[ρ f (�x)2] = 0.016,
where μ f is the fluid viscosity. The Reynolds number simulated in this calculation of the single
sphere drag ranges from 0.1 to 100. The maximum convection CFL number is 0.4. The flow is in
the y direction with the uniform inlet velocity determined by the Reynolds number. At the outlet
the convective outflow condition is applied. Periodic boundary conditions are applied to other
boundaries. The calculated drag coefficient is plotted in Fig. 3 showing a good comparison with
the well-known empirical correlation [48]

Cd = 24(1 + 0.15Re0.687)

Re
. (18)

C. Drag calculation

The same NEKIBM used in the calculation of single sphere force is used to calculate the
hydrodynamic force

f h(x,C ) =
∮

σs(z,C ) · ndS, (19)
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on a particle in the configurations generated as described above. This force from NEKIBM corre-
sponds to the first term inside the square bracket in (3), and the effect of the average fluid stress
σ f has not been subtracted off. In a uniform and isotropic distribution of stationary rigid particles
with a uniform average fluid velocity field, the average of the strain rate of the fluid is zero [32],
and so is the average viscous stress. The average fluid stress becomes σ f = −p f I, where p f is the
average fluid pressure and I is the identity tensor. The force (19) calculated from the NEKIBM
method includes contribution from the pressure gradient force. In flows such as those simulated
in this work and by Tenneti et al. [42], a pressure gradient is used to drive the relative motions
between the particle and the fluid, while in other cases, such as those with the presence of gravity,
the buoyancy force exists even without a relative motion between the phases. For the convenience of
model development, it is advantageous [31,32,49] to separate the effect of the buoyancy-like term
from the effect of relative motion between the phases, which is generally called the drag force in a
steady and uniform flow. Using σ f = −p f I in (3), one can write

f pf (x, t ; C ) = f h + Vp∇p f , (20)

where Vp is the particle volume. For the uniform particle distribution and average fluid velocities
simulated in this work and by Tenneti et al. [42], using the momentum equation (1) and (20), one
finds the balance between the gradient of the average pressure and the average hydrodynamic force
on particles,

−∇p f = np f h and f pf = (1 − θp) f h. (21)

Considering the effects of particle volume fraction and Reynolds number, for the monodisperse
systems an empirical relation for the average hydrodynamic force has been written [42] as

f h = 3πμ f dp(1 − θp)(vp − v f ) Fd (θp, Rem), (22)

where

Fd (θp, Rem) = 1 + 0.15Re0.687
m

(1 − θp)3
+ Fθp + Fθp,Rem , Rem = ρ f |vp − v f |dp(1 − θp)

μ f
, (23)

Fθp = 5.81θp

(1 − θp)3
+ 0.48θ1/3

p

(1 − θp)4
, Fθp,Rem = θ3

pRem

[
0.95 + 0.61θ3

p

(1 − θp)2

]
. (24)

Since 3πμ f dp(vp − v f ) in (22) is the Stokes drag of a single sphere, the function Fd (θp, Rem)
is called the normalized drag. We note that this normalized drag is written in terms of the mean
Reynolds number Rem defined in (23), which is different from the particle Reynolds number Re by
a factor (1 − θp).

To calculate the PFP stress, simulations with four mean Reynolds numbers Rem = 10, 20, 60,
and 100 are carried out for four particle volume fractions θp = 1.68%, 5.65%, 13.41%, and 26.22%.
Flows are in the y direction coming from the left as illustrated in Fig. 1 with a prescribed uniform
velocity on the left surface. Figure 4 shows one of the calculated flow fields.

Since the left and right boundaries are not periodic boundaries, there are leading and trailing
edge effects. To assess them, we divide the computational domain into 20 segments along the flow
direction, and plot the average normalized drag Fd (θp, Rem) for particles with their centers in the
segments. The results are shown in Fig. 5. The figure shows that the average particle force, and
hence average flow field can be considered as statistically homogeneous from segments 5 to 17. The
forces from these segments are then used in our statistical analysis in the reminding of this work.

