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Magnetic fields in several astrophysical objects are amplified and maintained by a
dynamo mechanism, which is the conversion of the turbulent kinetic energy to magnetic
energy. A dynamo that amplifies magnetic fields at scales less than the driving scale of
turbulence is known as the fluctuation dynamo. We study the properties of the fluctuation
dynamo in supersonic turbulent plasmas, which is of relevance to the interstellar medium
of star-forming galaxies, structure formation in the universe, and laboratory experiments
of laser-plasma turbulence. Using numerical simulations of driven turbulence, we explore
the global and local properties of the exponentially growing and saturated (statistically
steady) state of the fluctuation dynamo for subsonic and supersonic turbulent flows. First,
we confirm that the fluctuation dynamo efficiency decreases with compressibility. Then
we show that the fluctuation dynamo-generated magnetic fields are spatially intermittent
and the intermittency is higher for supersonic turbulence, but in both cases the level of
intermittency decreases as the field saturates. We also find a stronger back-reaction of the
magnetic field on the velocity for the subsonic case as compared to the supersonic case.
Locally we find that the level of alignment between vorticity and velocity, velocity and
magnetic field, and current density and magnetic field in the saturated stage is enhanced in
comparison to the exponentially growing phase for the subsonic case, but only the current
density and magnetic field alignment is enhanced for the supersonic case. Finally, we
show that both the magnetic field amplification (mainly due to weaker stretching magnetic
field lines) and diffusion decreases when the field saturates, but the diffusion is enhanced
relative to amplification. This occurs throughout the volume in the subsonic turbulence, but
primarily in the strong-field regions for the supersonic case. This leads to the saturation of
the fluctuation dynamo. Overall both the amplification and diffusion of magnetic fields are
affected by the exponentially growing magnetic fields and thus a drastic change in either
of them is not required for the saturation of the fluctuation dynamo.

DOI: 10.1103/PhysRevFluids.6.103701

I. INTRODUCTION

It is important to study the properties of magnetic fields in supersonic turbulent plasmas because
of their applications to astrophysics [1,2] and recently possible laboratory experiments of laser-
plasma turbulence [3]. In the sun, turbulent plasma in the convection zone is slightly supersonic [4,5]
and affects surface dynamics [6]. On galactic scales, turbulence in the interstellar medium (ISM) of
star-forming galaxies is driven supersonically at a range of scales by a variety of mechanisms such
as supernova explosions, gravitational collapse, accretion, and jets from young stellar objects and
active galactic nuclei [7–9]. Magnetic fields in the supersonic turbulent plasma of the ISM play a
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crucial role in the present-day [10] and primordial [11–14] star formation. The turbulence driven by
structure formation in galaxy clusters can also be supersonic [15] and this affects cluster magnetic
field structure, which in turn controls the acceleration and propagation of relativistic particles [16].

Physically the strength and structure of observed magnetic fields in astrophysical objects
[6,17,18] and derived magnetic fields in plasma turbulence experiments with a dynamically in-
significant initial magnetic field [19,20] can be largely explained by a turbulent dynamo, the
mechanism by which the turbulent kinetic energy is converted to magnetic energy [1,21]. Turbulence
is prevalent in most astrophysical systems as the Reynolds number, Re = urms�0/ν (where �0 is the
driving scale of turbulence, urms is the root mean square (rms) velocity, and ν is the viscosity), is
usually very high. A dynamo that amplifies magnetic fields at scales less than the driving scale of
turbulence is known as the fluctuation or small-scale dynamo. In a turbulent (or even random) flow,
the fluctuation dynamo exponentially amplifies (kinematic stage) a weak seed field of any form
[22,23] to dynamically significant strengths when the magnetic Reynolds number, Rm = urms�0/η

(η is the resistivity, which controls magnetic diffusion), is greater than a critical value (�100
as shown in [24–28]). The critical value of the magnetic Reynolds number also depends on the
Pm (=Rm/Re) [27,29] and in this paper we explore the Pm � 1 regime, which is applicable to both
the subsonic, hot, and the supersonic, cold phases of the ISM (see Table 2 in [30]). This magnetic
field amplification is primarily due to the stretching of magnetic field lines by turbulent motions
[31–33]. Once the field becomes strong enough, it back reacts on the turbulent flow via the Lorentz
force and then the dynamo saturates (saturated stage). The saturation mechanism, primarily studied
for subsonic turbulence, is due to a combination of reduced amplification and diffusion [34,35]. In
this paper, using driven turbulence periodic box magnetohydrodynamic (MHD) simulations, we aim
to study the saturation mechanism of the fluctuation dynamo in supersonic turbulent plasmas.

The fluctuation dynamo in subsonic turbulent plasma has been studied analytically [22,24,34,36–
41], numerically [25,26,35,42–47], and recently via experiments [19,20]. These studies confirm
exponential growth of magnetic fields and show the following magnetic field properties: the
saturated magnetic energy is a fraction of the turbulent kinetic energy, the magnetic power spectra
in the kinematic stage seems to follow a power law with an exponent 3/2, and the magnetic field
in the saturated stage has a higher correlation length than in the kinematic stage. Although not as
extensively as for subsonic turbulence, the fluctuation dynamo in supersonic turbulent plasma is also
studied analytically [48–50] and numerically [23,28,51,52]. These studies show that with increasing
compressibility, the critical magnetic Reynolds number increases and the fraction of turbulent
kinetic energy getting converted to magnetic energy, per unit time, decreases. Thus, the overall
efficiency of the dynamo decreases in supersonic turbulent plasmas as compared to their subsonic
counterparts. However, the effect of compressibility on the local interaction of the magnetic and
velocity fields and the saturation mechanism is not known yet. We aim to explore such questions
with this study. Furthermore, some of the properties of the fluctuation dynamo are also seen in
recent large-scale cosmological simulations of galaxies [53–55] and galaxy clusters [56–58]. The
turbulence in these cosmological simulations would also be supersonic in regions with shocks and
understanding the physics of the fluctuation dynamo in supersonic turbulent plasmas would further
help understand magnetic fields during cosmological evolution.

The remainder of this paper is organized as follows. In Sec. II we describe our numerical methods
and parameters of the study. The results are presented and discussed in Sec. III and Sec. IV. In
Sec. III we describe the difference in the global (spectral and structural) properties of magnetic
fields in the kinematic and saturated stages as a function of the compressibility of the turbulent flow.
In Sec. IV we study the local interaction of the velocity and magnetic fields in the kinematic and
saturated stages for subsonic and supersonic flows. Finally, we summarize and conclude our results
in Sec. V.

II. METHODS

To study the physics of the fluctuation dynamo in supersonic turbulent plasmas, we use a
modified version of the FLASH code (version 4) [59,60] to numerically solve the equations of
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compressible MHD [Eqs. (1)–(4)] for an isothermal gas (an isothermal equation of state is adopted
for simplicity) in a triply periodic cartesian (xyz) domain of size L with a uniform grid and 5123 grid
points. We use the HLL3R (three-wave approximate) Riemann solver [61] to solve the following
equations:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ (ρu)

∂t
+ ∇ ·

(
ρ u ⊗ u − 1

4π
b ⊗ b

)
+ ∇

(
c2

s ρ + b2

8π

)
= ∇ · (2νρτ ) + ρF, (2)

∂b
∂t

= ∇ × (u × b) + η∇2b, (3)

∇ · b = 0, (4)

where ρ is the density, u is the velocity field, b is the magnetic field, cs is the constant sound speed,
τi j = (1/2) [ui, j + u j,i − (2/3) δi j ∇ · u] is the traceless rate of strain tensor, F is the prescribed
acceleration field constructed using the Ornstein-Uhlenbeck process for the turbulent driving, and ν

and η are constant viscosity and resistivity, respectively.
The turbulent flow is driven solenoidally (k · Fk = 0, where k is the wave number and Fk is the

forcing vector in k space) on large scales (1 � kL/2π � 3) using a parabolic function of power
with a peak at kL/2π = 2 and zero power at kL/2π = 1, 3 [23,62]. Thus, the effective driving
scale of turbulence �0 is approximately equal to L/2. The correlation time of the forcing is set to the
eddy turnover time of the turbulent flow, t0 = L/(2urms). We use purely solenoidal driving instead
of compressive driving because solenoidal driving gives a higher dynamo efficiency [47,52]. The
diffusion of velocity and magnetic fields is characterized by the hydrodynamic (Re = urms�0/ν,
where urms is the rms of the turbulent velocity) and magnetic (Rm = urms�0/η) Reynolds numbers.
The compressibility of the medium is quantified using the turbulent Mach number, M = urms/cs.

We initialize our simulations with zero velocity, a uniform density (ρ0), and a very weak
random seed field (plasma beta = c2

s ρ0/(brms/8π ) = 2.5 × 1013, where brms is the rms magnetic
field strength). We select Re = 2000 for all our runs and vary Rm in the range 2000–6000. Thus,
the magnetic Prandtl number, Pm, is always greater than or equal to one and varies in the range
1–3. The main parameter of the study is the Mach number, which is varied from 0.1 (subsonic) to
10 (supersonic). We run all simulations till the dynamo saturates and the magnetic fields achieve
a statistically steady state. For our set of selected parameters, the magnetic field saturates in less
than 100 t0 (t0 = �0/urms is the eddy turnover time). We then study the properties of the velocity
and magnetic fields in the kinematic and saturated stages for the subsonic and supersonic turbulent
flows.

