
PHYSICAL REVIEW FLUIDS 6, 103902 (2021)
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We study the primary bifurcations of a two-dimensional Kolmogorov flow in a channel
subject to boundary conditions chosen to mimic a parallel flow, i.e., periodic and free-slip
boundary conditions in the streamwise and spanwise directions, respectively. The control
parameter is the Reynolds number based on the friction coefficient, denoted as Rh. We find
that as we increase Rh the laminar steady flow can display different types of bifurcation
depending on the forcing wave number of the base flow. This is in contrast with the case of
doubly periodic boundary conditions for which the primary bifurcation is stationary. In the
present case, both stationary and Hopf bifurcations are observed. In addition, we discover
a type of bifurcation with both the oscillation frequency and the amplitude of the growing
mode being zero at the threshold, that we call a stationary drift bifurcation. A reduced
four-mode model captures the scalings that are obtained from the numerical simulations.
As we increase Rh further we observe a secondary instability which excites the largest
mode in the domain. The saturated amplitude of the largest mode is found to scale as a 3/2
power law of the distance to the threshold which is also explained using a low-dimensional
model.

DOI: 10.1103/PhysRevFluids.6.103902

I. INTRODUCTION

The two-dimensional flow in a doubly periodic domain driven by a sine wave body forcing was
first introduced in 1959 by Kolmogorov [1] as a mathematically tractable problem to study flow
stability. It has been shown that this flow is unstable above a critical Reynolds number of order
one in the limit of an unbounded flow domain [2]. The instability occurs at vanishing wave number
which has been used to perform a weakly nonlinear analysis showing that a large-scale flow is
generated through a stationary bifurcation [3–5].

Experiments on Kolmogorov flows were first carried out using thin layers of electrolytes [6] or
liquid metals [7] with spatially periodic driving by the Lorentz force and more recently in soap
films with hydrodynamic driving [8]. It was realized that in all realistic configurations, a linear
friction force should be added to the two-dimensional Navier-Stokes equation in order to model the
experimental results. In the case of a one-dimensional spatial forcing, this friction term inhibits the
large-scale flow such that the first instability occurs at finite wave number.

Another important aspect concerns the effect of boundary conditions. Mixed boundary conditions
have been used in order to mimic experimental configurations. Periodic boundary conditions have
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been kept in the streamwise direction whereas stress-free boundary conditions have been used in the
spanwise direction. This lateral confinement of the base flow suppresses the instability at vanishing
wave number even in the absence of linear friction [9,10]. The instability comes in at finite wave
number although the wave number decreases when the confinement length L is increased [10].
The first instability threshold decreases to the value of the unbounded flow in the L � 1 limit.
More surprisingly, the nature of the primary bifurcation depends on the confinement. It has been
first experimentally observed that in the case of strong confinement, when only half wave length
of the base flow fits in the channel (N = 1), the first instability is oscillatory [11], whereas it is
stationary for N = 6 [6]. It has been observed later that the nature of the bifurcation depends on
the parity of N [12]. Traveling waves are generated when N is odd, whereas a stationary regime
is observed when N is even except for N = 4 for which an oscillatory regime is found. Linear
stability analysis confirmed that the value of N affects the nature of the bifurcation. A Hopf
bifurcation occurs for N = 2, whereas it is stationary for N = 4 and N = 6 [9]. This is not in
agreement with the experiments, but we note that the lateral boundary conditions are different.
The nature of the bifurcation with respect to the flow confinement has been carefully analyzed
[13–15], but no simple argument has been put forward. Note that the definition of N in [9] is
based on the number of the wavelengths instead of the number of half wavelengths as defined
here.

In this study we show that even though the growth rate of the first instability is real for N = 4,
the bifurcation is not, strictly speaking, a stationary one because a limit cycle is generated above
threshold. However, its frequency vanishes at the instability onset. This process does not belong to
one of the generic bifurcation scenarios that generate a limit cycle. A supercritical Hopf bifurcation
occurs at vanishing amplitude but finite frequency. In contrast, a limit cycle can be generated
with finite amplitude and infinite period when two fixed points on an invariant cycle undergo a
saddle-node bifurcation and disappear or when a limit cycle collides with a saddle point leading
to a homoclinic bifurcation [16]. In our case, both the amplitude and the frequency of the limit
cycle vanish at threshold. We understand this behavior using a reduced set of interacting triads in
Sec. IV.

As recalled above, in the case of a one-dimensional forcing, fluid friction as well as lateral
confinement of the flow prevent the generation of a large-scale flow at the primary instabil-
ity threshold. However, in two-dimensional forcing configurations, it has been observed that a
large-scale shear flow can be generated by the first instability of a linear array of confined
counter-rotating vortices [17]. This has been confirmed by numerical simulations [18] but a weakly
nonlinear analysis of the type [3,4] is not possible in that case due to the boundary conditions.
Above the primary instability mentioned before, the flow becomes two-dimensional, and we
could expect that a secondary bifurcation generates a large-scale flow. This indeed occurs and a
streamwise-independent shear flow with half of a wave length fitting in the channel is generated.
Its amplitude increases above threshold with a 3/2 power-law scaling which is at odds with
respect to the characteristic behavior of supercritical bifurcations. A 1/2 power-law scaling is
observed most of the time except in the vicinity of tricritical points for which the coefficient of
cubic nonlinearities vanishes giving rise to a 1/4 power-law scaling [19]. The 3/2 power-law
scaling results from the nonlinear forcing of the shear flow by modes that bifurcate at the sec-
ondary instability threshold. The large-scale shear flow breaks mirror symmetry with respect to
the midplane of the channel such that two mean flow solutions with opposite signs exist. When a
turbulent regime is reached, random mean flow reversals are observed, which were recently studied
in [20].

