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Effects of spanwise confinement on stratified shear instabilities
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We consider the influence of transverse confinement on the instability properties of
velocity and density distributions reminiscent of those pertaining to exchange flows in
stratified inclined ducts, such as the recent experiment of Lefauve ez al. [J. Fluid Mech.
848, 508 (2018)]. Using a normal mode streamwise and temporal expansion for flows in
ducts with various aspect ratios B and nontrivial transverse velocity profiles, we calculate
two-dimensional (2D) dispersion relations with associated eigenfunctions varying in the
“crosswise” direction, in which the density varies, and the spanwise direction, both normal
to the duct walls and to the flow direction. We also compare these 2D dispersion relations
to the so-called one-dimensional (1D) dispersion relations obtained for spanwise invariant
perturbations, for different aspect ratios B and bulk Richardson numbers Ri,. In this
limited parameter space, the presence of lateral walls has a stabilizing effect, in that the
1D growth-rate predictions are almost systematically an upper bound to the 2D growth
rates, which in turn decrease monotonically as lateral walls are brought together with
increased spanwise confinement (B — 0). Furthermore, accounting for spanwise-varying
perturbations results in a plethora of unstable modes, the number of which increases as
the aspect ratio is increased. These modes present an odd-even regularity in their spatial
structures, which is rationalized by comparison to the so-called one-dimensional oblique
dispersion relation obtained for oblique waves, characterized by a continuously varying
spanwise wavenumber in addition to the streamwise wavenumber. Finally, we show that
in most cases, the most unstable 2D mode is the one that oscillates the least in the
spanwise direction, as a consequence of viscous damping. However, in a limited region
of the parameter space and in the absence of stratification, we show that a secondary
mode with a more complex “twisted” structure dominated by crosswise vorticity becomes
more unstable than the least oscillating Kelvin-Helmholtz mode associated with spanwise
vorticity.

DOI: 10.1103/PhysRevFluids.6.103901

I. INTRODUCTION

Flows in the natural environment (such as in the atmosphere or ocean) are often stably stratified
in the vertical, with the horizontally averaged density decreasing with height. Such environmental
flows are also often characterized by a background velocity distribution that decreases with height,
resulting in vertical shear. This combined effect of buoyancy and shear results in a large variety
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of interesting dynamical behaviors exhibited by stratified shear flows. An important ingredient
influencing such behaviors is the spatial confinement, inherent to many geophysical flows such
as valleys, estuaries [1], submarine canyons, straits, or deep ocean trenches.

Perhaps the most classical example of this dynamical behavior is the overturning Kelvin-
Helmbholtz instability (perhaps more appropriately called a Rayleigh instability when the region of
inflectional shear has a finite depth) as well as so-called Holmboe instabilities, typically associated
with relatively “sharp” density gradients, which all contribute to the mixing and transport of heat,
salt, or indeed various pollutants. In the Kelvin-Helmholtz instability, a single instability mode
appears, traveling at the mean velocity of the fluid layer, which can grow into an array of elliptical
vortical billows, that in turn overturn and smear out the density interface. In contrast, the Holmboe
instability gives rise to propagating modes, which are associated (at finite amplitude) with vortices
displaced from the density interface, which typically survives the ensuing scouring motion.

The Holmboe instability has attracted in recent years a large variety of numerical and ex-
perimental studies. Direct numerical simulations (DNSs) have enabled a thorough description of
nonlinear saturation and mixing mechanisms [2—7]. Laboratory experiments have been conducted
in salt-stratified exchange flows that also investigate various aspects of this instability [8—11].
In particular, Ref. [12] investigates the laboratory-scale realization of the Holmboe instability. A
sustained stratified shear flow is generated in the laboratory by exchange flow through an inclined
square duct, connecting two reservoirs filled with fluids of different densities. The duct confines the
flow in the “crosswise” direction (slightly tilted from the vertical) along which it is stratified, as well
as in the spanwise direction.

