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Rivulet flow over and through a permeable membrane
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Motivated by small-scale natural and industrial processes involving flow over and/or
through a layer of a porous medium, a mathematical model for the steady gravity-driven
flow of a rivulet of fluid with finite width over and through a permeable membrane is
formulated and analyzed. The three-dimensional shape of the free surface of a rivulet with
either fixed semiwidth or fixed contact angle is determined, and it is shown how the length,
base area, and volume of the rivulet on the permeable part of the membrane depend on
the physical properties of the system. In particular, whereas there is a physically realizable
pendant rivulet solution only if the semiwidth does not exceed a critical value, there are
physically realizable sessile and vertical rivulet solutions for all values of the semiwidth;
moreover, a sessile rivulet with fixed semiwidth has a finite maximum possible length
which is attained in the limit of a wide rivulet.

DOI: 10.1103/PhysRevFluids.6.104003

I. INTRODUCTION

There are many natural and industrial situations in which a layer of fluid flows over and through
a layer of a porous medium. While there is a substantial body of theoretical and experimental work
motivated by large-scale flows, such as tidal motion over a sandy beach, the possible escape of
liquidized carbon dioxide sequestered in porous underground reservoirs, and the flow of lava over
fractured bedrock, including that by Ungarish and Huppert [1], Acton et al. [2], Pritchard et al.
[3], Sayag and Neufeld [4], Liu et al. [5], and Yu et al. [6], the motivation for the present work
is the small-scale flows that occur in processes such as the absorption of pesticides by the leaves
of plants (see, e.g., Tredenick et al. [7]), coating and printing onto porous substrates (see, e.g.,
Clarke et al. [8]), dyeing textiles (see, e.g., Shamey and Zhao [9]), the flow of condensed water
on mesh fog-harvesting devices (see, e.g., Park et al. [10]), and screen printing (see, e.g., White
et al. [11]), all of which involve flow over and/or through porous layers. In order to enhance
our understanding of such situations, in the present work we analyze the steady gravity-driven
flow of a rivulet (or trickle) of fluid over and through a permeable membrane. In particular, we
seek to determine how far the rivulet flows over the membrane before it is completely imbibed
by it.
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A landmark contribution to the understanding of small-scale flow over and through a porous
layer is the work by Davis and Hocking [12,13] on the spreading and imbibition of a droplet of
fluid on a porous substrate, which has been extended and generalized by many subsequent authors,
notably Clarke et al. [8], Starov et al. [14,15], Allerborn and Raszillier [16], Anderson [17], Nong
and Anderson [18], and Espín and Kumar [19,20]. Even more directly relevant to the present study
is the analysis of Davis and Hocking [12] of the steady flow of a two-dimensional fluid sheet over
and through a porous substrate and, in particular, their calculation of the length of the sheet (referred
to by them as its “survival distance”) on the permeable part of the membrane. They did not, however,
consider three-dimensional situations such as the present rivulet flow. Also relevant here is the work
by Liu and Liu [21], Kandel and Pascal [22], and Iervolino et al. [23] on the stability of the flow of
a two-dimensional fluid sheet down an inclined porous layer, and that by Ramon et al. [24], Knox
et al. [25,26], and Venerus [27] on porous squeeze-film flow, all of which take account of the flow of
fluid into and/or out of the porous layer. The review by Gambaryan-Roisman [28] provides a helpful
overview of work on the wetting of porous layers.

Many aspects of rivulet flow over impermeable substrates have been studied by previous authors.
In the absence of a recent review, the works by, e.g., Paterson et al. [29], Alekseenko et al. [30],
Herrada et al. [31], Howell et al. [32], Al Mukahal et al. [33], Wang et al. [34], Alshaikhi et al. [35],
Ledda et al. [36], Aktershev et al. [37], and the references therein, provide a representative selection
of these previous studies.

II. MATHEMATICAL MODEL

A. Problem formulation

Consider the steady gravity-driven flow of a symmetric rivulet of an incompressible Newtonian
fluid with constant density ρ∗, viscosity μ∗, and surface tension σ ∗ over and through a planar
membrane of constant thickness H∗ inclined at an angle α (0 � α � π ) to the horizontal. In
particular, sessile (0 � α < π/2), vertical (α = π/2), and pendant (π/2 < α � π ) rivulets are
all considered. As shown in Fig. 1, the membrane is impermeable for x∗ � 0, but permeable
with uniform permeability k∗ for x∗ > 0. To describe this situation we use Cartesian coordinates
Ox∗y∗z∗ with the x∗ axis down the line of greatest slope, the y∗ axis horizontal, and the z∗ axis
normal to the “top” surface of the membrane (i.e., the surface of the membrane with the rivulet
on it) z∗ = 0. The passive atmosphere surrounding (i.e., both above and below) the rivulet and the
membrane is assumed to be at constant atmospheric pressure p∗

