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We consider the influence of transverse confinement on the instability properties of
velocity and density distributions reminiscent of those pertaining to exchange flows in
stratified inclined ducts, such as the recent experiment of Lefauve et al. [J. Fluid Mech.
848, 508 (2018)]. Using a normal mode streamwise and temporal expansion for flows in
ducts with various aspect ratios B and nontrivial transverse velocity profiles, we calculate
two-dimensional (2D) dispersion relations with associated eigenfunctions varying in the
“crosswise” direction, in which the density varies, and the spanwise direction, both normal
to the duct walls and to the flow direction. We also compare these 2D dispersion relations
to the so-called one-dimensional (1D) dispersion relations obtained for spanwise invariant
perturbations, for different aspect ratios B and bulk Richardson numbers Rib. In this
limited parameter space, the presence of lateral walls has a stabilizing effect, in that the
1D growth-rate predictions are almost systematically an upper bound to the 2D growth
rates, which in turn decrease monotonically as lateral walls are brought together with
increased spanwise confinement (B → 0). Furthermore, accounting for spanwise-varying
perturbations results in a plethora of unstable modes, the number of which increases as
the aspect ratio is increased. These modes present an odd-even regularity in their spatial
structures, which is rationalized by comparison to the so-called one-dimensional oblique
dispersion relation obtained for oblique waves, characterized by a continuously varying
spanwise wavenumber in addition to the streamwise wavenumber. Finally, we show that
in most cases, the most unstable 2D mode is the one that oscillates the least in the
spanwise direction, as a consequence of viscous damping. However, in a limited region
of the parameter space and in the absence of stratification, we show that a secondary
mode with a more complex “twisted” structure dominated by crosswise vorticity becomes
more unstable than the least oscillating Kelvin-Helmholtz mode associated with spanwise
vorticity.

DOI: 10.1103/PhysRevFluids.6.103901

I. INTRODUCTION

Flows in the natural environment (such as in the atmosphere or ocean) are often stably stratified
in the vertical, with the horizontally averaged density decreasing with height. Such environmental
flows are also often characterized by a background velocity distribution that decreases with height,
resulting in vertical shear. This combined effect of buoyancy and shear results in a large variety
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of interesting dynamical behaviors exhibited by stratified shear flows. An important ingredient
influencing such behaviors is the spatial confinement, inherent to many geophysical flows such
as valleys, estuaries [1], submarine canyons, straits, or deep ocean trenches.

Perhaps the most classical example of this dynamical behavior is the overturning Kelvin-
Helmholtz instability (perhaps more appropriately called a Rayleigh instability when the region of
inflectional shear has a finite depth) as well as so-called Holmboe instabilities, typically associated
with relatively “sharp” density gradients, which all contribute to the mixing and transport of heat,
salt, or indeed various pollutants. In the Kelvin-Helmholtz instability, a single instability mode
appears, traveling at the mean velocity of the fluid layer, which can grow into an array of elliptical
vortical billows, that in turn overturn and smear out the density interface. In contrast, the Holmboe
instability gives rise to propagating modes, which are associated (at finite amplitude) with vortices
displaced from the density interface, which typically survives the ensuing scouring motion.

The Holmboe instability has attracted in recent years a large variety of numerical and ex-
perimental studies. Direct numerical simulations (DNSs) have enabled a thorough description of
nonlinear saturation and mixing mechanisms [2–7]. Laboratory experiments have been conducted
in salt-stratified exchange flows that also investigate various aspects of this instability [8–11].
In particular, Ref. [12] investigates the laboratory-scale realization of the Holmboe instability. A
sustained stratified shear flow is generated in the laboratory by exchange flow through an inclined
square duct, connecting two reservoirs filled with fluids of different densities. The duct confines the
flow in the “crosswise” direction (slightly tilted from the vertical) along which it is stratified, as well
as in the spanwise direction.

In Ref. [12], a three-dimensional, nonlinear, and asymmetric Holmboe wave (in this context
the finite amplitude manifestation of the instability) was observed and characterized in detail
using three-dimensional, volumetric measurements of the velocity and density fields. A tem-
poral local linear stability analysis on the two-dimensional, streamwise-averaged, experimental
flow was also performed. Three-dimensional perturbations were sought, having two-dimensional,
cross-sectionally confined eigenfunctions and a streamwise normal mode expansion. The matching
between the resulting most unstable eigenmode developing on the mean flow and the experimental
structure proved to be (perhaps surprisingly) excellent, validating the a posteriori linear stability
approach, where the time-averaged flow used captured the nonlinear effects of the various perturba-
tions.

Of great interest in Ref. [12] is the importance of the spanwise confinement to the dynamical
evolution of the Holmboe wave. With v and ω designating the spanwise velocity and vorticity,
respectively, they observed that the presence of lateral walls “gives rise to relatively large spanwise
gradients |∂yv|, positive in the centre of the duct and negative near the boundaries. These gradients
have a vortex stretching effect on ωy [. . .] producing negative vorticity in the centre (reinforcing the
mean shear), and positive vorticity near the boundaries (weakening the mean shear)” (p. 534). As
mentioned previously, such a strong confinement effect should also be present in many geophysical
flows. In this context, Ref. [12] also draws attention to the fact that “laboratory observations in
confined geometries are often compared to stability analyses that ignore confinement, and numerical
simulations usually impose periodic boundary conditions in the spanwise direction” (p. 540). The
extent to which properties of three-dimensional confined (in the transverse, along-crest direction)
waves are well predicted by such analyses is difficult to predict a priori, and remains an open
question. We aim to address this question here, considering a flow configuration motivated by the
experimental geometry described in Ref. [12].

To address this aim, we will proceed as follows. In Sec. II, we describe our linear two-
dimensional (2D) stability analysis and recall some fundamental results from the related literature.
In Sec. III, dispersion relations of the most unstable confined modes are presented in selected
parameter space; they are compared to classical one-dimensional (1D) (in the sense of being
spanwise invariant) predictions. In Sec. IV, we restrict ourselves to a particular wavenumber and
analyze in greater detail the unstable part of the spectrum. We compare the associated predictions
to generalized 1D predictions, allowing oblique modes. In Sec. V, we analyze in detail a specific
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FIG. 1. Schematic of our confined duct flow configuration (dimensional variables).

mode that appears actually to be destabilized by the presence of transverse walls. Finally, we draw
some relatively brief conclusions, and suggest potential further directions of research.

II. PROBLEM FORMULATION, BACKGROUND, AND OBJECTIVES

A. Formulation

1. Flow configuration and notations

The flow configuration is illustrated in Fig. 1. The streamwise (x) axis is aligned along the duct,
the spanwise (y) axis is across it, and the crosswise (z) axis is tilted at an angle θ from the true
vertical, resulting in a nonzero projection of the gravity driving the exchange flow in the streamwise
direction. The duct is assumed infinitely long in the streamwise direction to avoid end effects. The
coordinate system is centered in the middle of the duct cross section, such that −H/2 � z � H/2
and −W/2 � y � W/2, where H is the duct crosswise “height” and W the duct spanwise “width.”
The velocity field is u(x, y, z, t ) = (u, v,w), the density field is ρ(x, y, z, t ), and the pressure field is
p(x, y, z, t ). The base velocity profile U (y, z) and density profile R(z) will be specified in Sec. II A 3.

To nondimensionalize the problem we choose to scale velocities by half the total (peak-to-peak)
velocity jump in the base flow, (ũ, ṽ, w̃) = (u, v,w)/(�U/2), and lengths by half the height of the
duct, (x̃, ỹ, z̃) = (x, y, z)/(H/2), such that −1 � z̃ � 1 and −B � ỹ � B, where

B = W

H
(1)

is the duct aspect ratio; B < 1 corresponds to what we refer to as a “narrow” duct, B = 1 to a square
duct, and B > 1 corresponds to what we refer to as a wide duct. The corresponding nondimensional
advective time is t̃ = t/(H/�U ). Finally, the nondimensional density is ρ̃ = (ρ − ρ0)/(�ρ/2),
where ρ0 is the mean reference value and �ρ/2 is half the (peak-to-peak) density jump in the
density base profile.

2. Governing equations

We model the flow by the incompressible Navier-Stokes equations under the Boussinesq approx-
imation, which requires �ρ/ρ0 � 1 (valid for the experimental flow configuration of Ref. [12]);
i.e., the density difference only plays a role through the reduced gravity g′ = g�ρ/ρ0. In addition,
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the kinematic viscosity (ν) and the mass (salt) diffusivity (κm) are assumed constant. Dropping the
tildes, we obtain the following set of nondimensional governing equations:

∇ · u = 0, (2a)

∂t u + u · ∇u = −∇p + Rib(− cos θ ẑ + sin θ x̂) ρ + Re−1 �u, (2b)

∂tρ + u · ∇ρ = (Re Sc)−1 �ρ, (2c)

where the nondimensional parameters are

Re = �UH

4ν
, Rib = g�ρH

ρ0(�U )2
= g′H

(�U )2
, Sc = ν

κm
. (3)

The Reynolds number, Re, compares advective to diffusive time scales for the flow. The bulk
Richardson number, Rib, compares the potential energy of the flow to the shear-induced kinetic
energy. The Schmidt number, Sc, compares the diffusivity of momentum to the mass diffusivity.

In a linear stability analysis, we expand our variables as

u(x, t ) = (U (y, z), 0, 0) + εǔ(x, t ), |ε| � 1, (4a)

p(x, t ) = P(y, z) + ε p̌(x, t ), (4b)

ρ(x, t ) = R(z) + ερ̌(x, t ), (4c)

where x = (x, y, z), i.e., as a sum of a steady base flow and arbitrarily small perturbations. The
base flow is assumed parallel to the duct and invariant in the streamwise direction x. Expansions of
Eqs. (4a) are then plugged into Eqs. (2a), leading to linear equations for the perturbations at O(ε).
The x (and t) invariance of the base flow and infinite extent of the domain in x allow us to express
any perturbation f̌ as Fourier modes in x and t :

f̌ = f̂ (y, z) exp (ikx + σ t ) + c.c. (5)

Since we consider temporal instabilities in this paper, we set the wavenumber k ∈ R and σ ∈ C,
such that the real part of σ represents the growth rate while its imaginary part represents the
frequency.