In Ref. [12], a three-dimensional, nonlinear, and asymmetric Holmboe wave (in this context
the finite amplitude manifestation of the instability) was observed and characterized in detail
using three-dimensional, volumetric measurements of the velocity and density fields. A tem-
poral local linear stability analysis on the two-dimensional, streamwise-averaged, experimental
flow was also performed. Three-dimensional perturbations were sought, having two-dimensional,
cross-sectionally confined eigenfunctions and a streamwise normal mode expansion. The matching
between the resulting most unstable eigenmode developing on the mean flow and the experimental
structure proved to be (perhaps surprisingly) excellent, validating the a posteriori linear stability
approach, where the time-averaged flow used captured the nonlinear effects of the various perturba-
tions.

Of great interest in Ref. [12] is the importance of the spanwise confinement to the dynamical
evolution of the Holmboe wave. With v and w designating the spanwise velocity and vorticity,
respectively, they observed that the presence of lateral walls “gives rise to relatively large spanwise
gradients |dyv], positive in the centre of the duct and negative near the boundaries. These gradients
have a vortex stretching effect on w, [. . .] producing negative vorticity in the centre (reinforcing the
mean shear), and positive vorticity near the boundaries (weakening the mean shear)” (p. 534). As
mentioned previously, such a strong confinement effect should also be present in many geophysical
flows. In this context, Ref. [12] also draws attention to the fact that “laboratory observations in
confined geometries are often compared to stability analyses that ignore confinement, and numerical
simulations usually impose periodic boundary conditions in the spanwise direction” (p. 540). The
extent to which properties of three-dimensional confined (in the transverse, along-crest direction)
waves are well predicted by such analyses is difficult to predict a priori, and remains an open
question. We aim to address this question here, considering a flow configuration motivated by the
experimental geometry described in Ref. [12].

To address this aim, we will proceed as follows. In Sec. II, we describe our linear two-
dimensional (2D) stability analysis and recall some fundamental results from the related literature.
In Sec. III, dispersion relations of the most unstable confined modes are presented in selected
parameter space; they are compared to classical one-dimensional (1D) (in the sense of being
spanwise invariant) predictions. In Sec. IV, we restrict ourselves to a particular wavenumber and
analyze in greater detail the unstable part of the spectrum. We compare the associated predictions
to generalized 1D predictions, allowing oblique modes. In Sec. V, we analyze in detail a specific
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FIG. 1. Schematic of our confined duct flow configuration (dimensional variables).

mode that appears actually to be destabilized by the presence of transverse walls. Finally, we draw
some relatively brief conclusions, and suggest potential further directions of research.

II. PROBLEM FORMULATION, BACKGROUND, AND OBJECTIVES

A. Formulation
1. Flow configuration and notations

The flow configuration is illustrated in Fig. 1. The streamwise (x) axis is aligned along the duct,
the spanwise (y) axis is across it, and the crosswise (z) axis is tilted at an angle 6 from the true
vertical, resulting in a nonzero projection of the gravity driving the exchange flow in the streamwise
direction. The duct is assumed infinitely long in the streamwise direction to avoid end effects. The
coordinate system is centered in the middle of the duct cross section, such that —H/2 < z < H/2
and —W/2 <y < W/2, where H is the duct crosswise “height” and W the duct spanwise “width.”
The velocity field is u(x, y, z, 1) = (u, v, w), the density field is p(x, y, z, t), and the pressure field is
p(x, v, z,t). The base velocity profile U (y, z) and density profile R(z) will be specified in Sec. I A 3.

To nondimensionalize the problem we choose to scale velocities by half the total (peak-to-peak)
velocity jump in the base flow, (it, ¥, W) = (&, v, w)/(AU/2), and lengths by half the height of the
duct, (%, ¥,%Z) = (x,y,2)/(H/2),such that —1 < Z < 1 and —B < ¥ < B, where

B:E (D

is the duct aspect ratio; B < 1 corresponds to what we refer to as a “narrow” duct, B = 1 to a square
duct, and B > 1 corresponds to what we refer to as a wide duct. The corresponding nondimensional
advective time is 7 = ¢t/(H/AU). Finally, the nondimensional density is p = (o — po)/(Ap/2),
where pg is the mean reference value and Ap/2 is half the (peak-to-peak) density jump in the
density base profile.