a. On the impermeable part of the
membrane, x∗ � 0, the rivulet flows over the membrane, the flow within it is strictly unidirectional
in the x∗ direction, and it has uniform free surface profile z∗ = h∗(y∗), constant volume flux in the
positive x direction Q̄∗ (>0), constant semiwidth ā∗ (>0), and constant contact angle β̄∗ (>0). (As
we shall show subsequently, the values of Q̄∗, ā∗, and β̄∗ are related to each other, and so only
two of them may be prescribed independently.) On the other hand, on the permeable part of the
membrane, x∗ > 0, the rivulet again flows over the membrane but now fluid also flows out of the
base of the rivulet and through the membrane, causing the rivulet to shrink, and so the flow within
it is no longer strictly unidirectional, and it has nonuniform free surface profile z∗ = h∗(x∗, y∗),
nonconstant volume flux in the positive x direction Q∗(x∗) (0 � Q∗ � Q̄∗), nonconstant semiwidth
a∗(x∗) (0 � a∗ � ā∗), nonconstant contact angle β∗(x∗) (0 � β∗ � β̄∗), and length L∗ (>0). The
rivulet is continuous as it passes from the impermeable to the permeable part of the membrane, and
so, in particular, Q∗, a∗, and β∗ take the “initial” values Q̄∗, ā∗, and β̄∗, respectively, at x∗ = 0.
Eventually (i.e., sufficiently far downstream from x∗ = 0) the rivulet is completely imbibed by
the membrane (i.e., Q∗ becomes zero). The determination of how the length of the rivulet on
the permeable part of the membrane, L∗, depends on the physical properties of the system is
one of the key aspects of the present work. We assume that once the fluid from the rivulet has
passed through the membrane it plays no further role in the problem, i.e., there is no fluid on the
“bottom” surface of the membrane (i.e., the surface of the membrane without the rivulet on it)
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FIG. 1. Geometry of the steady gravity-driven flow of a rivulet over and through a planar membrane
of constant thickness H∗ which is impermeable for x∗ � 0, but permeable with permeability k∗ for x∗ > 0,
inclined at an angle α (0 � α � π ) to the horizontal.

z∗ = −H∗ [38]. In the present work we will consider both the case of a rivulet with constant
semiwidth a∗ ≡ ā∗ but decreasing contact angle β∗(x∗) (� β̄∗) in x∗ > 0 in Sec. III, and the case of
a rivulet with constant contact angle β∗ ≡ β̄∗ but decreasing semiwidth a∗(x∗) (� ā∗) in x∗ > 0 in
Sec. IV.

Within the rivulet, the velocity u∗ = (u∗(x∗, y∗, z∗), v∗(x∗, y∗, z∗),w∗(x∗, y∗, z∗)) and the pres-
sure p∗ = p∗(x∗, y∗, z∗) satisfy the mass conservation equation, ∇∗ · u∗ = 0, and the Navier–Stokes
equation. On the other hand, within the permeable part of the membrane, the Darcy velocity (i.e.,
the volume flux of fluid per unit area) U∗ = (U ∗(x∗, y∗, z∗),V ∗(x∗, y∗, z∗),W ∗(x∗, y∗, z∗)) and the
pressure P∗ = P∗(x∗, y∗, z∗) satisfy the mass conservation equation, ∇∗ · U∗ = 0, and Darcy’s law,
U∗ = −(k∗/μ∗)[∇∗P∗ − ρ∗g∗], where g∗ denotes acceleration due to gravity, and hence P∗ satisfies
Laplace’s equation, ∇∗2P∗ = 0. On the free surface of the rivulet, z∗ = h∗, the usual continuity of
normal and tangential stress and kinematic conditions apply. On the top surface of the membrane,
z∗ = 0, we impose no flow in the tangential directions (i.e., in the x∗ and y∗ directions) [39] together
with no flow in the normal direction (i.e., in the z∗ direction) on the impermeable part of the
membrane and continuity of both pressure and volume flux in the normal direction on the permeable
part of the membrane. On the bottom surface of the membrane, z∗ = −H∗, we impose continuity of
pressure.

B. Scaling and nondimensionalization

In the present work we consider the case of a slowly varying (in the x direction) and thin (in
the z direction) rivulet flowing over and through an even thinner (in the z direction) membrane,
specifically the situation in which the longitudinal aspect ratio of the rivulet ε � 1, the transverse
aspect ratio of the rivulet δR � 1, and the transverse aspect ratio of the membrane δM � 1 are all
small, and satisfy ε � δR and δM � δR. We anticipate that the closely related situation in which
the rivulet and the membrane are thin but the thickness of the membrane is comparable to that of
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the rivulet, i.e., when δM ∼ δR � 1, in which gravitational effects will play a more significant role
within the membrane, could be analyzed using the same approach as that described in the present
work.