As explained in Ref. [12], the dimensionality of the system (number of flow variables) can be
reduced at the cost of increasing its differential order. In this paper, keeping the primitive variable
formulation (û, v̂, ŵ, ρ̂, p̂) would be preferred in order to avoid fourth-order derivatives that, with
the discretization method presented later, would lead to poor matrix conditioning. However, this
leads to problematic storage requirements. Consequently, we adopted the compromise proposed
in Ref. [13]: û was eliminated, leading to at most third-order derivatives of v̂, ŵ. Rewriting the
continuity equation as û = ik−1(∂yv̂ + ∂zŵ) and plugging it into the x-momentum equation results
in the following generalized eigenvalue problem (dropping the inverted hats):

σ

⎡
⎢⎣
I

I
I

∂y ∂z

⎤
⎥⎦

⎡
⎢⎣

v

w

ρ

p

⎤
⎥⎦ =

⎡
⎢⎣
Lv Lvp

Lw Lρw Lwp

Lwρ Lρ

Lpv Lpw Lpρ Lpp

⎤
⎥⎦

⎡
⎢⎣

v

w

ρ

p

⎤
⎥⎦, (6)

where

Lv = −ikU + Re−1�,

Lvp = −∂y,

Lw = −ikU + Re−1�,

Lwρ = −Rib cos(θ ),

Lwp = −∂z,
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Lρw = −∂zR,

Lρ = −ikU + (ScRe)−1�,

Lpv = −ikU∂y + ik∂yU + Re−1(−k2∂y + ∂yyy + ∂zzy),

Lpw = −ikU∂z + ik∂zU + Re−1(−k2∂z + ∂yyz + ∂zzz ),

Lpρ = −ikRib sin(θ ),

Lpp = −k2.

Note that � is the Laplacian operator in x Fourier space, � = (−k2 + ∂zz + ∂yy), and I is the identity
operator.

The solid and impermeable duct walls were modeled by no-slip boundary conditions for veloci-
ties and no mass flux for the density:

v = w = ∂yv = ∂yρ = 0 for y = ±B, ∀z, (7a)

v = w = ∂zw = ∂zρ = 0 for z = ±1, ∀y, (7b)

where the ∂yv = ∂zw = 0 conditions result from the continuity equation (iku = −∂yv − ∂zw = 0 at
the walls).

The equations were discretized by a custom-built two-dimensional Chebyshev pseudospectral
method. Note that this method represents a nontrivial improvement in accuracy and speed upon the
finite-difference method of Ref. [12]. More details on the discretization and the numerical solution
are given in Appendix C.

3. Base flows

Our analytical base flows U (y, z) and R(z) were chosen to be both simple and realistic. For the
velocity we considered

U (y, z) = − sin(πz)M(y) for − 1 � z � 1 and − B � y � B. (8)

The spanwise modulation M(y) can take one of the two following shapes:

Mp(y) = 1 − (y/B)2, (9a)

Mγ (y) = tanh [γ (1 − (y/B)2)]

tanh γ
. (9b)

Figure 2 shows the profiles Mp, Mγ for the two different values of γ used in this paper. Both
profiles satisfy no-slip conditions at the walls. The “Poiseuille” profile Mp represents a steady, fully
developed boundary layer extending throughout the entire y domain from one wall to the other. The
“tanh” profile Mγ has a parameter γ whose increase above 1 generates increasingly flat profiles
in the midplane y = 0 and thin boundary layers at the walls. It models a flow whose spanwise
boundary layer did not have sufficient time and/or length to develop fully. (The local stability
analysis requires the Reynolds number (Re) to be sufficiently large such that streamwise variations
are on larger scales than the instability wavelength in order to remain relevant.) A fully developed
sine shape is used in z in all cases, as this paper focuses on the effect of spanwise confinement. As
a comparison, the experimental mean flow of Ref. [12] also has roughly a sine shape in z (although
slightly asymmetrically down-shifted), and our Mγ in y is an excellent approximation with a best fit
obtained for γ ≈ 2.1.

For the base density distribution, we considered the classical hyperbolic tangent R(z) =
− tanh[(z − z0)/δ]. This introduces two additional degrees of freedom: the density layer thickness
(∼2δ) and the asymmetry (or shift) parameter z0. The scaling of the sine profile, Eq. (8), sets the
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FIG. 2. Illustration of the three different spanwise profiles, M(y) = Mp(y) (black dashed), M2.1(y) (dark
gray solid), and M5(y) (light gray solid), used in the rest of the paper. The full base velocity is U (y, z) =
− sin(πz)M(y).

shear layer thickness to 1, leading to

R(z) = − tanh [2R(z − z0)] for − 1 � z � 1, (10)

where we define R = 1/(2δ) as the ratio of the shear layer thickness to the density layer thickness.

4. Approach

We are left with eight free parameters: Re, Sc, Rib, θ , z0, R, M(y), and B. By choosing their
values, and given a wavenumber k ∈ R+, all operators in Eq. (6) are made fully explicit: the
generalized eigenvalue problem can be solved numerically for both σ (k) ∈ C and its associated
eigenvector [v,w, ρ, p]. We express σ (k) = σr (k) + iσi(k) where the subscripts r and i respectively
denote the real part (growth rate) and the imaginary part. Therefore, here the phase velocity is
−σi(k)/k and the wave propagates in the positive x direction if it is positive. If σr (k) > 0 the wave
is unstable and grows as ∝ eσr t until nonlinearities come into play (see Ref. [14] for a treatment of
these nonlinearities).

The eight free parameters are not all significant when focusing on the effect of spanwise
confinement. The first key parameter for confinement is evidently the duct aspect ratio B. In addition,
we investigate the impact of viscous effects on both the base flow, by varying M(y) and γ , and
also on the perturbation dynamics, by varying Re. As the base flow is not directly dependent
on Re, both effects can be studied independently. Finally, in this paper, we also vary Rib, the
central parameter for stratified shear instabilities. Therefore, in the remainder of the paper, the
four remaining parameters will typically be set according to the experimental values of Ref. [12]:
(Sc, R, z0, θ ) = (700, (1/0.047)/2,−0.22, 5◦).

B. Summary of classical results (1D, unconfined)

Since our study focuses on the effects of spanwise confinement, comparison with a classical (one-
dimensional, unconfined, and spanwise-invariant) analysis is appropriate. In this problem, which
we refer to simply as the “1D problem,” all y dependence is removed (∂y = 0) in Eq. (6), and
the base flow is U (z) = − sin(πz). This leads to a simpler system, whose expression is given in
Appendix A. Note that by “1D” we do not mean that the spanwise direction does not exist, but that
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it is infinite and that no spanwise variations exist either for the base flow or the perturbations. This
distinction should be kept in mind in the following.

As a foundation for our analysis of spanwise confinement, we now summarize the effects of
the prominent parameters (Re, Rib) on the “1D” stability properties. This short discussion results
from supplementary 1D computations, which for the sake of brevity are not illustrated. In addition,
although fixed elsewhere, the effect of the parameter z0 (quantifying the offset between the density
and velocity base profiles) on the ‘1D stability properties is briefly presented as well.

Effects of Re. The growth rates σr increase monotonically and relatively uniformly with Re, until
Re ≈ 1000, where this effect tends to saturate.

Effects of Rib. When the flow is unstratified, with Rib = 0, the flow is only subject to a “pure”
Kelvin-Helmholtz (denoted KH) instability. As Rib increases, the KH mode is progressively
weakened (i.e., σr decreases) and eventually suppressed (σr = 0), since, physically speaking, too
much potential energy is required to allow the rolling up of the shear layer, and hence the density
stratification. At Rib ≈ 0.125 the flow then becomes subject to the inherently stratified Holmboe
instability (denoted H), which is characterized at finite amplitude by propagating waves localized at
the density interface (z = z0), which generally counterpropagate. The growth rate of the Holmboe
instability initially increases with Rib, up to a certain value, before σr starts decreasing again. The
most unstable wavenumber k increases monotonically with Rib, since, in physical terms, longer
waves require too much potential energy to allow instability. A physical mechanism based on
wave interaction is now commonly proposed to explain the KH and H instabilities, as exhaustively
reviewed in Ref. [15], although the underlying arguments date back to Taylor’s Adams Prize essay
in 1915. Using a broken-line profile model for the shear layer and a localized density jump, the KH
instability can be interpreted as the interaction between the two counterpropagating vorticity waves
localized at and “riding” their respective vorticity interfaces. In contrast, the H instability appears
as an interaction between one of the two vorticity waves, with one of the two gravity waves, that
both “ride” the density interface. Discrimination is then made by noticing that, in order to interact,
a wave pair must have intrinsic phase speeds of opposed sign. This is shown in Ref. [15] as being
equivalent to the Rayleigh theorem.

Effects of z0. For z0 = 0, the flow and the Holmboe instability are symmetric, in the sense that the
distances between both vorticity waves and the density interface are equal. Both Holmboe waves
are thus equally unstable and propagate with equal and opposite phase speeds. Mathematically, the
corresponding eigenvalues are complex conjugates of each other. When z0 < 0, this symmetry is
broken; the left-going wave (“Hl”) becomes slower, of longer wavelength, and more unstable, while
the right-going wave (“Hr”) becomes faster, of shorter wavelength, and more weakly unstable (and
vice versa, there is a perfect symmetry in the case z0 > 0 by swapping Hr and Hl ).

