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The Richtmyer-Meshkov (RM) instability has long been an interesting subject due to
its fundamental significance in scientific research, as well as its crucial role in engineering
applications. In this study, the contribution of shock Mach number on the evolution of
the RM instability induced by a shock-accelerated square light bubble is investigated
numerically. The square bubble is composed of helium gas and the surrounding (ambient)
gas is nitrogen. Three cases of incident shock strength are considered: Ms = 1.21, 1.7, and
2.1. An explicit mixed-type modal discontinuous Galerkin scheme with uniform meshes
is employed to numerically solve a two-dimensional system of unsteady compressible
Navier-Stokes-Fourier equations. The numerical results show that the shock Mach number
plays an important role during the interaction between a planar shock wave and a square
light bubble. The shock Mach number causes significant changes in flow morphology,
resulting in complex wave patterns, vorticity generation, vortex formation, and bubble
deformation. In contrast to low Mach numbers, high Mach numbers produce the larger
rolled-up vortex chains, larger inward jet formation, and a stronger mixing zone with
greater expansion. The effects of Mach numbers are explored in detail through phenomena
such as the vorticity production and evolution of kinetic energy, dissipation rate, and
enstrophy. Finally, the Mach number effects on the time variations of the shock trajectories
and interface features are comprehensively analyzed.

DOI: 10.1103/PhysRevFluids.6.104001

I. INTRODUCTION

The Richtmyer-Meshkov (RM) instability is a fundamental physical phenomenon that occurs
when a moving shock wave passes through a gas interface separating fluids of different densities.
Small perturbations appear on the interface in the form of light bubbles floating into the heavy fluid
and heavy spikes penetrating into the light fluid due to a misalignment of the pressure gradient
(∇p) across the shock and the local density gradient (∇ρ) at the interface. These perturbations
become greater over time, and more complex structures arise, generating a mixing zone of light
and heavy fluids that interpenetrate one another. Richtmyer [1] was the first to investigate this
shock-induced instability analytically and numerically, and Meshkov [2] later validated it in a shock
tube. This instability is considered as an impulsive or shock-accelerated version of the continuously
driven Rayleigh-Taylor instability [3] that develops at accelerated density-stratified interfaces. The
RM instability is ubiquitous in a wide range of natural and engineering applications, including
supernova explosions, lithotripsy, astrophysics, inertial confinement fusion, scramjet combustion
process, and many more. Over the past several decades, numerous studies on the RM instability
have been conducted, and extensive reviews of the occurrence and applications of this instability
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have been presented by Zabusky [4], Holmes [5], Brouillette [6], Ranjan et al. [7], Luo et al. [8],
and Zhou [9,10].

The study of shock-accelerated bubble has been one of the most fundamental research topics for
characterizing the physical configuration of the RM instability over the years. The shock-accelerated
bubble was initially explored experimentally by Markstein [11] and Rudinger, and Somers [12]
in their groundbreaking research works. Haas and Sturtevant [13] studied experimentally the
interaction of a plane weak shock wave with a single gas bubble containing either helium or R22
gas. In their experiments, shadowgraph photography was used to visualize the evolving waves and
the distortion of the bubble as a result of the incoming shock. Layes et al. [14,15] experimentally
investigated the shock-accelerated bubbles using high-speed shadowgraphy, and a vortex ring and
inward jet were observed for different gases. Kumar et al. [16] conducted experimental studies of
the acceleration of different configurations in shock-accelerated cylinder heavy bubbles at Ms = 1.2
with the aid of planar laser-induced fluorescence technique and showed that the early-time stretching
rate of material lines after the interaction depending on the configuration and orientation of the
gaseous bubbles. Ranjan et al. [17] investigated experimentally the compression and unstable
evolution of a shock-accelerated spherical helium bubble at shock Mach number (Ms = 2.95) in
a vertical shock tube and explored the different vortex rings of the distorted bubble. Following
that, Ranjan et al. [18] studied the divergent-geometry shock-accelerated bubble in the shock Mach
number range of 1.4 � Ms � 3.0, and the experimental planar laser diagnostics resolved features
such as the formation of a long-lived primary vortex ring, as well as counter-rotating secondary and
tertiary upstream vortex rings, which appeared for high shock Mach numbers. Haehn et al. [19,20]
explored experimentally the shock-accelerated spherical bubble under reshock situations with three
shock Mach numbers (Ms = 1.35–2.33) to observe the evolution of the vortex ring. Si et al. [21]
investigated experimentally the evolution of spherical light/heavy gas bubbles in flows accelerated
by incident and reflected shocks using high-speed Schlieren photography, as well as the impact of
reflected distances on on the flow morphology.

To better understand the physical causes of the RM instability, numerous computational studies
for shock-accelerated bubbles have also been conducted. Comprehensive studies on the shock-
accelerated bubbles were performed by Picone and Boris [22] and Quirk and Karni [23], and
the experimental results of Haas and Sturtevant [13] were reproduced. Zabusky and Zeng [24]
simulated planar shocks interacting with an R12 axisymmetric spherical bubble and observed that
the collapsing shock cavity within the bubble caused an expelled weak jet at low Mach number, but
at higher Mach numbers (e.g., Ms = 2.5), the vortical projectiles appear on the downstream side
of the bubble. Bagabir and Drikakis [25] numerically examined the effects of the incident shock
Mach numbers (Ms = 1.22–6.0) on the flow evolution of the shock-accelerated light bubbles, and
explored additional gas dynamic features as the Mach number increased. Giordano and Burtschell
[26] investigated the RM instabilities by analyzing of shocks-bubble interaction at low Mach
number (Ms = 1.2) for understanding the vortex deposition by the baroclinic terms. Niederhaus
et al. [27] performed three-dimensional multifluid Eulerian simulations to investigate the flow
morphologies and integral properties of shock-accelerated bubbles and explored the contributions
of different Atwood numbers (−0.8 < At < 0.7) and shock intensities (1.1 � Ms � 5.0). Using the
high-resolution computation scheme, Zhu et al. [28] numerically explored the impacts of different
incident shock Mach numbers (1.21 � Ms � 2.1) on the flow fields of a shock-accelerated SF6

bubble and observed that the bubble distorts separately with the increasing incident shock Mach
number. At high Mach numbers (Ms = 2.5–3.0), Rybakin and Goryachev [29] studied numerically
the deformation and instability of a low-density gas bubble, the formation and evolution of vortex
rings, and the shock wave-bubble configuration. Recently, Singh and Battiato [30] analyzed numeri-
cally the behavior of a shock-accelerated cylindrical heavy bubble at low Mach number (Ms = 1.21)
under the nonequilibrium conditions of diatomic and polyatomic gases. Further, this research work
was extended by Singh et al. [31] to investigate the impact of bulk viscosity on the flow morphology
of a shock-accelerated cylindrical light bubble. It was observed that the bulk viscosity of a gas
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molecule, which is directly related to its rotational mode, plays a vital role in the the interaction
process.