To analyze this situation we scale and nondimensionalize the variables describing the flow of the
rivulet according to

x∗ = 	∗

ε
x, L∗ = 	∗

ε
L, y∗ = 	∗y, a∗ = 	∗a, z∗ = δR	∗z, h∗ = δR	∗h, β∗ = δRβ,

u∗ = δ2
Rρ∗g∗	∗2

μ∗ u, v∗ = εδ2
Rρ∗g∗	∗2

μ∗ v, w∗ = εδ3
Rρ∗g∗	∗2

μ∗ w, Q∗ = δ3
Rρ∗g∗	∗4

μ∗ Q,

p∗ = p∗
a + δRρ∗g∗	∗ p, (1)

and the additional variables describing the flow in the membrane according to

z∗ = δM	∗Z, H∗ = δM	∗H, k∗ = εδ2
RδM	∗2k, U ∗ = εδ2

RδMρ∗g∗	∗2

μ∗ U,

V ∗ = εδ3
RδMρ∗g∗	∗2

μ∗ V, W ∗ = εδ3
Rρ∗g∗	∗2

μ∗ W, P∗ = p∗
a + δRρ∗g∗	∗P, (2)

where g∗ denotes the magnitude of acceleration due to gravity and 	∗ = [σ ∗/(ρ∗g∗)]1/2 is the
capillary length. Note that z∗ (but not x∗ and y∗) is scaled differently in the rivulet and in the
membrane. Also note that while the assumption that the rivulet is thin requires that the unscaled
contact angle β∗ � 1 must be small, the scaled contact angle β (>0) can take any positive value.

Furthermore, we can choose

δR = β̄∗, δM = H∗

	∗ , and ε = k∗

δ2
RδM	∗2

= k∗

β̄∗2	∗H∗ , (3)

so that, without loss of generality, β̄ = 1, H = 1, and k = 1, although, for clarity of presentation,
we retain β̄, H , and k in the analytical expressions that follow.

Since the membrane is thin, δM � 1, the leading-order pressure within it satisfies ∂2P/∂Z2 = 0
subject to P = p at Z = 0 and P = 0 at Z = −H , with solution

P = p(x, y, 0)

(
1 + Z

H

)
. (4)

Thus, from Darcy’s law, the leading-order component of the Darcy velocity in the membrane is
solely in the z direction and is given by U = (0, 0,W ), where

W = −K p(x, y, 0), (5)

where K is a nondimensional membrane permeability defined by K = k/H . In particular, this means
that the condition of continuity of flux through the base of the rivulet is simply w = W = −K p
evaluated on z = 0, i.e., the local flux through the membrane is proportional to the local value of the
pressure at the base of the rivulet.

Since the rivulet is slowly varying, ε � 1, and thin, δR � 1, and provided that the appropriately
defined reduced Reynolds number εδ4

Rρ∗2g∗	∗3/μ∗2 � 1 is sufficiently small, the leading-order
pressure and velocity within it satisfy the lubrication equations, namely

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0,

∂2u

∂z2
+ sin α = 0, −∂ p

∂y
= 0, −∂ p

∂z
− cos α = 0, (6)

subject to the boundary conditions

u = v = 0, w =
{

0 for x � 0
−K p for x > 0 (7)
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on the top surface of the membrane z = 0,

p = −∂2h

∂y2
,

∂u

∂z
= ∂v

∂z
= 0, (8)

and the kinematic condition

u
∂h

∂x
+ v

∂h

∂y
− w = 0 (9)

on the free surface of the rivulet z = h, together with the contact-line conditions

h = 0,
∂h

∂y
= ∓β (10)

at the contact lines y = ±a, z = 0. The solutions of (6) subject to (8) for u and p are

u = sin α

2
(2hz − z2), p = (h − z) cos α − ∂2h

∂y2
. (11)

Since ∂ p/∂y = 0, h satisfies

∂

∂y

(
∂2h

∂y2
− h cos α

)
= 0, (12)

subject to (10), which has solution

h = β ×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

cosh ma − cosh my

m sinh ma
for 0 � α <

π

2
a2 − y2

2a
for α = π

2
cos my − cos ma

m sin ma
for

π

2
< α � π,

(13)

where m = √|cos α|.
The volume flux along the rivulet (i.e., in the positive x direction) is given by

Q =
∫ h

0

∫ +a

−a
u dy dz = sin α

3

∫ +a

−a
h3dy = β3 sin α

9m4
f (ma), (14)

where the function f = f (ma) originally introduced by Duffy and Moffatt [42] is defined by

f (ma) =

⎧⎪⎨
⎪⎩

15ma coth3 ma − 15 coth2 ma − 9ma coth ma + 4 for 0 � α < π
2

12
35 (ma)4 for α = π

2

−15ma cot3 ma + 15 cot2 ma − 9ma cot ma + 4 for π
2 < α � π.

(15)

For this solution to be physically realizable we require that h � 0 for |y| � a, and so while there
are sessile and vertical rivulets for all values of a > 0, pendant rivulets occur only for 0 < a � π/m
(see, e.g., Wilson and Duffy [43]).

The thickness of the middle of the rivulet, which from (13) is also the maximum thickness of the
rivulet, is denoted by h̄m = h(0) in x � 0 and hm(x) = h(x, 0) in x > 0.

