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Role of caking in optimizing the performance of a concertinaed
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Membrane filtration is a process of separating particles from fluids. Over time, particles
are trapped within the membrane structure and on the membrane surface, forming a cake.
In this paper, we develop a mathematical model for the transient blocking dynamics in
a concertinaed filtration device composed of angled porous membranes and dead-ends.
We examine how the inclusion of particles affects the flow dynamics, and we uncover
potential inaccuracies in relying on flux–throughput curves to distinguish between caking
and internal blocking dynamics. Moreover, we show that optimal filtration performance
strongly depends on both the performance metric and the membrane configuration. Finally,
to optimize the use of membrane area, we introduce a method for deriving a nonuniform
permeance that ensures constant initial cake growth.
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I. INTRODUCTION

Membrane filtration is a vital process used to separate fluid mixtures in many industry sectors
including healthcare, water treatment, and food production [1–3]. Filtration devices comprise porous
membranes through which a mixture of fluid and unwanted particles is passed. The particles get
trapped by the membrane and a filtered fluid is produced. While efficient instantaneous trapping of
unwanted particles makes for a good filter, this occurs at the cost of blocking the filter over time,
which can reduce the total amount of fluid processed by the device. There are two key blocking
mechanisms: blocking inside the membrane pores (internal blocking) and blocking on the surface
of the membrane (caking).

There are a wide range of filtration devices and in this paper we focus our attention to direct-flow
filtration devices. Such devices consist of stacked porous membranes with alternating capped ends
[see Fig. 1(a)]. The fluid mixture is passed into the device through open ends, travels through the
porous membrane and then out through the other side through open ends. Typically, in direct-flow
devices, the fluid is fed in parallel to the membrane surface. In this paper, we seek to understand how
filtration performance is affected by an angled-membrane configuration in a direct-flow device. The
motivation for this study arises from an industrial example of such a direct-flow device designed
by Smart Separations Ltd [4]. The steady-state version of the model presented herein is derived
in earlier work [5]. The goal of the previous study was to optimize the filtration performance for
a particle-free steady flow. In this paper we build on this previous work to incorporate transient
blocking effects in the optimization of the performance of a concertinaed filtration system.

An understanding of the blocking dynamics in filtration is vital in optimizing the design of a filter,
and there have been a number of previous studies examining such dynamics. In [6], the authors
developed a mathematical model of internal blocking in vertically stacked filtration membranes
in a direct-flow device. This previous study was concerned with the effect of spacing between
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FIG. 1. Schematic of the concertinaed filtration device. (a) The full three-dimensional device; reproduced
from Ref. [4] with permission. (b) The two-dimensional domain of a single filtration module; the center of the
membrane is (x̂, ẑ) = (â, Ẑ/2) and the center of the domain (x̂, ẑ) = (X̂/2, Ẑ/2) is indicated by a cross.

the membranes on the total amount of fluid processed through the device. Further relevant work
arises from studies of blocking in pleated filtration membranes, which are geometrically similar
to a direct-flow device with the key difference being the presence of dead-ends in the latter. In
Ref. [7], the authors presented an asymptotic analysis of caking dynamics relevant for several
different parameter regimes applied to a rectangularly pleated device. In Ref. [8], the authors
incorporated both caking and internal-blocking dynamics in a mathematical model of flow through
a rectangular pleated membrane with surrounding porous support material. The work sought to
examine the relative importance of the resistance of the support material to that of the membrane
and the evolution of the permeability profile through internal blocking. Recently in Ref. [9], the
authors presented a model of internal blocking within an analogous device of rectangular pleats
contained in porous support material. The authors compared linear, quadratic, and cubic membrane
permeability profiles with the aim of maximizing the total amount of fluid processed through the
filtration device.

In this paper we present a mathematical model of caking dynamics in a direct-flow device with
angled membranes. The distinction between the past works of blocking dynamics in a filtration
device and the work presented in this paper is that we focus our study on the effects of particle
inclusion, membrane configuration (namely angle and position), and membrane permeability profile
on the caking dynamics in a concertinaed filtration device.

II. MODEL DEVELOPMENT

In this paper, we consider the flow through a single repeated module of the filtration device
shown in Fig. 1. While there is design scope for the geometric parameters and we give a range as
such in Table I, the geometry of the device is always such that the transverse length X̂ is significantly
smaller than the lateral length Ẑ and depth Ŷ . Moreover, variations in the ŷ axis are assumed to be
negligible, and we consider the two-dimensional domain in (x̂, ẑ) space [see Fig. 1(b)]. We will
derive the model using dimensional quantities (denoted by hats) and then scale the model to derive
the associated dimensionless quantities (denoted without hats). The position of the upstream side of
the membrane is specified by x̂ = m̂(ẑ) with

m̂(ẑ) = â + 1
2 (Ẑ tan β̂ − ĥ) − ẑ tan β̂, (2.1)
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TABLE I. Parameter values for air flow through the filtration de-
vice shown in Fig. 1; values for Ẑ , Ŷ , X̂ , ĥ, and Ŵ0 provided in Ref. [4].

Parameter Value

Lateral height, Ẑ 50–60 mm
Filter depth, Ŷ 50–60 mm
Transverse length, X̂ 1–3.6 mm
Membrane thickness, ĥ 0.3–1.2 mm
Air viscosity, μ̂ 1.81×10−5 Pa s
Air density, ρ̂ 1.2 kg m−3

Lateral velocity scale, Ŵ0 50 mm s−1

where β̂ is the angle of the membrane with the horizontal axis and ĥ is the membrane thickness
[see Fig. 1(b)]. The membrane length L̂ = Ẑ/ cos β̂ is governed by the angle β̂. The position of
the membrane midpoint (x̂, ẑ) = (â, Ẑ/2) is determined through the parameter â. The membrane
separates the flow domain into two subdomains described by

�̂1 = {x̂ ∈ [0, ŝ(ẑ, t̂ )], ẑ ∈ [0, Ẑ]}, (2.2a)

�̂2 = {x̂ ∈ [m̂(ẑ) + ĥ, X̂ ], ẑ ∈ [0, Ẑ]}, (2.2b)

where x̂ = ŝ(ẑ, t̂ ) is the position of the moving cake front at time t̂ .
Driven by a pressure drop ( p̂in − p̂out) > 0, where p̂in and p̂out are the inlet and outlet pressures,

respectively, the flow enters the domain �̂1 at ẑ = 0, travels into the cake at x̂ = ŝ(ẑ, t̂ ), through to
the membrane at x̂ = m̂(ẑ), and exits the domain �̂2 at ẑ = Ẑ . The fluid mixture comprises fluid and
particles, and the particles are filtered out by the membrane in �̂1 resulting in a purified fluid in �̂2.