Most of existing experimental, theoretical, and numerical studies have focused on shock-
accelerated bubbles of various shapes, such as cylindrical, elliptical, or spherical. A few studies
have been conducted on the shock-accelerated bubbles with polygonal interface shapes that con-
tribute promising conditions for the shock refraction physical phenomena. The interaction of a
planar shock wave with light polygonal interfaces (square, triangle, and diamond) in the slow/fast
configuration was studied experimentally and numerically by Zhai et al. [32]. Luo et al. [33] then
investigated experimentally the shock refraction phenomenon at a fast/slow interface, as well as the
contributions of the initial interface shape on the RM instability by interacting a planar shock wave
with six different heavy polygons (a square, two rectangles, two triangles, and a diamond). Igra
and Igra [34] studied numerically the interaction of a planar shock wave with square and triangular
bubbles containing different gases, inspired by the research works of Zhai and coauthors [32,33].
The interaction of a planar shock wave propagating in air with a polygonal bubble (composed of
two triangles) containing two different gases was then investigated in the work of Igra and Igra [35].
Various simulations based on heavy gas inhomogeneities with some simple geometries (square,
rectangle, circle, and triangle) was performed numerically by Fan et al. [36] to determine the source
of the jet formation. Singh [37] investigated numerically the impacts of the Atwood numbers on the
flow evolution of a shock-accelerated square bubble containing various gases at low Mach number
(Ms = 1.22) and observed that the Atwood number has a significant impact on the flow evolution
with complex wave pattern, vortex creation, vorticity generation, and bubble deformation. Recently,
Singh [38] explored numerically the thermal nonequilibrium effects of diatomic and polyatomic
gases on the flow dynamics of a shock-accelerated square light bubble.

The strength of the incident shock wave is well known as a critical controlling parameter for the
investigation of compressible flows, such as compressible hydrodynamic instability and turbulence
mixing. Therefore, the effects of different Mach numbers (Ms = 1.21, 1.7, and 2.1, which represent
the weak, intermediate, and strong shock cases, respectively) on the evolution of the RM instability
in a shock-accelerated square light bubble are examined numerically in the current study. To the best
of the author’s knowledge, there have been no reports in the literature on the effect of Mach number
on the evolution of the RM instability in a shock-accelerated square light bubble. Utilizing numerical
simulations based on an explicit mixed-type modal discontinuous Galerkin method, the effects of
Mach numbers on the wave patterns, bubble deformation, vortex creation, vorticity generation,
evolution of enstrophy, and dissipation rate, and interface features are discussed. The remainder
of this paper is organized as follows: Section II outlines the computational model including the
problem setup and employed numerical method. Section III presents the grid refinement analysis
and the validation of the numerical method. Section IV discusses in detail the Mach number effect
on the shock-accelerated square light bubble in terms of flow evolution, vorticity generation, and
their quantitative analysis. Section V draws some concluding remarks with further development in
this topic.

II. PROBLEM SETUP AND COMPUTATIONAL MODEL

A. Problem setup

Figure 1 illustrates a schematic diagram of the flow model used to simulate a shock-accelerated
square light bubble surrounded with ambient gas. A rectangular domain of [0, 250] cm × [0, 90] cm
is assumed for the numerical simulation of the shock-accelerated bubble problem, where a moving
incident shock (IS) wave and a square stationary bubble are considered. In the computational
domain, the IS wave with Mach number Ms propagates from left to right, the membranes separating
the two fluids rupture and the RM instabilities are generated on the bubble interface. The initial
position of the shock wave is set to x = 30 cm, from the left-hand side of the computational domain.
The edge length of the square bubble is set to a = 40 cm. The initial pressure and temperature are
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FIG. 1. Schematic diagram of initial flow field and computational domain.

considered as P0 = 101 325 Pa, and T0 = 273 K, respectively, around the square bubble. As helium
gas has been widely adopted as a light gas in previous studies on the RM instability, we also consider
helium gas with a density of ρb = 0.160 × 10−3 g/cm3 inside the square bubble. Nitrogen gas is
considered as an ambient gas with a density of ρg = 1.25 × 10−3 g/cm3.

B. Governing equations

Basically, the compressible multispecies flow model is simulated with a gas mixture to solve
shock-accelerated bubble problems [26,39]. Interestingly, Picone and Boris [22], Samtaney and
Zabusky [40], Quirk and Karni [23], and Bagabir and Drikakis [25] have found that assigning
different specific heat capacities γ to each gas does not affect the qualitative details of the vorticity
generation, particularly the creation of large-scale structures. According to Quirk and Karni [23]
for the problem of a shock-accelerated bubble “...the errors introduced by the single-gas model
assumption are not catastrophic and to some extent may be tolerated.” However, such errors
cannot be tolerated in applications such as air-fuel mixing in a supersonic combustion system,
where temperature changes will substantially affect the mixing. Recently, Latini and Schilling
[41] numerically investigated the growth dynamics of two- and three-dimensional single-mode
reshocked air/SF6 RM instabilities by considering a single specific heat ratio γ . Therefore, the
present shock-accelerated square light bubble problem is setup as an unsteady compressible laminar
flow that assumes a single-component perfect gas with a specific heat ratio of γ .

Two-dimensional compressible Navier-Stokes-Fourier equations equations for the laminar flow
model are considered here, which are written in conservation form as [37,42,43]

∂U
∂t

+ ∂Finv

∂x
+ ∂Ginv

∂y
+ ∂Fvis

∂x
+ ∂Gvis

∂y
= 0, (1)

where

U = [ρ, ρu, ρv, ρE ],

Finv = [
ρu, ρu2 + p, ρuv, (ρE + p)u

]
,

Ginv = [
ρv, ρuv, ρv2 + p, (ρE + p)v

]
,

Fvis = [0,�xx,�xy,�xxu + �xyv + Qx],

Gvis = [0,�xy,�yy,�xyu + �yyv + Qy].
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Here ρ is the mass density and u and v are the velocity components in the x and y directions,
respectively. E is the total energy density and p is the static pressure determined by the ideal gas
law as

p = (γ − 1)
[
ρE − 1

2 (u2 + v2)
]
, (2)

where γ is the specific heat ratio. The value of γ is considered to be 1.4 for nitrogen gas. The
symbols �xx, �xy, and �yy are the components of shear stress vector � defined as follows:

�xx = −μ

[
4

3

∂u

∂x
− 2

3

∂v

∂y

]
,

�xy = −μ

[
∂v

∂x
+ ∂u

∂y

]
,

�yy = −μ

[
4

3

∂v

∂y
− 2

3

∂u

∂x

]
.