C. Global conservation of mass

Global conservation of mass requires that at all stations x > 0 the volume flux along the rivulet is
equal to the sum of the volume flux along the rivulet at x = 0, namely Q̄, and the (negative) volume
flux through the base of the rivulet between x = 0 and the station x, i.e.,

Q = Q̄ +
∫ x

0

∫ +a(x̃)

−a(x̃)
w(x̃, y, 0) dy dx̃. (16)
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Substituting the solution for p given in (11) into the condition of continuity of flux through the base
of the rivulet (7) yields

w(x, y, 0) = −K p(x, y, 0) = −K

(
h cos α − ∂2h

∂y2

)
= −Kβg(ma)

a
for x > 0, (17)

where the function g = g(ma) is defined by

g(ma) =
⎧⎨
⎩

ma coth ma for 0 � α < π
2

1 for α = π
2

ma cot ma for π
2 < α � π,

(18)

which is independent of y, and so the transverse integral of the normal velocity through the base of
the rivulet at the station x > 0 is∫ +a(x)

−a(x)
w(x, y, 0) dy = −2Kβg(ma). (19)

Hence the global conservation of mass condition (16) can be written as

β3 sin α

9m4
f (ma) = Q̄ − 2K

∫ x

0
βg(ma) dx̃. (20)

For future reference, it is useful to note that the function g satisfies g = 1 + sgn(cos α)(ma)2/3 +
O(ma)4 as ma → 0+, is a monotonically increasing function of ma that satisfies g ∼ ma → ∞ as
ma → ∞ for 0 � α < π/2, but is a monotonically decreasing function of ma in the range 0 �
ma � π which satisfies g ∼ (π/2)(π/2 − ma) → 0 as ma→π/2 and g ∼ −π (π − ma)−1 →−∞
as ma → π− for π/2 < α � π .

Differentiating (20) with respect to x leads to a key result, namely the first-order ordinary
differential equation satisfied by a and β in 0 < x � L, i.e.,

d

dx
[β3 f (ma)] + 18Km4

sin α
βg(ma) = 0. (21)

The “nose” (i.e., the downstream end) of the rivulet, located at x = L, corresponds to the value of
x at which Q = 0 (i.e., the value of x at which a = 0 and/or β = 0), and hence from (20) the length
of the rivulet L is determined by the equation

2K
∫ L

0
βg(ma) dx = Q̄. (22)

Note that from (14) evaluated at any station x � 0 the value of Q̄ is related to the values of ā and β̄

according to

Q̄ = β̄3 sin α

9m4
f (mā). (23)

D. Sessile, vertical, and pendant rivulets

For sessile and vertical rivulets (i.e., for 0 � α � π/2) the pressure at the base of the rivulet,
βg(ma)/a, is always positive, which always drives fluid out of the base of the rivulet and through
the membrane. However, for a pendant rivulet (i.e., for π/2 < α � π ) this is the case only when
a < acrit , where acrit = π/(2m). In the special case of a pendant rivulet with a = acrit the pressure
at the base of the rivulet is identically zero, and hence no fluid flows either out of or into the rivulet,
and so the rivulet is infinitely long and remains uniform with constant semiwidth a = ā and constant
contact angle β = β̄ at all stations x > 0. For a pendant rivulet with a > acrit the pressure at the base
of the rivulet is negative, which would draw fluid through the membrane and into the base of the
rivulet. However, since, as previously noted, in the present work we assume that there is no fluid
on the bottom surface of the membrane, this is impossible and so there is no physically realizable
rivulet solution in this case. Hence, since the rivulet shrinks as it flows over the permeable part of the
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membrane (and, in particular, since a � ā at all stations x > 0), there are sessile and vertical rivulet
solutions for all values of ā, whereas there is a pendant rivulet solution only for ā < acrit [44]. In
particular, for a narrow rivulet whose initial semiwidth satisfies ā < π/2 there is a rivulet solution
for all values of α, whereas for a wide rivulet whose initial semiwidth satisfies ā � π/2 there is a
rivulet solution only for 0 � α � αcrit (π/2 < αcrit � π ), where

αcrit = cos−1

(
− π2

4ā2

)
. (24)

E. Area of the base and volume of the rivulet

In certain contexts, such as some heat-transfer applications, the area of the base of the rivulet on
the permeable part of the membrane, denoted by A and scaled and nondimensionalized with 	∗2/ε,
and/or the volume of the rivulet on the permeable part of the membrane, denoted by V and scaled
and nondimensionalized with δR	∗3/ε, are of interest, and these are given by

A = 2
∫ L

0
a dx (25)

and

V =
∫ L

0

∫ +a

−a

∫ h

0
dz dy dx = 2

cos α

∫ L

0
β[g(ma) − 1] dx, (26)

respectively.

III. A RIVULET WITH FIXED SEMIWIDTH a ≡ ā

In this section we consider the case of a rivulet with fixed semiwidth a ≡ ā but decreasing contact
angle β = β(x) (� β̄ ) in 0 < x � L.

A. Governing equation and solution

Substituting a = ā into (21) yields a separable ordinary differential equation for β, namely

d (β2)

dx
= −12Km4g(mā)

sin α f (mā)
, (27)

which can be solved subject to the conditions that β(0) = β̄ and β(L) = 0 to yield the explicit
solution for β and an explicit expression for L,

β = β̄

(
1 − x

L

)1/2

, L = β̄2 sin α f (mā)

12Km4g(mā)
. (28)

In the special case of a vertical rivulet (28) reduces to simply

β = β̄

(
1 − x

L

)1/2

, L = β̄2ā4

35K
. (29)

Now that β(x) and L have been determined, the three-dimensional shape of the free surface of
the rivulet, z = h(x, y), is given explicitly by (13).