The steady-state flow studied in our previous paper [5] is reversible and the results for β̂ > 0
can be generalized to those for β̂ < 0 with the subdomains �̂1 and �̂2 switched for symmetric flux.
However, in this paper we consider the transient system with an evolving cake front in which the
flow is not reversible and as such we cannot obtain the results for β̂ < 0 from the β̂ > 0 set-up. We
note, however, that, when β̂ < 0, as |β̂| is increased, the size of the inlet decreases, which has the
effect of increased pressure drop in �̂1 and thus a reduced pressure drop across the membrane. This
consequently decreases the flux through the device. In this paper, we seek a filter configuration that
maximizes the processed fluid volume and we will therefore restrict our attention to β̂ � 0.

A. Governing equations

The multiphase flow comprises a continuous fluid phase and discrete particles; the phase distri-
bution is described through the corresponding volume fractions φ f , φp. We assume the particles to
be sufficiently small so as to not disturb the dynamics of the continuous fluid flow. For the purposes
of this paper we consider the filtration of neutrally buoyant dust from air, but note that the model
and analysis can be readily applied to other applications.

We neglect particle–particle interactions, and the flow dynamics of both phases (fluid and
particles) can therefore be described by a single velocity û(x̂, ẑ, t̂ ) = (û(x̂, ẑ, t̂ ), ŵ(x̂, ẑ, t̂ )) and
pressure p̂(x̂, ẑ, t̂ ). We assume there to be a constant volume fraction of particles in �̂1:

φp = φ
p
1 in �̂1. (2.3)

The corresponding fluid volume fraction φ
f
1 = 1 − φ

p
1 is therefore also constant. In the subdomain

�̂2 we assume that no particles are present:

φ
p
2 = 0 in �̂2. (2.4)
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Hence, the fluid volume fraction in �̂2 is φ
f
2 = 1. While (2.4) assumes perfect filtration of the

particles, we note that it is straightforward to extend this model to account for imperfect filtering
with φ

p
2 �= 0.

The geometry of the system is such that the ratio between the transverse and lateral domain
lengths ε = X̂/Ẑ is small. Indeed, ε is sufficiently small to result in a small reduced Reynolds
number: ε2ρ̂Ŵ0Ẑ/μ̂ = 0.06–0.86 (see Table I). While we will use the aspect ratio of the entire filter
to define ε for mathematical convenience, it is helpful to consider the actual aspect ratio of each
fluid domain in the filter in order to interpret the reduced Reynolds number in the system. A better
proxy for the height of each fluid domain is (X̂ − ĥ)/2, which would lead to an effective reduced
Reynolds number that is at least four times smaller. As such, we generally expect the effective
reduced Reynolds number to be small in each fluid domain, and we proceed by exploiting this
smallness. We note that the relative error between the true solution and the approximation will be
O(ε2Re) and that this lubrication approximation will break down in an O(ε) region from the end of
the domain. The flow in �̂1 and �̂2 is thus modelled through the Stokes equations:

μ̂∇̂2û − ∇̂ p̂ = 0, (2.5a)

∇̂ · û = 0, (2.5b)

where μ̂ is the fluid viscosity, which we assume to be constant. We seek solutions (û1, ŵ1, p̂1) in
�̂1 and (û2, ŵ2, p̂2) in �̂2.

The boundary conditions at the inlet and outlet are

p̂1 = p̂in at ẑ = 0, x̂ ∈ [0, ŝ(0, t̂ ) ], (2.6a)

p̂2 = p̂out at ẑ = Ẑ, x̂ ∈ [m̂(Ẑ ) + ĥ, X̂ ]. (2.6b)

At the closed ends in both subdomains, at ẑ = Ẑ in �̂1 and at ẑ = 0 at �̂2, we prescribe no-flow
boundary conditions:

û1 = 0 at ẑ = Ẑ, x̂ ∈ [0, ŝ(Ẑ, t̂ )], (2.7a)

û2 = 0 at ẑ = 0, x̂ ∈ [m̂(0) + ĥ, X̂ ]. (2.7b)

We assume symmetric flow between neighboring modules, which corresponds to the following
symmetry conditions:

û1 = 0,
∂ŵ1

∂ x̂
= 0 at x̂ = 0, (2.8a)

û2 = 0,
∂ŵ2

∂ x̂
= 0 at x̂ = X̂ . (2.8b)

The porous membrane and cake layers provide resistance to the flow. In general, the flow
resistance R̂ due to a permeable material of thickness ĥ and permeability k̂ is the reciprocal of
the permeance κ̂ = k̂/μ̂ĥ: R̂ = 1/κ̂ . In our problem, the total resistance is the sum of the resistance
of the membrane R̂m and that of the cake layer R̂c:

R̂(ẑ, t̂ ) = R̂m + R̂c(ẑ, t̂ ) = μ̂ĥ

k̂m
+ μ̂[m̂(ẑ) − ŝ(ẑ, t̂ )]

k̂c
, (2.9)

where [m̂(ẑ) − ŝ(ẑ, t̂ )] is the cake thickness and k̂m and k̂c are the permeabilities of the membrane
and cake layer, respectively. Thus we see that the total permeance is

κ̂ (ẑ, t̂ ) =
{

μ̂ĥ

k̂m
+ μ̂[m̂(ẑ) − ŝ(ẑ, t̂ )]

k̂c

}−1

. (2.10)

The permeance and pressure difference govern the flow through the porous membrane and cake
layers. We impose Darcy flow across the membrane and cake, which provides the outflow boundary
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condition in �̂1. This boundary condition is prescribed on x̂ = ŝ(ẑ, t̂ ), which corresponds initially to
the membrane surface, ŝ(ẑ, 0) = m̂(ẑ), and to the cake front, ŝ(ẑ, t̂ ), at later times t̂ > 0. The Darcy
boundary condition is therefore given by

û1 · ns = κ̂ (ẑ, t̂ )[ p̂1(ŝ, ẑ, t̂ ) − p̂2(m̂ + ĥ, ẑ, t̂ )] at x̂ = ŝ(ẑ, t̂ ), (2.11)

where ns is the unit normal vector to the cake front.
The corresponding boundary condition for the flow velocity into �̂2 from the membrane is given

by balancing the flux of fluid through the cake and membrane:

φ
f
1 û1(ŝ, ẑ, t̂ ) = û2(m̂ + ĥ, ẑ, t̂ ). (2.12)

Finally, to close the system of equations, we prescribe no slip on both sides of the membrane:

û1 · t s = 0 at x̂ = ŝ(ẑ, t̂ ), (2.13a)

û2 · tm = 0 at x̂ = m̂(ẑ) + ĥ, (2.13b)

where t s and tm are, respectively, the unit tangent vectors to the cake front and membrane. While
previous work in Ref. [10] describes the appropriate tangential slip-flow boundary condition,
subsequent work in Ref. [11] has shown that the inclusion of slip does not significantly affect the
flow dynamics and we therefore neglect slip effects here.