The article is organized as follows. In Sec. II we describe the flow configuration. In
Sec. III we present results about the first and the second bifurcations undergone by the system
from direct numerical simulations (DNS) of the fully nonlinear system and from the eigen-
value problem of the linearised system. Next in Sec. IV we explain the results obtained from
DNS with the help of reduced models of interacting modes. Conclusions are presented in
Sec. V.
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FIG. 1. Sketch of the domain under study. The red line represents the spatial form of the Kolmogorov
forcing. Note that f0Kf cos(Kf y) profile corresponds to the force that acts on u, the x-component of the velocity
field.

II. PROBLEM SETUP

We consider the two-dimensional Navier-Stokes equations for an incompressible velocity field
u = ∇ × � ẑ forced by a Kolmogorov-type forcing in a domain of extent (x, y) ∈ [0, 2πLx] ×
[0, πLy] as illustrated in Fig. 1. The governing equation written in terms of the streamfunction
�(x, y, t ) is given by [4]

∂t� + ∇−2{∇2�,�} = ν∇2� − μ� + f0 sin(Kf y), (1)

where { f , g} = (∂x f )(∂yg) − (∂xg)(∂y f ) is the standard Poisson bracket, ν is the kinematic viscosity,
μ is the friction coefficient, f0 is the amplitude of the Kolmogorov forcing and Kf is the forcing wave
number. The boundary conditions are taken to be periodic in the x direction and free-slip in the y
direction, i.e., � = ∂2

y � = 0 at y = 0, πLy. Using Lx and Lx/ f 1/2
0 as characteristic scales for space

and time, respectively, we define the Reynolds number as Re = f 1/2
0 Lx/ν and the friction Reynolds

number as

Rh = f 1/2
0 /(μLx ). (2)

The dimensionless form of equation (1) for ψ = �/Lx f 1/2
0 is

∂tψ + ∇−2{∇2ψ,ψ} = 1

Re
∇2ψ − 1

Rh
ψ + sin(k f y), (3)

where k f = Kf Lx is the dimensionless forcing wave number and where we have kept the same
notations for dimensionless space x, y and time t .

The control parameter of the problem is Rh and we fix the Reynolds number to Re = 1000, the
aspect ratio of the domain to 2πLx/(πLy) = 2 (i.e., we set Lx = Ly) and the forcing wave number
with respect to the height to Kf Ly = k f = 4. The scaling behavior of the bifurcations we present
in this article can be reproduced if one chooses the rms velocity as the relevant velocity scale
instead of f 1/2

0 . Our choice to nondimensionalize using f 1/2
0 makes the analytical calculations more

convenient.
We perform direct numerical simulations (DNS) by integrating Eq. (1) using the pseudospectral

method [21,22]. We decompose the streamfunction into basis functions with Fourier modes in the x
direction and Sine modes in the y direction that satisfy the boundary conditions, this leads to

ψ (x, y, t ) =
Nx
2 −1∑

kx=− Nx
2

Ny∑
ky=1

ψ̂kx ,ky
(t ) eikxx sin(kyy), (4)

with ψ̂kx ,ky
being the amplitude of the mode (kx, ky) and (Nx, Ny ) denote the number of spectral

modes in the x, y coordinates, respectively. For the streamfunction ψ (x, y, t ) to be real the following
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TABLE I. The dependence of the nature of the first bifurcation on the forcing wave number k f . The
Reynolds number is fixed at Re = 1000 for all cases. The largest amplitude growing mode shown in the last
column is found from the eigenvalue problem.

Largest amplitude
k f Linear problem Nonlinearly saturated regime Rhc

1 growing mode (kx, ky )

2 Hopf Traveling wave 1.428 (1,1)
3 Hopf Standing wave 1.077 (2,2)
4 Stationary Traveling wave 0.593 (3,1)
5 Stationary Stationary 0.446 (3,1)
6 Stationary Traveling wave 0.352 (4,1)
7 Stationary Stationary 0.299 (4,1)
8 Stationary Traveling wave 0.256 (5,1)
9 Stationary Stationary 0.227 (6,1)
10 Stationary Traveling wave 0.202 (6,1)
63 Stationary Stationary 0.0341 (36,1)
64 Stationary Traveling wave 0.0336 (37,1)
127 Stationary Stationary 0.0191 (72,1)
128 Stationary Traveling wave 0.0190 (73,1)

relation is satisfied in spectral space

ψ̂kx,ky = ψ̂∗
−kx,ky

. (5)

A third-order Runge-Kutta scheme is used for time advancement, and the aliasing errors are
removed with the two-thirds dealiasing rule which implies that the maximum wave numbers are
kmax

x = Nx/3 and kmax
y = 2Ny/3. The resolution was fixed to (Nx, Ny) = (512, 128) for all the

simulations done in this study. The only simulations that required 5122 resolution were those with
k f � 63 (see Table I).

