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Preferential concentration is thought to play a key role in promoting particle growth,
which is crucial to processes such as warm rain formation in clouds, planet forma-
tion, and industrial sprays. In this paper, we investigate preferential concentration using
three-dimensional direct numerical simulations adopting the Eulerian-Eulerian two-fluid
approach, where the particles are treated as a continuum field with its own momentum
and mass conservation laws. We consider particles with Stokes number St � O(0.01) in
moderately turbulent flows with fluid Reynolds number Re � 600. In our previous paper
[Phys. Rev. Fluids 5, 114308 (2020)], we established scaling laws to predict maximum and
typical particle concentration enhancements in the context of the particle-driven convective
instability. Here, we verify that the same results apply when turbulence is externally driven,
extending the relevance of our model to a wider class of particle-laden flows. We find
in particular that (i) the maximum particle concentration enhancement above the mean
scales as u2

rmsτp/κp, where urms is the rms fluid velocity, τp is the particle stopping time,
and κp is the assumed particle diffusivity from the two-fluid equations; (ii) the typical
particle concentration enhancement over the mean scales as (u2

rmsτp/κp)1/2; and (iii) the
probability distribution function of the particle concentration enhancement over the mean
has an exponential tail whose slope scales as (u2

rmsτp/κp)−1/2. We conclude by discussing
the caveats of our model and its implications in a relevant cloud application.

DOI: 10.1103/PhysRevFluids.6.104303

I. INTRODUCTION

Particle-laden flows are a special class of two-phase fluid flows, characterized by a continuous
carrier phase and a dispersed, and typically dilute, particle phase. They appear in numerous physical
and engineering applications, including for instance clouds, turbidity currents, protoplanetary disks,
and industrial sprays. An important physical process in such flows is the tendency of inertial parti-
cles to accumulate in regions of high strain and low vorticity [1], otherwise known as preferential
concentration. This process is thought to play a fundamental role in promoting collisional growth. In
clouds, for example, the growth of micron-size to millimeter-size droplets is not quite understood.
Although processes such as Brownian motion and condensation can contribute to droplet growth,
it is thought that they alone cannot promote sufficient growth to initiate rainfall. For this reason,
preferential concentration is considered to be the key process that may result in the enhanced
collision rates required for larger raindrop formation [2–4]. Similarly in accretion disks, preferential
concentration is widely hypothesized to be a vital process for the growth of dust particles into
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planetesimals [5,6]. Thus, our primary goal is to investigate and quantify particle concentration
enhancement due to preferential concentration in turbulent flows.

In this paper (as also in Nasab and Garaud [7]), we use the two-fluid formalism and treat the
particles as a continuous phase of the system that is distinct from the carrier fluid (see Crowe et al.
[8], Elghobashi [9], Morel [10], and references within). This continuum approximation is derived
by applying techniques motivated by kinetic theory in which the positions and velocities of the
particles are statistically averaged to create a local particle density ρp and velocity up. We focus
on the case where the solid density of the particle ρs is much greater than the mean density of the
carrier flow ρ f , which is true for many applications. In this limit, the importance of particle inertia is
traditionally measured by the Stokes number St = τp/τe, defined as the ratio of the particle stopping
time τp to the eddy turnover time τe. It has been established that the two-fluid formalism is valid
provided that the Stokes number based on the usually defined Kolmogorov timescale τη, namely
Stη = τp/τη, should satisfy Stη � 0.6 [11]. For larger Stη, the continuum treatment is no longer
appropriate.

Using the two-fluid formalism, we recently explored preferential concentration in the context
of the particle-induced convective instability [7]. Our model setup consisted of a carrier fluid with
an assumed stable temperature gradient, to which a layer of small and dense inertial particles was
added to create linearly unstable initial conditions. Due to the high computational cost required to
resolve fine particle structures, we primarily ran two-dimensional (2D) direct numerical simulations
(DNSs). In all cases, we ran the simulations long enough to study the development of the Rayleigh-
Taylor instability, and measured the maximum and typical particle concentration enhancement
above the horizontally averaged particle density.

Most notably, we found that the maximum particle concentration enhancement above the mean
is related to the particle stopping time τp, the rms fluid velocity in the turbulent layer urms, and
the assumed particle diffusivity κp, scaling as u2

rmsτp/κp. Additionally, we showed that the typical
particle concentration enhancement over the mean scales as (u2

rmsτp/κp)1/2. We also computed the
probability distribution function (pdf) of the particle concentration enhancement above the mean and
found that in the presence of inertial particles, the tail of the pdf appears to be an exponential whose
slope scales as (u2

rmsτp/κp)−1/2. We then explained the importance of the parameter group u2
rmsτp/κp

using arguments of dominant balance between the inertial concentration and diffusion terms in the
particle transport equation (more details can be found in Sec. IV). Although we showed that the
model was quite useful in predicting the maximum particle concentration in turbulent flows, our
study was limited to flows where the turbulence was driven by the particles themselves. Therefore,
whether these results are more generally applicable to any turbulent particle-laden flow remained to
be established. This crucial question is answered in the present paper.

The paper is organized as follows. In Sec. II we introduce the model setup and the governing
equations based on the two-fluid formalism. In Sec. III we present DNSs for varying governing
parameters (such as the Stokes number and the fluid Reynolds number, for instance), and explore
how they affect both preferential concentration and the energetics of the system. In Sec. IV we
briefly review the predictive model for maximum particle concentration enhancement presented in
Ref. [7] and compare it to the new DNSs. We further look at the typical particle concentration
enhancement and the associated pdf of the particle concentration. Section V A briefly summarizes
and presents applications of our model. We discuss the implications of these results and conclude
with final remarks.

II. THE MODEL

In this work we use the two-fluid model described in Nasab and Garaud [7] to study the dynamics
of a dilute monodisperse suspension of particles in a turbulent carrier fluid once it reaches a
statistically stationary state. For simplicity, we assume that the inertial particles have a solid density
that is much larger than the mean fluid density such that ρs � ρ f . We also assume that they are
sufficiently small so that Stokes’ law can be applied, in which case τp = ρsd2

p/18ρ f ν, where dp is
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the diameter of the particle, and ρ f and ν are the mean density and the kinematic viscosity of the
fluid, respectively. Since the particles are much denser than the fluid, effects incorporated in terms
such as the Basset history, Faxen correction, and added mass can be neglected [12]. We additionally
require that the particle stopping time τp should be much smaller than the typical eddy turnover time
of the carrier fluid τe, so St � 1.