B. Caking dynamics

The model equations presented so far describe the flow dynamics in the subdomains �̂1 and
�̂2. In general there are two key blocking mechanisms in filtration systems: internal blocking and
caking. Typically, small particles are filtered out within the membrane depth via internal blocking,
while large particles that cannot penetrate into the membrane form a cake layer on the surface.
Experimental studies conducted in Ref. [4] indicated that, for the particular application of filtering
dust from air using a concertinaed filtration membrane, caking is more prominent than internal
blocking, and we therefore focus our study on caking dynamics.

The cake-evolution equation follows from conservation of flux across the moving cake front:

∂ ŝ/∂ t̂√
1 + (∂ ŝ/∂ ẑ)2

= −φ
p
1 γcû1(ŝ, ẑ, t̂ ) · ns, (2.14)

where the left-hand side is the normal velocity of the moving cake front and the right-hand side is the
influx of particles (see Appendix A for derivation). We have introduced the packing coefficient γc =
(φp

c − φ
p
1 )−1, where φ

p
c is the volume fraction of particles in the cake layer, which is determined

by the packing structure within the cake. The packing coefficient γc relates the actual volume of
particles in the fluid to the volume of cake they produce. Note that γc > 0 since φ

p
c > φ

p
1 . Initially

there will be no cake present:

ŝ(ẑ, 0) = m̂(ẑ). (2.15)

C. Dimensionless model

We introduce the following dimensionless variables:

t̂ = τct, ẑ = Ẑz, x̂ = εẐx, β̂ = εβ, ŝ = X̂ s, m̂ = X̂ m,

â = X̂ a, ĥ = X̂ h, û = εŴ0u, ŵ = Ŵ0w, p̂ = μ̂Ŵ0

ε2Ẑ
p + p̂out,

κ̂ = ε3Ẑ

μ̂
κ, κ̂m = ε3Ẑ

μ̂
κm, k̂c = ε3ẐX̂ kc, (2.16)
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FIG. 2. Dimensionless filtration-module domain (x, z) ∈ {[0, 1] × [0, 1]}. The membrane and cake layers
are schematized in red and gray, respectively, with the evolved cake front denoted by x = s(z, t > 0). The
membrane center is at (x, z) = (a, 1/2) and is specified by the parameter a. The membrane angle is given
by β.

where τc = Ẑ/γcŴ0 is the caking timescale, derived from the cake-evolution equation (2.14).
Recalling the definition of γc = (φp

c − φ
p
1 )−1, we see that changing either the volume fraction of

particles in the system, φ
p
1 , or the packing density in the cake (governed by φ

p
c ) both affect the

timescale τc given above. We note that, from (2.16), we can write the velocity scaling in terms of
the pressure drop: Ŵ0 = ε2Ẑ ( p̂in − p̂out)/μ̂.

The membrane angle has been scaled such that β ∈ [0, 1]. Applying (2.16) to (2.1) yields the
dimensionless leading-order membrane position:

m(z) = a − 1
2 h + β

(
1
2 − z

)
. (2.17)

Applying the scalings (2.16) to (2.2) gives the following dimensionless subdomains (shown in
Fig. 2):

�1 = {x ∈ [0, s(z, t )], z ∈ [0, 1]}, (2.18a)

�2 = {x ∈ [m(z) + h, 1], z ∈ [0, 1]}. (2.18b)

Scaling the Stokes equations (2.5) using (2.16) and taking the limit ε → 0 yields the dimension-
less lubrication equations:

∂ p

∂x
= 0,

∂2w

∂x2
− ∂ p

∂z
= 0,

∂u

∂x
+ ∂w

∂z
= 0. (2.19a–c)

The dimensionless inlet and outlet pressures are derived by applying (2.16) to (2.6), which gives

p1 = 1 at z = 0, x ∈ [0, s(0, t )], (2.20a)

p2 = 0 at z = 1, x ∈ [m(1) + h, 1]. (2.20b)

Applying the scalings (2.16) to the no-flow boundary condition (2.7) at the dead-ends results in
the loss of the no-slip information, and we are consequently left with the following dimensionless
no-penetration boundary condition at the dead-ends:

w1 = 0 at z = 1, x ∈ [0, s(1, t )], (2.21a)

w2 = 0 at z = 0, x ∈ [m(0) + h, 1]. (2.21b)

104301-6



ROLE OF CAKING IN OPTIMIZING THE PERFORMANCE …

Enforcing the no-slip condition would require us to rescale into the boundary layer regions near the
end caps at z = 0 and z = 1, but we expect this to have a small effect on the global flow. The scaled
symmetry conditions (2.8) are

u1 = 0,
∂w1

∂x
= 0 at x = 0, (2.22a)

u2 = 0,
∂w2

∂x
= 0 at x = 1. (2.22b)

The dimensionless Darcy flow [from (2.11)] through the porous membrane and cake is given by

u1 = κ[p1(s, z, t ) − p2(m(z) + h, z, t )] at x = s(z, t ), (2.23)

where the dimensionless permeance is

κ =
[

1

κm
+ m(z) − s(z, t )

kc

]−1

, (2.24)

which will evolve over time.
The outflow boundary condition at the membrane (2.12) becomes

φ
f
1 u1(s, z, t ) = u2(m + h, z, t ), (2.25)

and the no-slip conditions (2.13) at the cake front and downstream membrane surface, exploiting
the small angle of the membrane, are

w1 = 0 at x = s(z, t ), (2.26a)

w2 = 0 at x = m(z) + h. (2.26b)

Applying (2.16) to the cake-evolution equation (2.14) and taking the limit ε → 0 yields

∂s

∂t
= −φ

p
1 u1(s, z, t ), (2.27)

The corresponding initial condition for the cake position is

s(z, 0) = m(z). (2.28)

D. Model reduction

The full dimensionless system is given by the lubrication equations (2.19) with boundary
conditions (2.19)–(2.25) for each subdomain together with the blocking dynamics described by
(2.27)–(2.28). The momentum equation in the x direction (2.19a) gives p1 = p1(z, t ) and p2 =
p2(z, t ).

In the inflow region �1, the lubrication equations (2.19b) and (2.19c) together with the symmetry
boundary condition (2.22a) and the condition ensuring no-slip on the cake front (2.26a) can be
manipulated to give the velocities in terms of the pressure:

u1 = 1
2 x

[
(p′

1s2)′ − 1
3 x2 p′′

1

]
, (2.29a)

w1 = 1
2 p′

1(x2 − s2), (2.29b)

where ′ denotes partial differentiation with respect to z. Using (2.29a) in the Darcy flow boundary
condition (2.23) we derive the following equation linking the pressures p1 and p2:

1
3 (s3 p′

1)′ = κ (p1 − p2). (2.30)

The necessary boundary conditions for p1 are supplied through the inlet pressure (2.20a) and no-
flow condition at the closed end (2.21a):

p1 = 1 at z = 0, (2.31a)

p′
1 = 0 at z = 1. (2.31b)
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We can derive the governing equation of motion for the pressure p2 in �2 in the same way. We first
use the lubrication equations (2.19b) and (2.19c) with the symmetry boundary condition (2.22b) and
the no-slip condition on the membrane surface (2.26b) to derive

u2 = 1
2 (x − 1)({[m(z) + h − 1]2}′ p′

2 − 1
3 (x − 1)2 p′′

2), (2.32a)

w2 = 1
2 {(x − 1)2 − [m(z) + h − 1]2}p′

2. (2.32b)