2. Governing equations

We model the flow by the incompressible Navier-Stokes equations under the Boussinesq approx-
imation, which requires Ap/py < 1 (valid for the experimental flow configuration of Ref. [12]);
i.e., the density difference only plays a role through the reduced gravity g = gAp/po. In addition,
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the kinematic viscosity (v) and the mass (salt) diffusivity («,,) are assumed constant. Dropping the
tildes, we obtain the following set of nondimensional governing equations:

V.-u=0, (2a)
du+u-Vu=—Vp+Riy(—cosfz+sinf%) p +Re"! Au, (2b)
ap+u-Vp=(ReSc) ' Ap, 9)

where the nondimensional parameters are
Re = AZ)H, Riy = pf(AAp;I)z - (fg)z, Sc = é 3)

The Reynolds number, Re, compares advective to diffusive time scales for the flow. The bulk
Richardson number, Ri,, compares the potential energy of the flow to the shear-induced kinetic
energy. The Schmidt number, Sc, compares the diffusivity of momentum to the mass diffusivity.

In a linear stability analysis, we expand our variables as

ux, 1) = (U(y,2),0,0)+eii(x,1), €] <1, (4a)
p(x,1) = P(y,2) +€p(x, 1), (4b)
p(x,1) = R(z) + €p(x, 1), (40)

where x = (x, y, z), i.e., as a sum of a steady base flow and arbitrarily small perturbations. The
base flow is assumed parallel to the duct and invariant in the streamwise direction x. Expansions of
Egs. (4a) are then plugged into Egs. (2a), leading to linear equations for the perturbations at O(¢).
The x (and t) invariance of the base flow and infinite extent of the domain in x allow us to express
any perturbation f* as Fourier modes in x and r:

f = £, 2)exp (ikx + ot) + c.c. (5)

Since we consider temporal instabilities in this paper, we set the wavenumber k € R and o € C,
such that the real part of o represents the growth rate while its imaginary part represents the
frequency.

As explained in Ref. [12], the dimensionality of the system (number of flow variables) can be
reduced at the cost of increasing its differential order. In this paper, keeping the primitive variable
formulation (&, 9, W, p, p) would be preferred in order to avoid fourth-order derivatives that, with
the discretization method presented later, would lead to poor matrix conditioning. However, this
leads to problematic storage requirements. Consequently, we adopted the compromise proposed
in Ref. [13]: & was eliminated, leading to at most third-order derivatives of ¥, @. Rewriting the
continuity equation as # = ik~!(d,d + 9,%) and plugging it into the x-momentum equation results
in the following generalized eigenvalue problem (dropping the inverted hats):

T v L, Lyp v
A w| _ Ew pr ‘pr w

o |5 = o Mt ©)
dy 0 p Ly Lpw Ly LypdLp

where
L, = —ikU +Re 'A,
Ly, = —0,,
L, = —ikU +Re™' A,
Ly, = —Ri,cos(8),
L

wp _azs
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Loy = —0;R,
L, = —ikU + (ScRe) ' A,
Ly = —ikUdy + ikd,U + Re™ ' (=k*dy + dyyy + 92z,
Ly = —ikUd, + ikd,U + Re™ (—k*d; + dyy, + d22),
L,, = —ikRi, sin(9),
L,y = —k*.
Note that A is the Laplacian operator in x Fourier space, A = (—k* + 3., + dyy), and 7 is the identity
operator.

The solid and impermeable duct walls were modeled by no-slip boundary conditions for veloci-
ties and no mass flux for the density:

v=w=04v=04p=0 for y==£B, Vg, (7a)
v=w=0,w=20,0=0 for z==I1, Vy, (7b)
where the d,v = 0, w = 0 conditions result from the continuity equation (iku = —d,v — d,w = 0 at

the walls).

The equations were discretized by a custom-built two-dimensional Chebyshev pseudospectral
method. Note that this method represents a nontrivial improvement in accuracy and speed upon the
finite-difference method of Ref. [12]. More details on the discretization and the numerical solution
are given in Appendix C.