We use the Boussinesq approximation [13] for the carrier fluid and obtain the following gov-
erning equations after a suitable approximation of the particle equations (see Nasab and Garaud
[7]),

∂u
∂t

+ u · ∇u = −∇p

ρ f
+ r

up − u
τp

+ ν∇2u + 1

ρ f
F, (1)

∂up

∂t
+ up · ∇up = u − up

τp
+ νp∇2up, (2)

∂r

∂t
+ ∇ · (upr) = κp∇2r, (3)

∇ · u = 0, (4)

where the fluid velocity is u = (u, v,w), p is the pressure, and the particle velocity is up =
(up, vp,wp). Within this formalism, we define the local number density of particles to be np, and
the corresponding mass density to be ρp = npmp, where mp is the mass of a single particle. For
convenience, we refer to r = ρp/ρ f as the rescaled particle density with respect to the mean density
of the carrier fluid (see Nasab and Garaud [7] for details).

By treating the particles as a continuum, we need to account for the stochastic aspect of particle
trajectories, such as Brownian motion and the interaction of a particle with its own or another
particle’s wake. Generally these interactions are complex in nature, and thus difficult to implement
realistically and numerically. Here, we assume that they take the form of a diffusion operator in the
equations for the particle density and velocity and set the corresponding diffusivities νp and κp to
be constant. This approximation is actually valid in the limit where Brownian motion is dominant,
but is used for simplicity otherwise.

We initialize the particles with a uniform distribution in r such that r = r0 everywhere in the
domain. In this study, we choose to explore the range 0.1 � r0 � 10. Note that r0 = �0ρs/ρ f ,
where the initial volume fraction of the particles �0 is small so that the system is well within
the dilute limit. Smaller values of r0 correspond to systems such that ρs/ρ f � O(1). In this case,
particle settling due to gravity is negligible, and can thus be ignored. Values of r0 > 1 can in
principle be obtained when ρs � ρ f , such as is the case for aerosols or dust in accretion disks.
However, particle settling should be taken into account in that limit. Therefore for simplicity, we
also omit gravity from the particle momentum equation (2) to avoid the effect of settling on the
dynamics of the system.

Lastly in this work, we drive the turbulence mechanically, by forcing the flow to be shear
unstable. We drive the mean flow using a constant body force given by F = F0 sin(ksz)êx, where
F0 is the forcing amplitude and ks = 2π/Lz is the wave number corresponding to the domain height
Lz. By selecting a noncubic domain (where Lx > Lz), the Kolmogorov flow thus generated is linearly
unstable for large enough Reynolds number [14].

A. Nondimensionalization

In what follows, we define the characteristic length and velocity scales to be

Lc = 1

ks
= Lz

2π
and Uc =

(
LzF0

2πρ f

)1/2

, (5)
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and by construction, the typical eddy turnover time is

τc =
( Lzρ f

2πF0

)1/2

. (6)

This choice effectively assumes a balance in the carrier fluid momentum equation between the
inertial terms and the forcing, such that u · ∇u ∼ F0/ρ f . After using (5) and (6) to scale Eqs. (1)–(4),
the nondimensional governing equations are

∂û
∂t

+ û · ∇û = −∇ p̂ + r0r̂
ûp − û

Tp
+ 1

Re
∇2û + sin(z)êx, (7)

∂ûp

∂t
+ ûp · ∇ûp = û − ûp

Tp
+ 1

Rep
∇2ûp, (8)

∂ r̂

∂t
+ ∇ · (ûpr̂) = 1

Pep
∇2r̂, (9)

∇ · û = 0, (10)

where the hatted quantities (as well as the independent variables) are now nondimensional, where
r̂ = r/r0, and where

Tp = τp

τc
(11)

is the nondimensional stopping time, which can be viewed as an estimate of the Stokes number
based on the turnover time of the energetically dominant eddies. Additionally, the diffusion terms
are now characterized by a Reynolds number for the fluid Re, a Reynolds number for the particles
Rep, and the particle Péclet number Pep, respectively defined by

Re = UcLc

ν
, Rep = UcLc

νp
, Pep = UcLc

κp
. (12)

III. NUMERICAL SIMULATIONS

A. The PADDI-2F code

We use direct numerical simulations to investigate the effects of preferential concentration in
the model described in Sec. II. We use a modified version of the pseudospectral PADDI code,
which was originally developed to study double-diffusive phenomena in oceanic contexts [15–17],
and later extended to astrophysical applications [18,19] and to particle-laden flows [7]. PADDI-2F
solves the governing equations (7)–(10) in spectral space. Specifically, diffusion terms are treated
implicitly in spectral space, whereas both nonlinear and drag terms are first computed in real space,
transformed into spectral space, and then integrated explicitly using a third-order Adams-Bashforth
backward-differencing scheme. Drag terms are computed in a way that ensures the total momentum
is conserved (other than the dissipation terms) throughout the simulations.

The computational domain is triply periodic, with (Lx, Ly, Lz ) = (4π, 2π, 2π ) to ensure that the
flow is linearly unstable under the selected forcing. All simulations are run until a statistically steady
state has been reached, either starting from the initial conditions as described in Sec. II, or starting
from the end of another simulation at nearby parameters. Due to the high cost of running simulations
in three dimensions (3D) and the resolution needed to resolve fine-scale particle structures, we
restrict our simulations to Re � 600 and up to moderate values of the Stokes number Tp � 0.03
in which the two-fluid formalism is valid (see Sec. III B for more details). Specifications of all
simulations are listed in Table I.
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TABLE I. Characteristics of the numerical simulations. The first column represents the markers for
Figs. 10, 11, and 13. The second to fifth columns show Tp, r0, Re, and Pep (where we have set Rep = Pep). The
sixth to eighth columns show temporally averaged values for r̂sup, r̂rms, and Ûrms once the system has reached
a statistically steady state, and the errors represent a standard deviation around the mean. The last column
corresponds to the slope b and its standard error of the exponential tail of the pdfs presented in Sec. IV B.
All 3D simulations were run with (Lx × Ly × Lz ) = (4π × 2π × 2π ) with the corresponding number of mesh
points used in each direction as (Nx × Ny × Nz ) = (768 × 384 × 384).

B. The effect of Re on the turbulence in the absence of particles

Shear-driven turbulence, created in the model setup selected here, is not as commonly used as
homogeneous isotropic turbulence for the study of particle-laden flows. For this reason, we begin by
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FIG. 1. Mean flow ū and Reynolds stress uw as a function of height z for a simulation in the absence of
particles with Re = 600. The blue curve represents the temporal average of the gray curves, which have been
extracted at various times after the system has reached a statistically steady state.

presenting some of the properties of the fluid in the absence of particles, in particular with respect
to variations of the Reynolds number. Note that studies of the onset of turbulence in this type of
Kolmogorov flow were presented by Refs. [20–22], while studies of stratified turbulence in the
same system were presented by Ref. [23].