III. MOST UNSTABLE MODE: PRELIMINARY OBSERVATIONS

We now solve numerically the fully 2D generalized eigenvalue problem, Eq. (6), with confine-
ment in both the crosswise and spanwise directions. We choose a Poiseuille spanwise profile M(y) =
Mp(y), and parameters (Re, Sc, R, z0, θ ) = (440, 700, (1/0.047)/2,−0.22, 5◦) (as in Ref. [12]),
and three different aspect ratios B = [1, 3, 5]. The corresponding 1D (spanwise-invariant) problem
is also solved for comparison (it can be viewed as the limit B → ∞). It is not clear at this stage
whether this 1D mode will be more unstable than 2D modes, since the duct walls create transverse
shear in their vicinity (i.e., crosswise vorticity ωz = ∂yU ), whose effect is, as yet, unknown.

The dispersion relations of the most unstable mode of the 2D spectrum are plotted with solid
lines for k = [0, 4.5] in Fig. 3 for various B and Rib. For comparison, the 1D case (with B → ∞)
is plotted with a dot-dashed line. Note that the most unstable mode (shown here with solid lines)
has no reason to be the only unstable mode for a given k. In Fig. 3(a), the second most unstable
unstratified mode is plotted with a dashed line for comparison for the case B = 1. Furthermore, in
the 1D stratified problem, we generally have two unstable H modes, easily distinguishable by the
sign of the phase speed. In the 2D problem, as B increases, we also find an increasing number of

103901-7



YVES-MARIE DUCIMETIÈRE et al.

FIG. 3. Dispersion relations of the most unstable mode of the spectrum. The left column shows the growth
rate σr , and the right column shows the frequency σi. We chose a Poiseuille spanwise profile Mp, four different
aspect ratios B, and three different Rib (rows). Solid and dashed lines stand for the 2D problem and the lighter
shade of grey corresponds to higher B in the set B = [1, 3, 5]. Dash-dotted lines mark the 1D problem (B →
∞). A marker, which is different for each B, indicates the maximum growth rate (k = km).
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unstable modes with similar phase speeds; however, we defer this analysis to Sec. IV in order to
first focus on the most unstable mode here.

A. Kelvin-Helmholtz to Holmboe transition

Figure 3 shows the following transitions between KH and H modes:
(i) At Rib = 0 [Figs. 3(a) and 3(b)], the solid lines correspond to a KH mode, while the dashed

line (second most unstable mode) corresponds to a fully 3D mode, which exists at B = 1 and
peaks at k ≈ 0.6. To the authors’ knowledge, this mode of instability is yet unclassified, and its
characterization is deferred to Sec. V. Both the KH mode and this fully 3D mode have zero phase
speed.

(ii) At Rib = 0.25 [Figs. 3(c) and 3(d)], the dispersion relation corresponds to an Hl mode
(Holmboe traveling left). As shown in Ref. [10], the frontier between KH and H modes at
intermediate Rib is blurred as soon as z0 �= 0, but we believe that Rib = 0.25 is sufficiently large for
Holmboe modes to dominate unambiguously. As we choose a relatively strong negative asymmetry
z0 = −0.22, the Hr mode (traveling right) is absent (i.e., stable), just as in the 1D problem.

(iii) At Rib = 1 [Figs. 3(e) and 3(f)], the previous Hl mode remains. We also note the barely
visible existence of a very weakly unstable 1D mode for k ≈ 0−0.2 [also barely visible in Fig. 3(c)],
related to the nonzero tilting angle effect θ �= 0, the analysis of which is beyond the scope of this
paper.

We now discuss the effect of spanwise confinement on the dispersion relations. In the present
temporal stability analysis (k ∈ R and σ ∈ C), both KH and H modes are stabilized by the spanwise
confinement: values of σr monotonically decrease below their 1D upper bounds for all wavenumbers
k as B decreases. This stabilizing effect is more pronounced at small B. In this process, the most
unstable wavenumber km is approximately conserved, or perhaps very slightly decreased.

Note that the stabilizing effect of the sidewalls is in accordance with the results shown in
Refs. [16–18]. These three studies establish the linear stability of an unstratified pressure-driven flow
through a rectangular duct, namely, a two-dimensional equivalent to the canonical plane Poiseuille
flow. The analytical work Ref. [16] considers the wide aspect ratio B  1 limit, and performs
a multiple asymptotic expansion based on the small parameter B−1. In this asymptotic regime,
a decrease in B leads to an increase in the critical Reynolds number from the one-dimensional
prediction Recr = 5772.22. This conclusion is qualitatively supported by the numerically oriented
work [17,18], that does not assume any particular regime for B. Physically, this stabilization was
attributed in Ref. [16] to a finite-Re effect, more precisely to the presence of spanwise boundary
curvature in the base flow introduced by the sidewalls. Such physical interpretation remains to be
verified in our case, as now attempted in Sec. III C.

B. Convective to absolute instability transition

Our temporal stability analysis has implications on the spatiotemporal properties of these flows.
With increasing confinement (decreasing B), longer waves (traveling left) are sped up, evidenced
by the σi curves being shifted up at low k in Figs. 3(b), 3(d), and 3(f). The shortest waves, on the
other hand, are slowed down, presumably because they encounter more significant viscous effects.
An interesting consequence of this selective speed up and slow down is that the group velocity of
the unstable wave-packet centroid, defined as

Vm = −dσi

dk
(km),

flips its sign as B is reduced from ∞ to 0. This means that there exists a value of B such that the
wave-packet centroid is static.

For example at Rib = 0.25 [Fig. 3(d)], the slope at the marker dσi/dk(km) vanishes somewhere
between B = 3 and B = 1. In the meantime, it is clear in Fig. 3(c) that the flow remains unstable.
This implies that, for the chosen set of parameters, confinement effectively renders the flow
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FIG. 4. Stabilizing effects of the aspect ratio B, spanwise profile M(y), and Re. (a) Relative error between
the 1D and 2D most unstable growth rate evaluated at the most unstable 1D wavenumber k1D

m ≈ 1.88. Three
different spanwise profiles and two different Re are chosen, all for Rib = 1. A circle symbol is placed at the
threshold aspect ratio B5% where the error is Er = 5%; (b) variation of this threshold aspect ratio B5% with Rib.

absolutely unstable, since an unstable wave packet centered in Vm = 0 necessarily corresponds to
an absolute instability. For Rib = 0.25, where the derivative is always of a small amplitude, the Hl

wave is very likely to be absolute for all the B shown. However, for Rib = 1, it may be convective
for B = 5, whereas it is certainly absolute for some B ∈ [1, 3]. In this latter case, we conclude that
spanwise confinement would destabilize the flow in a spatiotemporal sense. A rigorous saddle-point
[19–23] or impulse response [24–27] approach would be interesting in future work as discussed
further in Sec. VI.

C. Stabilization by sidewalls and base flows

We previously attributed the stabilizing influence of confinement to a finite-Re effect. To inves-
tigate this further, we analyze separately the effects of viscosity on (i) the base flow and (ii) the
perturbations. For case (i) we keep Re = 440 but switch the spanwise profile from Mp(y) to M2.1(y)
and M5(y) (decreasing the boundary layer thickness; see Fig. 2). For case (ii) we keep M(y) = Mp(y)
but double Re to Re = 880.

To quantify the (temporally) stabilizing effect of spanwise confinement, we define Er as the
relative difference between the 1D most unstable eigenvalue σ 1D

m = σ 1D(k1D
m ) and the 2D eigenvalue

evaluated at the same (1D most unstable) wavenumber σ (k1D
m ):

Er (B) =
∥∥σ 1D

m − σ
(
k1D

m ; B
)∥∥∥∥σ 1D

m

∥∥ .

Choosing σ (k1D
m ) instead of σm allows us to avoid solving the 2D eigenvalue problem for several k

at each B (in order to find km). In addition, we are interested in the limit B → ∞ where it is clear
in Figs. 3(a), 3(c), and 3(e) that k1D

m becomes an excellent approximation of the 2D most unstable
wavenumber km for B  1 (already for B = 3, and even more so at the strong stratification Rib = 1).

In Fig. 4(a) we therefore plot Er (B) (in percentage terms) in the four cases considered, setting
Rib = 1. Only differences greater than Er � 5% are shown since lower values required computa-
tionally prohibitive B values. First, we see that, for a given Re = 440, difference curves for the
tanh profiles Mγ are significantly lower than for the Poiseuille profile Mp, and even more so for
larger values of γ . In other words, base flows with thinner boundary layers yield growth rates
σr that are less affected (in the specific sense of being less stabilized) by sidewall confinement.
Interpreting the 1D problem as an unbounded and constant M(y) = 1, it appears natural indeed
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to expect convergence of σ for a base flow that resembles M(y) = 1 over the longest y interval,
which is here M5(y) (followed by M2.1, and finally Mp). Interestingly, this also suggests that in
these stratified shear instabilities, the spanwise boundary layers have a pure stabilizing effect. In
broad terms, the boundary layer structure simply decreases the amount of kinetic energy available
from the base flow to feed the instability, without introducing a viscous instability mechanism (e.g.,
Tollmien-Schlichting waves), at least at the values of Re considered therein.

Second, we observe in Fig. 4(a) that both dash-dotted lines for Re = 440 and 880 almost collapse
on each other. That indicates that, when viscous diffusion affects the perturbation alone, its impact
on the convergence towards the 1D problem is very weak. We conclude that if viscous effects have
indeed generally a strong damping impact on stability properties, it is most significantly through
their indirect effect on the base flow rather than through their direct effect on the perturbations
dynamics alone.