3. Base flows

Our analytical base flows U (y, z) and R(z) were chosen to be both simple and realistic. For the
velocity we considered

U@y,z)=—sin(mz)M(y) for —1<z<1 and —B<y<B. (8)

The spanwise modulation M (y) can take one of the two following shapes:

M,(y) =1 — (y/B)?, (92)
h 1-— B)?
M, (y) = tan [Vfanh ;y/ ) )]. 9b)

Figure 2 shows the profiles M, M, for the two different values of y used in this paper. Both
profiles satisfy no-slip conditions at the walls. The “Poiseuille” profile M, represents a steady, fully
developed boundary layer extending throughout the entire y domain from one wall to the other. The
“tanh” profile M, has a parameter y whose increase above 1 generates increasingly flat profiles
in the midplane y = 0 and thin boundary layers at the walls. It models a flow whose spanwise
boundary layer did not have sufficient time and/or length to develop fully. (The local stability
analysis requires the Reynolds number (Re) to be sufficiently large such that streamwise variations
are on larger scales than the instability wavelength in order to remain relevant.) A fully developed
sine shape is used in z in all cases, as this paper focuses on the effect of spanwise confinement. As
a comparison, the experimental mean flow of Ref. [12] also has roughly a sine shape in z (although
slightly asymmetrically down-shifted), and our M, iny is an excellent approximation with a best fit
obtained for y ~ 2.1.

For the base density distribution, we considered the classical hyperbolic tangent R(z) =
— tanh[(z — z0)/8]. This introduces two additional degrees of freedom: the density layer thickness
(~26) and the asymmetry (or shift) parameter zo. The scaling of the sine profile, Eq. (8), sets the
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FIG. 2. Tllustration of the three different spanwise profiles, M(y) = M,(y) (black dashed), M (y) (dark
gray solid), and Ms(y) (light gray solid), used in the rest of the paper. The full base velocity is U (y, z) =
—sin(wz)M (y).

shear layer thickness to 1, leading to
R(z) = —tanh [2R(z — z9)] for — 1<z <1, (10)

where we define R = 1/(26§) as the ratio of the shear layer thickness to the density layer thickness.

4. Approach

We are left with eight free parameters: Re, Sc, Rip, 6, zo, R, M(y), and B. By choosing their
values, and given a wavenumber k € R, all operators in Eq. (6) are made fully explicit: the
generalized eigenvalue problem can be solved numerically for both o (k) € C and its associated
eigenvector [v, w, p, p]. We express o (k) = o,(k) + io;(k) where the subscripts r and i respectively
denote the real part (growth rate) and the imaginary part. Therefore, here the phase velocity is
—o;(k)/k and the wave propagates in the positive x direction if it is positive. If o,.(k) > 0 the wave
is unstable and grows as o< ¢’ until nonlinearities come into play (see Ref. [14] for a treatment of
these nonlinearities).

The eight free parameters are not all significant when focusing on the effect of spanwise
confinement. The first key parameter for confinement is evidently the duct aspect ratio B. In addition,
we investigate the impact of viscous effects on both the base flow, by varying M(y) and y, and
also on the perturbation dynamics, by varying Re. As the base flow is not directly dependent
on Re, both effects can be studied independently. Finally, in this paper, we also vary Rip, the
central parameter for stratified shear instabilities. Therefore, in the remainder of the paper, the
four remaining parameters will typically be set according to the experimental values of Ref. [12]:
(Sc, R, 29, 0) = (700, (1/0.047)/2, —0.22, 5°).

B. Summary of classical results (1D, unconfined)

Since our study focuses on the effects of spanwise confinement, comparison with a classical (one-
dimensional, unconfined, and spanwise-invariant) analysis is appropriate. In this problem, which
we refer to simply as the “1D problem,” all y dependence is removed (9, = 0) in Eq. (6), and
the base flow is U(z) = —sin(;rz). This leads to a simpler system, whose expression is given in
Appendix A. Note that by “1D” we do not mean that the spanwise direction does not exist, but that
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it is infinite and that no spanwise variations exist either for the base flow or the perturbations. This
distinction should be kept in mind in the following.