In this section, we therefore only use the momentum equation (7) and the divergence-free condi-
tion (10), and set r0 = 0. We set the resolution of the 3D runs to be 768 × 384 × 384 equivalent grid
points in the x, y, and z directions, respectively. Once the simulations have reached a statistically
stationary state, they have a well-defined mean flow ū(z) (where the overbar denotes a horizontal
average) in the x direction that varies sinusoidally in the z direction, as expected. The amplitude of
the mean flow is roughly equal to one, again as expected from the nondimensionalization selected.
It is maintained by a balance between the unidirectional forcing term and the turbulent Reynolds
stresses, which are generated by the shear instability. Figure 1 illustrates this in the simulation with
Re = 600.

Energy in this system is input at the largest possible scale, and dissipated at the smallest scales by
the turbulence. In a statistically stationary state, and in the absence of particles, we have the balance

〈F̂ · û〉 = 〈sin(z)û〉 = ε̂ = Re−1|∇û|2, (13)

where the angular brackets denote a volume average, and where ε̂ is the kinetic energy dissipation
rate. The latter is roughly equal to 0.5 for all simulations without particles regardless of Re,
consistent with the fact that the mean flow ū � sin(z).

Using this, we can estimate the nondimensional Kolmogorov timescale to be τ̂η =
(ν/ε)1/2Uc/Lc = (ε̂ Re)−1/2, so the Stokes number based on the Kolmogorov timescale is Stη =
Tp/τ̂η = (ε̂ Re)1/2Tp. We therefore have Stη � 7Tp for Re = 100, Stη � 12Tp for Re = 300, and
Stη � 17Tp for Re = 600. In order to guarantee Stη � 0.5 [11], we restrict Tp to be 0.03 at most in
all of the presented below. This ensures that the two-fluid approximation remains valid.

We can examine the power spectra of the fluid velocity field once the system has reached a
statistically steady state, and compare the results for different Reynolds numbers. We define the
power in mode k for a scalar quantity ξ̂ (e.g., û, v̂, and ŵ) as

Pξ̂ (k, t ) = ξ̃ (k, t )ξ̃ ∗(k, t ), (14)

where k = (kx, ky, kz ) is the nondimensional wave vector and ξ̃ (k, t ) and ξ̃ ∗(k, t ) are the Fourier
transform of ξ̂ and its complex conjugate, respectively. For Figs. 2, 4, 5, 6, and 8 we present the
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FIG. 2. Instantaneous power spectra of the total fluid velocity field as a function of |k| for simulations in
the absence of particles for Re = 100, 300, and 600. The black solid line scales as |k|−5/3.

power spectra Pξ̂ (|k|, t ) as a function of the total wave number |k| = (k2
x + k2

y + k2
z )1/2, where

Pξ̂ (|k|, t ) is the power contained in all the modes whose amplitudes lie between |k| and |k| + 1.
Figure 2 presents the power spectra of the total fluid velocity field Pû(|k|) + Pv̂ (|k|) + Pŵ(|k|)

extracted at an instant in time after the system has reached a statistically steady state for three
simulations with Re = 100, 300, and 600, respectively. For sufficiently large Re, the system exhibits
a well-known energy cascade whose inertial range scales as |k|−5/3, shown here by the black line for
ease of comparison. This suggests that the turbulence is relatively isotropic at larger wave numbers,
a fact that has been verified by comparing the power spectra of û, v̂, and ŵ (not shown).

FIG. 3. Comparison of particle concentration snapshots for low Tp = 0.005 (left column) and high Tp =
0.03 (right column) simulations. Each snapshot was extracted once the system has reached a statistically steady
state. (a), (b) Volume rendering of r̂; (c), (d) snapshots of the particle concentration enhancement r̂ − 1 at y = 0;
(e), (f) snapshots of ∇ · ûp at y = 0. The remaining parameters are r0 = 0.1, Re = 100, Rep = 600, Pep = 600.
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FIG. 4. Instantaneous power spectra of (a) the total fluid velocity field and (b) the particle concentration
field as a function of the total wave number |k| for varying Tp. The remaining parameters are r0 = 0.1, Re =
100, Rep = 600, and Pep = 600.

FIG. 5. Instantaneous power spectra of (a) the total fluid velocity field and (b) the particle concentration
field as a function of the total wave number |k| for varying r0. The remaining parameters are Tp = 0.01,
Re = 100, Rep = 600, and Pep = 600. The solid, dashed, and dotted lines represents the predicted scaling for
the power at the injection scale for r0 = 0.1, 1, and 10, respectively (see main text for details).

FIG. 6. Instantaneous power spectra of (a) the total fluid velocity field and (b) the particle concentration
field as a function of the total wave number |k| for varying Re. The remaining parameters are Tp = 0.01,
r0 = 0.1, Rep = 600, and Pep = 600. On the right plot, we mark kλ/3 given by the vertical dashed line with
the same color as the corresponding simulation.
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FIG. 7. Snapshots of the particle concentration enhancement above the mean r̂ − 1 for two different
simulations with Re = 100 and Re = 600. The remaining parameters are Tp = 0.01, r0 = 0.1, Rep = 600,
and Pep = 600.

With this in mind, we can estimate the Taylor microscale and Kolmogorov scale using the
standard formula from homogeneous isotropic turbulence. The nondimensional Taylor microscale
is given by λ̂ = √

5/ε̂ Re Ûrms, where Ûrms � 1 is the nondimensional time-averaged rms velocity
of the fluid (see Sec. III G for details). This corresponds to kλ = 2π/λ̂, which is equal to kλ ≈ 20
for Re = 100, kλ ≈ 35 for Re = 300, and kλ ≈ 50 for Re = 600. The associated Reynolds numbers
based on the Taylor microscale are Reλ = Û 2

rms

√
5 Re/3ε̂ � 18, 30, and 45, respectively. Similarly,

we can compute the Kolmogorov scale using the formula η̂ = (ε̂ Re3)−1/4. This corresponds to
η̂ � 0.037 for Re = 100, η̂ � 0.016 for Re = 300, and η̂ � 0.01 for Re = 600. The product of the
largest resolved nondimensional wave number with the nondimensional Kolmogorov scale is larger
than one for all cases (though admittedly quite close to one for Re = 600), showing that simulations
are resolved.

In geophysical and astrophysical applications, Re and Reλ are much larger than computationally
achievable, with an established inertial range spanning many orders of magnitude, by contrast with
our simulations where it is quite limited. Therefore, one must be careful about extrapolating the
results obtained in this paper to systems with Re � 103 (see Sec. V B for more details).

C. The effect of Tp on preferential concentration

We now add particles and explore how the various input parameters affect preferential concen-
tration. We first look at how the nondimensional stopping time, which is also a proxy for the Stokes
number of the particles, affects the system by comparing a 3D simulation with a very low Tp = 0.005
to another at a higher Tp = 0.03. To do so, we use the PADDI-2F code using Eqs. (7)–(10), with the

FIG. 8. Instantaneous power spectra of (a) the total fluid velocity field and (b) the particle concentration
field as a function of the total wave number |k| for varying Pep. The remaining parameters are Tp = 0.01,
r0 = 0.1, Re = 100, and Rep = Pep.
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remaining parameters set as r0 = 0.1, Re = 100, Rep = 600, and Pep = 600. The resolution and
domain size for the simulations are set to 768 × 384 × 384 equivalent grid points, and as before,
Lx = 4π and Ly = Lz = 2π (see Table I for more details).