Figure 6 shows comparison of the normalized drag obtained from NEKIBM calculations to the
empirical relation (23). Reasonable agreements are found between these NEKIBM results and those
from the finite difference method [42], further validating the particle force calculation in this work.

104306-10



NUMERICAL CALCULATION OF THE …

FIG. 4. Fluid velocity contour in a flow with Rem = 20 and θp = 13.41%.

IV. NUMERICAL RESULTS

A. The antisymmetric force

Since the PFP stress is caused by the antisymmetric force f a on a particle, we now study its
property in the homogeneous flows simulated in this work. The flow is along the y direction.
With randomly distributed particles, for a particle with its nearest neighbor at distance r away,
the effective short-range force f eb, and hence f a, is on the plane formed by vector r and the y axis,
because of the symmetry about the plane. We can then decompose the force f a into a component
f || parallel to the flow along the y axis and a component f ⊥ perpendicular to the flow as shown in
Fig. 7.

These force components are functions of r and θ only and is independent of ϕ because of the
axis symmetry about the y axis. We study these force components for two intervals of the θ values

FIG. 5. Variation of normalized drag along flow direction
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FIG. 6. Comparison of numerically calculated normalized drag with the empirical relation [42] (23).

in our simulated flows with Re = 20 and particle volume fraction θp = 5.65%. The first interval is
85◦ < θ < 95◦. The nearest pairs are almost perpendicular to the flow. In this interval, the average of
the force components f || vanishes. Figure 8 shows average f ⊥ normalized by the mean drag fpm as
a function of r, the distance between the nearest particles. The value of this force is negative, in the
direction opposite to r, implying repulsion between the particles. This repulsion is caused by flow
diversion around the nearest particle. According to Seyed-Ahmida and Wachs [50] (in their Fig. 5),
the maximum | f ⊥| does not happen at θ = 90◦, but at an angle somewhat downstream, where the
flow diversion by the nearest particle is the strongest. This repulsion results in the negative PFP
stress in the direction perpendicular to the flow as calculated below.

Another interval of θ studied is −10◦ < θ < 10◦. Within this θ interval the nearest neighbors of
the particles are almost directly down stream of the particle. The average perpendicular component
f ⊥ is zero. Figure 8 also shows the average parallel components f || normalized by the mean drag
fpm as a function of r. The plotted values are not smooth, because in the simulated flows, we
only find less than 10 nearest pairs in this θ interval for the two values between 1.5 and 2.0 of
r/dp in the figure. The value of this function is positive, which confirms the fact that the leading
particle (with positive r) is subjected to a greater force compared to mean force on the pair. Since
f a is antisymmetric, if the θ interval is changed to 170◦ < θ < 190◦, then the force component f ||
changes its sign and becoming negative, which implies trailing particle is subjected to less force than

FIG. 7. Decomposition of the antisymmetric force f a.
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FIG. 8. Normalized f a when the nearest pairs are almost perpendicular (left) and parallel (right) to the flow.

the mean. This observation is also consistence with the calculation by Seyed-Ahmida and Wachs
[50]. These properties of the forces on the leading and trailing particles imply attraction between
the particles in direction parallel to the flow and the positive PFP stress as calculated below.

B. The PFP stress

After exploring the properties of the probability density and the related forces of the nearest
particles in the homogeneous and isotropic particle distributions and verifying our particle force
calculation in the previous section, we now calculate the PFP stress. In an isotropic system, there
is no preferred direction. We then have

∫
rPnst (r + x|x)d3r = 0. Using this relation and noting that

∇p f is independent of r, we use (20) to rewrite the PFP stress defined in (the second line of) (12) as

�pfp = np

2

∫
r f

nst
h Pnst (r + x|x)d3r. (25)