We are now interested to know if the previous observations remain true for other values of Rib.
Therefore in Fig. 4(b), we focus on the evolution with Rib of the threshold aspect ratio B5%, for
which the error is Er (B5%) = 5% [highlighted by a circle on the x axis of Fig. 4(a), where we set
Rib = 1]. We see that our conclusions for Rib = 1 remain valid for other values of Rib ∈ [0, 1.5]. We
further learn from Fig. 4(b) that this threshold aspect ratio is reduced with increasing stratification:
the pure KH mode at Rib = 0 is the most affected by the stabilizing influence of boundary layers,
whereas the H mode at high Rib appears to easily match its 1D counterpart; i.e., it is least affected
by confinement. This might be linked to the fact that higher Rib are linked to shorter wavelengths
which naturally tend to be less affected by the relatively more distant walls. In the next section we
will see that confinement heavily affects Holmboe modes in more subtle ways, through the creation
of spanwise harmonics.

IV. SPANWISE HARMONIC HOLMBOE MODES

A. Eigenvalue spectra and oblique mode analysis

Heretofore, given a wavenumber k, only the most unstable mode of the eigenvalue spectrum was
represented in Fig. 3 (and used in Fig. 4). Whereas this mode is unique in the 1D problem as a
consequence of the strong asymmetry (quantified by z0) that stabilizes the opposite Holmboe wave,
it has no reason to be in the 2D problem. In fact, there exists a fairly important number of unstable
modes besides the most unstable one; they are now shown in Fig. 5. In the left column, we show
the unstable part of the spectrum (black squares) for a Poiseuille spanwise base flow [Re = 440,
Rib = 0.25, and B = 3, 5 corresponding to Figs. 3(c) and 3(d)]. In the right column, we replace
Mp(y) by M5(y). The 1D eigenvalue is systematically plotted (with black stars) for comparison. To
understand the existence of these multiple unstable modes, we consider and superimpose (shown
with a red curve) the dispersion relation of oblique modes, found by taking a spanwise independent
flow U (z) = − sin(πz) [in other words, M(y) = 1], and expanding any perturbations field f , as

f̂ (y, z) = f (z) exp (iβy), (11)

where β ∈ R is the spanwise wavenumber. A single mode (corresponding to a choice of k, β) is a
propagating wave whose front is perpendicular to (kx̂ + βŷ). It is clear that the eigenvalues σr + iσi

are now also functions of β. As β ∈ R, all wavelengths are allowed for the perturbations, so that
this description implicitly assumes that the spanwise direction is unbounded. It also requires the
coefficients of the equations to be independent on y, so we must have, as introduced earlier, a
spanwise-invariant base flow, i.e., M(y) = 1. This problem is therefore similar to the 1D one, except
that perturbations are allowed to vary in y. In the rest of the paper, this problem will thus be referred
to as the 1D-O problem (“O” for oblique). It is not a priori clear whether the β = 0 (i.e., the 1D)
eigenvalue is the most unstable one among all possible β. A stratified generalization of Squire’s
theorem [28], presented in Ref. [29], states that a 1D-O mode (β �= 0) has a smaller growth rate
σr than a corresponding 1D mode (β = 0) having lower Re and a larger Rib. However, since H
modes generally have σr increasing with Rib, this theorem is inconclusive in the present context and
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FIG. 5. Unstable part of the spectra for Re = 440, Rib = 0.25, and k = k1D
m = 1.88. We show two different

aspect ratio flows B = 3, 5 and two different M = Mp, M5. The black star symbol marks the 1D eigenvalue,
the black squares are the 2D eigenvalues, and the red line is the 1D-O dispersion relation as a function of
the spanwise wavenumber β. The latter is the same for the four panels as it does not consider the spanwise
variations of the base flow. As a consequence of the strongly negative z0, note that all eigenvalues are in the
σi > 0 half plane.

does not preclude the dominance of 1D-O modes over 1D modes (for more details see Sec. 2.3.3 of
Ref. [12]).

Let us now observe the 2D, 1D-O, and 1D unstable spectra, focusing first on the left column
of Fig. 5 (M = Mp). At B = 3 [Fig. 5(a)], four 2D eigenvalues are unstable. As the aspect ratio
is increased to B = 5 [Fig. 5(c)], these eigenvalues approach the 1D value and three new distinct
unstable 2D eigenvalues appear by crossing the real axis, bringing the total to seven eigenvalues
“originating” from the 1D eigenvalue. As a matter of fact, the 1D eigenvalue is always more unstable
than the 2D ones. Oblique modes (red line) of course match the 1D eigenvalue for β = 0; as β

increases, they draw a “comma” shape in the complex plane down to a cutoff β = βc where they
cross the real axis and become stable. Note that the 1D-O eigenvalues, just as the 2D eigenvalues,
never become more unstable than the 1D eigenvalue: the instability does not take “advantage” of
the wave-front rotation, as it does for instance in Tollmien-Schlichting instability [30]. Oblique
modes, and their associated spanwise curvature, simply undergo stronger viscous damping as β is
increased. Indeed, the Laplacian term Re−1(−k2 + ∂zz + ∂yy) becomes Re−1(−k2 + ∂zz − β2) under
the oblique mode expansion (see Appendix B); thus, larger β give more weight to this diffusive term.
Consequently, βc is primarily determined by the value of Re; for the parameters of Fig. 5, we obtain
βc ≈ 2.9.
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FIG. 6. Sliced views of ρ, u, v, w in the x-y plane of the three most unstable 2D eigenmodes of
Fig. 5(b) (H1, H2, and H3, from left to right, ordered by decreasing growth rates). The spanwise profile is
M(y) = M5(y), and the parameters are Re = 440, Rib = 0.25, B = 3, k = k1D

m = 1.88.

Focusing now on the right column of Fig. 5 (M = M5), we observe exactly the same process as
B is increased, except that 2D unstable modes become more numerous [five in Fig. 5(b) vs four
in Fig. 5(a), and eight in Fig. 5(d) vs seven in Fig. 5(c)], and more tightly packed around the 1D
one. More interestingly, however, the 2D eigenvalues fit much better the oblique mode dispersion
relation, in particular at B = 5 [Fig. 5(d)], where the black squares appear to be nothing else than a
discretized version of the red curve, with only a slight error for the more stable modes.

Note that an emergence from the 1D eigenvalue of an increasing number of inherently 2D
eigenvalues as the aspect ratio is varied was already observed in Ref. [18] for Poiseuille flow.
However, to the authors’ knowledge, a quantitative comparison with the oblique dispersion relation
is novel.

103901-13



YVES-MARIE DUCIMETIÈRE et al.

FIG. 7. Sliced view on the x-z plane of the three 2D most unstable eigenmodes for k = k1D
m = 1.88. The

1D most unstable mode is added at the fourth column. Modes from left to right between the first and the
third columns are H1, H2, and H3, as ordered in decreasing order of growth rates. M(y) = M5(y), Re = 440,
Rib = 0.25, and B = 3.

B. Spatial structures and symmetries

To understand this phenomenon better, we show in Fig. 6 the spatial structure of the three most
unstable eigenmodes of Fig. 5(b), labeled H1, H2, and H3, by decreasing growth rates. Each column
shows an x-y slice of the eigenmode (in the plane z = 0 for velocities, and z = z0 for the density).
Although insufficient for a phenomenological understanding of the instability, this visualization
allows us to compare the spanwise structure of eigenmodes with each other.

Two different types of spanwise symmetries are revealed. The first symmetry, that we call S1, can
be characterized as (even, odd, even, even) for (u, v,w, ρ), respectively. Namely, the field u(y, z) is
even around the axis y = 0, such that u(−y, z) = u(y, z); meanwhile, the field v(y, z) is odd around
the axis y = 0, such that v(−y, z) = −v(y, z), etc. The second symmetry, S2, is its opposite: (odd,
even, odd, odd). In both cases, v has a different symmetry from all other perturbation components.
It can be checked that these two symmetries are indeed allowed by Eq. (6) as long as both U and
R are even in y. We complete Fig. 6 with Fig. 7, showing x-z slices of the same three modes in the
orthogonal plane y = 0. In the last column, we add the 1D mode Hl for comparison. Simultaneous
observation of Figs. 6 and 7 allow us to draw the following conclusions.

(1) The most unstable 2D mode, H1, has symmetry S1. It appears to be a simple “2D extension”
of the 1D mode for ρ, u, and w. Indeed, its x-z structure at y = 0 is extremely similar to the 1D
structure, and we remember that symmetry S1 guarantees that v = 0 everywhere on this plane (as in
the 1D case). In addition, no particular spanwise variation is observed for ρ, u, and w (Fig. 6) other
than those required to match the boundary conditions at the walls. This mode should be essentially
seen as a two-dimensional version of Hl , and is identical to the confined Holmboe instability of
Ref. [12].

(2) The second most unstable eigenmode H2 has symmetry S2, of which no 1D equivalent exists
(compare the second and fourth columns of Fig. 7). The density interface is now also wavy in
the spanwise direction. Structurally, this H2 mode should be seen as a ‘harmonic in y” of the
first mode H1. Indeed u,w, ρ have a spanwise “periodicity” of 2B (the quotes indicate that a true
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FIG. 8. Growth rates of oblique modes as a function of β (red line), and of 2D modes at k = k1D
m = 1.88

as a function of both λ
ρ,u,w
i (open circles) and λv

i (solid circles). Parameters are M(y) = M5(y), Re = 440, and
Rib = 0.25. The 1D-O dispersion relation in β predicts the discrete 2D spanwise harmonics increasingly well
as B is increased and M5(y) → 1 over most of the domain.

periodicity clearly cannot be satisfied because of the boundary conditions), in comparison to 4B in
H1; furthermore, v is now (4B/3) periodic compared to being (2B) periodic in H1.

(3) The third most unstable eigenmode H3 goes back to symmetry S1, and is one step further in
the harmonic range. The spanwise periodicity is now (4B/3) for u,w, ρ and is B for v.