We present snapshots in Fig. 3 of the particle concentration field after the system has reached a
statistically steady state. In the volume renderings shown in Figs. 3(a) and 3(b), we highlight areas
of relatively higher particle concentration in red. In both simulations the particle field develops
sheetlike structures which appear to be about the same size, but denser for the high Tp case. We can
see the particle structures in more detail in Figs. 3(c) and 3(d), which show the particle concentration
deviation from the mean (namely, r̂ − 1) in a slice taken at y = 0. We clearly see that the denser
particle structures indeed appear to be the same size for both simulations. The densest structures for
the high Tp case have values of r̂ − 1 ≈ 3 compared to r̂ − 1 ≈ 0.5 for structures found in the low
Tp case.

The fact that preferential concentration is more efficient at higher values of Tp recovers the well-
known results of Ref. [1], which are expressed as follows in the two-fluid formalism. Using the
particle momentum equation (9), we can express ûp in terms of û and Tp using an asymptotic
expansion in Tp:

ûp = û − Tp

(
û · ∇û + ∂û

∂t
− 1

Rep
∇2û

)
+ O(T 2

p ). (15)

Taking the divergence of (15), we then obtain

∇ · ûp = −Tp∇ · (û · ∇û) + O(T 2
p ), (16)

which shows that ∇ · ûp is nonzero even though ∇ · û = 0, and furthermore depends linearly on
Tp for small Tp. It is easy to see [from Eq. (9)] that the particle concentration grows (or decays)
exponentially since

∂ r̂

∂t
= −r̂(∇ · ûp) + · · · , (17)

showing that the growth or decay rate of r̂ is given by |∇ · ûp|. Figure 3 compares the particle
concentration enhancement r̂ − 1 [Figs. 3(c) and 3(d)] to the value of ∇ · ûp [Figs. 3(e) and 3(f)]
at the same time. We see that areas where ∇ · ûp < 0 (shown in blue) correspond to regions where
r̂ − 1 is maximal, while regions with ∇ · ûp > 0 (shown in red) correspond to regions where r̂ is
close to 0 (equivalently, r̂ − 1 is close to −1), as expected from the argument above.

We next compare the power spectra [using Eq. (14)] of the particle concentration and fluid
velocity fields for simulations with varying Tp, with the remaining parameters fixed as r0 = 0.1,
Re = 100, Rep = 600, and Pep = 600. Figure 4(a) shows the power spectrum of the total fluid ve-
locity field Pû(|k|) + Pv̂ (|k|) + Pŵ(|k|). The solid black line represents the Kolmogorov spectrum
given by |k|−5/3. Although there is a subtle decrease in power across all scales for larger Tp, the
velocity spectrum appears to be overall relatively unaffected.

Figure 4(b) shows the power spectrum of the particle concentration Pr̂ (|k|). We see that in-
creasing Tp causes an increase in Pr̂ (|k|) at all scales, with the exception of the k = 0 mode whose
amplitude instead decreases (not shown here). This is consistent with our expectation that increasing
inertia causes an increase in preferential concentration, and is directly related to the snapshots in
Fig. 3: Comparable-sized particle structures are denser (higher r̂) for large Tp than for small Tp.

D. The effect of r0 on preferential concentration

We next look at the effect of the particle mass loading fraction r0 on the energetics of the system.
We set Tp = 0.01, Re = 100, Rep = 600, and Pep = 600 (see Table I for more details) and present
the power spectra of the particle concentration and total fluid velocity fields [using Eq. (14)] in
Figs. 5(a) and 5(b), respectively.
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Turning first to the power spectrum of the velocity field in Fig. 5(a), we see that r0 has a strong
effect on the total energy of the turbulent flow. The inertial range still shows the usual |k|−5/3 power
law as in the case without particles (r0 = 0 with Re = 100, Rep = 600, Pep = 600 in Fig. 2), but
its amplitude decreases with increasing r0. In order to understand why increasing r0 reduces the
turbulent energy, note that in a statistically stationary state, the momentum equation (1) reaches a
balance between the inertial terms and body force terms, expressed dimensionally as ρ f (u · ∇u) ∼
F. With the addition of particles that are well coupled to the fluid (i.e., if Tp → 0), the dominant
balance becomes (ρ f + ρp)(u · ∇u) ∼ F. In the nondimensionalization presented in Sec. II A, this
balance implies (1 + r0)û2 � O(1). With this in mind, we can then expect that Pû(|k|) + Pv̂ (|k|) +
Pŵ(|k|) ought to scale as 1/(1 + r0) at the injection scale. The scaling is confirmed in Fig. 5 for
r0 = 0.1, r0 = 1, and r0 = 10 given by the solid, dashed, and dotted lines, respectively.

Figure 5(b) shows the power spectrum of the particle concentration field Pr̂ (|k|), and we see
that larger r0 corresponds to smaller Pr̂ (|k|) across all scales (except the k = 0 mode which is not
shown). This is consistent with the fact that larger r0 results in a decrease in the turbulence intensity
(and therefore preferential concentration) across all scales, as observed from the velocity power
spectrum.

E. The effect of Re on preferential concentration

In this section, we investigate how varying the fluid Reynolds number affects the energetics,
while fixing the other parameters to be Tp = 0.01, r0 = 0.1, Rep = 600, and Pep = 600 (see Table I
for more details). Figures 6(a) and 6(b) show the power spectra of the total fluid velocity and particle
concentration fields, respectively [using Eq. (14)].

In Fig. 6(a), the velocity spectra shown are more or less indistinguishable from those of the
corresponding fluid-only simulations presented in Sec. III B. This is not surprising since the value
of r0 = 0.1 chosen for these simulations is quite small. Because a larger Re extends the inertial
range, finer scales of turbulence are generated. Consequently in Fig. 6(b), we also see substantially
more power in the particle density field at smaller scales when Re increases. More precisely, we see
that the spectrum of the particle concentration increases mildly with |k| at low wave number, and
appears to peak around |k| � kλ/3. Beyond that, Pr̂ (|k|) drops rapidly with increasing wave number.
This suggests that the typical scale of particle structures ought to be more closely related to the
Taylor microscale than to the Kolmogorov scale. This is confirmed in the snapshots of the particle
concentration enhancement (r̂ − 1) shown in Fig. 7, which compare simulations with Re = 100 and
Re = 600. The finer scales of turbulence for larger Re cause the denser particle structures to appear
overall more fragmented and convoluted. We note, however, that the densest filamentary regions
(shown in dark red) have comparable thickness for varying Re.