III. PRIMARY AND SECONDARY BIFURCATIONS

For small values of Rh a laminar flow is established which results from the balance between the
forcing and the dissipation. Its expression is given by

ψ (x, y, t ) = 1

16Re−1 + Rh−1 sin (4y). (6)

This base flow corresponds to a parallel flow with the same spanwise structure as the forcing. We
can represent the base flow in the Fourier-sine basis (4), which gives the only nonzero mode to
be ψ̂0,4 = 1/(16Re−1 + Rh−1). From the DNS we observe that this laminar flow becomes linearly
unstable above the critical value of Rh > Rhc

1 ≈ 0.593, with the instability breaking the translational
invariance in the x direction. In Fig. 2(a) we show the time series from the DNS of the most
dominant Fourier-sine mode ψ̂3,1(t ) related to the instability, for different values of Rh above the
threshold. The time series demonstrate that as we approach the threshold Rh − Rhc

1 � 1, both
the amplitude and the oscillation frequency decrease. In Fig. 2(b) we show the standard deviation
σ (ψ̂3,1) and the oscillation frequency ω f of the saturated mode ψ̂3,1 as a function of the distance to
the threshold Rh − Rhc

1. To capture the exact threshold we linearize around the base flow solution
(6), and we numerically solve the eigenvalue problem that arises from the linearized system of
equations. The eigenvalue solver confirms the value of the threshold Rhc

1 ≈ 0.593 found from the
DNS. The growing eigenmode has a wave number kx = 3 in the x direction, and its projection on
to sine basis in the y direction shows that only the odd modes ky = 2n + 1, n ∈ N are excited. In
addition, it shows that the eigenvalues are real therefore leading to either an exponentially growing
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FIG. 2. (a) Time series of the growing mode ψ̂3,1 for different values of Rh close to the threshold. (b) The
standard deviation σ (ψ̂3,1) and the oscillation frequency ω f of the mode ψ̂3,1 as a function of the distance to
the threshold. The solution corresponds to a traveling wave that moves in the negative x-direction.

or decaying solution without any oscillatory behavior. This is in agreement with the linear stability
analysis of Thess [9]. Therefore, the oscillations we observe result from the fully nonlinear problem,
which is also responsible for the scaling of the frequency ω f ∝ Rh − Rhc

1. We call this transition
a stationary drift bifurcation. The resulting solution from the nonlinear problem corresponds to a
traveling wave that moves in the negative x-direction. A four-mode model is presented in Sec. IV B
to explain the observed behavior.

We study the nature of the first bifurcation by varying k f systematically, looking at both the
linearized system and the fully nonlinear system. We note that k f is nondimensional and changing
k f is equivalent to changing Kf Lx in dimensional units. In Table I we report the results we get
from the eigenvalue problem for the linearized system and from the DNS. For k f = 2, 3 the linear
problem gives rise to a Hopf bifurcation and the nonlinear regime is either a traveling or a standing
wave. Then for k f � 4 the linear problem gives rise to a stationary bifurcation, while the nonlinear
problem gives a stationary pattern only when k f is odd and a traveling pattern when k f is even.
These results with odd behavior do not allow us to have a general argument for the nature of the
bifurcation for any k f . On the other hand, we notice that even for the spatially extended system with
k f � 1 the mode ky = 1 is always excited. Note, however, that the largest amplitude growing mode
for k f = 3 is not the one with ky = 1, and this differs from the other cases. The case k f = 3 is also
the only odd forcing case that gives a Hopf bifurcation; see Table I.

It is commonly believed that the influence of the side walls on the instability should decrease
when k f becomes large such that the behavior predicted for unbounded Kolmogorov flows [9]
should be recovered, i.e., a stationary pattern. This is not the case. The side walls, however
distant, affect the nature of the bifurcation depending on the odd (respectively even) number of
half-wavelengths of the base flow in the channel. This behavior traces back to the large-scale
flow with ky = 1 that is generated at the instability onset even for k f large. A similar mechanism
where distant side walls affect the nature of a bifurcation, has been described in the context of
thermal convection [23]. Now we return to the case of k f = 4 where the oscillating flow obtained
for Rh > Rhc

1 ≈ 0.593 persists up to Rh = Rhc
2 ≈ 0.835, above which a Hopf bifurcation takes

place and the largest scale mode of the system ψ̂0,1 is excited. Figure 3 shows the x and the y
components of the velocity field at two different time instants for Rh ≈ 0.91. The snapshots of the
y component of the velocity field [Figs. 3(b) and 3(d)] show a modulated traveling wave moving
along the negative x direction, the traveling wave corresponds to the flow obtained from the first
bifurcation. The secondary instability then occurs on top of this traveling wave which makes the
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FIG. 3. Snapshots of the x-component (a, c) and y-components of the velocity fields (b, d) are shown at
two different time instances for the case Rh ≈ 0.91. The solution corresponds to a modulated traveling wave
that moves in the negative x-direction.

underlying wave modulated. This is similar to instabilities observed on wavy Taylor vortices in
circular-Couette experiments (see [24,25]) with the resulting flow called modulated wavy-vortex
flow. We believe that there is no frequency locking between the modulation frequency and the
frequency of the traveling wave, similar to the case of circular-Couette experiments, though a much
detailed analysis is required to show the absence of frequency locking. Figure 4 shows the standard
deviation of ψ̂0,1, denoted by σ (ψ̂0,1), as a function of the distance to the threshold Rh − Rhc

2 found
from the DNS. The scaling we observe is σ (ψ̂0,1) ∝ (Rh − Rhc

2)3/2. This is distinctively different
from the standard 1/2 power-law scaling one expects for the saturated amplitude of the growing
mode in the case of a supercritical Hopf bifurcation. This scaling results from the nonlinear
excitation of the ψ̂0,1 mode by the growing modes that bifurcate at Rh = Rhc