III. GLOBAL FLUCTUATION DYNAMO PROPERTIES

Here we first compare the properties of the time evolution of magnetic fields, i.e., the growth rate
in the kinematic phase and the ratio of magnetic to turbulent kinetic energy in the saturated stage
with existing studies. Then we discuss the spectral and structural properties of velocity and magnetic
fields in the kinematic and saturated stages for turbulent flows with low (M = 0.1, subsonic) and
high (M = 10, supersonic) Mach numbers.

A. Growth rate, saturated level, structure, and spectra

Figure 1 shows the evolution of the ratio of magnetic to turbulent kinetic energies, Emag/Eturb,kin,
as a function of time normalized by the eddy turnover time, t0, for various Mach numbers (0.1, 2, 5,

and 10) with Re = 2000 and Rm = 6000. After the initial transient phase, the magnetic energy
amplifies exponentially (kinematic stage) for all the cases. Then when the magnetic field becomes
strong enough to react back on the flow, the exponential increase slows down, and finally the
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FIG. 1. Time evolution (in terms of the eddy turnover time, t0, which also varies with the Mach number)
of the ratio of magnetic to turbulent kinetic energies, Emag/Eturb,kin, for Re = 2000, Rm = 6000, and M =
0.1 (blue), 2 (cyan), 5 (magenta), and 10 (red). For all the cases, after the initial transient decay phase, the
magnetic field grows exponentially (kinematic stage, dashed-dotted gray line) and then saturates (saturated
stage, dotted gray line). The growth rate, 
[t−1

0 ] in the exponentially growing or kinematic phase decreases
with compressibility till M = 5 and then increases for M = 10. The saturated value of the ratio Emag/Eturb,kin,
Rsat , decreases with increasing Mach numbers. Thus, per unit time, a smaller fraction of the turbulent kinetic
energy is converted to magnetic energy for supersonic flows as compared to the subsonic flows. See Table I for
the values of 
 and Rsat in other runs and Fig. 2 for the dependence of 
 and Rsat on M.

magnetic energy saturates to a statistically steady value (saturated stage). This happens for all the
runs and the corresponding growth rate, 
[t−1

0 ], in the exponentially growing or kinematic stage
and the saturated level of Emag/Eturb,kin, Rsat, in the saturated stage are given in Table I. Figure 2

FIG. 2. The growth rate in the kinematic phase, 
 [t−1
0 ], (a) and the ratio of magnetic to turbulent kinetic

energies in the saturated stage, Rsat , (b) as a function of the Mach number of the turbulent flow, M, for all Rms.
The growth rate as a function of the Mach number first decreases till M = 5 and then increases for M = 10.
The overall trend with M does not change much with Rm. For Rsat , as the Mach number of the turbulent flow
increases, the ratio decreases. This confirms that a smaller fraction of the turbulent kinetic energy is converted
to magnetic energy, per unit time, for the supersonic turbulence as compared to the subsonic case. The variation
of 
 and Rsat with M is roughly consistent with the empirical model (shown in dashed, black line) of Federrath
et al. [see Eq. (3) and Table 1 in [52]).
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TABLE I. A summary of parameters and derived properties for all simulations. Note that all the simulations
are performed on a uniform grid with 5123 points in a numerical domain of size L3. For all the runs, the flow
is driven solenoidally on larger scales (1 � kL/2π � 3) and the hydrodynamic Reynolds number, Re, is fixed
to be 2000. The columns are as follows: (1) simulation name, (2) Mach number of the turbulent flow, M, (3)
magnetic Reynolds number, Rm, (4) growth rate in the exponentially growing or kinematic phase in units of
inverse eddy turnover time, t−1

0 , 
, (5) ratio of the magnetic to kinetic energy in the saturated stage, Rsat , (6)
kurtosis of the x-component of the magnetic field in the kinematic stage, Kbx (kin), and (7) kurtosis of the
x-component of the magnetic field in the saturated stage, Kbx (sat). The errors reported in columns 4 and 5 are
from fitting an exponential and a constant function, respectively, to Emag/Eturb,kin in the kinematic and saturated
stages (see Fig. 1 for an example). The errors reported in columns 6 and 7 are standard deviation obtained after
averaging the kurtosis of the distribution over 10 t0 in the kinematic and saturated stages, respectively.

Simulation name M Rm 
 [t−1
0 ] Rsat Kbx (kin) Kbx (sat)

M0.1Rm2000 0.1 2000 0.88 ± 0.11 0.33 ± 0.06 9.68 ± 0.50 5.16 ± 0.40
M0.1Rm3000 0.1 3000 1.23 ± 0.12 0.38 ± 0.06 10.38 ± 0.60 5.04 ± 0.32
M0.1Rm4000 0.1 4000 1.42 ± 0.13 0.38 ± 0.07 10.32 ± 0.45 4.95 ± 0.31
M0.1Rm5000 0.1 5000 1.59 ± 0.14 0.44 ± 0.06 10.44 ± 0.57 4.88 ± 0.42
M0.1Rm6000 0.1 6000 1.69 ± 0.17 0.43 ± 0.08 10.15 ± 0.66 4.95 ± 0.28

M2.0Rm2000 2.0 2000 0.24 ± 0.02 0.09 ± 0.01 19.57 ± 2.46 7.49 ± 0.47
M2.0Rm3000 2.0 3000 0.43 ± 0.04 0.15 ± 0.02 19.15 ± 1.82 6.32 ± 0.42
M2.0Rm4000 2.0 4000 0.43 ± 0.03 0.14 ± 0.02 19.92 ± 1.53 5.91 ± 0.60
M2.0Rm5000 2.0 5000 0.51 ± 0.06 0.16 ± 0.02 20.48 ± 1.51 5.51 ± 0.24
M2.0Rm6000 2.0 6000 0.57 ± 0.06 0.27 ± 0.03 19.73 ± 1.79 5.07 ± 0.30

M5.0Rm2000 5.0 2000 0.26 ± 0.11 0.02 ± 0.01 49.01 ± 2.53 23.96 ± 4.73
M5.0Rm3000 5.0 3000 0.35 ± 0.02 0.04 ± 0.01 48.71 ± 4.95 16.08 ± 1.92
M5.0Rm4000 5.0 4000 0.36 ± 0.08 0.05 ± 0.01 48.91 ± 2.42 13.85 ± 1.43
M5.0Rm5000 5.0 5000 0.41 ± 0.02 0.06 ± 0.02 50.79 ± 2.15 13.28 ± 1.89
M5.0Rm6000 5.0 6000 0.43 ± 0.08 0.07 ± 0.02 47.19 ± 3.35 11.08 ± 1.34

M10.0Rm2000 10.0 2000 0.36 ± 0.05 0.02 ± 0.01 74.95 ± 9.07 38.20 ± 5.47
M10.0Rm3000 10.0 3000 0.37 ± 0.05 0.03 ± 0.01 73.31 ± 2.63 24.74 ± 3.92
M10.0Rm4000 10.0 4000 0.46 ± 0.08 0.03 ± 0.01 76.63 ± 4.39 30.29 ± 4.97
M10.0Rm5000 10.0 5000 0.41 ± 0.09 0.04 ± 0.01 83.90 ± 4.55 18.73 ± 3.22
M10.0Rm6000 10.0 6000 0.44 ± 0.01 0.04 ± 0.01 83.03 ± 2.17 24.14 ± 6.15

shows the growth rate, 
 [t−1
0 ] [Fig. 2(a)] and the saturated level of Emag/Eturb,kin, Rsat [Fig. 2(b)] as a

function of M. The growth rate decreases till M = 5 but then increases for M = 10 and the overall
trend is consistent with the empirical model in the literature [52]. Figure 2(b) shows the dependence
of the saturated level, Rsat, on M. For all values of Rm, Rsat decreases with M. This shows that as
the compressibility increases, a smaller fraction of turbulent kinetic energy is converted to magnetic
energy, per unit time. Thus, the efficiency of the fluctuation dynamo decreases with increasing
compressibility. Here, too, the trend of Rsat with M roughly agrees with the known empirical model
[52]. These empirical models for the dependence of 
 and Rsat on M are constructed from numerical
simulations in [52], where most of the simulations used numerical viscosity and resistivity, whereas
here all our simulations include explicit (viscous and resistive) diffusion terms [Eq. (2) and Eq. (3)].
This might be the reason for differences in the results (colored lines vs dashed black line in Fig. 2),
but the overall trend is roughly consistent with the empirical models. Thus, generally, the growth
rates and the saturated levels agree with previous results. We now show and discuss velocity and
magnetic structures in the kinematic and saturated stages for M = 0.1 and M = 10 with a fixed
Rm of 6000.
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FIG. 3. Two-dimensional slices of the velocity field at z = L/2 with color showing the square of veloc-
ity normalized to its root mean square (rms) value, u2/u2

rms, for subsonic (M0.1Rm6000) and supersonic
(M10.0Rm6000) cases in their kinematic (t/t0 = 10, a and t/t0 = 30, b) and saturated (t/t0 = 75, c, and
t/t0 = 90, d) stages. Visually, the velocity structures are larger in the saturated stage for M0.1Rm6000 than
in the kinematic stage (effect of the back-reaction of the strong magnetic field on the turbulent flow). The
corresponding difference for M10.0Rm6000 is smaller. As compared to the subsonic case, the velocity field in
the supersonic case can be locally high in strength. This is due to random strong shocks for the M = 10 case.