B. Shape of the rivulet

Figure 2 shows examples of β given by (28) plotted as a function of x, and Fig. 3 shows an
example of the three-dimensional shape of the free surface of a vertical rivulet. In particular, Fig. 3
illustrates that the rivulet has a “square” nose at which the slope of the free surface of the rivulet in
the x direction becomes large according to dhm/dx = O(L − x)−1/2 → −∞ as x → L−, and hence
that the assumption that the rivulet is slowly varying in x breaks down locally in the vicinity of the
nose.
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FIG. 2. The contact angle β of a rivulet with fixed semiwidth a ≡ ā given by (28) plotted as a function of x
for (a) a sessile rivulet with α = π/4 for ā = 1, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, and (b) a pendant rivulet with
α = 3π/4 for ā = 1, 1.1, 1.2, . . . , 1.8 (<acrit � 1.8680).

C. Variation of L with ā

Figure 4 shows examples of L plotted as a function of ā for a range of values of α, including
(a) sessile and (b) vertical and pendant rivulets. Figure 4 shows that in all three cases the rivulet
becomes short according to

L ∼ β̄2 sin α

35K
ā4 → 0+ (30)

in the limit of a very narrow rivulet ā → 0+ and that the length of the rivulet always increases with ā,
but that the behavior for larger values of ā is qualitatively different for sessile, vertical, and pendant
rivulets. Specifically, while Fig. 4(a) shows that the length of a sessile rivulet increases towards an
asymptotic value which is reached from below according to

L ∼ β̄2 sin α

2Km4

(
1 − 11

6mā

)
→

(
β̄2 sin α

2Km4

)−
(31)

in the limit of a wide rivulet ā → ∞, Fig. 4(b) shows that vertical and pendant rivulets become
infinitely long according to

L ∼ β̄2

35K
ā4 → ∞ as ā → ∞ (32)

and

L ∼ 2β̄2 sin α

3Kπm5
(acrit − ā)−1 → ∞ as ā → a−

crit, (33)

respectively. Note that, since Q̄ given by (23) is a monotonically increasing function of ā, Fig. 4
may also be interpreted as showing the variation of L with Q̄.

In particular, Eq. (31) provides the expression for the length of a two-dimensional (i.e., an
infinitely wide) sessile sheet flowing over and through a permeable membrane, namely

L = β̄2 sin α

2Km4
= h̄2

m tan α

2K
, (34)

where h̄m = β̄/m is the initial thickness of the sheet, which is in agreement with the corresponding
expression given by Davis and Hocking [12] provided that their erroneous scaling of the membrane
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FIG. 3. The three-dimensional shape of the free surface of a vertical rivulet with fixed semiwidth a≡ ā = 4,
β̄ = 1, and length L = β̄2ā4/(35K ) = 256/35 � 7.3143.

permeability is corrected [46]. Note that the pressure within a two-dimensional vertical sheet is
identically zero, and so such a vertical sheet is infinitely long with uniform thickness, while the
pressure within a two-dimensional pendant sheet is negative, and so there is no physically realizable
pendant sheet solution.

D. Variation of L with α

Figure 5 shows examples of L plotted as a function of α/π for a range of values of ā, including
both (a) narrow (i.e., ā < π/2) and (b) wide (i.e., ā � π/2) rivulets. Figure 5 shows that in both
cases the rivulet becomes short according to

L ∼ β̄2 f (ā)

12Kg(ā)
α → 0+ (35)

in the limit of a sessile rivulet on a nearly horizontal membrane α → 0+, but that the behavior
for larger values of α is qualitatively different for narrow and wide rivulets. Specifically, while
Fig. 5(a) shows that the length of a narrow rivulet increases to a global maximum value L = Lmax at

104003-9



ALSHAIKHI, WILSON, AND DUFFY

FIG. 4. The length L of a rivulet with fixed semiwidth a ≡ ā given by (28) plotted as a function of ā for
(a) sessile rivulets with α = π/12, π/6, π/4, π/3, 5π/12 (<π/2) and (b) vertical and pendant rivulets with
α = π/2, 7π/12, 2π/3, 3π/4, 5π/6, 11π/12 (�π/2). The dashed lines denote the asymptotic values of L in
the limit ā → ∞ for sessile rivulets in part (a), and the vertical asymptotes of L at ā = acrit for pendant rivulets
in part (b).

α = αmax (π/2 < αmax < π ) and then becomes short again according to

L ∼ β̄2 f (ā)

12Kg(ā)
(π − α) → 0+ (36)

in the limit of a pendant rivulet on a nearly horizontal membrane α → π−, Fig. 5(b) shows that the
length of a wide rivulet always increases with α, and wide rivulets become infinitely long according

FIG. 5. The length L of a rivulet with fixed semiwidth a ≡ ā given by (28) plotted as a function of α/π

for (a) narrow rivulets with ā = 1, 1.1, 1.2, 1.3, 1.4, 1.5 (<π/2) and (b) wide rivulets with ā = π/2, 2, 3, 4, 5
(�π/2). The dashed lines in part (b) denote the vertical asymptotes of L at α = αcrit .
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FIG. 6. (a) Lmax and (b) αmax/π for a narrow rivulet with fixed semiwidth a ≡ ā plotted as functions of
ā/π . The dashed line in part (a) denotes the vertical asymptote of Lmax at ā = π/2.

to

L ∼ 32β̄2ā2

3Kπ4
(αcrit − α)−1 → ∞ as α → α−

crit. (37)

Figure 6 shows (a) Lmax and (b) αmax/π for a narrow rivulet plotted as functions of ā/π , and, in
particular, confirms that Lmax and αmax are monotonically increasing functions of ā, and shows that
Lmax and αmax increase from Lmax → 0+ and αmax = (π/2)+ in the limit ā → 0+ to Lmax → ∞ and
αmax → π− in the limit ā → (π/2)−.