The conservation-of-fluid-flux condition (2.25) with (2.32a) and the equation for p1 (2.30) yield a
second equation linking the pressures p1 and p2:

1
3 {[m(z) + h − 1]3 p′

2}′ = φ
f
1 κ (p1 − p2). (2.33)

The corresponding boundary conditions are derived from the outlet pressure (2.20b) and no-flow
condition at the closed end (2.21b):

p2 = 0 at z = 1, (2.34a)

p′
2 = 0 at z = 0. (2.34b)

We can use these workings to rewrite the equations for the cake evolution (2.27) and (2.28) in
terms of p1 and p2:

∂s

∂t
= −φ

p
1 κ (p1 − p2), s(z, 0) = m(z). (2.35)

The problem is therefore reduced to solving the modified Reynolds equations (2.30)–(2.31) for p1

in �1 and (2.33)–(2.34) for p2 in �2 coupled with the permeance and cake-evolution equations given
by (2.24) and (2.35), respectively. The remaining parameters in the system are the dimensionless
midpoint a, angle β, permeance of the membrane κm, cake permeability kc, and volume fraction of
fluid φ

f
1 in �1. In practice the membrane is thin compared with the size of the filter module. We

therefore consider the regular limit in which the dimensionless membrane thickness h → 0 while
the membrane permeance κm remains finite. This then removes the geometrical effect of membrane
thickness while retaining its resistive properties.

The final reduced system of equations is as follows:

1

3
(s3 p′

1)′ = κ (p1 − p2), p1|z=0 = 1, p′
1|z=1 = 0, (2.36a)

1

3
[(m(z) + h − 1)3 p′

2]′ = φ
f
1 κ (p1 − p2), p2|z=1 = 0, p′

2|z=0 = 0, (2.36b)

κ =
(

1

κm
+ m − s

kc

)−1

, (2.36c)

∂s

∂t
= −(

1 − φ
f
1

)
κ (p1 − p2), s(z, 0) = m(z), (2.36d)

m = a + β

(
1

2
− z

)
. (2.36e)

The solution to the model (2.36) provides insight into the flow dynamics and is used to calculate
key quantities including the flux of fluid through the filtration-module domain, which is defined by

Q(t ) =
∫ s

0
φ

f
1 w1|z=0 dx = −1

3
φ

f
1 (s3 p′

1)|z=0. (2.37)

The amount of fluid processed through the device is given by the throughput:

V (t ) =
∫ t

0
Q(τ ) dτ. (2.38)
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In practice, practitioners will use a filtration membrane at a fixed pressure difference across the
module until the flux through the membrane drops such that it is no longer economical to use
the filter. We therefore define the end time T to be the time at which the in silico experiment is
terminated due to the flux dropping below some critical value Qc. A key quantity of interest in this
paper will be V (T ), the total throughput achieved at the end time.

The key control parameters in the model (2.36) are φ
f
1 , a, β, and κm. In this paper, we will study

the effects of each of these control parameters in optimizing the performance of the filter in turn.
In Sec. III we examine how the inclusion of particles influences the flow dynamics in the filter.
In Sec. IV we study the effect of the angle and position of the membrane on caking in relation to
optimizing performance. In Sec. V we consider how a spatially varying permeance might be utilized
to optimize filtration performance.

III. THE EFFECT OF ADDING PARTICLES TO THE STEADY-STATE SYSTEM

Previous work in Ref. [5] presents a full analysis of the particle-free steady-state flow through a
concertinaed filtration membrane. In this section, we look at the effect of adding particles into the
system by considering how the steady-state flow changes with the volume fraction of particles.

To isolate the effect of particle inclusion (i.e., the effect of changing φ
f
1 ) we focus our attention

to a transverse membrane positioned in the center of the domain, by setting β = 0 and a = 0.5.
We further restrict our attention to a steady-state set-up that corresponds to a scenario where the
particles are removed on contact with the membrane, so that s(z, t ) = m(z) and κ = κm. Our reduced
parameter space then comprises the membrane permeance κm and the volume fraction of fluid in the
inflow domain φ

f
1 .

For a membrane of such characteristics operating in this steady state we can derive explicit
analytic solutions to (2.36) for the pressure:

p10 = 1

N
{a3(1 − a)3 + a6 cosh(M ) + (1 − a)6 cosh[M(z − 1)]

+ a3(1 − a)3 cosh(Mz) − a3(1 − a)3M(z − 1) sinh(M )}, (3.1a)

p20 = 1

N
{a3(1 − a)3 + a6 cosh(M ) − a3(1 − a)3 cosh[M(z − 1)]

− a6 cosh(Mz) − a3(1 − a)3M(z − 1) sinh(M )}, (3.1b)

where

M =
√

3κm

a3
+ 3κmφ

f
1

(1 − a)3
, N = [(a6 + (1 − a)6] cosh(M ) + a3(1 − a)3[2 + M sinh(M )]. (3.2)

We consider the total flux (of particles and fluid) in the upstream subdomain �1 at t = 0 defined
by

Q1 =
∫ a

0
w1|z=0 dx = −1

3
(a3 p′

10)|z=0. (3.3)

Similarly, we can define the amount of fluid processed through the device by calculating the flux
out of the downstream subdomain �2:

Q2 =
∫ 1

a
w2|z=1 dx = 1

3
((a − 1)3 p′

20)|z=1. (3.4)

From conservation of fluid we have φ
f
1 Q1 = Q2.

The analytical result for the steady fluxes as a function of the fluid volume fraction φ
f
1 is shown

in Fig. 3. For a given applied pressure, as the volume fraction of fluid increases, the total flux
of particles and fluid in �1, Q1, decreases but the total amount of fluid processed through �2,
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(a) (b)

FIG. 3. Analytical flux in Q1 (3.3) in (a) and flux out Q2 (3.4) in (b) plotted as functions of the fluid volume
fraction for the case when s(z, t ) = m(z) and the particles are removed on contact with the membrane. Here
β = 0 and a = 0.5 and κm = 0.5, 1, 1.5, 2.

Q2, increases. Thus, the addition of particles in the system speeds up the flow in the upstream
subdomain �1, but decreases the total flux of fluid processed out of the device from �2. We discuss
this effect in further detail for a unidirectional flow in Appendix B in order to uncover the rationale
for this observation. Furthermore, we also note that our results show that increasing the membrane
permeance κm correspondingly increases the flux (Fig. 3), in agreement with physical intuition. This
preliminary study shows that, even before blocking occurs, the initial system of fluid and particles
is fundamentally different to the particle-free case.