This emerging logic of alternating symmetries, as a consequence of higher-order harmonics,
extends to higher modes: the fourth most unstable mode H4 has symmetry S2, the fifth has symmetry
S1, etc. Overall, if we rank modes by decreasing order of growth rate, then the ith mode, Hi, is S1 if
i odd and S2 if i even. Spanwise “wavelengths” (the quotes again draw attention to the fact that the
shape is not purely sinusoidal) are summarized as

λ
ρ
i = λu

i = λw
i = 4B

i
for i = 1, 2, 3, (12a)

λv
i = 4B

i + 1
for i = 1, 2, 3, . . . . (12b)

It is important to note that this mode structural ordering is conserved as we change B. Because
of this “spanwise-periodic” shape of 2D modes, we now understand the (imperfect) alignment of
corresponding eigenvalues on the oblique modes dispersion relation observed in Fig. 5(b) (and other
panels). This may appear surprising since 2D modes propagate purely along x, whereas oblique
modes make an angle β with the background flow. However, it is shown in Appendix B that modes
that are periodic standing waves in y and that travel purely along the streamwise x direction satisfy
the 1D-O dispersion relation (thanks to the symmetry of the system). These modes are{

ĥ(y, z) = h̆(z) cos(βy)
v̂(y, z) = v̆(z) sin(βy)

with symmetry S1, and

{
ĥ(y, z) = h̆(z) sin(βy)
v̂(y, z) = v̆(z) cos(βy)

with symmetry S2,

where h denotes u, w, ρ, or p [the hat and the breve are simply added to distinguish these particular
mode shapes from the one arising directly from Eq. (6)]. Of course, the 2D eigenvalue spectrum
necessarily remains a discrete version of this 1D-O dispersion relation (continuous in β) since only
a few “wavelengths” satisfy the boundary conditions due to quantization.

To illustrate this point, we plot in Fig. 8 the wavelengths λ
ρ,u,w
i and λv

i of the 2D modes together
with the one predicted by the 1D-O dispersion relation, as a function of the growth rate (β vs σr

plot). For B = 3 [Fig. 8(a)] the agreement between 2D and 1D-O “wavelengths” is very good, simply
because 2D modes possess structures akin to 1D-O standing waves in y. The slight discrepancy
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between 2D and 1D-O growth rates, previously observed in Fig. 5(b), may now be explained as
follows. In the 1D-O problem, only one wavelength λ = 2π/β is predicted for a given σr , and it is
equal for all fields u, v,w, ρ. By contrast, in the 2D problem, we already reported that λv

i < λ
ρ,u,w
i .

This mismatch is an interesting consequence of the system symmetry, to which is added the no-slip
boundary conditions at ±B. To be more specific, let us first focus on H1 (the most unstable mode
in Fig. 6). The corresponding 1D-O mode would predict a v that is phase shifted by π/2 in y with
respect to all the others fields; thus, |v| would be zero in the middle of the duct and maximum at
y = ±B, violating the no-slip boundary conditions. Therefore, the 2D mode adapts by decreasing
its wavelength by the least possible amount so that the right and left lobes of v cancel at the walls. A
similar phenomenon happens in all the other unstable modes. The 2D growth rate is then determined
by a compromise between both wavelengths. Consequently, reversing the paradigm and fixing a
value of σr in Fig. 8, we can say that the 1D-O wavelength is above λv

i and below λ
ρ,u,w
i .

Last but not least, oblique modes require a y-invariant base flow M(y) = 1 whereas the tanh
2D base flows have boundary layers near the wall. This additional source of discrepancy between
2D and 1D-O modes is clearly illustrated by comparing Fig. 5(c) (B = 3) to Fig. 5(d) (B = 5): the
alignment of 2D eigenvalues on the 1D-O dispersion relation is clearly improved, and becomes
very good, by reducing the relative boundary layer thickness. Moreover, increasing B improves the
alignment and makes the 1D-O model increasingly accurate. Indeed, the difference between the u,
w, ρ, and v wavelengths tends to zero as B increases, since

1

λv
i

− 1

λ
ρ,u,w
i

= 1

4B
. (13)

Since this difference is caused by the nonmatching of boundary conditions of v at the walls, it is
logically attenuated as they are moved away. We indeed see that solid and open circles are closer to
each other in Fig. 5(d) [compared with Fig. 5(b)], and in Fig. 8(b) [compared with Fig. 8(a)].

C. Importance of spanwise harmonics at weak confinement (B → ∞)

We now address the question of higher harmonics becoming unstable, and/or even more unstable,
as B is increased. Considering Eq. (12a), the answer comes naturally: the “wavelength” of the
ith mode increases with B. Physically, the mode is stretching out as the walls are moved away.
Consequently, the “wavenumber” β2D

i = 2π/λv
i or 2π/λ

ρ,u,w
i decreases, but we saw with the 1D-O

analysis [Figs. 8(a) or 8(b)] that lower β corresponds to higher σr since such modes experience
less viscous damping. In the limit B → ∞, we expect the number of unstable modes to be infinite
since �β2D

i ∝ B−1 → 0: we can have an infinite number of i before reaching the viscous cutoff
βc. In other words, in this limit, the discrete set of 2D unstable eigenvalues becomes a continuous
spectrum, as one should expect from a Fourier transform in an infinite domain, as opposed to a
Fourier series in a bounded domain. Moreover, in this limit, the 2D unstable spectrum is expected
to become the 1D-O one if we choose M(y) = 1.

The above comments, although generally expected and relatively unsurprising, may have inter-
esting implications for linear stability analyses at large aspect ratios B → ∞. Namely, provided
the base flow is almost y invariant far from the boundaries and has no v velocity, we conclude the
following:

(1) The set of 1D-O eigenvalues for β = 2π i
4B with i ∈ Z gives an excellent prediction of the 2D

spectrum.
(ii) The 2D spectrum becomes increasingly denser; 2D unstable eigenvalues are numerous, and

the most unstable ones are very close, even though they correspond to modes with different spatial
structures. As a practical consequence, if a given spanwise eigenmode is preferentially excited (for
whatever reason), one may observe a pattern that is completely different from that predicted by the
1D analysis.
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V. “TWISTED KELVIN-HELMHOLTZ” MODE

A. Dominance of a new mode KHT at low k and Rib ≈ 0

For particular combinations of Rib, k, and B (everything else being held fixed), it may occur
that one of the previously described simple “2D extensions” of a 1D mode is not the dominant
one. The dashed lines in Fig. 3(a) (Rib = 0) show that it can indeed happen. This phenomenon
actually appears inherently unstratified, and quickly disappears as Rib increases. This “new” mode,
briefly mentioned in Sec. III, will be referred to as KHT in the following, since is actually a
“twisted” version (with dominant crosswise vorticity) of KH1, itself the 2D generalization of a
“classical” 1D KH mode. Indeed, the eigenmode KHT is shown in Figs. 9 and 10, where the most
unstable mode for B = 1 is chosen. In particular, Fig. 9 shows a qualitative 3D visualization of the
associated perturbation velocity streamlines, together with two equal and opposite isocontours of
the corresponding crosswise vorticity ωz. For comparison, Fig. 9(a) shows a similar visualization
of KH1, but with the “twisted” (i.e., rotated by a quarter turn) crosswise vorticity replaced by the
(classical) spanwise vorticity ωy of a KH mode.

The structure of KHT is composed of alternated counter-rotating vortices, contained in the region
−0.5 � z � 0.5. Streamlines are looping primarily in x-y planes, although they are slightly inclined
along x. In other words, the perturbation vorticity is “twisted” so that it is primarily directed along z,
with a slight component along x. This contrasts with KH1 (or H1), where the perturbation vorticity
is primarily along y, which corresponds to the familiar “billow” vortices in x-z planes in Fig. 9(a).

Figure 10 shows a more quantitative visualization of the KHT structure, with sliced view of ωz

and velocities on three orthogonal planes (y = 0, z = 0, x = 7.3, respectively, in the left, middle,
and right columns). From the first column of Fig. 10, it appears that isocontours of ωz(y = 0)
are fully contained in the region −0.5 � z � 0.5, where ∂zU � 0. Moreover, ωz(y = 0) reaches
a maximum amplitude exactly at z = 0, just as ∂zU (y = 0) = π cos (πz) does. Unsurprisingly, this
corresponds to the x location where v(y = 0) = 0, i.e., the center of the vortex. From the view of
ωz(z = 0) in the x-y plane, we learn that these vortices are associated with strong values of ωz(z = 0)
of opposite sign near the sidewalls. This is a consequence of the no-slip boundary conditions, which
also induce a strong viscous dissipation. The main vortices are slightly positively sloped along x,
and we observe a weak but nonzero value of w(z = 0) perfectly in phase with u(z = 0).