E. A and V

Substituting a = ā into the general expressions for the area of the base of the rivulet on the
permeable part of the membrane, A, given by (25) and the volume of the rivulet on the permeable
part of the membrane, V , given by (26) yields

A = β̄2ā sin α f (mā)

6Km4g(mā)
, V = β̄3 tan α f (mā)[g(mā) − 1]

9Km4g(mā)
, (38)

respectively. In the special case of a vertical rivulet (38) reduces to

A = 2β̄2ā5

35K
, V = 4β̄3ā6

315K
. (39)

IV. A RIVULET WITH FIXED CONTACT ANGLE β ≡ β̄

In this section we consider the case of a rivulet with fixed contact angle β ≡ β̄ but decreasing
semiwidth a = a(x) (� ā) in 0 < x � L.

A. Governing equation and solution

Substituting β = β̄ into (21) yields a separable ordinary differential equation for a, namely

d f (ma)

dx
= − 18Km4

β̄2 sin α
g(ma), (40)
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FIG. 7. The semiwidth a of a rivulet with fixed contact angle β ≡ β̄ given by (41) plotted as a function of
x for (a) a sessile rivulet with α = π/4 for ā = 10, 25, 50, 75, 100 and (b) a pendant rivulet with α = 3π/4 for
ā = 1, 1.1, 1.2, . . . , 1.8 (<acrit � 1.8680).

which can be solved subject to the conditions that a(0) = ā and a(L) = 0 to yield the implicit
solution for a and an explicit expression for L,

F (ma) = 18Km4

β̄2 sin α
(L − x), L = β̄2 sin α

18Km4
F (mā), (41)

where the function F = F (ma) is defined by

F (ma) =
∫ ma

0

f ′(ξ )

g(ξ )
dξ . (42)

We have not been able to express the function F (ma) in a useful closed form, but it is a func-
tion of only one variable which may readily be evaluated by performing the quadrature in (42)
numerically. However, it can be shown that F (ma) is a monotonically increasing function of ma
which satisfies F (ma) ∼ 12(ma)4/35 → 0+ as ma → 0+, F (ma) ∼ 6 ln(ma) → ∞ as ma → ∞
for 0 � α < π/2, and F (ma) ∼ −9 ln(π/2 − ma) → ∞ as ma → (π/2)− for π/2 < α � π . The
solution for a can be obtained either by evaluating F (ma) and then solving numerically for a
or, equivalently, simply solving the differential equation (40) numerically. However, note that
determining the length of the rivulet L given by (41) involves only evaluating F (mā), and so, slightly
surprisingly, does not require us to obtain the solution for a. In the special case of a vertical rivulet
(41) reduces to an explicit expression for a and the corresponding explicit expression for L,

a = ā

(
1 − x

L

)1/4

, L = 2β̄2ā4

105K
. (43)

Note that the length of a vertical rivulet with fixed contact angle given by (43) is exactly 2/3 of the
length of a vertical rivulet with fixed semiwidth given by (29).

Once a(x) and L have been determined, the three-dimensional shape of the free surface of the
rivulet, z = h(x, y), is given explicitly by (13).

B. Shape of the rivulet

Figure 7 shows examples of a given by (41) plotted as a function of x, and Fig. 8 shows an
example of the three-dimensional shape of the free surface of a vertical rivulet. In particular, Fig. 8
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FIG. 8. The three-dimensional shape of the free surface of a vertical rivulet with fixed contact angle
β ≡ β̄ = 1, ā = 4, and length L = 2β̄2ā4/(105 K ) = 512/105 � 4.8762.

illustrates that the rivulet has a “rounded” nose given by

a ∼
[

105K

2β̄2 sin α
(L − x)

]1/4

→ 0+ as x → L− (44)

at which the slope of the free surface of the rivulet in the x direction becomes large according to
dhm/dx = O(L − x)−3/4 → −∞ as x → L−, and hence, as for a rivulet with fixed semiwidth, that
the assumption that the rivulet is slowly varying in x breaks down locally in the vicinity of the nose.

C. Variation of L with ā

Figure 9 shows examples of L plotted as a function of ā for a range of values of α, including
(a) sessile and (b) vertical and pendant rivulets. Figure 9 shows that in all three cases the rivulet
becomes short according to

L ∼ 2β̄2 sin α

105K
ā4 → 0+ (45)
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FIG. 9. The length L of a rivulet with fixed contact angle β ≡ β̄ given by (41) plotted as a function of ā
for (a) sessile rivulets with α = π/12, π/6, π/4, π/3, 5π/12 (<π/2) and (b) vertical and pendant rivulets
with α = π/2, 7π/12, 2π/3, 3π/4, 5π/6, 11π/12 (�π/2). The dashed lines in part (b) denote the vertical
asymptotes of L at ā = acrit for pendant rivulets.

in the limit of a very narrow rivulet ā → 0+, that the length of the rivulet always increases with ā,
and that sessile, vertical, and pendant rivulets all become infinitely long according to

L ∼ β̄2 sin α

3Km4
ln(ā) → ∞ as ā → ∞, (46)

L = 2β̄2

105K
ā4 → ∞ as ā → ∞, (47)

and

L ∼ − β̄2 sin α

2Km4
ln(acrit − ā) → ∞ as ā → a−

crit, (48)

respectively. Note that, like Fig. 4, Fig. 9 may also be interpreted as showing the variation of L
with Q̄.