In this section, we have studied the effect of introducing particles to a concertinaed filter
operating in steady state. We now extend our study to explore the effects of control parameters
governing the membrane configuration and their effect on the dynamic cake evolution in relation to
optimal filtration performance.

IV. THE EFFECT OF MEMBRANE CONFIGURATION

In this section, we examine the effect of angling and shifting the position of the membrane on the
dynamic flux and throughput within the device. As we seek to study the effect of the configuration
(namely the parameters a and β), for definiteness we shall assume a constant uniform membrane
permeance and cake permeability, κm = kc = 1, and a constant inflow fluid volume fraction,
φ

f
1 = 0.8, throughout this section. Choosing a smaller particle volume fraction [together with

rescaling time in the cake evolution (2.36d)] would enable the reduction of (2.36) to a quasisteady
system of equations, the dynamics of which were studied in Ref. [5]. We therefore choose a large
particle volume fraction, which enables us to study the richest behavior capturing both substantial
caking and pressure evolution. We expect the model to be valid for our gaseous air-flow system, in
a system of liquid the suspension rheology may well need to be accounted for.

A. The effect of membrane angle in relation to the total throughput and end time

We first explore the effect of angling the membrane. As such, we fix the membrane mid-point
to be centered in the domain by setting a = 0.5, and vary β. We solve the governing system of
equations (2.36) numerically using MATLAB’s bvp4c solver, stepping forward in time until the flux
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(a) (b) (c)

FIG. 4. Evolution of the cake profile s(z, t ) over time found by solving (2.36) for β = 0, 0.4, 0.8 in panels
(a), (b), and (c) respectively, with a = 0.5, φ

f
1 = 0.8, κm = kc = 1, Qc = 10−2. The arrows indicated the

direction of growth in time, and T is the end time at which the flux Q (2.37) drops below Qc. Results are
shown for eight time steps equally spaced between [0, T ] for each angle tested.

Q (2.37) drops below the critical value Qc which we take to be Qc = 10−2; this stopping criterion
defines the end time T of the simulation.

The resulting cake-evolution profiles for different membrane angles are shown in Fig. 4. Broadly
speaking, cake evolution in �1 can be considered within three regions: toward the inlet z = 0, in the
center of the membrane, and toward the dead-end z = 1. We find that angling the membrane has a
significant effect on where the cake evolution takes place.

For a horizontal membrane with β = 0, the cake growth predominantly occurs at the domain
edges, with the growth at the inlet z = 0 occurring faster than that at z = 1 [Fig. 4(a)]. Given
that small gaps amplify pressure in lubrication theory, when a = 0.5, the pressure drop across
the membrane is maximal near the inlet when the membrane is horizontal. Since, with a = 0.5
fixed, the pressure is largest in �1 near z = 0, and the height of �2 at z = 0 is largest for horizontal
membranes, the resulting transmembrane pressure drop is maximized near z = 0. This is what drives
the high cake growth near z = 0. The high cake growth at z = 1 arises due to the fact that at the
dead-end the flow has nowhere to go but through the membrane. The total throughput for the straight
membrane is V (T ) = 0.29 and is achieved at T = 6.9.

For a slightly angled membrane (β = 0.4), while the cake growth remains focused at the edges,
we also observe growth around the center of the membrane [Fig. 4(b)]. Increasing the membrane
angle opens the inlet which correspondingly decreases the available space in �2 at z = 0. This
increases the pressure in �2 and decreases the transmembrane pressure drop at z = 0. Moreover,
angling the membrane increases the available membrane surface area, and decreases the angle that
the fluid needs to turn to move normally through the membrane. These combined effects result in
the overall cake evolution occurring more uniformly for slightly angled membranes than that for
β = 0. The end time for the slightly angled membrane is T = 16.1, which is more than double that
for β = 0, and the corresponding total throughput is also increased to V (T ) = 0.80.

Increasing the membrane angle further (β = 0.8) intensifies the angled-membrane effects dis-
cussed above [Fig. 4(c)]. The increased membrane angle correspondingly increases the inlet size
into �1 and decreases the available space in �2, thus the transmembrane pressure difference at z = 0
is reduced and we see very little blocking near the inlet. The increased membrane surface area and
orientation of the membrane result in an increased flow across the center of the membrane where we
see prominent blocking. Consequently most of the fluid and particles are processed along the length
of the membrane, and thus there is little filtration at the dead-end, z = 1, and so we see reduced
blocking. Thus for significantly angled membranes, we observe a distinct cake-evolution profile
with the growth focused at the center of the membrane. The corresponding end time T = 37.1
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(a) (b)

FIG. 5. Flux–throughput relationship resulting from solving the system of Eqs. (2.36) and calculating
the flux Q [Eq. (2.37)] and throughput V [Eq. (2.38)] for a = 0.5, φ

f
1 = 0.8, κm = 1, Qc = 10−2, and

β = 0, 0.2, 0.4, 0.6, 0.8 in (a). Convexity C (4.1) of the flux–throughput curves indicated through sgn(C) in
the (κm, β ) domain in (b).

and total throughput V (T ) = 1.26 are significantly larger than found to be for β = 0 and β = 0.4
(Fig. 4). These results show the effect of angling the membrane away from horizontal and indicate
that angling the membrane results in the flux remaining above Qc for longer, thus prolonging the
lifetime of the filter and increasing the amount of fluid processed by the filter.

B. The effect of membrane angle on the flux–throughput curve

In practice, a standard tool to analyze the performance of a filter is the visualization of the flux
(Q) and throughput (V ) relationship over time. The classic interpretation of these visualizations is
that concave curves, i.e., those for which d2Q/dV 2 < 0, correspond to blocking due to caking, and
convex curves, i.e., those for which d2Q/dV 2 > 0, represent internal blocking [12]. We present the
flux–throughput curves for varying membrane angles in Fig. 5(a). For straight to slightly angled
membranes the flux–throughput curve is clearly concave. For larger values of β, however, the curve
becomes convex. We examine this effect more closely by testing the convexity as a function of
the membrane permeance κm and angle β. We do this by fitting a second-order polynomial to the
function Q(V ) to produce the interpolated flux function Q̃(V ). We then define the convexity measure
by

C = d2Q̃

dV 2
, (4.1)

where C < 0 yields a concave function and C > 0 a convex function.
For small values of the membrane permeance (κm < 0.4) we find that the convexity measure

remains negative for all membrane angles β indicating concave flux–throughput curves [Fig. 5(b)].
For increased values of κm, however, the flux–throughput curves are convex for large values of β.
This analysis yields the values κm(β ) at which the convexity switches. We find that, for certain
sets of system parameters, the flux–throughput curves will be convex for blocking by caking only.
These results show that interpreting the dominant blocking mechanism by the convexity of the
flux–throughput curves can be inaccurate when the membrane is angled.