Figures 3 and 4 show two-dimensional velocity and magnetic field structures in the kinematic
and saturated stages for subsonic and supersonic turbulence. Both the velocity and magnetic fields
show random distributions with complex structures and without any significant mean trend. This is
expected for the turbulent flows and the magnetic fields they amplify. The velocity structures for
subsonic flow look larger in size in the saturated stage [Fig. 3(b)] as compared to the kinematic
stage [Fig. 3(a)]. This is due to the back-reaction of the strong magnetic field on the turbulent
flow (the back-reaction is negligible in the kinematic stage). Such a difference is smaller for the
supersonic case. The structures in supersonic turbulence [Figs. 3(b) and 3(d)], in both the kinematic
and saturated stages, are of a larger size than in the subsonic case [Figs. 3(a) and 3(c)] but the
supersonic case can have locally strong velocity because of random shocks. The difference in
structure between the kinematic and saturated stages is more pronounced for the magnetic field.
For both the Mach numbers, magnetic fields in the saturated stages [Figs. 4(c) and 4(d)] have larger
structures than in their corresponding kinematic stages [Figs. 4(a) and 4(b)]. Figure 5 shows the
three-dimensional magnetic structures in both the kinematic and saturated stages for both Mach
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FIG. 4. Same as Fig. 3 but for b2/b2
rms. In comparison to the kinematic stage (a, b), the magnetic structures

in the saturated stages (c, d) are seen to be larger in size for both the subsonic and supersonic turbulence.
Visually, in the kinematic stage and on an average, the structures are of a larger size for the supersonic
turbulence in comparison to the subsonic case. This difference is less for the saturated stage.

numbers. Overall, for both Mach numbers, the magnetic fields have visually larger structures in
the saturated stage than in their respective kinematic stage. We now discuss the spectral properties
of velocity and magnetic fields in the kinematic and saturated stages for subsonic and supersonic
turbulent flows. The top panels of Fig. 6 show the shell-integrated turbulent kinetic [Eturb,kin,
Fig. 6(a)] and magnetic energy [Emag, Fig. 6(b)] spectra, which were averaged over a few eddy
turnover times (7 t0 for the kinematic stage and 10 t0 for the saturated stage) for the subsonic
(M0.1Rm6000) and supersonic (M10Rm6000) cases. The turbulent kinetic energy spectra, over a
range of wave numbers (3 � k � 20), are seen to be consistent with the Kolmogorov k−5/3 spectrum
[63] for the subsonic turbulence and Burgers k−2 spectrum [64] for the supersonic turbulence
(agreement is slightly better for the supersonic case). At smaller scales, the turbulent kinetic energy
is higher for the supersonic case as compared to the subsonic case due to strong shocks. For the
subsonic case, as the magnetic field saturates, the turbulent kinetic energy spectrum steepens and
it shows the effect of the back-reaction due to the Lorentz force on the turbulent flow. However,
this effect on the turbulent kinetic energy spectra for the supersonic case is not that significant. The
magnetic energy spectra vary between the kinematic and saturated stages for both subsonic and
supersonic flows [Fig. 6(b)]. At lower wave numbers, the magnetic spectra in the kinematic stage
seem to follow k3/2 spectra as expected from Kazantsev’s analytical work [22]. The agreement

103701-7



AMIT SETA AND CHRISTOPH FEDERRATH

3.0�103

1.3�101

5.5�10-2

2.3�10-4

1.0�10-6

FIG. 5. Same as Fig. 4 but now showing three-dimensional magnetic structures. Visually, the magnetic
structures for the supersonic turbulence are of a larger size and this is more evident in the kinematic stage.
The magnetic fields, for both subsonic and supersonic turbulent flows, seen to have larger structures in their
respective saturated stage as compared to the kinematic stage.

seems to be better for the subsonic flow than the supersonic case and this is because Kazantsev’s
theory is derived assuming incompressible flows. However, from extensions to Kazantsev’s theory
[40], the slope of the magnetic power spectrum for the supersonic case in the kinematic stage might
still be 3/2 [28]. For both cases, the spectra flatten as the magnetic field saturates. On smaller scales,
the magnetic energy is higher for the supersonic case in comparison to the subsonic one. This is
primarily due to strong shocks and higher turbulent kinetic energy at smaller scales for supersonic
turbulence.

We use the turbulent kinetic (Eturb,kin(k)) and magnetic (Emag(k)) energy spectra to compute the
correlation (approximately average) length of the velocity (�u) and magnetic (�b) fields as

�u(or �b)

L
=

∫ ∞
0 k−1Eturb,kin(or Emag) dk∫ ∞

0 Eturb,kin(or Emag) dk
. (5)

The bottom panels of Fig. 6 show the velocity [�u/L, Fig. 6(c)] and magnetic field [�b/L, Fig. 6(d)]
correlation scale as a function of the normalized time, t/t0. After the initial transient phase, �u

fluctuates around L/2 immediately for the supersonic case, but is initially lower (�u/L ≈ 0.4) for
the subsonic case in its kinematic stage. For subsonic flows, as the magnetic field grows, �u increases
and reaches a value of L/2 in the saturated stage. Thus, the back-reaction of the growing magnetic
field on the velocity field enhances its correlation length. This is seen only for the subsonic case
[can also be concluded from the steepening of the turbulent kinetic energy spectra in Fig. 6(a)]. For
the magnetic field, after the initial transient phase, the correlation length remains roughly constant
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FIG. 6. Top panels: The shell-integrated power spectrum of the turbulent kinetic (a) and magnetic (b) en-
ergies normalized by their total energies for M0.1Rm6000 (subsonic, blue) and M10Rm6000 (supersonic,
red) cases. In each panel, the dashed and solid colored line shows the spectra averaged over the kinematic
(7 � t/t0 � 14 for the subsonic case and 28 � t/t0 � 35 for the supersonic case) and saturated (70 � t/t0 �
80 for the subsonic case and 85 � t/t0 � 95 for the supersonic case) stages, respectively, with the shaded
region indicating their 1σ variations. The turbulent kinetic energy spectra, in the range 3 � k � 20, for the
subsonic turbulence in the kinematic stage seem to be consistent with the Kolmogorov k−5/3 (shown in a black,
dashed-dotted line) spectrum [63] and for the supersonic turbulence with the Burgers k−2 (shown in a black,
dotted line) spectrum [64]. The supersonic case has larger power on smaller scales compared to the subsonic
one and this is because of strong shocks for M = 10 run (see Fig. 3 for locally strong structures in velocity
fields). As the magnetic field saturates, the turbulent kinetic energy spectrum for the subsonic case steepens
(due to the effect of back-reaction of the strong magnetic fields on the flow) and such an effect is not that
significant for the supersonic case. The magnetic energy spectra in the kinematic stage, at lower wave numbers,
for the subsonic case agree better with the Kazantsev k3/2 (shown with a black, dashed-dotted line) spectrum
[22] than the supersonic case. As the dynamo saturates, spectra for both the cases become flat on larger scales.
However, the magnetic energy for the supersonic case is higher at smaller scales in comparison to the subsonic
case. This is also because of strong shocks and higher turbulent kinetic energy at smaller scales for supersonic
flows. Bottom panels: The time evolution of the velocity [�u, (c)] and magnetic [�b, (d)] field correlation scales
in units of the numerical domain length, L, for subsonic (M0.1Rm6000, blue) and supersonic (M10Rm6000,
red) cases computed using Eq. (5). The dashed and dotted black lines shows the average value of each length
scale in the kinematic and saturated stages, respectively, and the corresponding values with 1σ fluctuations are
given in the legend. For the subsonic case, after the initial transient decay, �u/L remains statistically steady at
a value of ≈0.4 in the kinematic stage (7 � t/t0 � 14), but then increases as the field saturates and fluctuates
around ≈0.5. For the supersonic case, �u always fluctuates around L/2 after the initial transient phase. Thus,
the back-reaction of the growing magnetic fields on the velocity is evident here for the low Mach number
run. The magnetic field correlation scale, �b, decreases in the initial transient phase and then remains roughly
constant in the kinematic stage for both subsonic (�b/L ≈ 0.05) and supersonic (�b/L ≈ 0.09) cases. In fact, in
the kinematic stage, �b is higher for the supersonic case (as can also be seen from Fig. 4 and Fig. 5). Then, �b