F. The effect of Pep and Rep on preferential concentration

Finally, we examine how the particle diffusion coefficients Pep and Rep affect the energetics
of the system. As described in Sec. II, the particle concentration and momentum diffusivities are
necessary when modeling the particles as a continuum, but their origin is grounded in the notion
that the particle velocities have a stochastic component in addition to the mean ûp. Since the origin
of the particle diffusivity is likely the same as that of the momentum diffusivity, we may expect Pep

and Rep to be related, and close to one another. In what follows, we take Pep = Rep for simplicity.
Figure 8 shows the power spectra of the particle concentration field and the total fluid velocity

field. In Fig. 8(b), we see that a larger Pep (equivalently, a lower particle diffusivity) results in
significantly larger Pr̂ (|k|) across all scales, and thus the presence of smaller-scale structures in the
particle concentration field. By contrast, we see in Fig. 8(a) that Pep does not affect the velocity
power spectrum significantly, other than a slight decrease in energy across all scales for larger Pep.
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G. Quantifying particle concentration enhancement

In what follows, we quantify particle concentration enhancement by first defining several terms,

r̂sup(t ) = max
x

r̂(x, t ), (18)

representing the maximum particle concentration across the domain,

r̂rms(t ) =
[

1

LxLyLz

∫∫∫
(r̂ − 1)2 dxdydz

]1/2

, (19)

defined as the standard deviation around the mean particle density r̂ = 1, and the rms fluid velocity
defined as

Ûrms(t ) =
[

1

LxLyLz

∫∫∫
[û2(x, t ) + v̂2(x, t ) + ŵ2(x, t )]dxdydz

]1/2

. (20)

We first look at how the two measures of particle concentration enhancement defined above,
as well as the rms fluid velocity, vary with respect to Tp, r0, Re, and Pep (assuming as above that
Rep = Pep). For each simulation presented, we take a temporal average of the quantities defined
by Eqs. (18)–(20) after the system has reached a statistically steady state over a time range t ,
and report the means as r̂sup, r̂rms, and Ûrms in Table I. We then take the standard deviation around
this temporal average as an estimate of the error bar (quantifying the variability). Figure 9 presents
the temporally averaged values of r̂sup − 1, r̂rms, and Ûrms for selected simulations. In Fig. 9(a), we
present simulations for varying Tp, while holding r0 = 0.1, Re = 100, Rep = 600, and Pep = 600
constant. We see that both r̂sup − 1 and r̂rms increase with Tp, while Ûrms is overall unaffected. This
is consistent with the observation in Sec. III C that Tp only has a small effect on the overall power
spectrum of the turbulence, but directly controls the rate of preferential concentration. In Fig. 9(b),
r0 is varied, while Tp = 0.01, Re = 100, Rep = 600, and Pep = 600 are held constant. We see that
all quantities decrease with increasing r0. This can be explained by the fact that an increase in r0

corresponds to a decrease in the turbulent fluid velocity, resulting in a subsequent decrease in the
particle concentration enhancement (see Sec. III D). Moving on to Fig. 9(c) where Re is varied
while Tp = 0.01, r0 = 0.1, Rep = 600, and Pep = 600 are held constant, we see that Ûrms and r̂rms

are overall unchanged, at least within the range of Re shown. In contrast, we see a slight increase
of r̂sup − 1 with Re. Finally in Fig. 9(d), where Pep (and Rep) is varied while Tp = 0.01, r0 = 0.1,
and Re = 100 are held constant, we see that both r̂sup − 1 and r̂rms increase with Pep, while Ûrms

is unchanged (see Sec. III F). Therefore, we see that the quantities r̂sup, r̂rms, and Ûrms for varying
parameters are consistent with the spectra shown in Secs. III C–III F.

IV. PREDICTIVE MODEL

As discussed in Sec. I, Nasab and Garaud [7] found that the maximum particle concentration in
a fluid where the turbulence is driven by the particle Rayleigh-Taylor instability scales as u2

rmsτp/κp,
and presented theoretical arguments of the dominant balance that support this law. For pedagogical
purposes, we reproduce the arguments here, and then verify whether the same scaling law applies
for particles in mechanically driven (shear-induced) turbulence as studied in this paper.

We start with the particle concentration equation (9) and substitute r̂ = 1 + r̂′ to get

∂ r̂′

∂t
+ (1 + r̂′)∇ · ûp + ûp · ∇r̂′ = 1

Pep
∇2r̂′, (21)

where r̂′ is the particle concentration enhancement over the mean.
As in Nasab and Garaud [7], we assume that in regions of maximal concentration enhancement

there is a dominant balance between the inertial concentration term and the diffusion term expressed
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FIG. 9. Temporally averaged maximum and typical particle concentration enhancement (r̂sup − 1 and r̂rms,
respectively) and the temporally averaged rms fluid velocity Ûrms for (a) varying Tp, (b) varying r0, (c) varying
Re, and (d) varying Pep and Rep from simulations that have reached a statistically steady state. Error bars
represent one standard deviation around the mean. Unless otherwise stated, Tp = 0.01, r0 = 0.1, Re = 100,
Pep = 600, and Rep = 600 (see main text). More details of the simulations can be found in Table I.

as

∇ · ûp ∼ 1

Pep
∇2r̂′. (22)

Using Eq. (16) in Eq. (22), we obtain

−Tp∇ · (û · ∇û) ∼ 1

Pep
∇2r̂′. (23)

Assuming that the characteristic length scale involved in the inertial term and the diffusive term
are the same, dimensional analysis reveals that

r̂′ ∼ Û 2
rmsTp Pep, (24)

where Ûrms represents the characteristic fluid velocity of the system [see Eq. (20)]. Dimensionally,
this expression becomes

(
ρ ′

p

ρ̄p

)
max

∼ u2
rmsτp

κp
, (25)
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FIG. 10. Maximum particle concentration enhancement over the mean as function of Û 2
rmsTp Pep with

varying parameters (i.e., Tp, r0, Re, Rep, and Pep). The black solid line represents r̂sup − 1 = (1/10)Û 2
rmsTp Pep.

The legend and details of simulations can be found in Table I.

where ρ ′
p = r̂′r0ρs is the local particle density enhancement over the mean ρ̄p = r0ρs (see Ref. [7]

for more details) and urms is the dimensional rms fluid velocity. We now have a scaling law relating
particle concentration enhancement r̂′ to only three properties of the flow: the characteristic fluid
velocity, the particle stopping time, and the particle diffusivity.