To understand what is driving this convexity switch it is helpful to consider what convexity means
for filtration curves, and specifically what this means for the dominant blocking location. First, note
that a straight flux–throughput profile would arise when blocking occurs uniformly in time. Concave
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flux–throughput curves arise when the membrane blocks faster at later times, which will occur when
blocking occurs predominantly at the entrance of the filter. We observed this happening for less
angled membranes with a lower β [Figs. 4(a) and 4(b)]. Convex flux–throughput curves, however,
arise when blocking occurs faster initially then slows. This corresponds to blocking occurring across
a large region of the membrane at later times. In this scenario, the flow is eventually reduced by the
geometry of the large cake layer in the upstream subdomain. We observed this behavior for large β

values [Fig. 4(c)].

C. The optimal membrane configuration

We now investigate the effect of additionally shifting the membrane (by varying a), with the
objective of obtaining the optimal membrane configuration according to a given requirement.
We explore the full angle domain β ∈ [0, 1] and position domain a ∈ [β/2, 1 − β/2]. We seek
numerical solutions but note that when either end of the membrane is close to a corner of the domain,
the behavior is difficult to resolve numerically. Thus, we slightly reduce our parameter domain to
β ∈ [0, 1 − δβ] and a ∈ [β/2 + δa, 1 − (β/2 + δa)] for some small δβ, δa > 0, and extrapolate our
results to the full domains. For the results presented in this section we take δβ = 0.05 and δa = 0.01.

There are various performance measures associated to filtration optimisation with the choice of
measure depending on the industrial application. We choose to focus our attention to maximizing
the total throughput V (T ) and the average flux Q(T ) = V (T )/T . Note that since the instantaneous
flux decreases in time, maximizing Q corresponds to maximizing the amount of fluid processed
over the shortest time period. To examine how the optimal configuration depends on the choice of
metric, we also consider a one-parameter family of measures in the form of a convex combination
of the two metrics:

E (α) = αV (T ) + (1 − α)Q(T ), (4.2)

for some constant α ∈ [0, 1]. While we present results for the chosen metrics only, the model
presented in this paper can be used for any choice of optimization metric.

We show results for our performance metrics in Fig. 6. We see that the total throughput is
minimized for a horizontal membrane with β = 0 positioned toward the top and bottom of the
domain, where a = 1 and a = 0, respectively [Fig. 6(a)]. This corresponds to a filtration device
in which the concertinaed membranes have minimal surface area and are close to touching. The
maximum total throughput is achieved for β ≈ 0.2 and a ≈ 0.7 where the membrane is slightly
angled and positioned off-center upwards toward x = 1 [Fig. 6(a)]. This configuration highlights
the trade-off between maximizing the membrane area (by angling the membrane) and the trans-
membrane pressure drop (by shifting the membrane off-center) that was identified in previous work
analyzing the analogous steady-state system [5]. We find that to maximize the total throughput, it is
more important to maximize the transmembrane pressure drop than the available membrane area.

The average flux is similarly minimized for straight membranes where the concertina pleats
close up with β = 0 and a = 0 or a = 1 [Fig. 6(b)]. The average flux is maximized for β ≈ 0.7
and a ≈ 0.4. This is associated to membranes significantly angled and positioned off-center toward
the lower boundary at x = 0. These results are also due to the trade-off between maximizing the
membrane area and the transmembrane pressure drop; for maximizing average flux, we find it is
more important to maximize the membrane area.

The distinction between the configurations that maximize V (T ) and Q is made clear when we
consider the configurations that maximize E (α) [Fig. 6(c)]. Our results show that the two optimal
configurations discussed above are the only optimal configurations for α ∈ [0, 1]. For small values
of α the optimal configuration agrees with that which maximizes the average flux. As the value of
α is increased, the optimal configuration switches at (and remains fixed for all values of α greater
than) the critical value of α ≈ 0.02 to coincide with the configuration that maximizes the total
throughput. The critical value of α ≈ 0.02 is notably small since there is a large difference between
the magnitudes of the metrics V (T ) and Q. Thus we conclude that for particular applications for
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(a) (b)

(c)

FIG. 6. The total throughput V (T ) (2.38) in (a), Q = V (T )/T in (b), and the configuration that maximizes
E (α) (4.2) in (c) calculated from numerical solutions to (2.36) with β ∈ [0, 1], a ∈ [β/2, 1 − β/2], κm = 1,
φ

f
1 = 0.8, and Qc = 10−2.

which it is preferable to maximize the total amount of fluid processed, irrespective of the time it
takes, the optimal configuration is a slightly angled membrane positioned off-center upwards toward
x = 1. For applications where it is important to maximize the amount of fluid processed whilst
minimizing the time of operation, the optimal configuration is a membrane that is significantly
angled and positioned off-center toward the lower boundary at x = 0. The optimal angle and position
in both cases are provided by our model.

V. THE EFFECT OF A SPATIALLY VARYING PERMEANCE

We have so far considered a constant membrane permeance κm. In this section we relax this
assumption to investigate the effect of a spatially varying permeance. This is motivated by the
observation that a spatially varying permeance may be chosen to ensure uniform cake growth,
which optimizes the use of membrane area and minimizes the effect of the changing geometry
on introducing resistance to the flow. A nonuniform permeance could be achieved by varying
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either the membrane thickness in space or the pore distribution. The latter of these is becoming
increasingly achievable through new technologies that enable practitioners to engineer a nonuniform
pore distribution.

Although, in theory, we can derive the membrane permeance κm(z, t ) that yields uniform cake
growth for all time, in practice it is difficult to vary the permeance in time. Therefore we choose to
find the time-steady permeance κm(z) that yields uniform cake growth initially. Steady uniform cake
growth is achieved for a permeance profile that generates a constant flow at the membrane front at
t = 0:

u1(x, z, 0) = const = Um at x = m(z). (5.1)

Initially, s(z, 0) = m(z) and so κ (z, 0) = κm(z) using (2.36c). Using (5.1) in the Darcy-flow bound-
ary condition (2.23) at the membrane, and noting that we have pi = pi(z, t ) for i = 1, 2 from the
lubrication equation (2.19a), we then find

κm(z) = Um

p1(z, 0) − p2(z, 0)
. (5.2)

We use (5.2) to simplify the governing equations for the pressure (2.36a)–(2.36b), which decouple
to give

1
3 [m(z)3 p′

1(z, 0)]′ = Um, p1|z=0 = 1, p′
1|z=1 = 0, (5.3a)

1
3 [(m(z) + h − 1)3 p′

2(z, 0)]′ = φ
f
1 Um, p2|z=1 = 0, p′

2|z=0 = 0. (5.3b)

Equations (5.3) admit exact analytical solutions for p1 and p2:

p1(z, 0) = 1 + 12Umz[2a(z − 2) + β(3z − 2)]

(2a + β )2(2a + β − 2βz)2
, (5.4a)

p2(z, 0) = 12Um(z − 1)φ f
1 [2a(z + 1) + β − (3β + 2)z − 2]

(−2a + β + 2)2(2a + β − 2βz − 2)2
. (5.4b)