With this relation, we note that in obtaining (6), the force on the particle is used as an example.
The same procedure described in Sec. II can be used to show that relation (6) is valid for any
particle quantity of interest [28,29]. We now set the particle quantity to be r f h, where f h is
the hydrodynamic force (19) on a particle, and r is the distance from the particle to its nearest
neighbor. If the particle has multiple nearest particles (a zero probability event and not encountered
in the simulations performed in this work), then this distance is the average of the distances to the
nearest particles. In this way, quantity r f h is a well-defined quantity for each particle. Using (6)

on this quantity (replacing f pf by r f h), and noting (r f h)
nst = r f

nst
h , we find the integral in (25)

is the ensemble average r f h(x) of the particle quantity at location x. In cases of uniform flows,
this quantity is independent of x and can be calculated as the volume average over the domain,
which is segments 5 to 17 described above. Let Nt be the total number of the particles in the
averaging domain. The volume average of r f h can be calculated as

∑Nt
i=1 ri f h,i/Nt , where f h,i is

the hydrodynamics force on particle i in the domain, and ri is the distance of particle i to its nearest
neighbor. The PFP stress from (25) then becomes

�pfp = np

2Nt

Nt∑
i=1

ri f h,i. (26)

This expression is similar in form to the definition of the virial stress [30,51] in particle systems,
but with different meanings for the quantities involved. Here the summation is over all particles in
the domain, ri is the distance from particle i to its nearest neighbor, and f h,i is the force on particle
i. In contrast, in the definition for the virial stress, the summation is over all possible particle pairs,
not only the nearest one, the distance is between the particles in the pair, and the force is the force
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FIG. 9. Normalized 	xx and 	yy under different θp and Rem. In the y labels, vr = |v f − vp| is the magnitude
of the relative velocity

contributed by the other particle in the pair, which requires decomposition of the force on a particle
into pairwise interactions and is impossible for most cases. Even if such force decomposition is
possible for some dilute particle suspensions, for long-range interaction forces, the sum divided by
Nt diverges strongly as the computation domain increases. The stress defined in (26) is guaranteed
to converge as the computation domain increases because of the rapid far-field decay of the nearest
particle probability, which limits the probability of having large ri in the summation.

In our simulations Nt ranges from about 3250 for the case of particle volume fraction 26.22% to
about 8320 for the case of particle volume fraction 1.68%. The PFP stress values reported in Fig. 9
are the averages of the volume averaged stresses from (26) over 10 to 120 particle configurations
depending on the particle volume fractions and the Reynolds numbers. More configurations are
simulated for small particle volume fractions and small Reynolds numbers, since the PFP stresses
fluctuate in larger ranges in these cases. The standard deviations of the stresses over the simulated
configurations are also shown in the figures.

Since the flow is in the y direction, because of the symmetry, the PFP stress takes form �pfp =
diag[	xx, 	yy, 	zz], with 	xx = 	zz. These properties of the stress are confirmed by the numerical
results. The calculated off-diagonal elements are at least an order of magnitude smaller than the
diagonal elements. The difference between numerically calculated 	xx and 	zz is also negligible.
Figure 9 shows the normalized 	xx and 	yy as functions of the volume fraction θp at various mean
Reynolds number Rem.

Using these results, we calculate coefficients B1 and B2 in (14) for the PFP stress. The results
are plotted in Fig. 10. It appears that these coefficients can be fitted with B1 = 0.95Re0.02 −
0.01 ln(θp) − 1.0915 and B2 = 0.4046Re−0.3 − 0.0412, where Re = ρ f vrdp/μ f is the particle
Reynolds number. The small exponents of the Reynolds numbers do not imply their weak de-
pendence on the Reynolds number. In the range (from Re = 10 to 100) simulated in this work,
the magnitude of coefficient B1 decreases by a factor of 2 to 6 depending on the volume fraction,
while B2 decreases by a factor of 4 and appears less dependent on the particle volume fraction.
These empirical correlations for the coefficients are only obtained from the simulations within the
limited range of the Reynolds numbers. Their extrapolation out of this range should be cautioned.
For instance the signs of the correlation change for high Reynolds numbers.