D. Variation of L with α

Figure 10 shows examples of L plotted as a function of α/π for a range of values of ā, including
both (a) narrow (i.e., ā < π/2) and (b) wide (i.e., ā � π/2) rivulets. Figure 10 shows that in both
cases the rivulet becomes short according to

L ∼ β̄2F (ā)

18K
α → 0+ (49)

in the limit of a sessile rivulet on a nearly horizontal membrane α → 0+, but that the behavior for
larger values of α depends on the value of ā. Specifically, while Fig. 10(a) shows that the length of a
narrow rivulet increases to a global maximum value L = Lmax at α = αmax (π/2 < αmax < π ) and
then becomes short again according to

L ∼ β̄2F (ā)

18K
(π − α) → 0+ (50)
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FIG. 10. The length L of a rivulet with fixed contact angle β ≡ β̄ given by (41) plotted as a func-
tion of α/π for (a) narrow rivulets with ā = 1, 1.1, 1.2, 1.3, 1.4, 1.5 (<π/2) and (b) wide rivulets with
ā = π/2, 1.571, 1.572, 1.573, 1.576, 1.579, 1.58, 1.6, 1.7, 1.8, 1.9, 2, 3, 4, 5 (�π/2). The dashed lines in
part (b) denote the vertical asymptotes of L at α = αcrit for ā = 1.6, . . . , 5 (the vertical asymptotes for
ā = π/2, . . . , 1.58 having been omitted for clarity).

in the limit of a pendant rivulet on a nearly horizontal membrane α → π−, Fig. 10(b) shows that a
wide rivulet becomes infinitely long according to

L ∼ −8β̄2ā2

Kπ4

√
ā4 −

(
π

2

)4

ln(αcrit − α) → ∞ as α → α−
crit. (51)

Figure 11 shows (a) Lmax and (b) αmax/π for a narrow rivulet plotted as functions of ā/π ,
and, in particular, confirms that Lmax and αmax are monotonically increasing functions of ā, and

FIG. 11. (a) Lmax and (b) αmax/π for a narrow rivulet with fixed contact angle β ≡ β̄ plotted as functions
of ā/π .
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FIG. 12. (a) Lmax and Lmin and (b) αmax/π and αmin/π for a wide rivulet with fixed contact angle β ≡ β̄

plotted as functions of ā/π .

shows that Lmax and αmax increase from Lmax → 0+ and αmax → (π/2)+ in the limit ā → 0+ to
Lmax = 0.2998 and αmax � 0.8750π � 2.7488 when ā = π/2. However, unlike for a wide rivulet
with fixed semiwidth as shown in Fig. 5, Fig. 10(b) also shows that the qualitative behavior of
the length of a wide rivulet with fixed contact angle depends on the value of ā. Specifically, as
Fig. 10(b) shows, in the narrow range π/2 < ā < amax, where amax � 0.5024π � 1.5785, the length
of the rivulet increases to a local maximum value L = Lmax at α = αmax and then decreases to a
local minimum value L = Lmin at α = αmin (π/2 < αmax < αmin < αcrit) before increasing again
and becoming infinitely long according to (51) as α → α−

crit . As Fig. 10(b) also shows, the local
maximum and minimum coalesce when ā = amax, and for ā � amax the length of the rivulet always
increases with α. Figure 12 shows (a) Lmax and Lmin and (b) αmax/π and αmin/π for a wide rivulet
plotted as functions of ā/π , and, in particular, confirms that Lmax, Lmin, and αmax are monotonically
increasing functions of ā and that αmin is a monotonically decreasing function of ā, and shows that
Lmax = Lmin � 0.3289, αmax = αmin � 0.9150π � 2.8746 when ā = amax.

E. A and V

Substituting β = β̄ into the general expressions for A given by (25) and V given by (26) yields

A = β̄2 sin α

9Km5
G(mā), V = β̄3 tan α

9Km4
[ f (mā) − F (mā)], (52)

respectively, where the function G = G(ma) is defined by

G(ma) =
∫ ma

0

ξ f ′(ξ )

g(ξ )
dξ . (53)

As for the function F (ma), we have not been able to express the function G(ma) in a useful closed
form, but, like F (ma), it is a function of only one variable which may readily be evaluated by
performing the quadrature in (53) numerically. However, it can be shown that G(ma) is a mono-
tonically increasing function of ma which satisfies G(ma) ∼ 48(ma)5/175 → 0+ as ma → 0+,
G(ma) ∼ 6ma → ∞ as ma → ∞ for 0 � α < π/2, and G(ma) ∼ −(9π/2) ln(π/2 − ma) → ∞
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as ma → (π/2)− for π/2 < α � π . In the special case of a vertical rivulet (52) reduces to

A = 16β̄2ā5

525K
, V = 8β̄3ā6

945K
. (54)

Note that the values of A and V for a vertical rivulet with fixed contact angle given by (54) are
exactly 8/15 and 2/3, respectively, of the corresponding values for a vertical rivulet with fixed
semiwidth given by (39).