The symbols Qx and Qy are the heat fluxes in the x and y directions, respectively, defined as

Qx = −κ
∂T

∂x
, Qy = −κ

∂T

∂y
,

where T is the absolute temperature. In the above expressions, the symbols μ and κ represent the
Chapman-Enskog shear viscosity and the thermal conductivity, respectively. These expressions for
the Chapman-Enskog linear transport coefficients can be employed as [37,42]

μ =
( T

Tref

)s

, κ =
( T

Tref

)s

, (3)

where Tref is the reference temperature. Here the value of Tref is considered as Tref = 273.15 K. The
symbol s stands for the index of the inverse power laws of gas molecules, which is given as

s = 1

2
+ 2

ν − 1
. (4)

Here the parameter ν is the exponent of the inverse power laws for the gas particle interaction
potentials. The value of s is assumed to be 0.78 for nitrogen gas [44].

C. Initialization of the problem

The evolution of the RM instability induced by a shock-interface interaction is very sensitive to
the initial conditions, where the flow fields are dominated due to the baroclinic vorticity deposited
on the interface. The baroclinic vorticity is directly proportional to the gradient of the initial
density profile in the light gas bubble, hence necessitating accurate modeling of initial conditions.
Numerous experimental, theoretical, and numerical studies have focused on the influence of initial
conditions on growth of the RM instabilities. Hahn et al. [45] investigated the growth of RM
instability and turbulent mixing under realistic conditions for the surface perturbations, including
reshocked flow, through an inclined material interface with perturbations with different spectra
but the the same standard deviation. Thornber et al. [46] studied the effects of different three-
dimensional multimode initial conditions on the rate of growth of a mixing layer initiated via
a RM instability. Balasubramanian et al. [47] analyzed experimentally the dependence of initial
condition parameters and the amplitude δ and wave number κ of perturbations on turbulence and
mixing in shock-accelerated RM unstable fluid layers. Recently, Mansoor et al. [48] investigated
numerically the effect of initial conditions on the late-time growth and mixing transition of RM
instability from sinuous perturbations on an air/SF6 interface subjected to a weak planar shock
wave.
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In present study, an ambient condition on the right-hand side of the shock wave is employed
to initialize the computational simulation for shock-accelerated bubble. The primitive variables are
calculated on the left-hand side of the shock wave using the standard Rankine-Hugoniot conditions
[49]. The standard Rankine-Hugoniot conditions for primitive variable calculations are expressed
as

M2
2 = 1 + [ (γ−1)

2

]
M2

s

γ M2
s − (γ−1)

2

,
p2

p1
= 1 + γ M2

s

1 + γ M2
2

,
ρ2

ρ1
=

γ − 1 + (γ + 1) p2

p1

γ + 1 + (γ − 1) p2

p1

. (5)

In the above expressions, Ms denotes the shock Mach number, and the subscripts 1 and 2 denote the
left- and right-hand sides of the shock wave, respectively. In present study, three different incident
shock Mach numbers (Ms = 1.21, 1.7, and 2.1) are selected for numerical simulations. As for the
computational specifications, the left boundary is set to inlet, while the upper, bottom, and right
boundaries are considered as outflow boundaries.

D. Numerical method based on explicit modal discontinuous Galerkin scheme

In order to obtain reliable quantitative predictions about the RM instability, the choice of the
numerical method turns out to be absolutely crucial. Due to the nature of the problem, which
involves the propagation of strong shocks, the so-called Godunov methods, which are based on the
conservative formulation of the equations, should be preferred with respect to any other numerical
method. Moreover, the numerical modeling of complex flow structures and fluid instabilities would
also benefit significantly if high-resolution schemes are adopted. Several high-resolution schemes
can be used in conjunction with finite difference, finite volume, and spectral methods, as well
as with adaptive grid refinement in block-structured and unstructured grid frameworks [50,51].
The performance of several high-resolution schemes in various unsteady, inviscid, compressible
flows were investigated by Bagabir and Drikakis [52]. Mosedale and Drikakis [53] employed
the high-resolution and very high-order methods for implicit large-eddy simulation to simulate
the multispecies two-dimensional single-mode RM instability problems. Later, Latini et al. [54]
performed the weighted essentially nonoscillatory simulations of the two-dimensional reshocked
single-mode RM instability using third-, fifth-, and ninth-order spatial flux reconstruction and
uniform grid resolutions to investigate the dependence of the various physical quantities on the
order and resolution.

Discontinuous Galerkin (DG) approaches have recently gained prominence in fields ranging
from fluid mechanics to acoustics, biological process, and electromagnetics [42,43,55–66]. These
methods are locally conservative, stable, and high-order accurate methods which can easily handle
complex geometries, irregular meshes with hanging nodes, and approximations that have polyno-
mials of different degrees in different elements. In this paper, the two-dimensional compressible
Navier-Stokes-Fourier equations (1) are solved by an in-house developed explicit mixed-type modal
DG solver based on structured meshes [37,38,57,62]. The computational domain is discretized into
rectangular elements, and scaled Legendre polynomial functions are employed for the elements. The
Gauss-Legendre quadrature rule is implemented for both the volume and the boundary integrations,
and the Roe flux [67] is applied for the inviscid term. The local DG scheme [55] is employed for
the auxiliary and viscous fluxes at the elemental interfaces. A polynomial expansion of third-order
accuracy is used to approximate the solutions in the finite element space, and an explicit third-order
accurate strong stability preserving Runge-Kutta scheme is used for the time integration. The
nonlinear total variation bounded limiter proposed by Cockburn and Shu [56] is used to eliminate
spurious numerical fluctuations in the solutions.

III. GRID REFINEMENT AND VALIDATION STUDY

The most fascinating phenomenon is the visualization of flow evolution during the interac-
tion process in the shock-accelerated interface problems. To visualize the computational results,
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FIG. 2. Grid refinement study in a shock-accelerated square helium bubble surrounded by nitrogen gas:
Density distribution profiles for different mesh sizes.

numerical Schlieren images based on the magnitude of the gradient of the density field, which is
defined as [68,69]

Si, j = exp

[
−k(φi, j )

|∇ρi, j |
maxi, j |∇ρi, j |

]
, (6)

where

k(φi, j ) =
{

20 if φi, j > 0.25,

100 if φi, j < 0.25.