From (5.2) we see that if there exists a zero pressure difference p = p1(z, 0) − p2(z, 0) = 0
anywhere along the membrane there will be an infinite permeance at that point, which corresponds
to physical holes in the membrane. Note that we have introduced the, so far, unspecified parameter
Um. For each position and angle (a, β) there exists a bounded range of values of Um for which p,
calculated from (5.4), is such that p > 0 for all z. We first see that Um is bounded from below by
Um = 0 for which p1 = 1 and p2 = 0 from (5.4). To find an upper bound, we find the maximum
value of Um for which min p > 0 holds at t = 0:

U ∗
m(a, β ) = max Um for which p(z, 0; a, β ) > 0 for all z. (5.5)

This gives the bounded range Um ∈ [0,U ∗
m] for each (a, β ) pairing. The contour plot for U ∗

m in
β ∈ [0, 1 − δβ] and a ∈ [β/2 + δa, 1 − (β/2 + δa)] for δβ = 0.1 and δa = 0.04 is given in Fig. 7(a).
We find that for a membrane positioned toward the corners of the domain, at a = 0 or a = 1, a very
slow flow U ∗

m 	 1 is required for p > 0. For more centered membranes (a ≈ 0.5), p > 0 can be
achieved for faster flows. However, crucially, for the full (a, β ) parameter space tested, U ∗

m is a small
parameter, and thus uniform cake growth is only achieved for small fluxes through the domain.

We present the resulting permeance profiles κm(z) in Fig. 7(b) for a range of membrane angles.
Note that the observed dimensionless permeance is O(10−2), which, when rescaled using the
parameter values in Table I and the scalings (2.16), gives a membrane permeability of O(10−11m2).
The derived dimensional membrane permeability is comparable to that of an industrial filter with a
pleated configuration (with no dead-ends) produced by Pall Corporation [8].

For horizontal and slightly angled membranes the permeance profile that ensures constant
velocity at the membrane is concave [Fig. 7(b)]. What this means in practice is that for horizontal (or
close to horizontal) membranes we should choose a membrane with a higher permeance toward the
center of the membrane to obtain a constant velocity across the entire membrane. This is because,
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(a) (b)

FIG. 7. The upper bound of the constant velocity U ∗
m calculated in (5.5) using analytical pressure profiles

(5.4) and β ∈ [0, 1] and a ∈ [β/2, 1 − β/2] given in (a). The nonuniform membrane permeance profiles κm(z)
(5.2) calculated using (5.4) with β = 0, 0.2, 0.4, 0.6, 0.8 at t = 0 in (b) for a = 0.5 and Um = 0.02. Both
figures use φ

f
1 = 0.8.

as discussed in Sec. IV A, for membranes that are close to horizontal the transmembrane pressure
drop is highest at the entrance z = 0. The transmembrane pressure drop is also increased near the
dead-end, z = 1, because the flow has nowhere to go but through the membrane. Thus, to avoid
the cake building up predominantly at the device entrance and at the dead-end one should reduce
the permeance at these two locations [Figs. 4(a) and 4(b)]. This will result in a more uniform growth
across the entire filter.

As we increase the angle of the membrane the concavity of the permeance profile decreases,
and for significantly angled membranes the membrane profile is strongly convex [Fig. 7(b)]. In
this case, we should therefore increase the permeance at the edges of the membrane and decrease
the permeance toward to the center. This is because, for significantly angled membranes, we have
opened up the inlet and increased the available surface area of the membrane. As discussed in
Sec. IV A, the transmembrane pressure drop is correspondingly maximized toward the center of the
membrane. Thus the cake build-up mainly occurs in the middle of the membrane [Fig. 4(c)], and so
increasing the permeance at this point will ensure constant cake growth.

VI. CONCLUSIONS

We have examined caking dynamics in a concertinaed ceramic filtration membrane. Our work
builds on the previous work of Ref. [5], which consisted of a study of the steady particle-free
flow through a concertinaed filtration membrane. In this paper, we further developed the model
to study the flow of a particle-laden fluid mixture through the same filtration device and derive the
appropriate model for external cake build-up on the membrane surface. We modelled the flow of
the fluid mixture on either side of the membrane using the Stokes equations and the flow through
the porous membrane and cake layers using Darcy’s law. By systematically reducing the model
equations, we simplified the flow problem to solving coupled lubrication equations, which account
for the moving boundary associated with blocking, in the upstream and downstream subdomains on
either side of the membrane.

Practitioners use flux–throughput curves to determine the nature of blocking within a filter,
with concave and convex curves identified, respectively, with caking and internal blocking. We
found, however, that when a centered membrane is angled caking dynamics can result in a convex
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flux–throughput curve. This result highlights potential misinterpretations that may result from using
these curves to identify the governing blocking mechanism.

The overarching aim of this paper is to understand the effect of the membrane configuration on
the filtration performance, which is determined by the particular measure of choice. As this metric
will vary for different industrial applications, we considered a one-parameter family of metrics in
this paper. The two extreme points of this family correspond to maximization of the total throughput
and average flux, respectively, while points in between correspond to linear combinations of the
two properties. For the particular set-up of an infinitely thin membrane with unit permeance,
the configuration that maximizes the total throughput is a slightly angled membrane positioned
off-center upwards in the filtration-module domain. This configuration is distinct to that which
optimizes the average flux, which is a significantly angled membrane positioned off-center toward
the lower boundary of the domain.

We also explored the derivation of a spatially varying permeance corresponding to an initially
uniform cake growth. We found that, to ensure a uniform cake growth, one requires a very small
flux through the device initially. Thus, in practice, a nonuniform permeance will not be a useful
tool when maximizing the average flux through the domain (and consequently nor will it be useful
to maximize the total throughput), but it may be relevant for different optimization metrics. While
our analysis was motivated by optimizing the use of membrane area in a concertinaed filtration
device, analogous methodology may be applied to the development process of composite filtration
membranes; in which a thin porous membrane of uniform thickness is applied to a porous support
material [13].

In this paper, we introduced a methodology to derive the membrane permeance that ensures
uniform initial deposition. We could instead have explored the more involved problem seeking a
membrane permeance that leads to a uniform deposition of cake after a finite amount of time. In this
context, we would need to solve an inverse problem for the initial membrane permeance that pro-
vides uniform cake profile at a later time. While the actual formulation of such an inverse problem
would be challenging in its own right, we expect the limitations on the physical parameter regimes
to be similar, if not more restricted, to those found for initial uniform cake growth discussed above.

In this paper we have introduced a mathematical framework for modeling caking in a direct-
flow filtration device. Smart Separations Ltd are a start-up company who have developed a direct-
flow filtration device similar to that discussed in this paper. Motivated by insight provided by this
company, we focused on the effect of caking dynamics on filtration performance. An interesting
extension of the work presented here would be to explore the additional blocking mechanism of
internal blocking.