As shown in Fig. 9, in the streamwise direction the stress 	yy is positive, indicating attraction
between particles. In the transversal direction the stress 	xx = 	zz is negative, indicating repulsion
among the particles. Although these results are obtained with stationary particles, which can be
considered as the limit of large density ratio between the particle and fluid phases, these properties
of the PFP stress are also expected for moving particles. For a group of particles moving in a
fluid, the attractive stress in the streamwise direction causes the drafting effect and tends to reduce

104306-14



NUMERICAL CALCULATION OF THE …

FIG. 10. Coefficients B1 and B2 as functions of Re and θp (a) B1 with different θp (b) B2 as a function of Re.

their distances in the direction, while the repulsive stress causes particles to spread out in the
directions transversal to the flow. This property of the PFP stress suggests that it is a macroscopic
representation of the drafting–kissing–tumbling mechanism [16] in the flow regimes studied here.
The trace of the PFP stress is negative in all the results calculated in this work, indicating an overall
repelling effect among particles.

The PFP stress involves interaction among particles. One might expect at the limit of small
volume fraction θp, the stress is of O(θ2

p ), since that is the order of the probability of finding a pair
of particles around a location. In contrast to this expectation, as shown in Fig. 9 the normalized
PFP stress �yy/(θpρv2

r ) in the streamwise direction increases as the volume fraction θp decreases,
suggesting that the stress could be more important than the first order in the limit of a small
particle volume fraction. This is a character of the long-range hydrodynamic interaction of the force
moment r f

nst
pf between the particles. The estimate of O(θ2

p ) for particle interactions in the limit of
dilute particle phase is only valid for short-range particle interactions [18,28]. Although, the phase
interaction force density in momentum equations (1) and (2) caused by the particle drag is only
of the first order in the particle volume fraction, the small coefficients B1 and B2 in (14) make the
drag still the dominating term in the phase interaction force (5) in the direction of relative motion
between the phases.

By approximating the particle-mean-field force f pm in (5) as the drag modeled by Cdρ f (vp −
v f )2 with the drag coefficient Cd , one can calculate the ratio R = dpB/(Cd L) between PFP stress
contributions and the drag, where B is the magnitude of coefficients B1 and B2, and L is length
scale of the flow variation, such as the particle cluster size, or the length associated with the volume
fraction gradient. This ratio is typically small. This confirms that in the flow direction the PFP stress
can be neglected in the calculation of mean relative velocity between the phases. In the directions
perpendicular to the flow, the divergence of the stress is the only force if the velocity field is uniform,
hence without the lift force.

As the first calculation of the PFP stress, our numerical results here are limited to fixed particles
due to the difficulty of tracking particle motions in the particle resolved simulations. For cases of
moving particles, the flow induced anisotropy of particle distribution and history of the wakes of
the particles are expected to affect numerical values of the stress, while the qualitative properties
of attraction along the flow direction and repulsion in the directions perpendicular to the flow are
expected to be valid. If we consider the sedimentation of a particle cloud, then the PFP stress has
little direct effect on the sedimentation velocity, but it affects the relative positions among the
particles in the cloud and the evolution of the shape of the cloud by attracting particles in the
flow direction and repelling them in the perpendicular directions. The timescale of the drag on a
particle can be estimated as τ = dp/[Cd (vp − v f )]. The timescale associated with the PFP stress
is then τ/R = L/[B(vp − v f )]. For the B1 and B2 values calculates above, this timescale implies a
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TABLE I. Comparison of coefficients for PFP and Reynolds stresses.