for both Mach numbers increases as the magnetic fields become strong enough to react back on the flow (see
Fig. 1 for corresponding times). Finally, in the saturated stage, �b saturates to a statistically steady value, which
is roughly the same for both Mach numbers (�b/L ≈ 0.14).
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FIG. 7. Probability distribution function (PDF) of the x component of the normalized velocity, ux/urms (a),
and x component of the normalized magnetic field, bx/brms (b), for the subsonic (blue) and supersonic (red)
turbulence in their respective kinematic (kin, dashed) and saturated (sat, solid) stages of the fluctuation dynamo.
The lines show the mean obtained after averaging over 10 eddy turnover times (in the range 7 � t/t0 � 17
and 70 � t/t0 � 80 for the subsonic case and 25 � t/t0 � 35 and 85 � t/t0 � 95 for the supersonic case)
and the shaded regions of the same color show 1σ deviations. The computed kurtosis (Kux and Kbx ) with its
corresponding error (estimated from the time averaging) for each case is shown in the legend. For both the
subsonic and supersonic flows, in the kinematic and saturated stages, the velocity PDF is close to a Gaussian
distribution (N , the dashed-dotted, black line). Also, the computed kurtosis is always very close to that of a
Gaussian distribution (KN = 3). Thus, the random velocity field in solenoidally driven turbulence follows a
Gaussian distribution, immaterial of the Mach number and the dynamo stage. The magnetic field is always
non-Gaussian (the dashed-dotted, black line shows the Gaussian distribution, N ). This is also confirmed from
their computed kurtosis values, they are significantly higher than three. The magnetic field is always more
non-Gaussian (or spatially intermittent) in the supersonic turbulence than in the subsonic case. Furthermore,
for both Mach numbers, the magnetic field in the kinematic stage is more intermittent than their respective
saturated stages.

in the kinematic phase (�b/L ≈ 0.05 and 0.09 for the subsonic and supersonic case, respectively)
and then increases as the magnetic fields become strong enough to react back on the turbulent flow.
In the saturated stage, �b reaches a statistically steady value (�b/L ≈ 0.14, similar for both Mach
numbers). Overall, the magnetic field correlation length increases due to the growing magnetic
field for both the subsonic and supersonic cases (this also agrees with the larger size of magnetic
structures seen in Fig. 4 and Fig. 5 for the saturated stage in comparison to the kinematic stage for
both cases). We now quantify the non-Gaussianity of these magnetic structures.

B. Magnetic intermittency

The fluctuation dynamo-generated magnetic fields are non-Gaussian or spatially intermittent and
we aim to quantify the intermittency using the statistical measure kurtosis, K, which for any random
function f with mean zero is defined as

K f = 〈 f 〉4

〈 f 2〉2
, (6)

where 〈〉 denote the average over the entire domain. The kurtosis of a Gaussian distribution is three.
First, in Fig. 7(a) we show the probability distribution function (PDF) of a single component

(here, x) of the random velocity field, ux/urms, obtained in subsonic and supersonic turbulence in
the kinematic and saturated stages of the fluctuation dynamo. The distribution, for all four cases, is
very close to a Gaussian (or normal) distribution (the computed kurtosis is very close to that of a
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FIG. 8. (a) The kurtosis of the bx/brms distribution [see Fig. 7(b)] as a function of Rm in the kinematic (kin,
dashed) and saturated (sat, solid) stages of the fluctuation dynamo for M = 0.1 (blue), 2 (cyan), 5 (magenta),
and 10 (red). The points show the mean obtained after averaging over 10 eddy turnover times and the error bars
of the same color show 1σ deviations (values are also provided in Table I). The kurtosis for all runs in both the
kinematic and saturated stages are higher than the kurtosis of a Gaussian distribution (the dashed-dotted, black
line). This confirms that all the distributions are non-Gaussian. The estimated kurtosis increases with M and
this shows that the magnetic intermittency increases with the compressibility of the turbulent flow. Within this
range of Rm, the kurtosis for each stage does not seem to vary much with the Rm. The kurtosis is always lower
for the saturated stage in comparison to the kinematic stage and this difference [shown in (b)] increases with
the Mach number of the turbulent flow.

Gaussian, three). Thus, random velocity in these driven turbulence simulations always follows an
approximately Gaussian distribution (also see [65]).

Even though the turbulent velocity is normally distributed, the magnetic field it generates is
non-Gaussian or spatially intermittent, as shown by Fig. 7(b), which shows the PDF of a single
component of the random magnetic field, bx/brms, in their kinematic and saturated stages for
subsonic and supersonic turbulent flows. The magnetic field is always more intermittent for the
supersonic turbulence than the subsonic one. Moreover, for both cases, the magnetic intermittency
decreases as the dynamo saturates. These conclusions can also be confirmed via the computed
kurtosis values (Table I and Fig. 8). Figure 8(a) shows that the kurtosis, in the Rm range 2000–6000,
does not depend much on Rm but increases with M for both the kinematic and saturated stages. The
difference in kurtosis of the magnetic fields between the kinematic and saturated stages increases
with the Mach number of the turbulent flow, M [Fig. 8(b)]. Thus, the non-Gaussian or intermittent
nature of the dynamo-generated magnetic fields is enhanced with compressibility.

Figure 9 shows the PDF of ln(b/brms) for the subsonic and supersonic cases in their respective
kinematic [Fig. 9(a)] and saturated [Fig. 9(b)] stages. We fit the PDF of ln(b/brms) with a normal
distribution of form

LN = (2πσw )−1/2 exp

(
− [ln(b/brms) − w0]2

2σ 2
w

)
, (7)

where w0 (mean) and σw (standard deviation) are parameters of the fit. The black, dashed lines
in Fig. 9 show the fitted distributions, and parameters of the fit are given in the legend. For the
kinematic phase [Fig. 9(a)], the lognormal distribution for b/brms is a better fit to the supersonic case
as compared to the subsonic one. Also, the fit worsens for the saturated stage. Overall, the lognormal
distribution captures high probability regions quite well in the kinematic phase and performs better
for supersonic turbulence. The parameters |w0| and σw are also higher in the kinematic stage as
compared to the saturated stage and are always higher for the supersonic flows. This further confirms
that the degree of magnetic intermittency decreases as the field saturates and increases with the
compressibility of the turbulent flow.
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FIG. 9. PDF of ln(b/brms) for subsonic (blue) and supersonic (red) cases in their respective kinematic
(kin, a) and saturated (sat, b) stages with black, dashed line showing the fit to a normal distribution [Eq. (7)].
The normal distribution captures high probability regions better than the tails. In the kinematic stage, the
lognormal fit to b/brms performs better for the supersonic case. The fit worsens, for both Mach numbers, when
the magnetic fields saturate (b). Thus, PDF of b/brms in the kinematic stage can be represented by a near
lognormal distribution. Furthermore, higher values of the fit parameters (|w0| and σw) for the kinematic stage
confirm that the magnetic intermittency decreases as the field saturates. Also, these parameters are always
higher for the supersonic case as compared to the subsonic one. Thus, confirming that the degree of magnetic
intermittency increases with the Mach number of the turbulent flow.

After characterizing the global properties of velocity and magnetic fields in the fluctuation
dynamo, in the next section, we study the local interaction of velocity and magnetic fields to explore
the saturation mechanism of the fluctuation dynamo.

IV. LOCAL DYNAMICS AND THE SATURATION MECHANISM

To understand the saturation mechanism of the fluctuation dynamo in subsonic and supersonic
turbulent plasmas, here we investigate the local properties and interactions of velocity and magnetic
fields. This is also motivated by the fact that the fluctuation dynamo-generated magnetic field is
spatially intermittent (Sec. III B) and thus we would expect that the back-reaction of the magnetic
field would be enhanced (locally and statistically) in strong-field regions (regions with magnetic
field energy higher than the rms value, b2/b2

rms > 1). First, we look at the properties of the following
two dynamically important quantities, vorticity (ω) and current density ( j), which are defined as the
curl of the velocity (u) and magnetic field (b),

ω = ∇ × u, j = ∇ × b. (8)

Vorticity and current density characterise the local structure of the velocity and magnetic fields,
respectively. The evolution of the rms (since the mean is zero) vorticity and current density is shown
in Fig. 10. Once the turbulence is established, ωrms is statistically steady and is slightly higher in
the subsonic case. The current density evolution is very similar to that of the magnetic fields, i.e.,
exponential growth and then saturation. The growth rate of jrms is roughly half of the magnetic field
growth rate for each case (Fig. 1 and Table I) and is higher for the subsonic flows. The saturation
level of the rms current density, jrms, is higher for the supersonic case compared to the subsonic
case (note that the initial value, jrms(t/t0 = 0), is the same for both subsonic and supersonic cases).
Figure 11 shows the pdfs of ωx/ωrms [Fig. 11(a)] and jx/ jrms [Fig. 11(b)] for the kinematic and
saturated stages of the dynamo with subsonic and supersonic turbulent flows. Both vorticity and
current density distributions are non-Gaussian and the non-Gaussianity (quantified by kurtosis) for
both cases is higher for the supersonic turbulence than the subsonic one. For the subsonic case,
the kurtosis of ωx/ωrms decreases as the field saturates and thus vorticities significantly stronger
than the rms value are suppressed in the saturated stage in comparison to the kinematic stage.
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FIG. 10. Temporal evolution of the (normalized) rms vorticity (ωrms/ωrms(t/t0 ≈ 2), dashed) and current
density ( jrms/ jrms(t/t0 = 0), solid) for subsonic (M0.1Rm6000, blue) and supersonic (M10Rm6000, red)
turbulence. The vorticity remains roughly the same once the turbulence is established and is slightly higher
for the subsonic case as compared to the supersonic (the mean value, (ωrms)sat , shown in the legend). The
overall trend of the current density evolution is the same as the magnetic field, exponential amplification after
the initial transient phase and then saturation. The growth rate, 
 jrms , is higher for the subsonic case but the
saturated value, ( jrms)sat , is higher for the supersonic case. The growth rate of the current density is roughly
half of the magnetic field growth rate (see Fig. 1) for both the subsonic and supersonic flows.