For the numerical simulation, the computational time is considered as the nondimensionalized to
produce a dimensionless timescale (τ ) defined as

τ = t
c Ms

a
, (7)

where t is the real computational time, c is the local sound speed, Ms is the Mach number of incident
shock wave, and a is the edge length of the square.

A. Grid refinement analysis

A grid sensitive analysis is performed by computing one test case on a shock-accelerated square
helium bubble surrounded by nitrogen gas at Ms = 1.21 to accurately capture the complex structure
of the flow field and the evolution process of the interface. For this purpose, six uniform rectangular
meshes are considered. The labels “Mesh 1”−“Mesh 6” correspond to mesh points 200 × 100,
400 × 200, 600 × 300, 800 × 400, 1000 × 500, and 1200 × 600, respectively. When an incident
shock wave hits the square bubble surface, the volume of the bubble is evidently compressed, and
the bubble inside generated shock waves form an divergent shape. Figure 2 depicts the profiles
of the density distribution extracted with the centerline of the computed bubble at time t = 3 to
demonstrate the grid sensitivity. The results show that the Mesh 6 is very close to a asymptotic
range. Based on this analysis, all subsequent computations are carried out using Mesh 6.
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TABLE I. Error estimation.

Allowable Grid Time Number of Accumulated Allowable number Reliability
error (%) resolution simulated time steps error of time steps (Rs = nmax/n)

5 200 × 100 4 83 9.32 × 10−4 2878 35
5 400 × 200 4 179 3.45 × 10−5 2.10 × 106 1.17 × 104

5 600 × 300 4 275 1.91 × 10−5 6.85 × 106 2.49 × 104

5 800 × 400 4 371 1.21 × 10−5 1.71 × 107 4.61 × 104

5 1000 × 500 4 466 9.05 × 10−6 3.05 × 107 6.55 × 104

5 1200 × 600 4 561 6.93 × 10−6 5.21 × 107 9.29 × 104

B. Error estimation

It is critical to determine the precision and accumulation of errors while doing large-scale
simulations of complex combustion gas dynamics in unsteady-state flows. The error generally
depends on accuracy of numerical scheme and grid resolution and on the number of time steps.
For such problems, a numerical method to estimate the error accumulation and simulation precision
was proposed by Smirnov et al. [70,71].

In the one-dimensional case S1, the relative error of integration is proportional to the mean ratio
of the cell size �L to the domain size L1 in the direction of integration in the power and depends on
the accuracy of the scheme:

S1 ≡
(

�L

L1

)k+1

. (8)

For a uniform grid, S1 ≡ (1/N1)k+1, where N1 is the number of cells in the direction of integration
and k is the order of accuracy of the numerical scheme. The errors provided by Eq. (8) in two
directions are being summed:

Serr ≡
2∑

i=1

Si. (9)

The allowable value of the total error Smax is typically 1–5%, because the initial and boundary
conditions are usually not known with a higher degree of accuracy. As a result, the following
inequality should be satisfied:

Serr
√

n � Smax, (10)

where n is the number of time steps. The maximal allowable number of time steps can then be
determined by the following formula:

nmax =
(Smax

Serr

)2

(11)

and the reliability of results can be defined as

Rs = nmax

n
. (12)

Table I predicts the accumulation of errors for the present DG scheme with different grid
resolutions. The allowable error is considered to be 5%, and the final simulation time is set to 4.
As can be seen, the errors accumulate rapidly for the coarse grid and decrease as the grid resolution
increases. The reliability of the results increases with a higher grid resolution and scheme accuracy.
For the present simulations, all results demonstrate that the computational model is highly reliable,
but this may not be the case for longer simulation periods.
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FIG. 3. Validation of the numerical solver: (a) Comparison of Schlieren images between the experimental
results [reproduced with permission from Zhai et al., On the interaction of a planar shock with a light polygonal
interface, J. Fluid Mech. 757, 800 (2014). Copyright 2014 Cambridge University Press] [32] and the present
numerical results at different time instants and (b) the evolving interfaces between the experimental results and
the present numerical results for a N2 square bubble surrounded by SF6 gas. The definitions of the interfacial
characteristic scales are inserted.

C. Validation of the numerical solver

A detailed validation study of the present numerical scheme for shock wave interaction with
cylindrical and square bubbles was presented by Singh and coauthors [30,31,37], where good
agreement was obtained for shock wave structures, positions, and bubble deformations. In the
current study, the numerical results are validated with the experimental study of Zhai et al. [32]
for checking the validity of the present computational model and the in-house developed explicit
modal DG code. In this validation case, the gas square bubble is filled with nitrogen gas, while the
ambient zone is composed of SF6 gas. The benchmark simulation is computed on a weak planar
shock wave of Mach number Ms = 1.28. Figure 3(a) shows a comparison of the Schlieren images
between the experimental results of Zhai et al. [32] and the present numerical results at different
times instants. These numerical simulations share the same initial condition, resolution, wave
pattern, and diffusion layer thickness. The present Schlieren images, including the vortex structures
resembling one another, are in excellent agreement with the experimental results. Furthermore, the
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FIG. 4. Validation of the numerical solver: Comparison of (a) numerical Schlieren images between the
experimental results [reproduced with permission from Haas and Sturtevant, Interaction of weak shock waves
with cylindrical and spherical gas inhomogeneities, J. Fluid Mech. 181, 41 (1987). Copyright 1987 Cambridge
University Press] [13], and the present numerical results at different time instants, and (b) the computed
characteristic interface points (UI, DI, and jet) between the experimental results and the present numerical
results for a shock-accelerated R22 cylindrical bubble surrounded by air. The definitions of the characteristic
interface points are inserted.

time variations of the interfacial characteristic scales, i.e., the length, and the height of the evolving
interface for the N2 square bubble are also illustrated in Fig. 3(b). It can be seen from the plot that
the present results, including the general trend of the interfacial characteristic scales changing with
time, are found very close to the experimental results of Zhai et al. [32].

Further, the current computational model is also validated through a comparison with the
experimental results of Haas and Sturtevant [13], in which the cylindrical gas bubble was filled with
refrigerant-22 (R22) and the ambient zone was composed of air. The aforementioned experimental
and computational studies also had a weak shock with Ms = 1.22. Figure 4(a) compares the
Schlieren images between the experimental results [13] and the present numerical results at different
times. As seen from Fig. 4(a), the Schlieren images are in good agreement across all experimental
results. Furthermore, Fig. 4(b) shows the space-time diagram for the characteristic interface points
[i.e., upstream interface (UI), downstream interface (DI), and inward-jet head (jet)]. The numerical
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TABLE II. Validation of the numerical solver: Comparison of velocities of characteristic interface points
between experimental data and the present numerical data. VDI, velocity of downstream interface; VUI, velocity
of upstream interface; Vjet , velocity of inward-jet head.