V. CONCLUSIONS

Motivated by small-scale natural and industrial processes involving flow over and/or through a
layer of a porous medium, in the present work we formulated and analyzed a mathematical model
for the steady gravity-driven flow of a slowly varying and thin rivulet of fluid with finite width over
and through an even thinner permeable membrane.

Expressed in terms of dimensional quantities, the excess pressure (i.e., the pressure above
atmospheric pressure) within a rivulet which drives the flow of fluid out of the base of the rivulet
and through the membrane is due to a combination of gravitational and capillary effects and is given
by

p∗ − p∗
a = σ ∗β∗

a∗ g

(
ma∗

	∗

)
, (55)

where the function g(·) is defined by (18). This excess pressure is always positive for sessile and
vertical rivulets (and hence there are physically realizable sessile and vertical rivulet solutions) for
all values of a∗, but it is positive for a pendant rivulet (and hence there is a physically realizable
pendant rivulet solution) only for a∗/	∗ < acrit = π/(2m).

The three-dimensional shape of the free surface of a rivulet with either fixed semiwidth or
fixed contact angle was determined, and we showed how the length, base area, and volume of the
rivulet on the permeable part of the membrane depend on the physical properties of the system. In
particular, we found that the length of a rivulet with fixed semiwidth a∗ ≡ ā∗ is given by

L∗ = σ ∗β̄∗2H∗ sin α

12ρ∗g∗k∗ cos2 α

f (mā∗/	∗)

g(mā∗/	∗)
, (56)

where the function f (·) is defined by (15), and the length of a rivulet with fixed contact angle
β∗ ≡ β̄∗ is given by

L∗ = σ ∗β̄∗2H∗ sin α

18ρ∗g∗k∗ cos2 α
F

(
mā∗

	∗

)
, (57)

where the function F (·) is defined by (42). In both cases L∗ always increases with ā∗ and (trivially)
with β̄∗. The variation of L∗ with ā∗ is relatively straightforward. A sessile rivulet with fixed
semiwidth has a finite maximum possible length (corresponding to the length of a two-dimensional
sheet), namely

L∗ = h̄∗2
m H∗ tan α

2k∗ , (58)

where h̄∗
m (= 	∗β̄∗/m) is the initial thickness of the sheet, which is attained in the limit of a wide

rivulet ā∗ → ∞, but in all of the other situations (i.e., vertical and pendant rivulets with fixed
semiwidth and rivulets with fixed contact angle) the length of the rivulet is unbounded in this limit.
The variation of L∗ with α is slightly more complicated. For both a rivulet with fixed semiwidth
and a rivulet with fixed contact angle, the length of a narrow rivulet with ā∗/	∗ < π/2 increases
from zero in the limit of a sessile rivulet on a nearly horizontal membrane α → 0+ to a global
maximum value and then decreases back to zero in the limit of a pendant rivulet on a nearly
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horizontal membrane α → π−. On the other hand, the length of a wide rivulet with ā∗/	∗ � π/2
increases from zero in the limit of a sessile rivulet on a nearly horizontal membrane α → 0+ and
is unbounded in the limit α → α−

crit , and, except for a rivulet with fixed contact angle in the narrow
range π/2 < ā∗/	∗ < amax � 0.5024π � 1.5785, always increases with α.

There are a number of ways in which it would be interesting to extend the results described
in the present work; notably to consider the situation in which some or all of the fluid adheres to
the bottom surface of the membrane, more general boundary conditions on the top surface of the
permeable part of the membrane, a thicker membrane within which gravitational effects will play
a more significant role, and/or situations in which the contact line of the rivulet on the permeable
part of the membrane pins, depins and repins, or, more generally, in which the semiwidth and the
contact angle on the permeable part of the membrane vary simultaneously.
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Saffman [41]), might be more appropriate on the top surface of the permeable part of the membrane.
However, in the present work we restrict our attention to the simplest case of no flow in the x∗ and y∗
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[44] In particular, this means that there is no solution corresponding to a rivulet with zero contact angle, β = 0,

since such a rivulet is possible only for π/2 < α � π and has semiwidth a = π/m = 2acrit regardless of
the value of Q̄ (see, e.g., Sullivan et al. [45]).
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[46] Specifically, in the notation of Davis and Hocking [12], the dimensionally incorrect scaling of their
“permeability parameter” (our membrane permeability) given in their Eq. (36), namely μh0(β tan θ )2/3/3,
should be h0(β tan θ )2/3. In addition, there is a missing pair of brackets around ∂h′/∂t ′ + ∂Q′/∂x′ in the
first line of their Eq. (34), cos θ should be sin θ in their definition of their Bond number B, and their final
expression for their “survival distance” (corresponding to our rivulet length), a ∼ (k′)−1g−1/3, should be
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