2. A low-dimensional
model is presented in Sec. IV C to explain this behavior.

IV. LOW-DIMENSIONAL DYNAMICAL SYSTEMS

A. Symmetry considerations

Before presenting a truncated model that explains our observations for k f = 4, we first comment
on the effect of the lateral confinement of the flow on the nature of the primary bifurcation using
symmetry arguments. We write ψ (x, y, t ) = ψ f (y) + φ(x, y, t ) where ψ f (y) is the base flow forced
at wave number k f . Equation (3) gives

∂t∇2φ + ∂yψ f ∂x
(∇2φ + k2

f φ
) + {∇2φ, φ} = 1

Re
∇4φ − 1

Rh
∇2φ. (7)
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FIG. 4. The standard deviation of the largest scale mode ψ̂0,1 as a function of the distance to the threshold
Rh − Rhc

2. The dashed lines indicate the scalings (Rh − Rhc
2)3/2 and (Rh − Rhc

2)1/2 for comparison.

In the case of doubly periodic boundary conditions, Eq. (7) is symmetric under the following
transformations:

x → x + x0, (8)

(x, y) →
(

−x,−y + π

k f

)
, (9)

(y, ψ f , φ) → (−y,−ψ f ,−φ), (10)

y → y + 2π

k f
. (11)

Equations (8) and (9) generate the O(2) symmetry group, and the first bifurcation of the
Kolmogorov flow ψ f (y) is either a stationary bifurcation with two zero eigenvalues or a Hopf
bifurcation that leads to traveling or standing waves depending on the nonlinear interactions [26].
However, in the case of doubly periodic boundary conditions, the bifurcation that occurs first is
always stationary [9]. Equation (10) involves the field ψ itself and is related to the pseudoscalar
nature of Eq. (7) [27].

In the case of stress-free boundary conditions considered here, the shift π/k f along the y-axis
is no longer possible. Although it has been shown that these Neumann boundary conditions admit
hidden symmetries that should be taken into account [28,29], it is clear from the results of Table I
that the bifurcation picture with stress-free boundary conditions strongly differs from the one with
doubly periodic boundary conditions. A Hopf bifurcation is observed for k f = 2 and 3 whereas
a stationary bifurcation occurs for k f � 4. In addition, even in the case of a stationary bifurcation,
stress-free boundary conditions display a puzzling result: the nonlinearly saturated regime above the
bifurcation threshold is a traveling wave for k f even, whereas it is stationary for k f odd. Although
general symmetry arguments cannot predict whether the linear problem is a stationary or a Hopf
bifurcation, they can be used to understand the nature of the nonlinearly saturated regime for k f � 4
as follows.

For k f � 4, the bifurcation is stationary such that the perturbation that grows above threshold is
to leading order of the form

ψ̃ (x, y, t ) = A(t )χ (y) exp ikcx + c.c., (12)
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where A is the complex amplitude of the neutral mode of wave number kc, χ (y) represents its
dependence on y and “c.c.” stands for the complex conjugate. Following [30] we expand Ȧ as a
power series in A and A∗ and we consider symmetry (8) to constrain the form of the amplitude
equation to

Ȧ = αA − βA2A∗, (13)

where α is real since the bifurcation is stationary and the asterisk denotes the complex conju-
gate. Note however that β = βr + iβi is forced to be real only when another symmetry, usually
related to the reflection symmetry x → −x, imposes the invariance A → ±A∗ of the amplitude
equation. This is the case for doubly periodic boundary conditions because of Eqs. (8) and (9)
and the postbifurcation regime is stationary as observed in the case of doubly periodic boundary
conditions [3–5]. When there exists a preferred direction, β can be complex. For a supercritical
bifurcation (βr > 0), the squared modulus of the amplitude is given by AA∗ = αr/βr and its phase
is θ = −(αrβi/βr )t . Therefore, the pattern (12) travels at constant velocity which gives a limit
cycle frequency proportional to the distance to the threshold, as observed in our simulations. This
stationary drift bifurcation where a stationary instability generates a traveling wave in the nonlinear
regime has been described by adding nonlinear terms which breaks the x → −x symmetry to
the Swift-Hohenberg equation [30]. This is however an ad hoc model whereas the phenomenon
is reported here is a fluid dynamical problem without selecting linear and nonlinear terms with
different symmetries in the governing equation.

We will now explain why different nonlinear regimes are observed with stress-free boundary
conditions in the case of a stationary bifurcation, depending on k f odd or even. The base flow
described by ψ f (y) is changed in the transformation x → −x for both k f odd or even, but for k f odd,
it is possible to compensate this change by performing the transformation y → π − y whereas this
is not possible for k f even because the base flow has mirror symmetry with respect to the midplane
of the channel y = π/2. Therefore, if k f is odd, the problem is invariant under the transformation

(x, y) → (−x, π − y). (14)

In addition, for all odd values of k f > 4 that we have explored, we find that χ (y) of the neutral
mode has a real part that is symmetric about the midline (y = π/2) and an imaginary part that is
antisymmetric about the midline. Therefore we have χ (y) → χ∗(y) in the transformation y → π −
y. Applying the symmetry (14) amounts to A → A∗ in Eq. (13), which enforces βi = 0. Therefore,
for k f odd, the pattern above the bifurcation threshold is stationary.