Velocity VDI (m/s) VUI (m/s) Vjet (m/s)

Present 148 175 228
Experimental 145 170 230
Error (%) −2.07 −2.86 0.87

results are in good agreement with the experimental results [13]. The positions and speeds of the
various shock waves and the interfaces are accurately simulated by the computational model.

In Table II, the velocities of these characteristic interface points (VDI, VUI, and Vjet), together with
the time intervals involved in their computation, are presented alongside those obtained by Haas and
Sturtevant [13]. These velocities are estimated during the propagation inside the bubble and taken
along the x direction of the centerline of the domain. The discrepancy between the experimental,
computational, and simulated velocities can be seen in Fig. 4(b), where the characteristic interface
points do not exactly coincide. These discrepancies could be caused by the current numerical model
ignoring the mass fraction term.

IV. RESULTS AND DISCUSSION: EFFECT OF MACH NUMBER ON SHOCK-ACCELERATED
SQUARE LIGHT BUBBLE

In this section, the effects of Mach numbers on the flow dynamics of the shock-accelerated
square light bubble are investigated. The impacts of an initial interface perturbation on the flow
morphology, wave patterns, vorticity distribution, interface movements, and qualitative analysis are
emphasized. To investigate the Mach numbers effect on the shock-accelerated square light bubble,
three different Mach numbers (Ms = 1.21, 1.7, and 2.1) are selected for the numerical simulations.
Helium is used as the bubble gas; this has been widely adopted as the light gas in studies of the RM
instability.

A. Visualization of flow fields

Figure 5 shows an overall visualization of the flow evolution in the shock-accelerated square
helium bubble with Ms = 1.21 at different times instants. In this figure, a sequence of the numerical
Schlieren images of the square bubble accelerated by a planar IS wave is illustrated. Before
interacting with the IS wave, the initial state of the bubble interface can be clearly observed (τ = 0).
When the IS wave travels along the upper and lower boundaries, the bubble starts to compress.
Also, a transmitted shock (TS1) wave propagating downstream inside the bubble is generated,
while, a reflected shock wave travels upstream simultaneously (τ = 2). The propagation speed
of the IS wave inside the bubble is smaller than that in the surrounding gas due to the small
acoustic impedance. Therefore, the generated TS1 wave inside the bubble travels faster behind
the IS wave. The TS1 wave is itself refracted at the bubble interface and transmits a new oblique
shock wave so-called free precursor shock (FPS) in the ambient gas. The FPS and IS waves are
then joined together and mutually modified producing a triple point (TP), a Mach stem (MS), and
a shock outside the bubble. As the interaction develops, two small vortices are observed at the
left corners of the square interface due to the vorticity deposition (τ = 2.5). As the TS1 wave
inside the bubble encounters the downstream interface, a secondary transmitted shock (TS2) wave
traveling downward is produced and seen ahead of the original IS wave (τ = 3). Subsequently, a
reflected transmitted shock (RTS) wave inside the square helium bubble is produced at the upstream
surface and is moving now in the opposite direction, toward the bubbles front. A new shock wave
called reflected free precursor shock (RFPS) is also generated and connected between the RTS wave
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FIG. 5. Overall visualization of the flow evolution in the shock-accelerated square helium bubble at Ms =
1.21: evolution of numerical Schlieren images at different times instants.

from the bubble rear surface and the FPS wave. This RFPS wave propagates toward the bubble
frontal surface. A diffracted shock wave (DS) is also produced, moving along the rightmost surface
(τ = 3.5–6). Once the RTS wave within the bubble reaches the bubble front, it transmits into the
surrounding gas in front of the bubble. The impact of the incident shock wave on the interface
evolution is decreased as time goes on and the vortex pair (VR) at the corners gradually grows,
caused by the produced vorticity (τ = 8–10). Then the evolving bubble interface starts to transform
into a mushroom shape, and a re-entrant gas jet head is subsequently generated near the center of
the bubble (τ = 15). As time proceeds, the jet catches up with the downstream bubble interface, and
then a pair of VR connected with a bridge emerge and grow almost symmetrically (τ = 15–20). At
later times, the vortex pairs dominate the flow field entirely (τ = 20).
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FIG. 6. Effect of Mach number on the shock-accelerated square helium bubble: Contours of density
distribution for (a) Ms = 1.21, (b) Ms = 1.7, and (c) Ms = 2.1 at different times instants.

Figure 6 illustrates the effects of three different Mach numbers (Ms = 1.21, 1.7, 2.1) on the
time-dependent flow morphology of the shock-accelerated square helium bubble through density
contours. For the three cases, due to the small acoustic impedance in the helium bubble, the TS1
wave inside the bubble moves faster than the outside IS wave. Similarly to Ms = 1.21, at higher
Mach numbers, an irregular reflection process, including FPS wave, TP, and MS are formed at early
stages. After hitting the downstream interface by TS1 wave, the RTS, RFPS, DS, and TS2 waves are
also generated in all three cases. Subsequently, a re-entrant gas jet head is found in the centerline
near the right interface of the bubble. It can be observed that the high shock Mach number causes
a stronger interaction between the shock and bubble. The height of generated jet increases with
the increasing the strength of the incident shock wave due to the larger expansion of the bubble
interface upwards, as seen in Figs. 6(b) and 6(c). Furthermore, as the Mach number increases, the
bubble deforms significantly. As a result, the generated wave patterns become more complex, and
the size of the bubbles decreases noticeably. The re-entrant jet structure at Ms = 2.1 is observed as

104001-13



SATYVIR SINGH

FIG. 7. Effect of Mach number on the shock-accelerated square helium bubble: Evolution of the bubble
shape showing early compression for (a) Ms = 1.21, (b) Ms = 1.7, and (c) Ms = 2.1.

the longest among three Mach numbers. Additionally, the size and strength of the rolled-up vortices
increase significantly at high Mach numbers, and these vortices are conspicuous at the interface
between the bubble and surrounding gas due to the baroclinic vorticity deposition.