A. Maximum particle concentration enhancement

As in Nasab and Garaud [7], we compare the scaling law (24) to our selected measure of
maximum particle concentration enhancement r̂sup − 1 [see Eq. (18)]. In Fig. 10, we present r̂sup − 1
vs Û 2

rmsTp Pep (with the legend and simulation details found in Table I). Each point corresponds to
one simulation, where the values of r̂sup and Ûrms were extracted after the system has reached a
statistically steady state. Various marker types represent varying Tp, r0, Re, Pep, and Rep: The color
represents the value for Tp or Re, the shape represents r0, and colored outlines represent Pep (or
equivalently Rep, since Rep = Pep). The solid line represents the scaling r̂′ ∼ Û 2

rmsTp Pep.
Our main conclusion is that the scaling law proposed by Nasab and Garaud [7] in the context of

the particle-driven convective instability also holds more generally in mechanically driven turbulent
flows, which is perhaps not surprising, but needed to be established. As expected, we see points for
larger Tp or smaller r0 have larger r̂sup, while larger r0 results in a smaller Ûrms, and therefore smaller
r̂sup, as discussed in Sec. III G. We also see that for larger Re, Ûrms increases slightly, resulting in
larger r̂sup.

B. Typical particle concentration enhancement

In our previous work [7], we also showed that the typical particle concentration enhancement
r̂rms did not follow the scaling law given by Eq. (24), but instead scaled as

r̂rms ∼
√

Û 2
rmsTp Pep, (26)
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FIG. 11. Typical particle concentration enhancement over the mean as a function of Û 2
rmsTp Pep with varying

parameters (i.e. Tp, r0, Re, Rep, and Pep). The black dotted line represents r̂rms = (0.07)Ûrms(Tp Pep)1/2 and the
solid line represents r̂rms = (1/10)Û 2

rmsTp Pep. The legend and details of simulations can be found in Table I.

which dimensionally is

(
ρ ′

p

ρ̄p

)
rms

∼
(

u2
rmsτp

κp

)1/2

. (27)

We see that this result also holds for this work in Fig. 11. The data points do not follow the
scaling law (24) shown by the solid line, and instead follow the dashed line representing r̂rms ∼
Ûrms

√
Tp Pep.

As argued by Nasab and Garaud [7], the fact that r̂rms depends on the same combination of
parameters as r̂sup − 1 (albeit with a different power law) strongly suggests that the entire pdf of
the concentration enhancement depends on the combination Û 2

rmsTp Pep. To see whether a similar
argument applies here, Fig. 12 presents pdfs of r̂ for selected simulations of varying Tp [Fig. 12(a)]

FIG. 12. Probability distribution functions for r̂, computed from simulations that have reached a statisti-
cally steady state (a) for varying Tp with r0 = 0.1, Re = 100, Pep = 600, Rep = 600 and (b) for varying r0

with Tp = 0.01, Re = 100, Pep = 600, Rep = 600. The gray lines fit the tail of each pdf and are of the form
p(r̂) ∝ e−br̂ . Values of b and simulation details can be found in Table I.
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FIG. 13. The slope b of the exponential tail of the pdf of r̂ as a function of Û 2
rmsTp Pep for simulations at

various Tp, r0, Re, Rep, and Pep (where Rep = Pep). The blue solid line shows b ∼ (Û 2
rmsTp Pep)−1/2. See Table I

for more details.

and r0 [Fig. 12(b)] (with simulation details in Table I). These pdfs represent the probability of
one pixel in the simulation to have a concentration whose value lies between r̂ and r̂ + r̂, where
r̂ = 0.002. The pdf would take the form of a delta function centered on r̂ = 1 in the absence
of preferential concentration (Tp → 0), since the particle density in that case remains equal to one
everywhere and at all times.

On the other hand, when preferential concentration is present, the pdf broadens as the particle
density becomes more inhomogeneous. We see in Fig. 12(a), where Tp is varied while holding
r0 = 0.1, Re = 100, Pep = 600, and Rep = 600 constant, that the pdf appears relatively narrow
around the mean value r̂ = 1 for small Tp. As Tp increases, the spatial distribution of the particles
becomes more heterogeneous due to preferential concentration, and the pdf widens considerably.
We also see an increase in the probability of events of no particles (when r̂ � 0) and the appearance
of an elongated tail capturing extreme events where the particle concentration is largest. The tail is
exponential, of the form p(r̂) ∝ e−br̂ .

The appearance of an exponential tail associated with inertial concentration in the particle density
pdf was discussed in some detail by Nasab and Garaud [7], but can already be seen in earlier work
by Shotorban and Balachandar [11] [see their Fig. 7(a)], in two-fluid simulations and also more
crucially in Lagrangian simulations. This demonstrates that the tail is not an artifact of the two-
fluid formalism, but instead an inherent property of the particle concentration field when inertial
concentration is important.

Moving to Fig. 12(b) in which r0 is varied while Tp = 0.01, Re = 100, Pep = 600, and Rep =
600, we see that increasing r0 causes the pdf to become narrower. This is consistent with the fact
that a larger r0 lowers the amplitude of the turbulence in the system, and consequently weakens
preferential concentration.

Nasab and Garaud [7] studied more quantitatively the properties of the exponential tail of the pdf
and found that its decay rate b scales as (Û 2

rmsTp Pep)−1/2. In Fig. 13, we present b as a function of
Û 2

rmsTp Pep, where b was found by fitting a decaying exponential function to the pdfs presented in
Fig. 12, along with additional pdfs computed from simulations with varying Re, Pep, and Rep. Each
simulation is represented by one data point with the same marker type used in Figs. 10 and 11 (with

104303-16



PREFERENTIAL CONCENTRATION BY MECHANICALLY …

simulation details in Table I), where the errors on b are not shown since they are much smaller than
the marker size. The data points appear to follow the blue line given by (Û 2

rmsTp Pep)−1/2, consistent
with results from Nasab and Garaud [7]. This demonstrates that r̂rms ∼ 1/b, a result that is not
entirely surprising since it would actually be exact if the pdfs were purely exponential.

V. SUMMARY, APPLICATIONS, AND DISCUSSION

A. Summary

In Nasab and Garaud [7] we studied preferential concentration in a two-way coupled particle-
laden flow in the context of the particle-driven convective instability. We found that the maximum
particle concentration enhancement above the mean scales as u2

rmsτp/κp, where urms is the rms fluid
velocity, τp is the particle stopping time, and κp is the assumed particle diffusivity. Additionally, we
found that the typical particle concentration enhancement over the mean scales as (u2

rmsτp/κp)1/2

and the pdf of the particle concentration over the mean has an exponential tail whose slope scales as
(u2

rmsτp/κp)−1/2. However, it was not clear that these results would remain valid in a system in which
the turbulence is not driven by the particles themselves. In this paper, we confirm that the results
of Nasab and Garaud [7] apply in a system in which the turbulence is mechanically driven. With
this extension to a much wider class of turbulent systems, our model has important consequences
for preferential concentration in the various applications introduced in Sec. I. In the next sections,
we discuss the potential caveats one should bear in mind before applying the model to real physical
systems, and present a particular prediction of the model for droplet concentration in clouds.