For the problem under study which is the case of k f = 4, the perturbation form given in Eq. (12)
satisfies the symmetries given in Eqs. (8), (10), and (11). It is found that the bifurcation is stationary
meaning α coefficient in the amplitude equation [Eq. (13)] is real. Whereas the coefficient of the
nonlinear term β is complex leading to a traveling wave with a preferred direction. Thus the linear
eigenvalue problem leads to a stationary bifurcation while the nonlinear problem gives rise to a
traveling wave with a preferred direction.

B. Four-mode model for the stationary drift bifurcation

Now we present a four-mode model to get a better qualitative understanding of the bifurcation
for the case k f = 4, i.e., a stationary bifurcation as shown by solving the linear problem, but
that generates traveling waves in the post-bifurcation nonlinearly saturated regime. To derive the
governing equations we consider the Navier-Stokes equation in the Fourier-Sine basis form by
substituting Eq. (4) into Eq. (1) to obtain

dt ψ̂k =
∑
p,q

Ak,p,qψ̂pψ̂q − (Re−1k2 + Rh−1)ψ̂k + f0δkx,0 δky,4 (15)
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FIG. 5. All the interacting triads in the reduced four-mode model. In panel (b) the mode ψ̂r = ψ̂0,2 is
repeated twice as it is excited by the modes ψ̂∗

p = ψ̂−3,1, ψ̂∗
q = ψ̂3,3 and is also responsible for the oscillation

of the mode ψ̂3,1. The red arrow indicates the base flow mode ψ̂0,4, which becomes unstable at the first threshold
Rhc

1.

with the interaction coefficients to be given by

Ak,p,q = i

2
(q2 − p2)k−2δkx,px+qx [(pxqy − pyqx )δky,py+qy + (pxqy + pyqx )(δky,py−qy − δky,qy−py )],

(16)

where δi, j stands for the Kronecker delta and the variables px, py, qx, qy are the components of the
wave vectors p, q, i.e., p = (px, py), q = (qx, qy). Consider a model with the base flow ψ̂0,4, the
two largest amplitude growing modes ψ̂3,1, ψ̂−3,3 and a nonlinear mode ψ̂0,2, excited by the two
growing modes. They are denoted as

ψ̂k = ψ̂0,4, ψ̂p = ψ̂3,1, ψ̂q = ψ̂−3,3, ψ̂r = ψ̂0,2. (17)

Using Eqs. (15) and (16), we arrive at the following system of equations:

dt ψ̂k + (16Re−1 + Rh−1)ψ̂k = −3i(ψ̂∗
p ψ̂∗

q − ψ̂pψ̂q) + 1, (18)

dt ψ̂p + (10Re−1 + Rh−1)ψ̂p = 6

5
iψ̂kψ̂

∗
q − 21

5
iψ̂rψ̂

∗
q − 9

5
iψ̂pψ̂r, (19)

dt ψ̂q + (18Re−1 + Rh−1)ψ̂q = 2iψ̂kψ̂
∗
p + iψ̂rψ̂

∗
p , (20)

dt ψ̂r + (4Re−1 + Rh−1)ψ̂r = 6i(ψ̂∗
p ψ̂∗

q − ψ̂pψ̂q). (21)

The triads that can be constructed from this set of modes are shown in Fig. 5, and we will discuss
their dynamics in what follows. Here the constant term on the right of Eq. (18) is the forcing term
which acts only on the mode ψ̂k. The base flow is given by the balance between the forcing and
the dissipation in (18), which gives ψ̂k = ψ0 = 1/(16Re−1 + Rh−1). The instability is found by
linearizing the above set of equations around the base flow ψ0. In the linearized system, we see
that only ψ̂p, ψ̂q are coupled and the mode ψ̂r is not coupled to the base flow. Then, the effective
linearized system can be written as

dt ψ̂p + (10Re−1 + Rh−1)ψ̂p = 12i

10
ψ0ψ̂

∗
q , (22)

dt ψ̂
∗
q + (18Re−1 + Rh−1)ψ̂∗

q = −2iψ0ψ̂p. (23)

The linear stability threshold is found to be at Rhc
1 ≈ 0.814 and the Jacobian of Eqs. (22) and (23)

gives two eigenmodes. Both eigenvalues are purely real leading to exponential growth or decay with
no oscillations. We denote the amplitudes of the decaying and the growing eigenmode as P1(t ) and
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P2(t ), respectively. The positive eigenvalue λ2 that corresponds to the growing eigenmode P2, scales
linearly with the distance to the threshold

λ2 ∝ (
Rh − Rhc

1

)
. (24)

This scaling is true only close to the threshold. Its exact expression is given in the Appendix.
Now we choose to solve the nonlinear model with only the linearly excited modes, i.e., we

consider only the triad (ψ̂k, ψ̂p, ψ̂q) given by Eqs. (18), (19), and (20) [see Fig. 5(a)] and with
ψ̂r = 0. The modes ψ̂p, ψ̂q are linearly excited by the instability of the base flow and saturate
by modifying the amplitude of the mode ψ̂k. We then solve the full system of Eqs. (18)–(20) by
focusing on the evolution of the growing eigenmode P2. The resulting amplitude equation is

dt P2 = λ2P2 −
( 36

5 ζ2β1 + 12ζ 2
2 β3

16Re−1 + Rh−1

)
|P2|2P2. (25)

Details for its derivation and the expressions of the real coefficients ζ2, β1, β3 can be found in
the Appendix. Thus, the amplitude equation for the three mode model ψ̂k, ψ̂p, ψ̂q clearly gives
rise to a stationary bifurcation with the scaling of the amplitude of the growing mode to be |P2| ∝
(Rh − Rhc)1/2 obtained from Eq. (24).