Further, the evolution of the bubble shape during the interaction with the IS wave, shown in
Fig. 7, illustrates the effect of Mach number on the shock-accelerated square helium bubble. The
bubble appears to be compressed by the IS wave along the x direction, and its top and bottom edges
have been pushed forward near the horizontal axis of symmetry as compared to its middle section.
This compression begins as soon as the IS wave reaches the upstream end of the bubble at the start
of the interaction. The bubble appears to be compressed by the IS wave along the x direction, and,
compared with its middle section, the top and bottom edges have been pushed forward near the
horizontal axis of symmetry. At the beginning of the interaction, this compression starts as soon as
the IS wave hits the upstream end of the bubble. For all three cases, both upstream and downstream
interfaces travel fast, and the upstream side presses inward under the influence of the IS wave at
the early instants, as shown in Figs. 7(a)–7(c). After the interaction, a pair of small vortices are
generated at the left corners of the square interface due to the vorticity deposition. The size of these
two vortices continuously grows over time. Besides it, the upper and lower horizontal interfaces of
the bubble fold inward toward the upstream axis, and the bubble deforms into a divergent shape.
Some small-scale rolled-up vortices are also generated on the upper and lower interfaces due to
baroclinic vorticity generation. In the case of Ms = 1.21, the size of these rolled-up vortices on the
bubble interface is smaller in comparison to higher Mach numbers. It may be observed that as time
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goes, the vortex pair at the corners gradually grows. At later stages, the flow field is completely
controlled by the vortex pairs.

B. Dynamics of vorticity production

Vorticity production is an important mechanism in transport phenomena like turbulent mixing
and noise generation. In shock-bubble interaction, the vorticity is generated in the flow fields and
distributed initially on the bubble interface due to the misalignment of the pressure and density
gradients when the IS wave passes. The vorticity transport equation explains the fundamental
physics that occurred during an interaction process. Recently, a completely new viscous compress-
ible vorticity transport equation, which includes several physically distinctive quantities has been
derived by Myong [31]. This equation can be rewritten without bulk viscosity (i.e., fb = 0) as

Dω

Dτ
= (ω · ∇)u︸ ︷︷ ︸

Pω,str

−ω(∇ · u)︸ ︷︷ ︸
Pω,dil

+ 1

ρ2
(∇ρ × ∇p)︸ ︷︷ ︸

Pω,bar

+ μ

ρ

[
∇2ω − 1

ρ
(∇ρ × ∇2u) − 1

3
∇ρ × ∇(∇ · u)

]
︸ ︷︷ ︸

Pω,vis

,

(13)
where u is the velocity, ω = ∇ × u is the vorticity, ρ is the density, p is the pressure, and μ is
the shear viscosity. On the right-hand side of Eq. (13), the term (ω · ∇)u represents the stretching
or tilting of vorticity due to the flow velocity gradients, which is critical for three-dimensional
turbulence and mixing. The term ω(∇ · u) expresses the stretching of vorticity due to flow com-
pressibility. The term (1/ρ2)(∇ρ × ∇p) denotes the baroclinic vorticity production term, which is
responsible for the generation of small-scale rolled-up vortices at the bubble interface. Moreover,
this term is most prominent at the top and bottom ends of a vertical bubble due to the extreme
misalignment of the density and pressure gradients. The term (μ/ρ)∇2ω represents the rate of
change of ω due to molecular diffusion of vorticity. The term (μ/ρ2)(∇ρ × ∇2u) represents the
vorticity generated by the combination of density and velocity diffusion gradients. Finally, the last
term (μ/ρ2)[∇ρ × ∇(∇ · u)]/3 represents the vorticity generated by the combination of density
and viscous normal stress gradients, which resemble the baroclinic vorticity production generated
by the combination of density and pressure gradients.

The deposition of baroclinic vorticity on the bubble interface is well recognized as a key factor
causing the initial disturbance to grow. Now we insight how the baroclinic vorticity term affects the
IS and TS1 waves as they pass through the stationary bubble interface early in their evolution. In
the shock-accelerated bubble, the dominant pressure gradient occurs in the plane IS wave, while the
dominant density gradient can be found at the bubble interface. When the plane IS wave passes over
the bubble, it does not deform the bubble significantly. At the leftmost vertical interface, where the
pressure and density gradients are perfectly aligned, a small quantity of vorticity is generated at the
corners (top and bottom) when the IS wave touches them. A schematic diagram of the vorticity
generation on the square bubble interface after the initial IS wave transits across the light gas
bubble is illustrated in Fig. 8. As the incident shock propagates along with the horizontal upper
interface, Mach reflection occurs, in which the MS connects the IS wave with the square interface.
Therefore, the MS contributes the pressure gradient for the vorticity generation on the interface,
and the baroclinic vorticity term is thus triggered gradually as the IS wave travels upwards over the
square interfaces.

Figure 9 illustrates the effect of Mach number on the vorticity distribution of the shock-
accelerated square helium bubble at different times instants. Initially, the vorticity is equal to zero
everywhere. When the IS wave passes across the bubble, the baroclinic vorticity is mainly deposited
locally on the bubble interface in the early stage, where the discontinuity between helium gas and
the ambient gas exists. At the top and bottom locations of the bubble where the density and pressure
gradients are orthogonal, the magnitude of the vorticity is maximum and it is zero at the interface
along the axis of the bubble where the density and pressure gradients are collinear. A significant
quantity of positive vorticity is generated on the upper horizontal side of the bubble interface, while
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FIG. 8. Schematic diagram of the vorticity generation on the interface of the square light bubble during
and after the initial shock wave transits.

a significant quantity of negative vorticity is generated on the lower horizontal side of the bubble,
as shown in Figs. 9(a)–9(c). This is because of the IS wave propagating from left to right along
with the bubble interface. As a result, the density gradient is everywhere radially outwards at the
bubble interface and the pressure gradient is across the upstream IS wave. Furthermore, the vortical
structure in the upper interface is observed with positive vorticity in the center, surrounded by tails of
negative vorticity, while opposite situations are noticed in the bottom interface of the square bubble.
One can observe that there are significant differences in vorticity distribution for the different Mach
numbers after the interaction. For Ms = 1.21, a small quantity of vorticity is generated around the
rolled-up vortices on the bubble interface, as shown in Fig. 9(a). These rolled-up vortices are more
pronounced for high Mach numbers, as seen in Figs. 9(b) and 9(c). In summary, the generation and
distribution of vorticity play a dominant role at high Mach numbers when rolled-up vortices are
formed.