FIG. 11. PDF of the normalized vorticity, ωx/ωrms (a), and current density, jx/ jrms (b), for subsonic (blue)
and supersonic (red) flows in the kinematic (kin, dashed) and saturated (sat, solid) stages of the fluctuation
dynamo (the lines show the mean over 10 eddy turnover times and the shaded region show the 1σ fluctuations).
Both the vorticity and current density distributions are non-Gaussian or intermittent (the dashed-dotted, black
line shows the Gaussian distribution) and the estimated kurtosis (shown in the legend for each case) is also
higher than three. The vorticity distribution for the subsonic case is less intermittent in the saturated stage as
compared to the kinematic stage and this is due to the back-reaction of the amplified magnetic field on the
velocity flow. Such a statistical difference in the kurtosis of the vorticity between the kinematic and saturated
stages is not seen for the supersonic turbulence. The current density distribution, for both the subsonic and
supersonic turbulence, is less intermittent in the saturated stage as compared to their respective kinematic stage
but is always higher for the supersonic case.
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This is a direct consequence of the back-reaction of magnetic fields on the velocity field, i.e., the
structure of the flow is locally altered. Such a statistically significant difference in the vorticity
distribution is not seen for the supersonic turbulent flow. This also agrees with the conclusion from
studying the evolution of velocity correlation length in Fig. 6(c). On the other hand, the current
density distribution for both the subsonic and supersonic flows is less intermittent in the saturated
stage compared to their respective kinematic stages [compare the computed kurtosis given in the
legend of Fig. 11(b)]. Thus, the magnetic field in the saturated stage is structurally different than
in the kinematic stage and for the supersonic turbulence in comparison to the subsonic case (global
differences shown in Figs. 4–7). In the next subsection, we look at local interactions in terms of
angles between the following vector quantities: Vorticity, velocity, current density, and magnetic
fields.

A. Local interactions in terms of relevant angles

After confirming the change in the local structure of the velocity and magnetic field on saturation,
here we study the local interaction between those two vectors. First, the evolution of vorticity,
obtained by taking the curl of the Navier-Stokes equation (the baroclinic term is zero for an
isothermal equation of state) is [66,67]

∂ω

∂t
= ∇ × (u × ω) + ν∇2ω + 2ν∇ × (τ ln ρ) + ∇ ×

(
j × b
cρ

)
, (9)

where the first term on the right-hand side represents growth of vorticity, the second term represents
vorticity diffusion, the third term is due to density gradients, and the last term is due to the Lorentz
force, j × b (c is the speed of light). Since we start with a zero velocity (and vorticity) and very weak
magnetic fields, the vorticity is most likely generated by the third term when the density gradients
develop and is then amplified by the first term (see Fig. 10 and in [52,67]). The amplification of the
vorticity field, via the first term, depends on the angle between u and ω.

Another two angles of interest are the angle between the velocity and magnetic field, which
controls the magnetic field induction term (first term in the right-hand side of Eq. (3)) and the
angle between the current density and magnetic field, which controls the Lorentz force (or the
back-reaction of the velocity field on the flow). Thus, we compute the cosine of the following three
relevant angles,

cos(θ )u,ω = u · ω

|u||ω| , (10)

for the vorticity amplification term, ∇ × (u × ω),

cos(θ )u,b = u · b
|u||b| , (11)

for the magnetic induction term, ∇ × (u × b),

cos(θ ) j,b = j · b
| j||b| , (12)

for the Lorentz force, j × b.

cos(θ ) = 0 implies an angle of 90◦ (or 270◦) between the two vectors and thus maximum effect
of the physically relevant term (for example, angle of 90◦ between u and b implies maximum
induction). On the other hand, cos(θ ) = 1(or − 1) implies alignment (or anti-alignment) between
them and no effect of the term. Figure 12 shows the total and conditional (for strong magnetic
field regions, b2/b2

rms > 1) PDFs of these three angles in the kinematic and saturated stages for
the subsonic and supersonic turbulence. We only show the absolute value of these angles as these
distributions are symmetric around cos(θ ) = 0 for isotropic random velocity and magnetic fields.
For all three angles, as expected from isotropic random fields, all possible values of | cos(θ )| have a
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FIG. 12. PDFs of the absolute value of the cosine of angle between the velocity and vorticity (| cos(θ )u,ω|,
a, b), velocity and magnetic field (| cos(θ )u,b|, c, d), and current density and magnetic field (| cos(θ ) j,b|, e, f)
for subsonic (blue) and supersonic (red) turbulence in the kinematic (kin, dashed) and saturated (sat, solid)
stages of the fluctuation dynamo (the line shows the mean over 10 eddy turnover times and the shaded regions
shows the corresponding 1σ variations). The left panels (a), (c), (e) show the PDFs over the entire domain, and
the right panels (b), (d), (f) show the conditional PDFs based only on the strong-field regions (b2/b2

rms > 1).
The absolute value of the cosine of the angle is studied, because the distributions are symmetric about the
cos(θ ) = 0 for isotropic velocity and magnetic fields. | cos(θ )| = 0 implies an angle of 90◦ (or 270◦) between
the two vectors and | cos(θ )| = 1 implies alignment (or anti-alignment) between them. For the subsonic
turbulence, as the magnetic field saturates, velocity and vorticity, velocity and magnetic fields, and current
density and magnetic fields are more aligned. Each trend gets more enhanced in the strong-field regions (b, d,
f). The corresponding differences between the kinematic and saturated stages for the supersonic case are only
significant for the angle between the current density and magnetic field. For the supersonic case, | cos(θ )u,ω|
and | cos(θ )u,b| are statistically the same in the kinematic and saturated stage. In the saturated stage, the current
density and magnetic field are more aligned (the level of alignment is enhanced in the strong-field regions) and
the difference between the two stages is higher for the supersonic turbulence in comparison to the subsonic
case.
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nonzero probability. However, all angles are not equiprobable and there are clear differences in the
distributions with the Mach number of the turbulent flow and the dynamo stage. We discuss these
differences and their implications below.

For the subsonic turbulence, the vorticity is slightly more aligned with the velocity in the
saturated stage as compared to the kinematic stage [the difference is not much in Fig. 12(a) but see
Fig. 12(b)]. This shows that as the magnetic field grows, the vorticity amplification term is probably
suppressed, especially in the strong-field regions. This is a direct consequence of the back-reaction
of the magnetic field on the flow. Such a difference is not statistically significant for the supersonic
turbulence. This is consistent with our previous results [Figs. 6(c) and 11(a)] that the effect of the
back-reaction on the velocity in the supersonic case is negligible.

The angle between u and b controls the magnetic induction or amplification term and the
alignment between u and b is statistically higher in the saturated stage as compared to the kinematic
stage for subsonic turbulence [Fig. 12(c)] and the difference is not that significant for the supersonic
turbulence [even for the strong-field regions, Fig. 12(d)]. This mostly implies a reduction in
induction due to enhanced alignment between u and b for the subsonic case but not so much for the
supersonic case (because of locally strong shocks). Thus, for the subsonic turbulence, the magnetic
field evolves in such a way as to enhance the level of alignment between the velocity and magnetic
field.

Finally, the back-reaction of the magnetic field on the velocity field via the Lorentz force is
controlled by the angle between j and b, for which the alignment is enhanced in the saturated stage
as compared to the kinematic stage [Fig. 12(e)]. However, here the difference is higher for the
supersonic case as compared to the subsonic one. The effect is enhanced in the strong-field regions,
i.e., the field is more aligned with the current density where the magnetic energy is higher than
its rms value [Fig. 12(f)]. In the saturated stage of the subsonic turbulence, the enhanced level of
alignment between j and b would diminish the Lorentz force and the field advection by velocity
would become dominant. This would give rise to a higher level of alignment between the velocity
and magnetic field, which we see in Fig. 12(c). Such a difference is not seen in the case of supersonic
turbulence because of the presence of strong shocks.