If we now consider Eq. (21), we see that the mode ψ̂r is nonlinearly excited by the modes
ψ̂p, ψ̂q [see Fig. 5(b)]. This nonlinear excitation arises due to the transfer of energy from modes
(px, py), (qx, qy) to both (−px − qx, py + qy) and (−px − qx, |py − qy|) in the Fourier-sine basis.
Taking into account all the four modes we can get to the following amplitude equation:

dt P2 = λ2P2 −
[( 36

5 ζ2β1 + 12ζ 2
2 β3

16Re−1 + Rh−1

)
+

( 252
5 ζ2β1 − 12ζ 2

2 β3

4Re−1 + Rh−1

)]
|P2|2P2

− i

(
108

5

ζ 2
2 β1

4Re−1 + Rh−1

)
|P2|2P2, (26)

where the expressions for λ2, β1, β3, ζ2 are given in the Appendix. This amplitude equation is very
similar to Eq. (25), the amplitude equation for the three-mode model, except for the presence of
the complex coefficient in the final term which arises from the existence of ψ̂r. This term leads to
oscillatory solutions of the form P2(t ) = |P2| exp(iω f t ). By substituting this solution into Eq. (26)
we get

|P2|2 = λ2

[( 36
5 ζ2β1 + 12ζ 2

2 β3

16Re−1 + Rh−1

)
+

( 252
5 ζ2β1 − 12ζ 2

2 β3

4Re−1 + Rh−1

)]−1

, (27)

ω f = −108

5

ζ 2
2 β1

4Re−1 + Rh−1 |P2|2. (28)

Using Eq. (24) we find the amplitude to scale similar to the three mode model, i.e., |P2| ∝
(Rh − Rhc)1/2 and the oscillation frequency to scale linearly with the distance to the threshold
ω f ∝ (Rh − Rhc). Thus, the minimal four-mode model reproduces the stationary drift bifurcation
and the observed scalings of the DNS results. The value we obtain for the threshold does not agree
quantitatively with the DNS. This is because in the DNS many modes are nonzero in contrast to our
minimal model which considers only the four modes with the largest amplitude in the full system.
By adding more modes and following the method presented above we can approach the values of
the threshold and the oscillation frequency obtained in the DNS.

C. Large-scale bifurcation model

Here we present a model to explain the exponent 3/2 for the largest scale mode in the system
ψ̂0,1. This mode is directly excited by the nonlinear perturbations that grow after the second Hopf
bifurcation. We present here a model with eight modes that is sufficient to capture the different
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FIG. 6. All the interacting triads of the reduced eight-mode model. The red arrows indicate the modes that
become unstable at the second threshold Rhc

2, and the blue arrow indicates the large-scale mode ψ̂0,1.

scalings needed to explain the exponent 3/2. The base flow over which the second instability
develops involves multiple modes. We construct a reduced model using the following set of modes:

ψ̂a = ψ̂−3,1, ψ̂b = ψ̂−3,3, ψ̂c = ψ̂1,4, ψ̂d = ψ̂2,5,

ψ̂e = ψ̂2,1, ψ̂f = ψ̂−5,2, ψ̂g = ψ̂−1,3, ψ̂h = ψ̂0,1. (29)

These modes are chosen because they have the largest amplitudes in the DNS. Moreover,
we tested that if any of the modes are put to zero, then ψ̂0,1 is not excited or it has a much
lower amplitude. This demonstrates how vital these modes are to the excitation of the large-scale
mode. Below the second instability all the aforementioned modes have zero amplitude apart from
the modes ψ̂a = ψ̂−3,1, ψ̂b = ψ̂−3,3, which are already excited at the first instability. Above the
threshold value of Rhc

2, the modes ψ̂a = ψ̂−3,1, ψ̂b = ψ̂−3,3 become linearly unstable and give rise to
the modes ψ̂c, ψ̂d, ψ̂e, ψ̂f . The triadic interactions are shown in Figs. 6(a) and 6(b). The governing
equations for the unstable modes ψ̂a, ψ̂b and the linearly excited modes ψ̂c, ψ̂d, ψ̂e, ψ̂f are

dt ψ̂a + (10Re−1 + Rh−1)ψ̂a = i
39

5
ψ̂∗

c ψ̂∗
d + i

6

5
ψ̂eψ̂f + f1, (30)

dt ψ̂b + (18Re−1 + Rh−1)ψ̂b = 3iψ̂∗
c ψ̂∗

e + 6iψ̂eψ̂f + f2, (31)

dt ψ̂c + (
17Re−1 + Rh−1)ψ̂c = −i

247

34
ψ̂∗

d ψ̂∗
a − i

117

34
ψ̂∗

e ψ̂∗
b + i

35

34
ψ̂eψ̂g − i

9

34
ψ̂∗

g ψ̂h, (32)

dt ψ̂d + (
29Re−1 + Rh−1

)
ψ̂d = i

91

58
ψ̂∗

c ψ̂∗
a − i

231

58
ψ̂∗

f ψ̂b, (33)

dt ψ̂e + (
5Re−1 + Rh−1)ψ̂e = i

19

10
ψ̂∗

f ψ̂a + i
9

10
ψ̂∗

c ψ̂∗
b + i

99

10
ψ̂∗

f ψ̂b − i
49

10
ψ̂cψ̂

∗
g , (34)

dt ψ̂f + (
29Re−1 + Rh−1

)
ψ̂f = i

5

58
ψ̂∗

e ψ̂a + i
231

58
ψ̂∗

d ψ̂b + i
117

58
ψ̂∗

e ψ̂b. (35)