Figure 10 illustrates the effect of Mach number on different expressions appearing in the right-
hand side of Eq. (13) at different time intervals. The results show that the all vorticity production
terms obtain significant values during the interaction and diminish shortly after passing the shock
wave. The dilatational vorticity production (Pω,dil ) contour plot [Fig. 10(a)] shows the presence of
locally stretched structures around the vortex core due to compressibility effects originating from
local regions of compression and expansion. The baroclinic vorticity production (Pω,bar ) contour
plot [Fig. 10(b)] captures the misalignment of pressure and density gradients, which, in turn, shows
the vorticity generated due to the presence of contact discontinuity, and reflected shock structures.
The viscous vorticity production (Pω,vis) contour plot [Fig. 10(c)] depicts the diffusion of vorticity
due to the viscous effects. As one can see, the viscous vorticity production term (Pω,vis) has the
most dominant mechanism, followed by baroclinic vorticity and dilatational vorticity production
terms in the interaction for strong shock waves. Moreover, the existence of evolving large scale
vortices which interact with the different shock patterns present in the flow and finally split into
small-scale vortices. It can be seen from Figs. 10(a)–10(c) that the bubble deformation is poor
at the relatively low Mach number. As a result, for low Mach number (Ms = 1.21), all vorticity
production terms have small magnitude quantities, which occurs mostly at the generated rolled-up
vortices on the bubble interface. The bubble distortion occurs faster as the shock Mach number
increases (Ms = 1.70, and 2.10), and the all vorticity production terms become more prominent
due to the increase in pressure gradient. Interestingly, one can observe that the dilatation vorticity
production term exhibits more at Ms = 2.10 due to relatively higher compressibility of the flow.

The vorticity at the bubble interface is critical for gas mixing inside and outside the bubble.
Therefore, four important spatially integrated fields are investigated in detail to obtain a better
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FIG. 9. Effect of Mach number on the shock-accelerated square helium bubble: Contours of vorticity
distribution for (a) Ms = 1.21, (b) Ms = 1.70, and (c) Ms = 2.10 at different times instants.

understanding for Mach number effects on the physics of vorticity production: (i) average vorticity
(ωav), (ii) dilatational vorticity production (Pω,dil ), (iii) baroclinic vorticity production (Pω,bar ), and
(iv) viscous vorticity production (Pω,vis). The spatially integrated field of average vorticity is defined
as

ωav(τ ) =
∫

D |ω|dxdy∫
D dxdy

, (14)

where D represents the entire computational domain. The spatially integrated field of dilatational
vorticity production term is computed as follows:

Pω,dil(τ ) = −
∫

D |ω(∇ · u)|dxdy∫
D dxdy

. (15)

The spatially integrated field of baroclinic vorticity production is given by

Pω,bar (τ ) =
∫

D

∣∣ 1
ρ2 (∇ρ × ∇p)

∣∣dxdy∫
D dxdy

. (16)
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FIG. 10. Effect of Mach number on the shock-accelerated square helium bubble: Contours of (a) di-
latational vorticity production (Pω,dil ), (b) baroclinic vorticity production (Pω,bar ), and (c) viscous vorticity
production (Pω,vis ) terms.

Finally, the spatially integrated field of viscous vorticity production is defined as

Pω,vis(τ ) =
∫

D

∣∣μ

ρ
∇2ω − μ

ρ2 (∇ρ × ∇2u) − 1
3

μ

ρ2 ∇ρ × ∇(∇ · u)
∣∣dxdy∫

D dxdy
. (17)

Figure 11 illustrates the effect of Mach number on the spatially integrated fields of average
vorticity, absolute dilatational vorticity, absolute baroclinic vorticity, and absolute viscous vorticity
in the shock-accelerated square helium bubble. It can be observed from Fig. 11, these spatially
integrated fields in case of Ms = 1.21 is the smallest among the three cases when the incident
and reflected shock waves collide with the bubble. The spatially integrated fields are substantially
enhanced in the case of Ms = 2.1. For all three Mach numbers, the spatially integrated fields increase
with time, which implies that the ambient gas is increasingly entrained into the distorted square
helium bubble. The vortices produced by the shock wave-bubble interaction encourage the mixing
of ambient gas with the square helium bubble. When the reflected shock waves impinge on the
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FIG. 11. Effect of Mach number on the shock-accelerated square helium bubble: Spatially integrated fields
of (a) average vorticity (ωav ), (b) dilatational vorticity production (Pω,dil ), (c) baroclinic vorticity production
(Pω,bar ), and (d) viscous vorticity production (Pω,vis ).

distorted helium bubble again, the spatially integrated fields exhibit their greatest growth rate, which
indicates that the vorticities are significantly enhanced during this period, as shown in Fig. 11. The
growth rate then slows under the influence of the higher viscosity in the flow field. As a result,
the evolution of the spatially integrated fields for vorticity and its associated components does not
exhibit a simple monotonic relationship with the ambient gas.

C. Evolution of kinetic energy, dissipation, and enstrophy

The kinetic energy, dissipation rate and enstrophy are three fundamental fields in the shock-
accelerated interface problems. These fields are addressed here to better understand the effects of
Mach numbers on the interaction process. The time evolution of the kinetic energy (KE) can be
defined as the spatial integral of the square of the velocity in the flow field:

KE(τ ) = 1

2

∫
D

u2dxdy. (18)

The time evolution of the kinetic energy dissipation rate is defined as

ε(τ ) = −
∫

D
(�xxSxx + �xySxy + �yxSyx + �yySyy)dxdy, (19)
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FIG. 12. Effect of Mach number on the shock-accelerated square helium bubble: Contour of (a) KE,
(b) dissipation rate (ε), and (c) enstrophy (�) at time τ = 10.

where �ii is the viscous shear stress and Si j is the strain rate, defined as Si j = 1
2 (∂ui/∂x j + ∂u j/∂xi ).

Finally, the time evolution of enstrophy is evaluated as

�(τ ) = 1

2

∫
D

ω2dxdy. (20)

Figure 12 outlines the effects of Mach numbers on the contours of kinetic energy, dissipation
rate and enstrophy in the shock-accelerated square helium bubble at a time instant τ = 10. After the
interaction, there are considerable differences in the kinetic energy, dissipation rate, and enstrophy
at various Mach numbers. A significant amount of the kinetic energy, dissipation rate, and enstrophy
can be observed inside the rolled-up vortices of the deformed bubble interface. At high Mach
numbers, the flow fields of these quantities are substantially enhanced compared to low Mach
number. To further investigate the Mach number effects, the spatially integrated fields of the kinetic
energy, dissipation rate and enstrophy over time are illustrated in Fig. 13. The evolution of the
kinetic energy is plotted in Fig. 13(a), which is different and dependent on shock Mach number.
It is obvious that the kinetic energy is highly raised with the increasing the shock Mach numbers.
Further, the evolution of enstrophy over time is shown in Fig. 13(b). The enstrophy is zero until
the shock wave reaches the upstream pole of the bubble. Baroclinic vorticity production leads to an
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FIG. 13. Effect of Mach number on the shock-accelerated square helium bubble: Time evolution of (a) KE,
(b) enstrophy (�), and (c) dissipation rate (ε) during interaction process.