B. Characteristic magnetic scales

Besides the correlation length of the magnetic field [Fig. 6(d)], the following characteristic
magnetic length scales (or equivalently wave numbers) can be used to further study the local
magnetic field structure [36,42],

k‖ =
( 〈|b · ∇b|2〉

〈b4〉
)1/2

, (13)

kb· j =
( 〈|b · j|2〉

〈b4〉
)1/2

, (14)

kb× j =
( 〈|b × j|2〉

〈b4〉
)1/2

, (15)

krms =
( 〈|∇b|2〉

〈b2〉
)1/2

. (16)

These wave numbers (or length scales) can be related to the physical effects and structure of
magnetic fields. k‖ is a probe of variation of the magnetic field along itself and is related to
the length scale associated with greatest stretching of magnetic field lines (which maximizes
magnetic field amplification). kb× j is a probe of the magnetic field across itself and is related to
resistive dissipation. kb· j is a probe of magnetic field variations along a direction perpendicular to
both magnetic field (b) and Lorentz force ( j × b) and is related to highest compressive motions
(maximizing the effect of compression on magnetic field). krms measures the overall variation of
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magnetic fields. For a subsonic fluctuation dynamo with Pm 
 1, it is shown that the magnetic
field organises itself into folded structures [42,68]. Furthermore, the structures are folded sheets
in the kinematic stage (identified by the condition, k‖ � kb· j � kb× j ∼ krms) and folded ribbons in
the saturated stage (identified by the condition, k‖ � kb· j � kb× j ∼ krms). Since our simulations are
with Pm � 1 (highest Pm is 3, for Rm = 6000 and Re = 2000 runs), we do not necessarily expect
to see such folded structures. However, we compute these characteristic scales [Eqs. (13)–16] to
further study the dynamics of growing and saturated magnetic fields in subsonic and supersonic
turbulence.

Figure 13 shows the temporal evolution of wave numbers, k‖ (a), kb· j (b), kb× j (c), and krms

(d), for subsonic (M0.1Rm6000) and supersonic (M10Rm6000) turbulent flows (both at Pm = 3).
Furthermore, the average values of these wave numbers with 1σ fluctuations in the kinematic and
saturated stages are provided in the legend. For subsonic turbulence, in the kinematic stage, k‖ <

kb· j � kb× j � krms, and thus magnetic structures can probably be characterized as folded ribbons,
but structures in the saturated stage are neither folded ribbons nor folded sheets. All four wave
numbers decrease as the magnetic field saturates for the subsonic case.

For the supersonic turbulence, based on these wave numbers, the structures are never folded
sheets or folded ribbons. All wave numbers except kb· j decrease as the field grows and saturates. This
shows that the dissipation takes place at a smaller length scale in the saturated stage as compared
to the kinematic stage for the supersonic turbulence. However, the overall magnetic wave number,
krms, still increases. The length scales associated with both the greatest stretching and compression
also grows as the magnetic field saturates. On comparing all four wave numbers between subsonic
and supersonic turbulence, k‖ and kb× j are always smaller for the subsonic flow, but kb· j and krms

are comparable in the kinematic stage and are higher for the supersonic case in the saturated stage.
This shows that the length scale associated with greatest stretching and compression grow as the
field saturates for both the subsonic and supersonic cases. However, as the magnetic field grows
and saturates, the resistive dissipation scale increases for the subsonic case, but decreases for the
supersonic case. The overall magnetic field scale grows as the magnetic field saturates for both
Mach numbers [same as the magnetic correlation length in Fig. 6(d)].

C. Local stretching and compression of magnetic field lines and magnetic field diffusion

We now study the local stretching and compression of magnetic field lines by the turbulent
velocity using the eigenvalues and eigenvectors of the strain tensor. Such an analysis is done
for isotropic subsonic turbulence [35,36,68], with a different motivation for slightly supersonic
turbulence (M ∼ 2 in [69]), and for different setups such as magnetic fields in rotating convection
simulations [70] and decaying magnetic field simulations [71]. Here we aim to understand the effect
of growing magnetic fields and compressibility on the local stretching and compression of magnetic
field lines by analyzing the strain tensor. First, we compute the strain tensor, Si j = (1/2) (ui, j + u j,i ),
at each point in the domain using a sixth-order finite difference scheme and then calculate its
eigenvalues (λi) and eigenvectors (ei). We then arrange the eigenvalues in the order λ1 > λ2 > λ3

and let the corresponding eigenvectors be e1, e2, and e3. For an incompressible flow, the sum of
eigenvalues, λ1 + λ2 + λ3 = 0 (approximately applicable for our subsonic case) and λ1 > 0 and
λ3 < 0 [72,73]. This need not be the case for our supersonic runs. In general, e1 (positive λ1)
corresponds to the direction of local magnetic field line stretching, e3 (negative λ3) corresponds to
the direction of local magnetic field line compression, and e2 (also referred to as the ‘null’ direction)
can be either, depending on the sign of λ2 [36,42] (especially, see Fig. 10 in [42]). The magnitude
of λ1 (when it is positive) and λ3 (when it is negative) can be considered as the strength of local
magnetic field line stretching and compression, respectively. For clarity, throughout the rest of the
paper, we refer to λ1, λ2, and λ3 as λstre, λnull, and λcomp and the corresponding eigenvectors as
estre, enull, and ecomp.

Figure 14 shows the PDF of all three eigenvalues normalized to the rms velocity for subsonic
(M0.1Rm6000, a) and supersonic (M10.0Rm6000, b) turbulence in kinematic and saturated
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FIG. 13. The evolution of characteristic magnetic length scales, k‖ [a, Eq. (13), associated with the length
scale for greatest field line stretching], kb· j [b, Eq. (14), associated with resistive dissipation length scale],
kb× j [c, Eq. (15), associated with the length scale for greatest field line compression], and krms [d, Eq. (16),
associated with overall magnetic field variation], as a function of the normalized time, t/t0, for subsonic (blue,
M0.1Rm6000) and supersonic (red, M10Rm6000) turbulence. The dashed, gray line shows average for each
characteristic wave number in the kinematic and saturated stages (see Fig. 1 for corresponding times for each
stage and Mach number) and the average value with 1σ variation is given in the legend. All length scales, except
the resistive dissipation length scale for supersonic turbulence, are enhanced as the magnetic field grows and
saturates. k‖ and kb× j are always smaller for the subsonic turbulence and kb· j and krms are comparable in the
kinematic stage but are higher for the supersonic turbulence in the saturated stage.
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FIG. 14. PDFs of the eigenvalues of the strain tensor, λcomp (green), λnull (orange), and λstre (magenta)
normalized by urms for subsonic (a) and supersonic (b) turbulence in the kinematic (kin, dashed) and saturated
(sat, solid) stages. The solid lines show the mean over 10 eddy turnover times, and the shaded region of the
same color shows the 1σ variations. The legend shows the mean value (denoted by μ) of the distribution for
each case, where the value and the related error are obtained by time averaging. For the subsonic turbulence,
λcomp is always less than zero (strength of local magnetic field line compression), and λstre is always greater
than zero (strength of local magnetic field line stretching). This is not the case for supersonic turbulence. All
three eigenvalues decreases (in a statistical sense, as also reflected by the absolute value of their mean) as the
magnetic field saturates for the subsonic case but increases for the supersonic turbulence.

stages. As expected, for the subsonic case, it can be seen that λcomp is always negative and λstre

is always positive. This is not the case for the supersonic run, i.e., λcomp can be positive for
M10Rm6000 [though the probability of this happening is low; see Fig. 14(b)]. When λnull ≈ 0,
the magnetic field is unaffected along the enull direction. The magnitude of λnull is always smaller
than the other two eigenvalues. On average, λstre ∼ −λcomp ∼ (3 – 5)λnull and this is consistent
with previous results for isotropic hydrodynamic turbulence [73]. The absolute value of all three
eigenvalues is smaller for the supersonic case [compare x-axis in Figs. 14(a) and 14(b)]. Thus the
efficiency of local stretching and compression of magnetic field lines, which leads to magnetic field
amplification, is lower for supersonic turbulence. This is also probably the reason for the smaller
ratio of saturated magnetic to kinetic energy for compressible runs [see Fig. 2(b)]. As the magnetic
field saturates, the absolute value of all three eigenvalues statistically decreases for the subsonic
case, but increases for the supersonic case (as shown by the mean value in the legend of Fig. 14).
Thus, the local field line stretching and compression decreases for the subsonic case in the saturated
stage, but increases in the supersonic case. This is probably to counter high enhancement in diffusion
compared to amplification for supersonic turbulence (see Fig. 12 and Table II).

The amplification of magnetic fields due to field line stretching will be maximal when the field
line stretching direction (estre) is aligned with the magnetic field. Similarly, the effect of field line
compression is maximal when the field line compression direction (ecomp) is perpendicular to the
local magnetic field. Figure 15 shows the total [Figs. 15(a), 15(c), and 15(e)] and conditional
[based only on the strong-field regions, b2/b2

rms > 1, Figs. 15(b), 15(d), and 15(f)] PDF of the
angle between all three eigenvectors (ecomp, enull, and estre) and magnetic fields (b) in the kinematic
and saturated stages for subsonic and supersonic turbulent flows. For the supersonic case [see
Fig. 14(b)], we consider only those regions where λcomp < 0 (implying local magnetic field line
compression) and λstre > 0 (implying local magnetic field line stretching). All the possible angles
between these three eigenvectors and magnetic fields are not equiprobable.