Cases D1 D2 B1 B2

θp = 5.65%, Rem = 10 −0.239 −3.229 −0.070 0.160
θp = 5.65%, Rem = 60 −0.195 −3.174 −0.029 0.072
θp = 13.41%, Rem = 20 −0.201 −2.009 −0.061 0.113
θp = 13.41%, Rem = 100 −0.176 −2.165 −0.027 0.052
θp = 26.22%, Rem = 20 −0.143 −1.263 −0.065 0.112
θp = 26.22%, Rem = 100 −0.141 −1.462 −0.035 0.063
Dilute potential flow [31,52] −0.15 −0.05

significant particle cloud deformation when relative motion between the cloud and the fluid is about
5 to 20 times of the cloud size depending on the Reynolds number and the particle volume fraction.
This analysis suggests that the timescale associated with the PFP stress is about the deformation of
a particle cloud, while the timescale associated with the drag force is related to the time of the fluid
passing a particle. The deformation of the particle cloud then affects the drag and the sedimentation
velocity [33]. Furthermore, as calculated below, the PFP stress is of the same order of the fluid
Reynolds stress depending on the Reynolds number and the volume fraction.

C. Reynolds stress

Other than the PFP stress, affecting averaged momentum equation (1), there are two other stresses
θ f σ

Re
f and θpT f . For potential flows, these stresses take the similar functional form [31,52] as (14).

Despite this similarity, there is a significant difference among them. Stresses θ f σ
Re
f and θpT f appear

only on the averaged momentum equation for the fluid phase, while the PFP stress appears on both
averaged momentum equations for the fluid and the particle phases. In cases of dilute particle phase,
after dividing (2) by θp, one finds that the contribution from streamwise PFP stress component to the
particle momentum equation is ρ f B2v

2
r and is of the zeroth order in the particle volume fraction θp,

while this term is multiplied by θp in the momentum equation (1) for the fluid phase. In this limit,
the PFP stress affects the particle motion more than the fluid phase motion.

In our numerical simulations, since the flow field is solved, one can also use the results to
calculate the Reynolds stress [53,54] θ f σ

Re
f . With the particles fixed, for the same reason as (14),

the fluid Reynolds stress can be written as

θ f σ
Re
f = ρ f θp[D1(θp, Re)(vp − v f ) · (vp − v f )I + D2(θp, Re)(vp − v f )(vp − v f )]. (27)

This fluid Reynolds stress σRe
f can be calculated with the fluid velocity fluctuations in the homoge-

neous flow region, segments 5 to 17 in the computational domain. The coefficients D1 and D2 in
(27) are then calculated. Their values are listed in Table I. In the table, as a comparison, the analytic
values of these two coefficients are also listed for dilute particle phase in a potential flow. It is shown
that D1 values from our simulations are about the same order as the one from the dilute potential
flow, while the magnitudes of D2 from the simulations are much greater than the one from the
potential flow. This observation can be explained by physics represented by these coefficients in the
flow fields around a particle in a potential flow and in a finite Reynolds number flow. The coefficient
D1 represents the isotropic part of the velocity fluctuations, which is the only contribution to the
Reynolds stress in the directions perpendicular to the mean flow. These velocity fluctuations are
mostly caused by the flow diversion around the particles. The coefficient D2 represents the velocity
fluctuations in the relative mean flow direction. In this direction the potential flow is symmetric in
the downstream and the upstream directions, while for a finite Reynolds number flow, the symmetry
is broken and the effect of wake is important.
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Cyy

Cxx & Czz

FIG. 11. Correlation coefficients between the nearest-neighbor distance and fluid-particle interaction

As a comparison, the coefficients B1 and B2 for the PFP stress are also listed in Table I. These
values show that in the relative flow direction, the PFP stress is negligible compared to the Reynolds
stress for the fluid motion, while in the directions perpendicular to the relative velocity, the PFP
stress is about 15% to 45% of the Reynolds stress depending on the particle Reynolds number
and the volume fraction. As mentioned above, since the effect of PFP stress is more important for
the particle phase motion than for the fluid phase motion, as a future work, it will be interesting
to compare the PFP stress to the Reynolds stress of the particle phase in the flows with moving
particles.