B. Caveats of the model, and extension to higher Re

In general, realistic applications of preferential concentration in natural systems take place in
environments such as clouds, river outflows, or accretion disks, that are highly turbulent in nature,
and whose Reynolds numbers are asymptotically large. Because of this, the velocity spectra have
an inertial range which spans many orders of magnitudes in length scales. For sufficiently turbulent
flows satisfying Kolmogorov’s scaling laws, the eddy turnover timescale is proportional to the eddy
length scale to the power of 2/3, so one may expect the Stokes number to increase with wave
number and reach a maximum at the end of the inertial range (i.e., near the Taylor microscale).
This is at least qualitatively validated by our finding that the power spectrum of the particle density
fluctuations peaks near the Taylor microscale (see Fig. 6). This poses two problems in terms of the
extension of our results to very strongly turbulent flows.

On the one hand, it is possible for the Stokes number at the Taylor microscale Stλ to exceed
the threshold of validity of the two-fluid approximation (even if St is small at the injection scale).
This is not a problem for the DNS presented here, where Stλ = Tpλ̂

−2/3 � 0.06 for all simulations
listed in Table I [24]. As discussed earlier, we also verified that the ratio of the particle stopping
time to the Kolmogorov timescale Stη < 0.6 in all the simulations, therefore satisfying the criterion
established by Shotorban and Balachandar [11] for the validity of the two-fluid approximation.
However, real-life turbulent flows that have a very large inertial range (Re � 1) are more likely to
have a large Stλ and/or Stη, in which case the two-fluid approximation breaks down and the scalings
discussed here do not apply.

We also note that our theory is predicated upon the assumption that a single (possibly scale-
dependent) Stokes number adequately summarizes the particle dynamics for the entire simulation.
In practice, of course, this is not the case, and individual particles traveling through the turbulent
flow experience a wide range of Stokes numbers depending on the local conditions within the eddy
they are currently interacting with. As a result, the two-fluid approximation can locally break down
even if it holds on average. Since one of the main results of our analysis is concerned with extreme
events (i.e., the prediction of the maximum particle density, and the existence of an exponential tail
within the particle density pdf), one cannot rule out the possibility that these events coincidentally
occur in the rare conditions for which the two-fluid approximation would break down. However, the
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fact that an exponential tail in the particle density pdf was also found in the Lagrangian simulations
of Shotorban and Balachandar [11] at least suggests that it is not an artifact of the continuum
approximation.

On the other hand, one also needs to question whether results obtained in DNS at moderate
Reynolds numbers remain valid when Re → ∞. Indeed, due to the high computational cost of
running 3D DNS, we only looked at moderately turbulent systems where Re � 600. In that case,
the inertial range of the velocity spectra is quite limited (see Sec. III). As a result, the characteristic
fluid velocity measured at the injection scale is comparable to the corresponding fluid velocity
measured at the Taylor microscale. However, when Re → ∞, the velocities at these two scales may
be vastly different. This naturally brings up a valid question concerning the predictive model: Is
the maximum particle concentration enhancement dependent on the fluid velocity measured at the
injection scale (as we assumed in this work), or near the Taylor microscale which seems to set the
dominant scale of the particle concentration fluctuations? A further look into the data may provide
some preliminary clue to the answer (although simulations at much higher Re will ultimately be
needed to fully confirm the results).

We saw in Sec. IV that our predictive model for maximum particle concentration enhancement
in the two-fluid approximation depends on the fluid velocity, the particle stopping time, and the
assumed particle diffusivity, as

(
ρ ′

p

ρ̄p

)
max

≈ α
u2(�)τp

κp
(28)

for some prefactor α, where here we allow for the possibility that the correct value of u may be
different from urms. We now consider the hypothesis raised above that the fluid velocity may need to
be that of the Taylor microscale instead, such that � = λ. Assuming a Kolmogorov scaling, it then
follows that

u(λ) = urms(λks)1/3, (29)

where we recall that 2π/ks = Lz is the height of the computational domain. Using the fact that
λks = λ̂ ∝ Re−1/2 we obtain

u(λ) ∝ urms Re−1/6. (30)

Substituting u(λ) in (28), the maximum particle concentration enhancement in this alternative model
would be

(
ρ ′

p

ρ̄p

)
max

∼ Re−1/3 u2
rmsτp

κp
. (31)

This formula suggests that (ρ ′
p/ρ̄p)max should decrease with increasing Re. If this were the case,

then we would expect that (ρ ′
p/ρ̄p)max should be approximately twice as large for Re = 100 in

comparison to Re = 600 (with the remaining parameters fixed to be the same). This is contrary to
the observations from our simulations, in which we see the opposite trend [see, e.g., Fig. 9(c)]. We
therefore conclude that our original model, in which (ρ ′

p/ρ̄p)max ∼ u2
rmsτp/κp, is closer to the correct

answer. However, since it does not predict any direct dependence of (ρ ′
p/ρ̄p)max on Re, while the

data suggest that there may be some, we also acknowledge that it cannot be the complete answer.
Finally, we also caution the reader by noting that the scaling laws found by Nasab and Garaud

[7] and confirmed here might only apply within the limited region of parameter space at moderate
Reynolds numbers explored so far, and could break down entirely at higher Reynolds numbers. In
that case, other scaling regimes may exist relating the properties of the particle concentration field
to the properties of the turbulent flow. This possibility cannot be ruled out with the available data,
and simulations at much higher Reynolds numbers will be needed to clarify the situation.
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C. Application to natural systems

While the question of the applicability of our model to very large Reynolds number systems
remains to be established, a second, much more difficult question arises concerning the applicability
and validity of the two-fluid equations themselves. In particular, the central result of this work is the
role of particle diffusion (κp) in controlling the maximum and typical (rms) particle concentration
enhancement (see Secs. IV A and IV B), so one may rightfully question whether the diffusion
approximation used in Eqs. (1)–(4) is valid in the first place. A complete answer to this question is
largely beyond the scope of this paper, and will require either delicate laboratory experiments, or
DNS of a large number of fully resolved particles interacting with a turbulent fluid.