As we see in Figs. 9 and 10, contrary to the stratified case in Fig. 6, KHT is not a harmonic
of KH1 in the sense that the wavelength of v of the former has decreased with respect to the one
of the latter. Because the density interface does not exist at Rib = 0, the spanwise velocity has no
need to adapt to the increase in the wavelength of the density perturbation. In turn, the quantization
proposed in Eq. (12b) does not hold in this unstratified case, or indeed even in related relatively
weakly stratified cases. This wavelength decrease in v, although not in u or in w, implies that KHT

may even become more unstable than KH1 itself in weakly stratified situations.
The growth rates of KH1 and KHT are compared in the (k, B) plane in Fig. 11 (for Re =

440, Rib = 0). The left and right columns show the growth rates of KH1 and KHT , respectively.
In addition, we investigate the effect of M(y) on the stability properties of KHT : the first row shows
M(y) = M5(y) while the second row shows M(y) = Mp(y). The red line is the locus where the
growth rates of KH1 and KHT are equal; on its left, in the gray shaded area, KHT is indeed more
unstable than KH1. The black line is the most unstable growth rate σm(B) over k, and shows that
for a given aspect ratio B, the most unstable mode is always KH1 (the red curve never crosses
the black curve), as expected. However, there is a low-k range starting from k = 0 where KHT

locally dominates. Interestingly, the width of this range has a nonmonotonic evolution: it reaches
a maximum for B ≈ 1 for the Poiseuille base flow and B ≈ 1.5 for the tanh base flow. Increasing
B above this value quickly reduces the region of dominance of KHT . In other words, two effects
compete as B decreases:

(1) The first effect is that KHT “takes advantage” of confinement more than KH1. Comparing
Figs. 11(c) and 11(d), we see that as B decreases, KHT has a region below B ≈ 1.75 where σr

increases again. This leads to the creation of an “island” in the σr contours centered around B ≈ 1.4
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FIG. 9. Visualizations of the KH1 and KHT eigenmodes for B = 1 and k = 0.64 where σr (k = 0.64) ≈
0.0440, (M = Mp(y), Re = 440, Rib = 0), highlighting their different spatial structure. (a) KH1, where blue
and green surfaces are isocontours of equal and opposite values of ωy; (b) KHT , where yellow and magenta
surfaces are isocontours of equal and opposite values of ωz

and k ≈ 0.5. In the meantime, KH1 is monotonically damped, and it is precisely this divergence
in the behavior of both instabilities that leads to the enlargement of the gray shaded region where
KHT dominates. The tanh profile case behaves in a similar fashion, although the span of the KHT -
dominated region is reduced for intermediate values of B. This suggests that KHT can take advantage
of the spanwise confinement only if the induced crosswise vorticity is located at the center of the
duct (rather than at the walls), at least as long as there is enough vorticity at the center.
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FIG. 10. Some slice views of the KHT mode shown in Fig. 9. Dashed lines show the locations of the planes
in the other columns.

(2) The second effect is that KHT appears much more sensitive to viscous damping (in the
sense that was defined more precisely in Sec. III C) than KH1 does. As B further decreases,
viscous damping becomes more severe, and KHT is stabilized at a threshold B where KH1 is still
significantly unstable. The KHT -dominated region is thus shut at B ≈ 0.7–1.1 (at these values of Re
and Rib).

From these observations, the KHT mode appears to be a very delicate instability, in particular
because of its ambiguous relation to spanwise confinement. A sufficiently strong confinement can
“feed” KHT (on the condition that Re is not too low) but not without limit: eventually an exceedingly
strong confinement can suppress it (due to viscous effects).

B. Increased energy extraction by spanwise confinement

The above observations can be brought together to build an a posteriori explanation for the KHT

instability mechanism. Proceeding as in Chap. 7 of Ref. [31], we define the perturbation kinetic
energy as

Kp = 1

2

∫
S
(u2 + v2 + w2)dS, (14)

where the overbar denotes spatial averaging along x and over an instability period, and
∫

S dS =∫ 1
−1

∫ B
−B dzdy the integral over the duct cross section. By manipulating the Navier-Stokes equation

and using the boundary conditions, we obtain an evolution equation for the perturbation kinetic
energy:

dKp

dt
= −

∫
S

uw
∂U

∂z
dS −

∫
S

uv
∂U

∂y
dS − 1

Re

∫
S
‖ω‖2dS. (15)
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FIG. 11. Growth rates σr of KH1 (left column) and KHT (right column) in the (k, B) plane for Re =
440, Rib = 0. We compare M5(y) (top row) to Mp(y) (bottom row). At the left of the red line, inside the gray
shaded area KHT is more unstable than KH1. The black line is the most unstable growth rate σm(B) over k.

The last term in 1/Re stands for the viscous dissipation and can only induce loss in energy (which
does not mean that viscosity has a dissipative effect only, since it also affects u, v,w). The first two
terms represent the rate of energy transfer, from the z and y mean shear to the perturbations; they
may be positive and thus feed the instability. Given two complex fields a(y, z)

.= |â(y, z)|eiψa (y,z) and
b

.= |b̂(y, z)|eiψb(y,z) we can write

ab = 1
2 |â(y, z)||b̂(y, z)| cos [φa(y, z) − φb(y, z)]e2σr t . (16)

For t = 0, we plot in Fig. 12 the two different fields −uw∂U/∂z and −uv∂U/∂y computed by
Eq. (16): Comparing Figs. 12(a) and 12(b) immediately reveals that both mechanisms contribute to
the instability (since they both promote dKp/dt > 0, in red). However, the dominance of the term
−uw∂U/∂z is evident from the scale of the color bar. After performing the cross-section integration,
the term in ∂U/∂z in Eq. (15) is approximately 12 times larger than the one in ∂U/∂y, and is thus
primarily responsible for the growth of the instability. The interesting physical implication is that,
even if the structure of the KHT mode differs completely from the KH1 and 1D KH modes (since its
vorticity is principally along z and not along y), it is equally fed by the spanwise vorticity of the base
flow ∂U/∂z. The positiveness of [− ∫

S uw∂U/∂zdS] is ensured by that fact that uw > 0 in the whole
cross section and ∂zU < 0 such that the main shear transfers energy into the perturbation vortices.
This is a consequence of the fact that u and w, concentrated in the region −0.5 � u � 0.5, are
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FIG. 12. Energy contribution to the KHT mode shown in Fig. 9.

almost perfectly in phase. This also means that perturbation vortices are slightly positively sloped
along x, and thus feel the main shear ∂zU .

These results suggest that for a very weak stratification (Rib ≈ 0), and strong confinement (small
B), a low wavenumber mode (small k) that is intrinsically 2D can unexpectedly become more
unstable than the quasi-1D KH1 wave. This “twisted” KHT mode may be observed in practice,
but only if long waves are preferentially forced.

VI. CONCLUSIONS

In this paper we have compared confined 2D dispersion relations with 1D spanwise-invariant
ones, for different aspect ratio B and bulk Richardson numbers Rib characterizing the stratified
sheared flows in a rectangular duct. In this limited parameter space, the presence of duct walls
has a stabilizing effect except in a negligibly small region. Namely, the 1D predictions are almost
systematically an upper bound for the 2D growth rates, which decrease monotonically as the lateral
walls tighten around the flow. The natural question that arises thus concerns the threshold aspect
ratio above which the 1D prediction is relevant. We have shown that the answer is sensitive to
the precise structure of the base flow: the thinner the spanwise boundary layers, the lower this
minimal aspect ratio. Although less significant, the same conclusion regarding the influence of
increasing Rib can also be drawn. We have largely restricted ourselves to a particular Rib and
wavenumber, allowing for a more detailed analysis of the unstable part of the spectrum. In the 2D
case, a plethora of unstable modes is observed, and they proliferate as the aspect ratio is increased.
These modes present a regularity in their spatial structures, which is perhaps not really all that
surprising. Furthermore, from moderate to infinite aspect ratio, the 1D-O dispersion relation for
oblique waves seems to be very close to a continuous version of the 2D spectrum, provided the base
flow spanwise boundary layer is sufficiently thin. This link is made clear by noticing that, thanks
to the spanwise symmetry of the system, the 1D-O dispersion relation also incorporates modes that
mimic the same structural regularity as the 2D modes. Here, the quality of the 2D-1D-O alignment
is slowly improved by increasing the aspect ratio, and quickly improved by thinning the spanwise
boundary layers of the base flow. Implications of these observations are believed to be important. As
the confinement widens, the most unstable 2D modes are competing more and more tightly: a slight
external forcing on one of their particular wavelength is sufficient to make it emerge preferentially
with respect to the one predicted by the 1D analysis. Thus, even in the large aspect ratio limit, the 1D
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predictions must be taken with a lot of caution, and should be complemented by a 1D-O analysis. In
the 2D context, we expect the mode that oscillates the least in the spanwise direction to be the most
unstable one, as a consequence of viscous damping. We have finally shown that, for a very restricted
range of parameters, a mode whose spatial structure resembles a “twisted” version of KH1 (in terms
of having dominant crosswise vorticity) becomes more unstable than the classical KH1 mode. This
phenomenon has no 1D counterpart, and is shown to be inherently linked to a tight confinement from
which this mode takes advantage. Looking ahead, these results may have interesting implications
that could stimulate future research. In line with qualitative comments made in Sec. II, the evolution
of the group velocities deduced from Fig. 3 suggests a potential convective-to-absolute transition
occurring as the lateral walls are brought closer together. A rigorous saddle-point or impulse
response approach would be needed to shed light on the existence of this transition. Such an analysis
appears of particular relevance, as in practice the duct is of finite length in the streamwise direction.
Thus, it remains unclear if the structure in Ref. [12] is the product of convective instabilities reflected
at the extremities of the duct connecting with the reservoirs, or if it would remain self-sustained in an
infinite domain. Confinement may play a crucial role in such discrimination, as shown by numerous
examples in the literature for unstratified flows (for example, Refs. [23,32,33], among others). In
the 2D case, the presence of modes of comparable growth rates could lead to a very rich nonlinear
dynamics. This is particularly true considering that these modes are naturally structural harmonics
of each other. Thus, the nonlinear creation of higher harmonics of the most unstable one may be
strongly amplified and lead to powerful interactions.