In the kinematic stage, for the subsonic turbulence, the highest probable angle between the field
line compression direction and magnetic field is 90◦or 270◦(| cos(θ )ecomp,b| ≈ 0) and that between
the field line stretching direction and magnetic field is 0◦or 180◦(| cos(θ )estre,b| ≈ 1). Thus, the
magnetic field is more aligned with the field line stretching direction (and also the null direction)
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FIG. 15. Total and conditional (regions with b2/b2
rms > 1) PDFs of the angle between the three eigenvectors

of the rate of strain tensor (ecomp, enull, and estre) and magnetic felds (b) for subsonic (M0.1Rm6000, blue) and
supersonic (M10.0Rm6000, red) turbulence in kinematic (kin, dashed) and saturated (sat, solid) stages. The
effect of field line compression is enhanced if the field line compression direction is perpendicular to the local
magnetic field, i.e., | cos(θ )ecomp,b| ≈ 0. Magnetic field amplification is enhanced when the field line stretching
direction is aligned with the local magnetic field, i.e., | cos(θ )estre,b| ≈ 1. This is seen in the kinematic stage
for the subsonic flows. As the field saturates in the subsonic case, | cos(θ )| for both those cases moves to
the range 0.6–0.7, and thus the field amplification and the effect of local compression is reduced. Such a
significant difference between the kinematic and saturated stages is not seen for the supersonic case. For the
supersonic case, the direction of local magnetic field line compression is more aligned with the magnetic field
in the saturated stage as compared to the kinematic stage (though not in the strong-field regions), whereas, in
strong-field regions only, there is a slight decrease in the level of alignment between estre and b in the saturated
stage of the supersonic run.

103701-20



SATURATION MECHANISM OF THE FLUCTUATION …

TABLE II. The ratio of the mean local magnetic growth [
∑

i=comp,null,stre(λi/urms)(bi/brms)2 −
(1/2)(b/brms)2[∇ · (u/urms)], Figs. 16(e) and 16(f)] and dissipation [ j2/ j2

rms, Figs. 17(a) and 17(b)] terms in
the kinematic (kin) and saturated (sat) stages and the difference in the ratio between the two stages (kin − sat)
for subsonic (M0.1Rm6000) and supersonic (M10Rm6000) turbulence. The corresponding numbers for
only strong-field regions (b2/b2

rms > 1) are also provided. This shows that, even though both the growth and
dissipation of the magnetic field deceases on saturation, the magnetic dissipation relative to the growth is
enhanced.

kin, sat, (kin − sat),
Simulation name kin sat (kin − sat) b2/b2

rms > 1 b2/b2
rms > 1 b2/b2

rms > 1

M0.1Rm6000 0.51 ± 0.09 0.16 ± 0.01 0.35 ± 0.09 0.86 ± 0.16 0.23 ± 0.01 0.63 ± 0.17
M10Rm6000 0.78 ± 0.04 0.71 ± 0.05 0.08 ± 0.06 1.29 ± 0.09 0.95 ± 0.13 0.34 ± 0.16

and perpendicular to the direction of the field line compression direction. This maximizes magnetic
field amplification. This also suggest that the magnetic field statistically lies more in the estre – enull

plane. As the field saturates in subsonic turbulence, the more probable angles for both ecomp and
estre lie in the range of | cos(θ )| = 0.6 – 0.7 (enull is still more aligned with b, but the level of
alignment has decreased). Thus, the amplification due to field line stretching and the effect of
local compression is reduced in the saturated stage as compared to the kinematic stage via changes
in these alignments. Moreover, these differences between the kinematic and saturated stages are
enhanced in the strong-field regions [Figs. 15(b), 15(d), and 15(f)].

These trends are different for supersonic turbulence. In the kinematic stage, the magnetic field is
overall more aligned with the estre and enull and also orthogonal to ecomp as in the subsonic case. Thus,
here too, the magnetic field statistically lies in the estre–enull plane. However, as the field saturates,
the difference in the distribution of these angles is not as significant as in the subsonic case. In fact,
ecomp is more aligned with b in the saturated stage [although not in the strong-field regions; see
Fig. 15(b)], enhancing the effect of local compression regions with b/brms � 1. On the other hand,
in strong-field regions [Fig. 15(f)], the orthogonality between estre and b is slightly enhanced in the
saturated stage, but the overall distribution of | cos(θ )estre,b| [Fig. 15(e)] is roughly the same for both
the kinematic and saturated stages.

We now explore the magnetic energy evolution equation and directly calculate the local growth
and dissipation terms. The evolution of magnetic energy, for a fixed resistivity, η, can be described
by the following equation (see the Appendix for the derivation),∫

V

1

2

∂|b|2
∂t

dV =
∫

V
bib jSi j dV

−
∫

V

1

2
|b|2(∇ · u) dV

− η

∫
V

| j|2 dV. (17)

The first term is due to stretching and compression of magnetic field lines by the turbulent
flow and can increase (e.g., by stretching of magnetic field lines) or decrease (e.g., unstretching of
magnetic field lines) the magnetic energy. Statistically, both can happen in a turbulent medium. This
term is computed as follows. First, the local magnetic field is projected along the three eigenvectors
of the rate of strain tensor (ecomp, enull, and estre) and let these projected vectors be bcomp, bnull, and
bstre. The first term is then calculated as the sum

∑
i=comp,null,stre(λi/urms)(bi/brms)2. The second term

can also reduce or enhance magnetic energy locally depending on the divergence of the velocity.
As expected, this term is negligible for the subsonic case, but does play an important role in the
supersonic turbulence. The third term is the dissipative term, which always reduces the magnetic
energy.
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FIG. 16. Total and conditional (regions with b2/b2
rms > 1) PDFs of the first

[
∑

i=comp,null,stre(λi/urms)(bi/brms)2], second (−(1/2)(b/brms)2[∇ · (u/urms)]), and the combination of the
first two terms in the right-hand side of the Eq. (17) for subsonic and supersonic cases (μ in the legend
shows the mean of the distribution for each case). The mean of combination of both terms (e, f) is always
positive. This implies that, on an average, the first two terms leads to local growth of the magnetic energy. On
saturation, the first term and first two terms combined statistically decreases for the subsonic case (as expected
the second term has negligible effect). This shows reduction in amplification, and this reduction is enhanced
in strong-field regions. For the supersonic case, the local growth term (e) is not statistically different between
the kinematic and saturated stages but is lower in the saturated stage for strong-field regions (f).

Figure 16 shows the total and conditional (only in the strong-field regions) PDFs of the first,
second, and first and second terms combined of Eq. (17) for subsonic and supersonic turbulence. For
the subsonic case, the second term makes a small difference since ∇ · (u/urms) is negligible. Thus,
the magnetic field growth term [first term or combination of first two terms in the magnetic energy
evolution equation for the subsonic case, Eq. (17)] statistically decreases as the dynamo saturates.
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FIG. 17. The total and conditional (regions with b2/b2
rms > 1) PDF of the dissipation (last) term in Eq. (17)

for subsonic (blue) and supersonic (red) turbulence in the kinematic (kin, dashed) and saturated (sat, dashed)
stages. The magnetic dissipation is statistically higher for the supersonic turbulence in both the kinematic and
saturated stages. For both Mach numbers, the dissipation decreases as the field saturates and the decrease is
higher for the supersonic case. The differences are enhanced in the strong-field regions (this can also be seen
via the mean of the distribution, μ, in each case)

This implies that the growing magnetic field reduces its own amplification. The differences are
further enhanced in strong-field regions [Fig. 16(f)]. For the supersonic case, the combined term is
statistically higher in comparison to the subsonic one, but there is not much difference between the
corresponding kinematic and saturated stages [Fig. 16(e), also very similar mean value, μ, for the
kinematic and saturated stages]. In strong-field regions, the local growth term is slightly reduced on
saturation for the supersonic case. Thus, on saturation, the local growth term is reduced throughout
the volume for the subsonic case, but mostly in the strong-field regions for the supersonic case.
However, the mean of the local growth term [μ in Figs. 16(e) and 16(f)] always remains positive for
all cases. Thus, the magnetic field always grows. Even in the saturated state, the magnetic energy is
amplified to counter diffusion.

Figure 17 show the PDF for the last term on the right-hand side of Eq. (17), j2, which probes the
dissipation of magnetic energy. The dissipation is also statistically higher for the supersonic case in
comparison to the subsonic one. For both cases, the magnetic dissipation statistically decreases as
the dynamo saturates and the decrease is more statistically significant for the strong-field regions.

Table II shows the ratio of the mean value of local growth term
[
∑

i=comp,null,stre(λi/urms)(bi/brms)2 − (1/2)(b/brms)2(∇ · (u/urms)] to the mean value of the
local dissipation term ( j2/ j2

rms) in the kinematic and saturated stages for subsonic and supersonic
turbulence (the magnetic resistivity, η, is the same for both runs). The ratio is always higher in the
kinematic stage as compared to the saturated stage [see (kin − sat) in Table II], especially in the
strong-field regions. Note that, unlike the subsonic case, the difference of the ratio between the
kinematic and saturated stages is small for the supersonic case and turns out to be significant only
in the strong-field regions. Thus, although both growth and dissipation of magnetic fields decrease
as the field saturates, the magnetic dissipation relative to the amplification is enhanced. This leads
to the saturation of the fluctuation dynamo.