As a foundation for our analysis of spanwise confinement, we now summarize the effects of
the prominent parameters (Re, Ri,) on the “1D” stability properties. This short discussion results
from supplementary 1D computations, which for the sake of brevity are not illustrated. In addition,
although fixed elsewhere, the effect of the parameter zo (quantifying the offset between the density
and velocity base profiles) on the ‘1D stability properties is briefly presented as well.

Effects of Re. The growth rates o, increase monotonically and relatively uniformly with Re, until
Re ~ 1000, where this effect tends to saturate.

Effects of Rip. When the flow is unstratified, with Ri, = 0, the flow is only subject to a “pure”
Kelvin-Helmholtz (denoted KH) instability. As Ri, increases, the KH mode is progressively
weakened (i.e., o, decreases) and eventually suppressed (o, = 0), since, physically speaking, too
much potential energy is required to allow the rolling up of the shear layer, and hence the density
stratification. At Ri, & 0.125 the flow then becomes subject to the inherently stratified Holmboe
instability (denoted H), which is characterized at finite amplitude by propagating waves localized at
the density interface (z = zp), which generally counterpropagate. The growth rate of the Holmboe
instability initially increases with Rip, up to a certain value, before o, starts decreasing again. The
most unstable wavenumber k increases monotonically with Ri,, since, in physical terms, longer
waves require too much potential energy to allow instability. A physical mechanism based on
wave interaction is now commonly proposed to explain the KH and H instabilities, as exhaustively
reviewed in Ref. [15], although the underlying arguments date back to Taylor’s Adams Prize essay
in 1915. Using a broken-line profile model for the shear layer and a localized density jump, the KH
instability can be interpreted as the interaction between the two counterpropagating vorticity waves
localized at and “riding” their respective vorticity interfaces. In contrast, the H instability appears
as an interaction between one of the two vorticity waves, with one of the two gravity waves, that
both “ride” the density interface. Discrimination is then made by noticing that, in order to interact,
a wave pair must have intrinsic phase speeds of opposed sign. This is shown in Ref. [15] as being
equivalent to the Rayleigh theorem.

Effects of z9. For zo = 0, the flow and the Holmboe instability are symmetric, in the sense that the
distances between both vorticity waves and the density interface are equal. Both Holmboe waves
are thus equally unstable and propagate with equal and opposite phase speeds. Mathematically, the
corresponding eigenvalues are complex conjugates of each other. When zy < 0, this symmetry is
broken; the left-going wave (“H;”’) becomes slower, of longer wavelength, and more unstable, while
the right-going wave (“H,””) becomes faster, of shorter wavelength, and more weakly unstable (and
vice versa, there is a perfect symmetry in the case zyg > 0 by swapping H, and H)).

III. MOST UNSTABLE MODE: PRELIMINARY OBSERVATIONS

We now solve numerically the fully 2D generalized eigenvalue problem, Eq. (6), with confine-
ment in both the crosswise and spanwise directions. We choose a Poiseuille spanwise profile M (y) =
M,(y), and parameters (Re, Sc, R, 29, 0) = (440, 700, (1/0.047)/2, —0.22, 5°) (as in Ref. [12]),
and three different aspect ratios B = [1, 3, 5]. The corresponding 1D (spanwise-invariant) problem
is also solved for comparison (it can be viewed as the limit B — o0). It is not clear at this stage
whether this 1D mode will be more unstable than 2D modes, since the duct walls create transverse
shear in their vicinity (i.e., crosswise vorticity w, = d,U), whose effect is, as yet, unknown.