APPENDIX A: FORMULATION OF 1D LINEAR STABILITY PROBLEM

The one-dimensional stability problem reduces to solving (for w and ρ)

σ

[
�

I

][
w

ρ

]
=

[
Lw Lwρ

Lρw Lρ

][
w

ρ

]
, (A1)

where

Lw = −ikU� + ik∂zzU + Re−1�2,

Lρw = −ikU + (ReSc)−1�,

Lwρ = Rib[k2 cos θ − ik sin θ∂z],

Lρ = −∂zR,

with

U (z) = − sin (πz), −1 � z � 1, (A2)

and

R(z) = − tanh (2R(z − z0)), −1 � z � 1. (A3)

APPENDIX B: FORMULATION OF 1D-OBLIQUE LINEAR STABILITY PROBLEM

This problem corresponds to Eq. (6), after the y dependence of the base flow is removed, and
after the ∂y acting on the perturbations are replaced by iβ. After factorization by v, w, ρ, and p, we
end up with the system

[σ + Uik − Re−1(−k2 + ∂zz − β2)]v = −iβp,

[σ + Uik − Re−1(−k2 + ∂zz − β2)]w = −∂z p − Rib cos(θ )ρ,

[σρ + Uik − (ScRe)−1(−k2 + ∂zz − β2)]ρ = −(∂zR)w,

[σ iβ − kUβ − Re−1(−k2iβ − iβ3 + iβ∂zz )]v

= [−σ∂z − ikU∂z + ik∂zU + Re−1(−k2∂z − β2∂z + ∂zzz )]w − k2 p − ikRib sin(θ )ρ. (B1)
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v is always multiplied by an odd power of β, when, in the meantime, ρ, w, p, and u (by continuity)
are multiplied by an even power of β. Thus, we easily show that the system is invariant under the
transformation

(σ, β, u, v,w, ρ) → (σ,−β,Cu,−Cv,Cu,Cw,Cρ), (B2)

where C ∈ C, a constant, is an unimportant consequence of the linearity of the system. Interestingly,
v must flip its sign with respect to all the others fields as β → −β. The existence of this symmetry
has an important consequence. Indeed, by linearity of the system, perturbations of the form

ĥ(y, z) = h(z)eiβy + h(z)e−iβy .= h̆(z) cos(βy),

v̂(y, z) = v(z)eiβy − v(z)e−iβy .= v̆(z) sin(βy), (B3)

and perturbations of the form

ĥ(y, z) = h(z)eiβy − h(z)e−iβy .= h̆(z) sin(βy),

v̂(y, z) = v(z)eiβy + v(z)e−iβy .= v̆(z) cos(βy), (B4)

are equally solutions (where h denotes any one of u, w, ρ, or p). In other words, they satisfy the
1D-O dispersion relation. This may appear surprising because, although these solutions are periodic
in the spanwise direction, they travel purely along the streamwise direction (standing wave), rather
than obliquely. We notice that v̆ is necessarily phase shifted by i = √−1 with respect to all the other
fields. These solutions could be made more general by adding the same constant phase shift in the
harmonic function of ĥ(y, z) and v̂(y, z).

APPENDIX C: NUMERICAL METHODS

In the following, we present the numerical methods used for the discretization and solution of the
system in Eq. (6). Since our study required us to perform a much greater number of computations
than in Ref. [12], we developed a more accurate and faster method than their finite-difference
method.

1. Discretizing the equations

Expansions. Equation (6) is discretized by a purpose-built pseudospectral Chebyshev method,
together with a crosswise mapping concentrating points at the density interface. The boundary
conditions were built directly into the basis functions, so that the eigenfunctions necessarily satisfy
the boundary conditions. The perturbation fields are expanded as

v(y, z) =
Ny−1∑
m=0

Nz−1∑
n=0

Vmnφm(sy[y])ζn(sz[z]), (C1a)

w(y, z) =
Ny−1∑
m=0

Nz−1∑
n=0

Wmnζm(sy[y])φn(sz[z]), (C1b)

ρ(y, z) =
Ny−1∑
m=0

Nz−1∑
n=0

Rmnψm(sy[y])ψn(sz[z]), (C1c)

p(y, z) =
Ny−1∑
m=0

Nz−1∑
n=0

PmnTm(sy[y])Tn(sz[z]), (C1d)

where Tj (x) are the Chebyshev polynomials of order j.
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Basis functions. The three sets of functions ζ j (x), ψ j (x), and φ j (x) respectively satisfy Dirich-
let, Neumann, and Dirichlet-Neumann boundary conditions at x = ±1,∀ j. Classically, they are
well-chosen linear combinations of Chebyshev polynomials. Expressions for such functions were
proposed, e.g., in Ref. [34], which have been checked to be suitable in the present case too. However,
a well-known disadvantage of Chebyshev polynomials is their intense (and high-frequency) oscilla-
tions near boundaries, dangerously blowing up with the order of differentiation: |d pTN (±1)/dxp| ∼
N2p [35]. As the present problem contains derivatives up to third order (through the terms ∂yyyv

and ∂xxxw), the corresponding discretization matrices may inherit an O(N6) condition number,
which could become particularly challenging for fine grids. To overcome this problem, we adopt
the method proposed by Heinrichs [36]:

ζ j (x) = (1 − x2)Tj (x),

φ j (x) = (1 − x2)2Tj (x),

where we easily check that ζ (±1) = φ(±1) = φ′(±1) = 0. In the pth derivative of ζ j (x), the
prefactor 1 − x2 kills the d pTj/dxp term at x = ±1, leading to a new condition number O(N2(p−1)).
The same applies to φ j (x), d pTj/dxp, and d p−1Tj/dxp−1, leading to a condition number O(N2(p−2)).
Therefore, our discretization matrices are at worst O(N2) for both ζ ’s (up to second-order derivative)
and φ’s (up to third-order one). For ψ’s, which are only used in the density perturbation expansion,
we adopted the expression proposed by Ref. [35]:

ψ2n(x) =
{1, n = 0

T2n(x) − [
n2

(n+1)2

]
T2n+2(x), n = 1, 2, . . . ,

ψ2n+1(x) = T2n+1(x) −
[

2n + 1

2n + 3

]2

T2n+3(x), n = 0, 1, . . . ,

where ψ ′(±1) = 0.
Collocation points. We chose “Gauss-Chebyshev” collocation points, equivalent to the roots of

the Chebyshev polynomials:

sy = cos

[
(2i − 1)π

2Ny

]
, sz = cos

[
(2i − 1)π

2Nz

]
, (C2)

where sy and sz designate respectively the spanwise and crosswise (vertical) collocation points. This
choice contrasts with the classical “Gauss-Lobatto” discretization, and excludes boundary points.
This is deliberate in order to avoid spurious pressure modes, inherent to Gauss-Lobatto meshing. If
boundary points are needed, for instance with the use of the τ method, the PN − PN−2 technique
presented in Ref. [37] is a suitable alternative. Because it relies on the interpolation of the pressure
field, it however excludes all nonlinear mapping. Indeed the Gauss-Lobatto points locations, optimal
for a polynomial interpolation, are then distorted and the Runge phenomena is observed at the
boundaries, precisely where we desire the pressure values.

Coordinate mapping. Under mapping transformations, the physical points corresponding to the
numerical grid of Eq. (C2) are recovered as

y = gy(sy) = Asy,

z = gz(sz; α1, α2) = α2 + tan [(sz − s0)λ]

α1
,

where

s0 = κ − 1

κ + 1
, κ = arctan(α1(1 + α2))

arctan(α1(1 − α2))
, λ = arctan(α1(1 − α2))

(1 − s0)
.

The simple linear mapping gy transforms the interval y ∈ [−A, A] into sy ∈ [−1, 1], where the
Chebyshev polynomials are defined. The mapping gz (see Ref. [38]), concentrates the collocation
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points around z = α2 with a strength modulated by α1. As a sharp evolution of the density
perturbation is expected at the interface, we set α2 = z0. An optimum for α1 can be found through
the technique proposed in Ref. [38]. However, the present problem is slightly different since the
mapping also impacts on the velocity: a compromise was found by trial and error to obtain an α1

sufficiently big as to smooth out the density, but sufficiently small as not to distort the velocity
substantially. Overall, this crosswise mapping sped up the convergence impressively.

As mentioned in Ref. [35], despite the use of mappings, the whole problem can still be solved
numerically solely in terms of physical variables and grid. In the code, this requires two additional
subroutines that (i) compute the physical points from Eq. (C2) and (ii) perform the chain rule to
transform s derivatives into z ones. These pivoting expressions are analytically expressed as

d

dz
=

(
1

g1

)
d

ds
,

d2

dz2
= 1

g3
1

(
g1

d2

ds2
− g2

d

ds

)
,

d3

dz3
= 1

g5
1

[
g2

1
d3

ds3
− 3g1g2

d2

ds2
+ (−g3g1 + 3g2

2

) d

ds

]
,

d4

dz4
= 1

g7
1

[
g3

1
d4

ds4
− 6g2g2

1
d3

ds3
+ (−4g3g2

1 + 15g2
2g1

) d2

ds2
+ (−g4g2

1 + 10g3g2g1 − 15g3
2

) d

ds

]
,

where we use the following shorthand notation for derivatives: g1 = g′(s), g2 = g′′(s), g3 = g′′′(s),
and g4 = g′′′′(s). For the s derivatives, the chain rule must also be used to transform the T derivatives
into ζ and φ ones (analytical expression in Ref. [35]). In order to illustrate the discretization
machinery, the Lv operator becomes

Lv = −ikU + Re−1
( − k2Iv + Dv

yy + Dv
zz

)
,

with

Iv = Dv
0,y ⊗ Dv

0,z, Dv
yy = Dv

2,y ⊗ Dv
0,z, and Dv

zz = Dv
0,y ⊗ Dv

2,z.

In addition, we express as in a 1D problem:

[
Dv

0,y

]
i j = dφ j (yi )

dy
,

[
Dv

2,y

]
i j = d2φ j (yi )

dy2
,

[
Dv

0,z

]
i j = dζ j (zi)

dz
, and

[
Dv

2,z

]
i j = d2ζ j (zi )

dz2
.

Processing similarly for all operators results in a new generalized eigenvalue problem:

σBx = Ax, (C3)

where x = [V, W, R, P], and where A and B are (4NyNz) × (4NyNz) matrices.