V. SUMMARY AND CONCLUSIONS

Using driven turbulence numerical simulations, we explore the saturation mechanism of the fluc-
tuation dynamo. Our main aim was to study the effect of compressibility on the dynamo-generated
fields and the saturation mechanism. We numerically solve the equations of nonideal compressible
MHD for an isothermal gas [Eqs. (1)–(4)] with very weak seed magnetic fields (random with mean
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zero) and primarily vary the Mach number, M, of the turbulent driving. For all the cases, the
magnetic field first amplifies exponentially (kinematic stage) and then saturates (saturated stage).
We first study the global (over the entire domain) dynamo properties (growth rate, saturation level,
spectra, and magnetic intermittency) as a function of M. Then we explore the local properties
and interactions of velocity and magnetic fields for subsonic (M = 0.1) and supersonic (M = 10)
turbulent flows in the kinematic and saturated stages of the fluctuation dynamo. For the local study,
we also isolate and study the regions with higher magnetic energy (b2/b2

rms > 1) as we expect that
the dynamical effects of magnetic fields would be stronger in those regions. We summarize and
conclude our key results below.

The growth rate of the magnetic energy decreases till M = 5 and then increases for M = 10
[Fig. 2(a)]. The fraction of turbulent kinetic energy getting converted to magnetic energy, per unit
time, decreases with increasing M [Fig. 2(b)]. Thus, the overall efficiency of the dynamo decreases
as the compressibility increases.

The turbulent kinetic energy in the kinematic stage, over a range of wave numbers, seems
to follow the Kolmogorov k−5/3 power spectrum for subsonic turbulence and the Burgers k−2

power spectrum for supersonic turbulence [Fig. 6(a)]. As the field saturates, the kinetic energy
power spectrum steepens for the subsonic case [also reflected in the velocity correlation length,
Fig. 6(c)] and such a change is not that significant in the supersonic stage. In the kinematic stage,
the magnetic energy power spectrum is consistent, at larger scales, with the Kazantsev k3/2 spectrum
(the agreement is better for the subsonic turbulence). The magnetic spectra for both subsonic and
supersonic flows are flatter at larger scales in the saturated stage [Fig. 6(b)]. The computed magnetic
field correlation length also increases for both Mach numbers as the dynamo saturates [Fig. 6(d)].

The velocity fields for both subsonic and supersonic turbulence roughly follows a Gaussian
distribution [Fig. 7(a)], the magnetic fields they amplify are non-Gaussian or spatially intermittent
[Fig. 7(b)]. The intermittency decreases for both Mach numbers as the field saturates, but is always
higher for the supersonic case (Fig. 8). Furthermore, in the kinematic stage, the PDF of b/brms

roughly follows a lognormal distribution and the fit is better for the supersonic case. The effects
of enhanced magnetic intermittency with compressibility must be considered while studying the
effects of the fluctuation dynamo action in star-forming regions.

Locally, for the subsonic turbulence, we find that the level of alignment between the velocity
and vorticity, velocity and magnetic fields, and magnetic fields and current density is enhanced as
the magnetic field saturates (Fig. 12). However, for the supersonic case, the distribution of angles
between the velocity and vorticity and vorticity and magnetic fields remains statistically the same in
both stages and only the level of alignment between current density and magnetic fields is enhanced
on saturation. This shows that back-reaction of the growing magnetic field on the velocity field is
not that significant in supersonic turbulence in comparison to subsonic flows.

We also compute the evolution of following characteristic magnetic length scales: Length scales
associated with highest stretching of magnetic field lines [Eq. (13)], resistive dissipation [Eq. (14)],
highest compression of magnetic field lines [Eq. (15)], and overall field variation [Eq. (16)]. Based
on these scales, magnetic field structures in the kinematic stage of the subsonic turbulence can
probably be considered as folded ribbons, but magnetic structures in the saturated stage and in both
stages for the supersonic case are neither folded sheets nor ribbons. As the field saturates, all of
these length scales are enhanced for the subsonic case and all but the length scale associated with
the resistive dissipation is enhanced for the supersonic case (Fig. 13).

We compute the eigenvalues and eigenvectors of the rate of strain tensor to study the local
magnetic field line stretching and compression. The effect of the velocity is maximized when the
direction of the magnetic field line stretching is aligned with the magnetic field and the direction of
the magnetic field line compression is orthogonal to the magnetic field. In subsonic turbulence, the
level of alignment and orthogonality of direction of stretching and compression with the magnetic
field, respectively, is reduced as the field saturates. However, for the supersonic case, the difference
between the kinematic and saturated stages in not that significant (Fig. 15). The magnetic field is
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slightly more orthogonal with the local compression direction in the saturated stage (although not
in the strong-field regions), which enhances the effect of local compression.

Finally, we compute each term in the magnetic energy evolution equation [Eq. (17)] and show
that both the local growth (Fig. 16) and dissipation (Fig. 17) of magnetic fields decreases as the
field saturates for the subsonic case. For the supersonic case, overall, there is not much difference in
the local growth between the kinematic and saturated stages, but the local growth is reduced in the
strong-field regions. As in the subsonic case, the dissipation is also reduced in the saturated stage for
supersonic flows (Fig. 17). However, even though both the amplification and dissipation of magnetic
fields statistically decreases as the field saturates, the dissipation relative to the amplification is
enhanced (Table II). Thus, the exponentially growing magnetic fields evolve to alter both the
amplification and dissipation mechanisms of the fluctuation dynamo to achieve saturation. This also
implies that a drastic change in either of them is not required. This change is significant throughout
the volume for the subsonic case, but primarily occurs in strong-field regions for the supersonic
turbulence.
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APPENDIX: EVOLUTION OF MAGNETIC ENERGY IN SUPERSONIC PLASMAS

Here we derive the magnetic energy evolution equation from the induction equation,

∂b
∂t

= ∇ × (u × b) + η∇2b. (A1)

For a constant η, taking a dot product of Eq. (A1) with b and then integrating over the volume, V ,
gives ∫

V
b · ∂b

∂t
dV =

∫
V

b · [∇ × (u × b)] dV + η

∫
V

b · ∇2b dV, (A2)

∫
V

1

2

∂|b|2
∂t

dV =
∫

V
b · [∇ × (u × b)] dV︸ ︷︷ ︸

first term

+ η

∫
V

b · ∇2b dV.︸ ︷︷ ︸
second term

(A3)

The right-hand side term in the above equation represents the evolution of magnetic energy.
Simplifying the first term further,∫

V
b · [∇ × (u × b)] dV

=
∫

V
b · [u(∇ · b︸︷︷︸

= 0

) − b(u · ∇)b + (b · ∇)u − (u · ∇)b] dV, (A4)

=
∫

V
[b · (b · ∇)u − b · (u · ∇)b − bb(∇ · u)] dV, (A5)
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=
∫

V
[bi(b j∂ j )ui − bi(u j∂ j )bi − |b|2(∇ · u)] dV, (A6)

=
∫

V

[
bib j (∂ jui ) − u j∂ j

b2
i

2
− |b|2(∇ · u)

]
dV, (A7)

Si j = ∂ jui is the rate of strain tensor,

=
∫

V

[
bib jSi j − u · 1

2
∇|b|2 − |b|2(∇ · u)

]
dV, (A8)

=
∫

V

[
bib jSi j −

(
1

2
∇ · (u|b|2) − 1

2
|b|2(∇ · u)

)
− |b|2(∇ · u)

]
dV, (A9)

=
∫

V

[
bib jSi j − 1

2
|b|2(∇ · u)

]
dV − 1

2

∫
V

∇ · (u|b|2) dV, (A10)

=
∫

V

[
bib jSi j − 1

2
|b|2(∇ · u)

]
dV − 1

2

∫
S
(u|b|2) · n̂ dS.︸ ︷︷ ︸

= 0 for periodic BCs

(A11)

The last term in the above equation, being a surface integral, integrates out to zero for periodic
boundary conditions.

Simplifying the second term further,

η

∫
V

b · ∇2b dV = η

∫
V

b · [∇(∇ · b︸︷︷︸
= 0

) − ∇ × (∇ × b)] dV, (A12)

= −η

∫
V

b · [∇ × (∇ × b)] dV, (A13)

= −η

∫
V

b · (∇ × j) dV, (A14)

= −η

∫
V

b · (εi jk∂ j jk ) dV, (A15)

= −η

∫
V

biεi jk∂ j jk dV, (A16)

= −η

∫
V

jk εi jk∂ jbi︸ ︷︷ ︸
jk

dV, (A17)

= −η

∫
V

j2
k dV, (A18)

= −η

∫
V

| j|2 dV. (A19)

Thus, the magnetic energy evolution equation is

∫
V

1

2

∂|b|2
∂t

dV =
∫

V
bib jSi j dV

−
∫

V

1

2
|b|2(∇ · u) dV

− η

∫
V

| j|2 dV. (A20)
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