increase during the shock wave passage. A first local maximum in enstrophy is reached after the
shock has passed half of the bubble, an effect that can be observed for all simulations. Thereafter, a
slight decay is visible, followed by another increase due to shock transmission and shock reflections
at the interface. Subsequently, the enhanced vorticity promotes the mixing of gases inside and
outside the gas bubble, and thus accelerates the transfer and consumption of vorticity energy, which
gradually weakens the enstrophy intensity in the bubble region, as shown in Fig. 13(b). The same
phenomena is observed in all shock Mach numbers. Only overall enstrophy levels differ as stronger
shock waves generate more enstrophy. This similar physcis can also be seen in the time evolution
of the dissipation rate, as shown in Fig. 13(c). At low Mach number, the dissipation rate remains
relatively constant over time during the entire weak interaction process, whereas the dissipation
rate at high Mach numbers experiences a substantial increase during the strong interaction process.
Furthermore, during the interaction process, a nonmonotonic pattern in enstrophy and dissipation
rate emerges.

In homogeneous flows, the kinetic energy dissipation rate (ε) is directly proportional to the
enstrophy (�) i.e., ε ≈ ν�, where ν = μ/ρ is the kinematic viscosity [72]. Generally, the flow
fields are typically inhomogeneous in shock-accelerated interface problems. In such problems, in-
homogeneous flows may be expected to differ intrinsically from homogeneous flows. To verify this
phenomena for present problem, the time evolution of ν� quantity at three different Mach numbers
is plotted in Fig. 14 during interaction process. The numerical results show that the dissipation rate
(ε) is approximately proportional to the kinematic viscosity (ν) times the enstrophy (�) except
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FIG. 14. Effect of Mach number on the shock-accelerated square helium bubble: Spatially integrated fields
of ν� quantity during interaction process.

at early times of interaction. However, the discrepancy in the magnitude of ν� quantity widens
substantially as the strength of the shock wave increases, indicating that the flow configuration at
higher Mach numbers may behave like inhomogeneous flow during the interaction between the IS
wave and the bubble.

D. Shock trajectories and interface features

Finally, a quantitative analysis based on the physical phenomena of the shock trajectories, and
the interface features are presented here to investigate the effect of Mach number on the shock-
accelerated square helium bubble. Figure 15(a) shows a schematic diagram of the shock trajectory
points (incident shock, upstream interface, and downstream interface) on the square bubble at the
middle stage of the interaction process. Figures 15(c) and 15(d) illustrate the effect of Mach number
on the shock trajectory points indicated in Fig. 15(a). It can be observed from the figure that the
fastest displacement of these shock trajectory points occurs at high Mach number Ms = 2.1, while
the slowest displacement is found at low Mach number Ms = 1.21.

Figure 16 illustrates the effect of Mach number on the temporal variations of the interfacial
characteristic scales (i.e., the length and height of the evolving interface) for the computed square
helium bubble. The length and height of the evolving interface are defined in the figure. Early shock
compression rapidly reduces the length of the evolving interface after the incident shock arrives for
all Mach numbers, as shown in Fig. 16(a). The interface lengths at Mach number Ms = 1.21, 1.7,
and 2.1 reach a minimum value at around τ = 3, 4, and 10, respectively. As indicated in Fig. 16(a),
the upstream interface becomes flattered at this moment. Later, after the compression phase, the
variation of length with time is found almost constant at Ms = 1.21, while these variations of length
with time tends to increase at higher Mach numbers Ms = 1.7, and 2.1 due to the enhanced rolled-
up vortices, as seen in Fig. 6. Interestingly, the interface height increases constantly due to the
continuous rotation of the vortex pair until the reflected shock waves strike the interface and reduce
the interface height growth rate. Figure 16(b) shows that higher Mach number (Ms = 2.1) gives the
maximum interface height, while lower Mach number (Ms = 1.21) produces the minimum interface
height.
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FIG. 15. Effect of Mach number on the shock-accelerated square helium bubble: (a) schematic diagram
with the shock trajectory points, (b) incident shock wave based trajectories, (b) upstream interface based
trajectories, and (c) downstream interface based trajectories.

FIG. 16. Effect of Mach number on the shock-accelerated square helium bubble: Temporal variations of
the interfacial characteristic scales [(a) the length and (b) the height] of the evolving interface for the computed
bubble. The definitions of the length and the height of the evolving interface are inserted.
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V. CONCLUDING REMARKS

The RM instability has long been a fascinating subject due to its fundamental significance
in scientific research, as well as its crucial role in engineering applications. In this work, the
contribution of different incident shock Mach numbers (Ms = 1.21, 1.7, and 2.1) on the evolution
of the RM instability in a shock-accelerated square light bubble is investigated numerically. A
two-dimensional system of unsteady compressible Navier-Stokes-Fourier equations are solved by
using an explicit mixed-type modal discontinuous Galerkin method with uniform meshes. The
numerical results are compared to available experimental results for the validation study and are
found to be in good agreement.

The numerical results reveal that the shock Mach numbers play a significant role in describing the
RM instability during the interaction between a planar shock wave and a light bubble. The effects of
Mach numbers result in a substantial change in the flow morphology with complex wave patterns,
vortex creation, vorticity generation, and bubble deformation. In contrast to low Mach numbers, high
Mach numbers produce larger rolled-up vortex chains, larger inward jet formation, and a stronger
mixing zone with larger expansion. At high Mach numbers, the bubble deforms differently, and the
reflected shock wave promotes a more complicated deformation of the bubble. Additionally, larger
distortions of the bubble occur at the early time instants for higher Mach numbers.

A detailed study of the Mach numbers effects are investigated through vorticity generation and
evolutions of enstrophy as well as dissipation rate. It is interesting to observe that vorticity plays
a significant role to describe essential features in the study of the shock-accelerated bubble. It is
found that the vorticity in the bubble region is enhanced with the increment of shock Mach number,
especially for the period of the incident and reflected shock waves impinging on the bubbles. The
results reveal that the viscous production term has the most dominant mechanism, followed by
baroclinic vorticity and dilatational vorticity production terms in the interaction for strong shock
waves. In addition, a significant increment in kinetic energy, dissipation rate, and enstrophy is also
found with increasing the shock Mach numbers. Finally, the time variations of the shock trajectories
and interface features are investigated.

This study focuses on the contribution of Mach number on the evolution of the RM instability
in a shock-accelerated square light bubble. It is also expected that the effect of Mach number will
significantly affect the development of the RM instability in shock-accelerated heavy gas polygonal
bubbles with different interface shapes. In this context, the present work will be extended in the
future to report the results of our investigation into these problems.
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