The terms f1, f2 denote the forcing due to the first instability and contain the interaction terms with
the modes presented in the previous section. At saturation the amplitudes of the modes |ψ̂c|, |ψ̂d|,
|ψ̂e|, |ψ̂f | scale like (Rh − Rhc

2)1/2. Next, we consider the triadic interaction between the modes
(ψ̂c, ψ̂

∗
e , ψ̂∗

g ) [see Fig. 6(c)]. In this triad, the mode ψ̂∗
g = ψ̂1,3 is excited by the nonlinear interaction

between the two linearly excited modes ψ̂c = ψ̂1,4 and ψ̂∗
e = ψ̂−2,1. The governing equation for ψ̂g
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is given by

dt ψ̂g + (10Re−1 + Rh−1)ψ̂g = i
21

5
ψ̂cψ̂

∗
e + i

4

5
ψ̂hψ̂

∗
c , (36)

which at saturation gives rise to the scaling |ψ̂g| ∝ (Rh − Rhc
2) for the amplitude. Then we consider

the triad (ψ̂∗
c , ψ̂∗

g , ψ̂h), where the mode ψ̂h = ψ̂0,1 is excited by the nonlinear interaction between

the linearly excited mode ψ̂∗
c = ψ̂−1,4 and the nonlinearly excited mode ψ̂∗

g = ψ̂1,3 [see Fig. 6(d)].

The governing equation for ψ̂h is given by

dt ψ̂h + (Re−1 + Rh−1)ψ̂h = i
7

2

(
ψ̂cψ̂g − ψ̂∗

c ψ̂∗
g

)
. (37)

Thus, at saturation the mode scales like |ψ̂h| = |ψ̂0,1| ∝ (Rh − Rhc
2)3/2. To sum up, this reduced

order model captures all the necessary scalings that were observed in the DNS for the second Hopf
bifurcation.

V. CONCLUSION

We have studied the primary bifurcations of a forced Kolmogorov flow in a channel with free-slip
boundary conditions in the lateral direction and periodic boundary conditions in the longitudinal
direction, our aim being to mimic a parallel flow.

Unlike the doubly periodic Kolmogorov flow, where the first bifurcation is stationary, it can
be a stationary or a Hopf bifurcation in the case of a laterally confined flow, depending on the
value of the forcing wave number k f . Stress-free lateral boundary conditions therefore change
the qualitative behavior of the first bifurcation of the flow, as observed both in direct numerical
simulations and by performing the linear stability analysis. In addition, when linear stability analysis
predicts a stationary bifurcation (for k f � 4), we discover a different behavior for k f even for the
full nonlinear problem. The nonlinearly saturated regime above the stationary bifurcation threshold
is a traveling wave, where both the amplitude and the oscillation frequency of the growing mode
vanish at threshold. As we move away from the threshold the amplitude scales with an exponent 1/2
and the oscillation frequency with an exponent 1 of the distance to the threshold. This is related
to an amplitude equation of this stationary bifurcation that involves a complex coefficient in the
nonlinear term. We have understood why this behavior does not occur for k f odd using a symmetry
argument. Using a truncated model, we derived an amplitude equation with the required properties
for k f = 4. This reduced model displays the scaling observed in the DNS. We expect that stationary
drift bifurcations can also occur in the case of other parallel flows.

A secondary instability occurs when Rh = Rhc
2 and corresponds to a Hopf bifurcation. This leads

to the generation of the largest scale mode in the system ψ̂0,1, i.e., a large-scale shear flow with half a
wave length in the spanwise direction and no dependence on the streamwise direction. Its amplitude
displays a surprising scaling (Rh − Rhc

2)3/2. Using a truncated model, we find that the large-scale
shear is not a bifurcating mode for Rh = Rhc

2 but is nonlinearly excited by the bifurcating modes,
which explains the observed scaling. It is surprising that these odd scaling laws at first sight are
not reported more often in experiments where it is difficult to determine if the measured quantity is
proportional to the amplitude of the bifurcating modes or to their harmonics.

ACKNOWLEDGMENTS

The authors would like to thank A. Alexakis, J. Chapman, P. Chossat, P. J. Ioannou, and T.
Mullin for useful discussions. CEFIPRA is acknowledged for support with project 6104-1. K.S.
acknowledges National Supercomputing Mission (NSM) for providing computing resources of
PARAM Shakti at IIT Kharagpur, which is implemented by C-DAC and supported by the Ministry
of Electronics and Information Technology (MeitY) and Department of Science and Technology
(DST), Government of India.