The dispersion relations of the most unstable mode of the 2D spectrum are plotted with solid
lines for k = [0, 4.5] in Fig. 3 for various B and Ri,. For comparison, the 1D case (with B — 00)
is plotted with a dot-dashed line. Note that the most unstable mode (shown here with solid lines)
has no reason to be the only unstable mode for a given k. In Fig. 3(a), the second most unstable
unstratified mode is plotted with a dashed line for comparison for the case B = 1. Furthermore, in
the 1D stratified problem, we generally have two unstable H modes, easily distinguishable by the
sign of the phase speed. In the 2D problem, as B increases, we also find an increasing number of
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FIG. 3. Dispersion relations of the most unstable mode of the spectrum. The left column shows the growth
rate o,, and the right column shows the frequency o;. We chose a Poiseuille spanwise profile M, four different
aspect ratios B, and three different Ri, (rows). Solid and dashed lines stand for the 2D problem and the lighter
shade of grey corresponds to higher B in the set B = [1, 3, 5]. Dash-dotted lines mark the 1D problem (B —
00). A marker, which is different for each B, indicates the maximum growth rate (k = k,,).
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unstable modes with similar phase speeds; however, we defer this analysis to Sec. IV in order to
first focus on the most unstable mode here.

A. Kelvin-Helmholtz to Holmboe transition

Figure 3 shows the following transitions between KH and H modes:

(i) AtRi, = 0 [Figs. 3(a) and 3(b)], the solid lines correspond to a KH mode, while the dashed
line (second most unstable mode) corresponds to a fully 3D mode, which exists at B =1 and
peaks at k &~ 0.6. To the authors’ knowledge, this mode of instability is yet unclassified, and its
characterization is deferred to Sec. V. Both the KH mode and this fully 3D mode have zero phase
speed.

(i) At Ri, = 0.25 [Figs. 3(c) and 3(d)], the dispersion relation corresponds to an H; mode
(Holmboe traveling left). As shown in Ref. [10], the frontier between KH and H modes at
intermediate Ri, is blurred as soon as zy # 0, but we believe that Ri, = 0.25 is sufficiently large for
Holmboe modes to dominate unambiguously. As we choose a relatively strong negative asymmetry
z0 = —0.22, the H, mode (traveling right) is absent (i.e., stable), just as in the 1D problem.

(iii) At Rip, = 1 [Figs. 3(e) and 3(f)], the previous H; mode remains. We also note the barely
visible existence of a very weakly unstable 1D mode for k &~ 0—0.2 [also barely visible in Fig. 3(c)],
related to the nonzero tilting angle effect 8 # 0, the analysis of which is beyond the scope of this
paper.

We now discuss the effect of spanwise confinement on the dispersion relations. In the present
temporal stability analysis (k € R and 0 € C), both KH and H modes are stabilized by the spanwise
confinement: values of o, monotonically decrease below their 1D upper bounds for all wavenumbers
k as B decreases. This stabilizing effect is more pronounced at small B. In this process, the most
unstable wavenumber k,, is approximately conserved, or perhaps very slightly decreased.

Note that the stabilizing effect of the sidewalls is in accordance with the results shown in
Refs. [16—-18]. These three studies establish the linear stability of an unstratified pressure-driven flow
through a rectangular duct, namely, a two-dimensional equivalent to the canonical plane Poiseuille
flow. The analytical work Ref. [16] considers the wide aspect ratio B > 1 limit, and performs
a multiple asymptotic expansion based on the small parameter B~!. In this asymptotic regime,
a decrease in B leads to an increase in the critical Reynolds number from the one-dimensional
prediction Re., = 5772.22. This conclusion is qualitatively supported by the numerically oriented
work [17,18], that does not assume any particular regime for B. Physically, this stabilization was
attributed in Ref. [16] to a finite-Re effect, more precisely to the presence of spanwise boundary
curvature in the base flow introduced by the sidewalls. Such physical interpretation remains to be
verified in our case, as now attempted in Sec. III C.

B. Convective to absolute instability transition

Our temporal stability analysis has implications on the spatiotemporal properties of these flows.
With increasing confinement (decreasing B), longer waves (traveling left) are sped up, evidenced
by the o; curves being shifted up at low & in Figs. 3(b), 3(d), and 3(f). The shortest waves, on the
other hand, are slowed down, presumably because they encounter more significant viscous effects.
An interesting consequence of this selective speed up and slow down is that the group velocity of
the unstable wave-packet centroid, defined as

d(fi
dk

flips its sign as B is reduced from oo to 0. This means that there exists a value of B such that the
wave-packet centroid is static.