D. An interesting correlation

The effect of the surrounding particles on the drag of a particle has been studied numerically.
Although for a specified particle, knowing its nearest neighbor is not sufficient to approximate the
drag on it [17,55], the influence of the nearest particle on the drag is still an interesting question to
explore. For this purpose, we now study the correlation tensor

C(x) =
∫

(r − r)
(

f
nst
pf − f pf

)
Pnst (r + x|x)d3r√∫ |r − r|2Pnst (r + x|x)d3r

√∫ | f
nst
pf − f pf |2Pnst (r + x|x)d3r

. (28)

Similarly to (25), using (20) and noting that ∇p f is independent of r, the force f pf above can be
replaced with f h. Also as the discussion before (26), for statistically uniform particle distributions,
one can replace the ensemble average

∫
(·)nstPnst (r + x|x)d3r with

∑Nt
i=1(·)/Nt . We then write (28)

as [56]

C(θp, Rem) = Nt
∑Nt

i=1(ri f h,i ) − ∑Nt
i=1 ri

∑Nt
i=1 f h,i√

Nt
∑Nt

i=1 |ri|2 − ∣∣∑Nt
i=1 ri

∣∣2
√

Nt
∑Nt

i=1 | f h,i|2 − ∣∣∑Nt
i=1 f h,i

∣∣2
. (29)

For a uniform and isotropic particle distribution, with the mean fluid velocity in the y di-
rection, the correlation tensor becomes C = diag[Cxx,Cyy,Czz], with Cxx = Czz. The results for
these coefficients are plotted in Fig. 11, where the negative values are for Cxx and Czz, and the
positive values are for Cyy. Roughly speaking, these correlation coefficients imply that about 20%
of the streamwise drag variations and 30% to 50% of the lateral force fluctuations are associated
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with the position of the nearest particle. Noting that r = 0, and f h,i is the hydrodynamic force on
particle i with the nearest particle at distance ri away, the positive correlation coefficient Cyy in the
streamwise direction implies that on average, a particle experiences a greater drag if riy > 0, or the
nearest particle is downstream from particle i. In other words, a leading particle tends to experience
a greater drag than a trailing particle. Similarly, the negative coefficients Cxx and Czz imply that in
the directions perpendicular to the flow, the force f h,i tends to be in the opposite direction of the
nearest particle, meaning a repulsive force between the particles. This observation is in confirmation
with the PFP stress calculated above.

V. CONCLUSIONS

It has been known that interactions among particles in a multiphase flow not only affect the mean
drag of the particles, but also cause relative motions among particles at the interparticle length
scale [16]. Representing the effect of these relative motions in the Eulerian-Eulerian equations
for multiphase flows has been challenging because of the long-range nature of the hydrodynamic
interactions among the particles. In this work, this difficulty is avoided by using the nearest particle
statistics [28,29] leading to the PFP stress.

Particle-resolved numerical simulations of flows past fixed arrays of particles are performed for
particle Reynolds number less than 140 and particle volume fraction less than 30% using NEKIBM
[47]. In addition to the calculation of the drag forces on particles, the numerical results are processed
using the nearest particle statistics [28,29] to calculate and study the PFP stress. We have also
developed a functional form of the stress with two coefficients. The coefficients are then determined
using the numerical results.

For the simulated flows, the PFP stress in the streamwise direction causes attraction among the
particles. Perpendicular to the flow, the stress pushes particles apart. This property of the PFP
stress suggests that in the simulated flow regime, the PFP stress is a macroscopic representation
of the interparticle scale drafting–kissing–tumbling mechanism. Using the numerical results, the
fluid Reynolds stress is also calculated. It is found that in the directions perpendicular to the
relative motion between the phases, the PFP stress is about 15% to 45% of the fluid Reynolds
stress.