The model formulation and results presented in this paper may be readily used by practitioners:
For a specified application, this work provides understanding of the device configuration that
optimizes filtration performance.
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APPENDIX A

The cake front is an interface separating the upstream domain �̂1 and the cake layer �̂c = {x̂ ∈
[ŝ(ẑ, t̂ ), ŝ(ẑ, t̂ ) + ĥ], ẑ ∈ [0, 1]}. The position of this interface can be given implicitly by F̂ (x̂, ẑ, t̂ ) =
x̂ − ŝ(ẑ, t̂ ) = 0. The normal velocity of this moving boundary v̂n := v̂ · ns can be written as

v̂n = −∂F̂/∂ t̂

|∇F̂ | . (A1)
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R̂

Ω̂1 Ω̂2

L̂ L̂ĥ

Ẑ

FIG. 8. Schematic of the dimensional unidirectional pipe flow through a membrane. Particles are filtered
out by the membrane drawn in pink in the center of the pipe.

Imposing conservation of flux across this moving boundary yields

Q̂1 · ns − v̂nĉ1 = Q̂c · ns − v̂nĉc, (A2)

where Q̂1 and Q̂c are the particle fluxes within the upstream and cake domains, respectively, and ĉ1

and ĉc are the concentrations of particles within the upstream and cake domains, respectively.
The concentration of particles in �̂1 and �̂c are related through

ĉc

φ
p
c

= ĉ1

φ
p
1

, (A3)

where φ
p
c and φ

p
1 are, respectively, the volume fractions of particles in �̂c and in �̂1. We have taken

the intrinsic particle volume to be the same value in both phases. Neglecting diffusion in �̂1, we
can write the particle flux as Q̂1 = ĉ1û1. Moreover, we assume particles are not advected within the
cake layer, and hence Q̂c = 0. Using these values for the particle fluxes in (A2), together with (A3),
we obtain the following expression for the normal velocity of the cake layer in terms of the system
variables:

v̂n = − φ
p
1

φ
p
c − φ

p
1

û1 · ns. (A4)

Substituting v̂n (A4) into (A1) and rewriting in terms of the cake front position ŝ(ẑ, t̂ ) gives (2.14)
which, together with the initial condition (2.15), yields the cake evolution equation.

APPENDIX B

In this Appendix we consider a unidirectional pipe flow and include a porous membrane in the
middle of the domain. The aim of this study is to understand the effect to the flow when particles
are added to a system. We consider a unidirectional pipe flow to enable analytical insight.

We consider a cylindrical pipe of radius R̂ and length Ẑ as shown in Fig. 8. We assume
axisymmetry and use cylindrical coordinates (r̂, ẑ) to specify the geometry: We position a porous
membrane of thickness ĥ centered along the pipe at ẑ = L̂, where Ẑ = 2L̂ + ĥ; the domain is then
divided into the upstream and downstream subdomains,

�̂1 = {r̂ ∈ [0, R̂], ẑ ∈ [0, L̂]}, (B1a)

�̂2 = {r̂ ∈ [0, R̂], ẑ ∈ [L̂ + ĥ, Ẑ]}. (B1b)
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The fluid mixture is made up of a continuous fluid phase and discrete particles to be filtered. We
assume a constant volume fraction of fluid φ

f
1 and volume fraction of particles φ

p
1 = 1 − φ

f
1 in

�̂1. We further assume that there is perfect filtration by the membrane such that the downstream
subdomain �̂2 comprises only the fluid phase and as such the volume fraction of fluid is φ

f
2 = 1.

The flow is driven by a fixed pressure drop across the pipe p̂ = p̂in − p̂out > 0, with p̂ = p̂in at
ẑ = 0 and p̂ = p̂out at ẑ = Ẑ . We denote the distinct pressure drops across �̂1, the membrane, and
�̂2 by p̂1, p̂m, and p̂2, respectively. The total pressure drop across the pipe is therefore

p̂ = p̂1 +  p̂m +  p̂2. (B2)

We assume a steady, laminar, incompressible Poiseuille flow in �̂1 and �̂2, and can therefore express
the total inflow flux of fluid and particles Q̂1 in �̂1 and total outflow flux of fluid Q̂2 in �̂2 in the
following way:

Q̂1 = π R̂4 p̂1

8μ̂L̂
, (B3a)

Q̂2 = π R̂4 p̂2

8μ̂L̂
. (B3b)

Furthermore, we prescribe Darcy flow across the membrane to write the flux through the membrane
as:

Q̂m = π R̂2κ̂m p̂m, (B4)

where κ̂m is the permeance of the membrane.
We nondimensionalize the system by introducing the following scalings:

r̂ = R̂r, ẑ = δR̂z, p̂ = μ̂Ŵ

δ2L̂
p + p̂out, κ̂m = R̂2

8L̂μ̂
κm,

Q̂1 = πŴ R̂2

δ4
Q1, Q̂2 = πŴ R̂2

δ4
Q2, Q̂m = πŴ R̂2

δ4
Qm, (B5)

where δ = L̂/R̂. Moreover, the velocity scaling Ŵ is given in terms of the pressure drop:

Ŵ = δ2L̂

μ̂
( p̂in − p̂out). (B6)

We choose a short, wide domain with δ 	 1. This enables a closer comparison between the
unidirectional flow system in this Appendix and the nonunidirectional lubrication flow system
presented in the body of the paper and discussed in Sec. III.

Applying the scalings (B5) to (B3) and (B4) yields the dimensionless fluxes in terms of the
dimensionless pressure drops:

Q1 = p1, Qm = κmpm, Q2 = p2. (B7)

Using (B7) in (B3) together with conservation of fluid: φ
f
1 Q1 = Qm = Q2 we can find the inflow

and outflow fluxes in terms of the total pressure drop p:

Q1 = p

1 + φ
f
1 + φ

f
1

κm

, (B8a)

Q2 = p

1 + 1

φ
f
1

+ 1

κm

. (B8b)
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(a) (b)

FIG. 9. Analytical inflow flux (B8a) and outflow flux (B8b) through a pipe with dimensionless pressure
drop p = 1 and porous membrane of permeance κm = 0.5, 1, 1.5, 2.

The flux profiles are shown in Fig. 9. Analogously to the results in Sec. III, the inflow flux decreases
with increased fluid volume fraction [Fig. 9(a)]. For a decreased fluid volume fraction, there is
a corresponding increased particle volume fraction. There is consequently less physical space
available for the fluid to move, so for the same fixed pressure drop, the flow will speed up. On
the downstream side of the membrane we observe that the outflow flux increases with the fluid
volume fraction [Fig. 9(b)]. This shows that the total amount of fluid processed through the domain
will increase when there are fewer particles in the system.

The results discussed in Sec. III and in this Appendix show how including particles in the system
affects the flux through a system of two open domains separated by a porous membrane for a given
pressure drop. Namely, we find that introducing particles speeds up the flow rate upstream of the
membrane while decreasing the total amount of fluid processed by the system.
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