103902-12



BIFURCATIONS OF A PLANE PARALLEL FLOW WITH …

APPENDIX: DERIVATION OF THE AMPLITUDE EQUATIONS

Here we provide details for the derivation of the amplitude equations (25) and (26) starting from
the governing equations (18)–(21). We start with the linearized equations (22) and (23) written in
the matrix form, dt� = A�:

dt

[
ψ̂p

ψ̂∗
q

]
=

[−(10Re−1 + Rh−1) i 12
10ψ0

−i2ψ0 −(
18Re−1 + Rh−1

)][
ψ̂p

ψ̂∗
q

]
. (A1)

The solution to det(A − λI ) = 0 gives the following two eigenvalues:

λ1 = −2
√

20Re−2(Rh−1 + 16Re−1)2 + 3√
5(Rh−1 + 16Re−1)

− Rh−1 − 14Re−1, (A2)

λ2 = 2
√

20Re−2(Rh−1 + 16Re−1)2 + 3√
5(Rh−1 + 16Re−1)

− Rh−1 − 14Re−1. (A3)

We see that the eigenvalue λ1 is always negative, and the threshold of the instability is found by

putting λ2 = 0, which gives the threshold Rh−1
c ≈ 1.229 for Re = 1000. The associated eigenvec-

tors denoted as V1, V2 are given by

V1 =
[
− 1

5 i
(√

5
√

20Rh−2Re−2 + 640Rh−1Re−3 + 5120Re−4 + 3 − 10Rh−1Re−1 − 160Re−2
)

1

]
,

(A4)

V2 =
[

1
5 i

(√
5
√

20Rh−2Re−2 + 640Rh−1Re−3 + 5120Re−4 + 3 + 10Rh−1Re−1 + 160Re−2
)

1

]
.

(A5)

We then express the variables �(t ) as a linear combination of the two eigenvectors with amplitudes
P1(t ), P2(t ),

�(t ) = P1(t )V1 + P2(t )V2 = VP, (A6)

where V = [V1 V2] denotes the eigenvector matrix and P = [P1
P2

] denotes the amplitude vector.
To get the nonlinear system of equations in terms of the eigenvectors, we start with

dt� = A� +
[−i 6

5 ψ̃kψ̂
∗
q − i 21

5 ψ̂rψ̂
∗
q − i 18

5 ψ̂pψ̂r

−2iψ̃kψ̂
∗
p + iψ̂rψ̂

∗
p

]
= A� + N, (A7)

where N denotes the nonlinear terms and ψ̃k denotes the deviation of ψ̂k from the base flow ψ0 due
to the nonlinearity, namely, ψ̂k = ψ0 − ψ̃k. Doing the eigendecomposition of the matrix A, we get

dt� = VDV−1� + N, (A8)

where D is a diagonal matrix whose diagonal entries are the eigenvalues λ1 and λ2. Taking V−1 on
both sides leads to the equation

dt
(
V−1�

) = D
(
V−1�

) + V−1N. (A9)

From (A6) we can write V−1� = P, which gives

dt P = DP + V−1N. (A10)

Since λ1 < 0 and the nonlinear terms do not force P1(t ), the amplitude |P1| goes to zero in the long
time limit, implying that we can express ψ̂p, ψ̂q in terms of P2(t ) only. The nonlinear vector N
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involves terms with ψ̃k that is nonzero above the first instability threshold and is modified by terms
involving ψ̂p, ψ̂q [see Eq. (18)]. The N vector also involves ψ̂r, which is excited by terms involving
ψ̂p, ψ̂q [see Eq. (21)]. The nonlinear term needed to find ψ̃k, and ψ̂r is given by the expression
ψ̂∗

p ψ̂∗
q − ψ̂pψ̂q [see Eqs. (18) and (21)]. This can be written in terms of P2(t ) as

ψ̂∗
p ψ̂∗

q − ψ̂pψ̂q → −2iζ2|P2|2, (A11)

where ζ2 is given by

ζ2 = 1
5 (

√
5
√

20Rh−2Re−2 + 640Rh−1Re−3 + 5120Re−4 + 3 + 10Rh−1Re−1 + 160Re−2).
(A12)

Here P2(t ) is an oscillating complex quantity for the four-mode model or is a stationary real quantity
for the three-mode model and in both cases |P2| is independent of time. This gives the following
expressions for ψ̃k and ψ̂r:

ψ̃k = 6

16Re−1 + Rh−1 ζ2|P2|2, (A13)

ψ̂r = 12

4Re−1 + Rh−1 ζ2|P2|2. (A14)

Now we need the expression of V−1 to solve Eq. (A10), its matrix form is denoted as

V−1 = [V1 V2]−1 =
[

β1 β2

−β1 β3

]
, (A15)

where β1, β2, β3 are defined as

β1 = i
√

5

2
√

20Rh−2Re−2 + 640Rh−1Re−3 + 5120Re−4 + 3
, (A16)

β2 =
√

5
√

20Rh−2Re−2 + 640Rh−1Re−3 + 5120Re−4 + 3 + 10Rh−1Re−1 + 160Re−2

2
√

5
√

20Rh−2Re−2 + 640Rh−1Re−3 + 5120Re−4 + 3
, (A17)

β3 =
√

5
√

20Rh−2Re−2 + 640Rh−1Re−3 + 5120Re−4 + 3 − 10Rh−1Re−1 − 160Re−2

2
√

5
√

20Rh−2Re−2 + 640Rh−1Re−3 + 5120Re−4 + 3
. (A18)

Substituting the expressions for ψ̃k, ψ̂r from Eqs. (A13) and (A14) and the expression of V−1 from
Eq. (A15), into the Eq. (A10) gives the amplitude equations for the growing eigenmode P2(t ).
By setting ψ̂r = 0 in the nonlinear term N of Eq. (A10) we get the amplitude equation for the
stationary bifurcation [see Eq. (25)]. By considering all four modes, with ψ̂r taken from Eq. (A14),
the resulting amplitude equation is given by Eq. (26) which leads to oscillations.
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