The simulations are limited to fixed array of spheres due to the numerical difficulty of tracking
moving boundaries. More work is needed to extend the simulation to multiphase flows with moving
particles.
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APPENDIX

In this Appendix we present an alternative derivation of the force decomposition (5) and the PFP
stress avoiding abstract mathematics [28,29]. We start our derivation by noting that in definition
(13) for f pm(x), the position x is not the location of a particle but the midpoint of the pairs. When
we calculate the total particle–mean-field force by integration

∫
V np f pmd3x over a volume V , we

sum over all the forces on the probable particle pairs with the midpoints inside the volume. For
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FIG. 12. Particle pairs across a boundary.

a sufficiently large volume, most of these pairs are within the volume. There are some boundary
crossing pairs, as shown in Fig. 12. For the pairs with the midpoints outside V , the forces on the
inside particle, such as the one marked with + in Fig. 12, are not included in

∫
V np f pmd3x. We call

these particles type + particles. For the pairs with the midpoints inside, the forces on the outside
particles, such as the one marked with − in Fig. 12, are included in the integral. We call these
particles type − particles.

On the other hand, the total phase interaction forces
∫

V np f pf d
3x in the volume V is calculated

by summing over all the forces on the particles inside the volume. The difference between these
total forces

∫
V np f pfd

3x and
∫

V np f pmd3x comes from the boundary-crossing pairs. This difference
is represented by the PFP stress as shown in the follows.

Suppose that we have calculated particle–mean-field force
∫

V np f pmd3x in the volume, to obtain

the total phase interaction force
∫

V np f pf d
3x, the forces on the type + particles need to be added,

while the forces on the type − particles need to be subtracted off. Let dS be the surface element
on the volume boundary ∂V . For pairs with distance vector r between the particles, the region
containing the type + particles is a layer with the thickness 1

2 r · n inside the boundary ∂V , shown
in Fig. 12 by the thin rectangle inside of the boundary, where n is the unit outward normal. The
volume of the region is 1

2 r · ndS.
Since effective range of r is O(�p), within an error of O(�p/L), we can approximate both

the pair distribution function P2 and f eb as constants with values of P2(x − r/2, x + r/2) and
f eb(x − r/2, x + r/2) in the region. In this region the probable number of pairs with the distance
vector at vicinity d3r of r is 1

2 r · ndSP2d3r. The total force on these particles is 1
2 f ebP2r · ndSd3r.

Considering all possible distances between the particles in the pairs, we find the total force on type
+ particles near dS to be

1

2

∫
n·r>0

dSn · r f ebP2d3r, (A1)

where the integration domain restriction n · r > 0 is to ensure that the forces are on the inside
particles with the other particle of the pair outside the volume. This force needs to be added to∫

V np f pmd3x.
Similarly, the total force on the type − particles near dS is

1

2

∫
n·r<0

dS|n · r| f ebP2d3r, (A2)
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where the integration domain restriction n · r < 0 is to ensure that the forces are on the outside
particles with the other particle of the pair inside V . This force needs to be subtracted from∫

V np f pmd3x. Combining (A1) and (A2), we have the total contribution from the boundary crossing
pairs near dS as

1

2

(∫
n·r>0

dSn · r −
∫

n·r<0
dS|n · r|

)
f ebP2d3r = 1

2

(∫
n·r>0

dSn · r +
∫

n·r<0
dSn · r

)
f ebP2d3r

= dSn · 1

2

∫
r f ebP2d3r = dSn · �pfp. (A3)

Since f eb(x − r
2 , x + r

2 ) = f s(x, r) + f a(x, r), and
∫

r f sP2d3r = 0 because of the symmetry in r,
similarly to the virial stress in molecular dynamics, the PFP stress only results from the antisym-
metric forces between the particles.

With the such calculated contribution from the boundary crossing pairs on surface element dS,
integrating this contribution from all the surface elements on volume V , we have∫

V
np f pf d

3x =
∫

V
np f pmd3x +

∫
∂V

n · �pfpdS. (A4)

After the use of the Gauss theorem, we find (5).
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