For example at Ri, = 0.25 [Fig. 3(d)], the slope at the marker do;/dk(k,,) vanishes somewhere
between B = 3 and B = 1. In the meantime, it is clear in Fig. 3(c) that the flow remains unstable.
This implies that, for the chosen set of parameters, confinement effectively renders the flow

Vin = ———(km),
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FIG. 4. Stabilizing effects of the aspect ratio B, spanwise profile M(y), and Re. (a) Relative error between
the 1D and 2D most unstable growth rate evaluated at the most unstable 1D wavenumber k!P ~ 1.88. Three
different spanwise profiles and two different Re are chosen, all for Ri, = 1. A circle symbol is placed at the
threshold aspect ratio B% where the error is E, = 5%; (b) variation of this threshold aspect ratio B% with Rij,.

absolutely unstable, since an unstable wave packet centered in V,, = 0 necessarily corresponds to
an absolute instability. For Ri, = 0.25, where the derivative is always of a small amplitude, the H;
wave is very likely to be absolute for all the B shown. However, for Ri, = 1, it may be convective
for B = 5, whereas it is certainly absolute for some B € [1, 3]. In this latter case, we conclude that
spanwise confinement would destabilize the flow in a spatiotemporal sense. A rigorous saddle-point
[19-23] or impulse response [24-27] approach would be interesting in future work as discussed
further in Sec. VL.

C. Stabilization by sidewalls and base flows

We previously attributed the stabilizing influence of confinement to a finite-Re effect. To inves-
tigate this further, we analyze separately the effects of viscosity on (i) the base flow and (ii) the
perturbations. For case (i) we keep Re = 440 but switch the spanwise profile from M,(y) to M5 ((y)
and M5(y) (decreasing the boundary layer thickness; see Fig. 2). For case (ii) we keep M (y) = M, (y)
but double Re to Re = 880.

To quantify the (temporally) stabilizing effect of spanwise confinement, we define E, as the
relative difference between the 1D most unstable eigenvalue o,)° = o 'P(k!P) and the 2D eigenvalue
evaluated at the same (1D most unstable) wavenumber o (k,lnD):

— o (k" B)|

m

o]

1D
£, = 1%

Choosing o (k!P) instead of o, allows us to avoid solving the 2D eigenvalue problem for several k
at each B (in order to find k,,). In addition, we are interested in the limit B — oo where it is clear
in Figs. 3(a), 3(c), and 3(e) that kP becomes an excellent approximation of the 2D most unstable
wavenumber k&, for B >> 1 (already for B = 3, and even more so at the strong stratification Ri, = 1).

In Fig. 4(a) we therefore plot E,(B) (in percentage terms) in the four cases considered, setting
Ri, = 1. Only differences greater than E, > 5% are shown since lower values required computa-
tionally prohibitive B values. First, we see that, for a given Re = 440, difference curves for the
tanh profiles M, are significantly lower than for the Poiseuille profile M, and even more so for
larger values of y. In other words, base flows with thinner boundary layers yield growth rates
o, that are less affected (in the specific sense of being less stabilized) by sidewall confinement.
Interpreting the 1D problem as an unbounded and constant M(y) = 1, it appears natural indeed
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to expect convergence of ¢ for a base flow that resembles M(y) = 1 over the longest y interval,
which is here Ms(y) (followed by M, |, and finally M)). Interestingly, this also suggests that in
these stratified shear instabilities, the spanwise boundary layers have a pure stabilizing effect. In
broad terms, the boundary layer structure simply decreases the amount of kinetic energy available
from the base flow to feed the instability, without introducing a viscous instability mechanism (e.g.,
Tollmien-Schlichting waves), at least at the values of Re considered therein.

Second, we observe in Fig. 4(a) that both dash-dotted lines for Re = 440 and 880 almost collapse
on each other. That indicates that, when viscous diffusion affects the perturbation alone, its impact
on the convergence towards the 1D problem is very weak. We conclude that if viscous effects have
indeed generally a strong damping impact on stability properties, it is most significantly through
their indirect effect on the base flow rather than through their direct effect on 