2. Solving the discrete system

Provided k (∈R), and a “shift” μ (∈C) close to where the eigenvalue is sought, the system of
Eq. (C3) is solved for σ (∈C) using the shift and invert algorithm. The selected eigenvalue among
the full spectrum is that nearest to μ. The procedure detailed in Ref. [13] is followed, except that
we preferred a QR decomposition to their LU decomposition for reasons of numerical stability. In
particular, the shift and inverted matrix K = (A − μB)−1B is computed as

QR = A − μB, (C4a)

C .= Q−1B = QT B, (C4b)

K = R−1C, (C4c)
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where the decomposition in Eq. (C4a), as well as the inversion in Eq. (C4c), are respectively
performed by [Q,R] = qr(A-mu*B) and K = R\C commands in MATLAB. Still following ter-
minology in Ref. [13], the generalized eigenvalue problem (C3) can be rewritten as a standard one:

Kx = θx, (C5)

where θ = (σ − μ)−1. It is solved using the implicitly restarted Arnoldi method embedded in
MATLAB’s function eigs, together with the lm (largest magnitude) option. Choosing this option
ensures that the selected eigenvalue maximizes the quantity ‖θ‖ = ‖(σ − μ)−1‖, thus minimizing
the distance between σ and μ. Sometimes, the full spectrum is of interest, in particular when an
initial guess for μ is sought. In this case, the QZ algorithm is used directly for the eigenvalues of
Eq. (C3) through MATLAB’s function eig(A,B).

[1] W. R. Geyer, C. Lavery, E. Scully, and J. H. Trowbridge, Mixing by shear instability at high Reynolds
number, Geophys. Res. Lett. 37, L22607 (2010).

[2] W. D. Smyth and W. Peltier, Instability and transition in finite-amplitude Kelvin-Helmholtz and Holmboe
waves, J. Fluid Mech. 228, 387 (1991).

[3] W. D. Smyth, J. R. Carpenter, and G. A. Lawrence, Mixing in symmetric Holmboe waves, J. Phys.
Oceanogr. 37, 1566 (2007).

[4] J. R. Carpenter, G. A. Lawrence, and W. D. Smyth, Evolution and mixing of asymmetric Holmboe
instabilities, J. Fluid Mech. 582, 103 (2007).

[5] H. Salehipour, C. P. Caulfield, and W. R. Peltier, Turbulent mixing due to the Holmboe wave instability
at high Reynolds number, J. Fluid Mech. 803, 591 (2016).

[6] H. Salehipour, W. R. Peltier, and C. P. Caulfield, Self-organized criticality of turbulence in strongly
stratified mixing layers, J. Fluid Mech. 856, 228 (2018).

[7] K. Smith, C. P. Caulfield, and J. R. Taylor, Turbulence in forced stratified shear flows, J. Fluid Mech. 910,
A42 (2021).

[8] C. P. Caulfield, W. R. Peltier, S. Yoshida, and M. Ohtani, An experimental investigation of the instability
of a shear-flow with multilayered density stratification, Phys. Fluids 7, 3028 (1995).

[9] E. W. Tedford, R. Pieters, and G. A. Lawrence, Symmetric Holmboe instabilities in a laboratory exchange
flow, J. Fluid Mech. 636, 137 (2009).

[10] J. R. Carpenter, E. Tedford, M. Rahmani, and G. A. Lawrence, Holmboe wave fields in simulation and
experiment, J. Fluid Mech. 648, 205 (2010).

[11] C. R. Meyer and P. F. Linden, Stratified shear flow: Experiments in an inclined duct, J. Fluid Mech. 753,
242 (2014).

[12] A. Lefauve, J. L. Partridge, Q. Zhou, S. B. Dalziel, C. P. Caulfield, and P. F. Linden, The structure and
origin of confined Holmboe waves, J. Fluid Mech. 848, 508 (2018).

[13] J. Hu, D. Henry, X. Yin, and H. BenHadid, Linear biglobal analysis of Rayleigh-Bénard instabilities in
binary fluids with and without throughflow, J. Fluid Mech. 713, 216 (2012).

[14] J. Cudby and A. Lefauve, Weakly nonlinear Holmboe waves, Phys. Rev. Fluids 6, 024803 (2021).
[15] J. R. Carpenter, E. W. Tedford, E. Heifetz, and G. A. Lawrence, Instability in stratified shear flow: Review

of a physical interpretation based on interacting waves, Appl. Mech. Rev. 64, 060801 (2011).
[16] L. M. Hocking, Nonlinear instability of flow in a rectangular pipe with large aspect ratio, Z. Angew. Math.

Phys. 29, 100 (1978).
[17] T. Tatsumi and T. Yoshimura, Stability of the laminar flow in a rectangular duct, J. Fluid Mech. 212, 437

(1990).
[18] V. Theofilis, P. W. Duck, and J. Owen, Viscous linear stability analysis of rectangular duct and cavity

flows, J. Fluid Mech. 505, 249 (2004).
[19] R. J. Briggs, Electron-Stream Interaction with Plasmas (MIT Press, Cambridge, MA, 1964).

103901-26

https://doi.org/10.1029/2010GL045272
https://doi.org/10.1017/S0022112091002756
https://doi.org/10.1175/JPO3037.1
https://doi.org/10.1017/S0022112007005988
https://doi.org/10.1017/jfm.2016.488
https://doi.org/10.1017/jfm.2018.695
https://doi.org/10.1017/jfm.2020.994
https://doi.org/10.1063/1.868679
https://doi.org/10.1017/S0022112009007733
https://doi.org/10.1017/S002211200999317X
https://doi.org/10.1017/jfm.2014.358
https://doi.org/10.1017/jfm.2018.324
https://doi.org/10.1017/jfm.2012.455
https://doi.org/10.1103/PhysRevFluids.6.024803
https://doi.org/10.1115/1.4007909
https://doi.org/10.1007/BF01797307
https://doi.org/10.1017/S002211209000204X
https://doi.org/10.1017/S002211200400850X


EFFECTS OF SPANWISE CONFINEMENT ON STRATIFIED …

[20] A. Bers, Linear Waves and Instabilities (Gordon and Breach, New York, 1975), p. 117.
[21] P. Huerre and P. A. Monkewitz, Local and global instabilities in spatially developing flows, Annu. Rev.

Fluid Mech. 22, 473 (1990).
[22] P. Carrière and P. Monkewitz, Convective versus absolute instability in mixed Rayleigh-Bénard-Poiseuille

convection, J. Fluid Mech. 384, 243 (1999).
[23] M. P. Juniper, The effect of confinement on the stability of two-dimensional shear flows, J. Fluid Mech.

565, 171 (2006).
[24] P. Brancher and J. M. Chomaz, Absolute and Convective Secondary Instabilities in Spatially Periodic

Shear Flows, Phys. Rev. Lett. 78, 658 (1997).
[25] I. Delbende and J.-M. Chomaz, Nonlinear convective/absolute instabilities in parallel two-dimensional

wakes, Phys. Fluids 10, 2724 (1998).
[26] I. Delbende, J.-M. Chomaz, and P. Huerre, Absolute/convective instabilities in the Batchelor vortex: A

numerical study of the linear impulse response, J. Fluid Mech. 355, 229 (1998).
[27] F. Gallaire and J.-M. Chomaz, Mode selection in swirling jet experiments: A linear stability analysis,

J. Fluid Mech. 494, 223 (2003).
[28] H. B. Squire, On the stability of three-dimensional disturbances of viscous flow between parallel walls,

Proc. R. Soc. London A 142, 621 (1933).
[29] W. D. Smyth and W. R. Peltier, Three-dimensional primary instabilities of a stratified, dissipative, parallel

flow, Geophys. Astrophys. Fluid Dyn. 52, 249 (1990).
[30] P. J. Schmid and D. S. Henningson, Stability and Transition in Shear Flows (Springer, Berlin, 2012).
[31] Hydrodynamics and Nonlinear Instabilities, Collection Alea-Saclay: Monographs and Texts in Statistical

Physics, edited by C. Godrèche and P. Manneville (Cambridge University Press, Cambridge, UK, 1998).
[32] J. J. Healey, Destabilizing effects of confinement on homogeneous mixing layers, J. Fluid Mech. 623, 241

(2009).
[33] S. J. Rees and M. P. Juniper, The effect of confinement on the stability of viscous planar jets and wakes,

J. Fluid Mech. 656, 309 (2010).
[34] Y. Kato and K. Fujimura, Prediction of pattern selection due to an interaction between longitudinal rolls

and transverse modes in a flow through a rectangular channel heated from below, Phys. Rev. E 62, 601
(2000).

[35] J. Boyd, Chebyshev and Fourier Spectral Methods, 2nd ed. (Dover, New York, 2000).
[36] W. Heinrichs, A stabilized treatment of the biharmonic operator with spectral method, J. Sci. Stat.

Comput. 12, 1162 (1991).
[37] R. Peyret, Spectral Methods for Incompressible Viscous Flow (Springer, Berlin, 2002).
[38] A. Bayliss, Mappings and accuracy for Chebyshev pseudo-spectral approximations, J. Comput. Phys. 101,

349 (1992).

103901-27

https://doi.org/10.1146/annurev.fl.22.010190.002353
https://doi.org/10.1017/S0022112098004145
https://doi.org/10.1017/S0022112006001558
https://doi.org/10.1103/PhysRevLett.78.658
https://doi.org/10.1063/1.869796
https://doi.org/10.1017/S0022112097007787
https://doi.org/10.1017/S0022112003006104
https://doi.org/10.1098/rspa.1933.0193
https://doi.org/10.1080/03091929008219506
https://doi.org/10.1017/S0022112008005284
https://doi.org/10.1017/S0022112010001060
https://doi.org/10.1103/PhysRevE.62.601
https://doi.org/10.1137/0912061
https://doi.org/10.1016/0021-9991(92)90012-N