In the limit where the particles are very small, however, stochastic collisions with the fluid
molecules are a source of dispersion in the particle transport equation (usually referred to as
Brownian motion), that can be modeled as a diffusion process and whose coefficient is given by

κp ≈ kBTm

6πspρ f ν
, (32)

where kB = 1.38 × 10−23 J K−1 is the Boltzmann constant, Tm is the mean temperature of the fluid,
and sp is the particle radius. This expression can be considered as a lower limit on the effective
particle diffusivity, and using it in conjunction with Eqs. (25) and (27), provides an upper limit on
the maximum particle concentration (ρ ′

p/ρ̄p)max and the rms particle concentration enhancement
(ρ ′

p/ρ̄p)rms.
To see what kind of prediction for particle concentration this lower-limit estimate for κp leads

to, it is helpful to consider a specific application, such as that of rain formation in warm clouds
(e.g., cumulus or stratocumulus clouds). In this application, turbulence is generally mechanically
driven, generated by vertical drafts and wind shear. It has been largely hypothesized that the
broadening of the droplet spectrum during the initial stage of droplet growth is due to preferential
concentration followed by enhanced collision rates and coalescence [25]. With this in mind, we
consider small droplets of radius sp = 10 μm and density ρs = 1000 kg/m3 with the typical values
for the properties of ambient air being ρ f = 1 kg/m3, ν ≈ 10−5 m2/s, and a mean temperature of
Tm ≈ 300 K.

Based on these estimates, the stopping time for a cloud droplet is given by

τp = 2ρss2
p

9ρ f ν
≈ (2 × 10−3 s)

(
sp

10 μm

)2

, (33)

and the particle diffusivity due to Brownian motion is given by

κp = (2 × 10−12 m2/s)

(
10 μm

sp

)( Tm

300 K

)
. (34)

Using this, we can then obtain an upper limit estimate of the maximum and rms particle
concentration enhancements as

(
ρ ′

p

ρ̄p

)
max

� α
u2

rmsτp

κp
≈ 108

( urms

1 m/s

)2
(

sp

10 μm

)2(2 × 10−12 m2/s

κp

)
, (35)

(
ρ ′

p

ρ̄p

)
rms

� γ urms

√
τp

κp
≈ 2 × 103

( urms

1 m/s

)(
sp

10 μm

)(
2 × 10−12 m2/s

κp

)1/2

, (36)

where we have used α ≈ 0.1 and γ ≈ 0.07 extracted from our simulations (see Figs. 10 and 11),
and a fiducial value of urms = 1 m/s was assumed. This result is quite remarkable, given that the
characteristic Stokes number St associated with these droplets is very small. Indeed, assuming that
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the eddy turnover time is τe ∼ L/urms where L ∼ 1 km is a typical cloud height, we find that

St � τp

τe
≈ (2 × 10−6)

(
sp

10 μm

)2(1 km

L

)( urms

1 m/s

)
. (37)

This suggests that strong preferential concentration is possible even when St � 1 (a surprising result
that is supported by the DNS presented in Sec. III).

Of course, as discussed above, this provides only an upper limit estimate of the particle con-
centration enhancement, which is only valid as long as κp is dominated by the effects of Brownian
motion. To check whether this is likely true in the cloud application considered, we compute the
corresponding volume fraction occupied by the particles in regions of maximal concentration.
We find that if the mean liquid water content of the cloud is ρ̄p ≈ 1 mg/m3, then the average
volume fraction occupied by the droplets is �̄ = (ρ̄p/ρs) ≈ 10−9. Thus, the associated maximum
and typical volume fraction achievable though preferential concentration are

�max ≈ �̄(ρ ′
p/ρ̄p)max ≈ O(0.1), (38)

�rms ≈ �̄(ρ ′
p/ρ̄p)rms ≈ O(10−6). (39)

With the possibility of very large volume fractions emerging out of the preferential concentration
process, we must therefore account for the possibility that particles may interact hydrodynamically
through their wakes, which would increase κp [and therefore lower (ρ ′

p/ρ̄p)max and �max, and
possibly also (ρ ′

p/ρ̄p)rms and �rms]. For simplicity, we use the results of Segre et al. [26] to construct
an effective diffusion coefficient associated with hydrodynamic interactions. They suggest that that
the mutually induced dispersion can be modeled by

κp ≈ β(�)spVp, (40)

where β is a function of the volume fraction � occupied by the particles and Vp is the velocity of
the particles relative to the fluid. Segre et al. [26] found that β(�) � 0.1 for volume fractions of up
to � ≈ 0.2. Thus we can construct an approximate upper limit for κp by setting β = 0.1.

The relative velocity of the particles with respect to the fluid is obtained following Maxey [1]
[and the arguments presented in Eq. (15)] to be

Vp = |up − u| ≈ τp

∣∣∣∣∂u
∂t

+ u · ∇u

∣∣∣∣ + O(τ 2
p ). (41)

We can estimate it roughly using dimensional arguments as

Vp(�) ≈ τp
u2(�)

�
≈ τp

u2
rms

L

(
�

L

)−1/3

, (42)

assuming a Kolmogorov scaling for the eddy velocity u(�) at scale �. We therefore see that Vp will
be largest at the Taylor microscale, and set � = λ ≈ √

15 Re−1/2 L to obtain an upper limit for Vp:

Vp � τp
u2

rms

L
(15)−1/6 Re1/6. (43)

Using (43) in (40) we can now obtain an upper limit on κp, as

κp � βspVp ≈ (3 × 10−11 m2/s)

(
sp

10 μm

)3( urms

1 m/s

)13/6
(

1 km

L

)5/6

, (44)

which is only about one order of magnitude larger than the value for κp obtained by considering the
contribution due to Brownian motion only [for Eq. (35)].
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We apply this formulation for κp in (28) and find that
(

ρ ′
p

ρ̄p

)
max

� α
u2

rmsτp

κp
≈ 107

( urms

1 m/s

)2
(

sp

10 μm

)2(3 × 10−11 m2/s

κp

)
, (45)

(
ρ ′

p

ρ̄p

)
rms

� γ urms

√
τp

κp
≈ 600

( urms

1 m/s

)(
sp

10 μm

)(
3 × 10−11 m2/s

κp

)1/2

, (46)

with a corresponding maximal and rms volume fraction

�max ≈ �̄(ρ ′
p/ρ̄p)max ≈ O(0.01), (47)

�rms ≈ �̄(ρ ′
p/ρ̄p)rms ≈ O(10−6). (48)

Note that since these were obtained using upper limits on κp, they can be viewed as lower limits on
�max and �rms.

Overall, this shows that both lower and upper limit estimates for the particle diffusivity κp yield
relatively consistent results in the context of cloud applications, and more importantly, that cloud
turbulence could produce very large localized enhancements of the droplet concentration, despite the
fact that the Stokes number is very low. Applications of this work to dust growth in protoplanetary
disks were discussed by Garaud and Nasab [27], with very similar conclusions.

Of course, our results also show that these extreme events where � approaches �max are rare,
belonging to the tail of an exponential distribution. However, it is also well known in the context
of both rain formation [3,4] and planet formation [5,6], that producing a few larger particles is all
it takes for the process to start. Indeed, these larger “lucky particles” then sediment or drift with
respect to the smaller ones, and can continue to grow by sweeping the latter. As such, particle
growth in these contexts is controlled by what happens in the tail of the particle size distribution,
which is why the results discussed here are particularly relevant.
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