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Convection in the Sun occurs at Rayleigh numbers, Ra, as high as 1022 and molecular
Prandtl numbers, Pr, as low as 10−6, under conditions that are far from satisfying the
Oberbeck-Boussinesq (OB) idealization. The effects of these extreme circumstances on
turbulent heat transport are unknown, and no comparable conditions exist on Earth. Our
goal is to understand how these effects scale (since we cannot yet replicate the Sun’s con-
ditions faithfully). We study thermal convection by using direct numerical simulations, and
determine the variation with respect to Pr, to values as low as 10−4, of the turbulent Prandtl
number, Prt , which is the ratio of turbulent viscosity to thermal diffusivity. The simulations
are primarily two-dimensional but we draw upon some three-dimensional results as well.
We focus on non-Oberbeck-Boussinesq (NOB) conditions of a certain type, but also study
OB convection for comparison. The OB simulations are performed in a rectangular box of
aspect ratio 2 by varying Pr from O(10) to 10−4 at fixed Grashof number Gr ≡ Ra/Pr =
109. The NOB simulations are done in the same box by letting only the thermal diffusivity
depend on the temperature. Here, the Rayleigh number is fixed at the top boundary while
the mean Pr varies in the bulk from 0.07 to 5 × 10−4. The three-dimensional simula-
tions are performed in a box of aspect ratio 25 at a fixed Rayleigh number of 105, and
0.005 � Pr � 7. The principal finding is that Prt increases with decreasing Pr in both OB
and NOB convection: Prt ∼ Pr−0.3 for OB convection and Prt ∼ Pr−1 for the NOB case.
The Prt dependence for the NOB case especially suggests that convective flows in the
astrophysical settings behave effectively as in high-Prandtl-number turbulence.

DOI: 10.1103/PhysRevFluids.6.100503

I. INTRODUCTION

A. Background

The Sun has been subject to astronomical observations for many centuries, but a focused study
of its internal dynamics began with Johann Fabricius who published sunspot observations in 1611,
predating Galileo Galilei’s observations in his Lettere solari by about two years. In terms of
sustained study in fluid dynamical entities such as waves, oscillations, and granulations, as well
as instabilities, turbulence, and convection, the Sun is a more recent study. The fluid dynamical
phenomena that occur in the outer 30% of the Sun’s radius should be of interest to the readers of
this journal and to the members of division of fluid dynamics. It was in this spirit that the Otto
Laporte Lecture of the Fluid Dynamics Prize was delivered by the last author of this paper.
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A central theme of that lecture was that the Sun sustains many organized structures though the
Rayleigh number of convection is very high, perhaps as high as 1022, suggesting a domineering
role for turbulence. Some important aspects of these organized activities are the differential rotation
(i.e., the equator of the Sun rotating faster than the poles), meridional circulation (organized flow
from the equator to the poles near the surface and reversal near the bottom of the convection zone),
Rossby waves (hydrodynamic, thermal and MHD), granules, supergranules, giant cells, and so
forth. The most famous of them are the sunspots that slowly drift towards the equator and whose
temporal variation has a period on the order of 22 years (with chaotic variations superimposed on
them). How does the Sun, which is a highly turbulent body as suggested by the immense Rayleigh
number (and the associated Reynolds number), sustain such highly organized dynamics? This is an
important question.

It is clear that at the heart of the answer lie properties like the enormous stratification with depth
of the physical properties of the gas constituting the Sun, its large-scale rotation, the generation
of the magnetic field, and its interaction with convective fluid dynamics, and the extremely small
molecular Prandtl number of the fluid, etc. Time is not yet ripe for a comprehensive and self-
contained account of the fluid dynamics of the Sun, a subject to which additions are being made
currently at a rapid rate (see, e.g., [1] for a recent review). For this reason it seemed better to narrow
the scope of this paper to a specific aspect and provide a detailed account of it, rather than cover the
entire range of topics covered in the lecture.

This specific aspect chosen here is the effect of very small molecular Prandtl number Pr on the
turbulent heat transport. The Prandtl number in the Sun, being of the order of 10−6, has no analog in
any terrestrial conditions and cannot be replicated in the laboratory, so one has to resort to numerical
solutions of governing equations. Further, solar convection does not take place under the Oberbeck-
Boussinesq (OB) or near-OB conditions, so one has to build one’s intuition on numerical studies at
very low Prandtl numbers under non-Oberbeck-Boussinesq (NOB) conditions. This is the purpose
of the rest of the paper, under the joint responsibility of all three authors. For comparisons, we study
convection under OB conditions as well. The majority of the simulations are two dimensional but
we also cover three-dimensional convection in a modest parameter space.

B. Specific context

Turbulent transport mixes substances efficiently and obliterates mean gradients [2]. The effective
(turbulent) diffusion coefficients in a turbulent flow are far larger than their molecular counterparts
and depend on flow properties. Many turbulent flows in nature, including the Sun, are driven
by thermal convection [1,3]. Rayleigh-Bénard convection (RBC) is a paradigm for studying the
properties of such flows [4–8]. In RBC, a horizontal fluid layer is heated from below and cooled
from above, and the convective flow properties are governed by the Rayleigh number Ra, the Prandtl
number Pr, and the aspect ratio �. The Rayleigh number is a measure of the strength of the driving
due to temperature differences compared to friction and diffusive forces due to molecular action.
The molecular Prandtl number is given by Pr = ν/κ , the ratio of the kinematic viscosity ν, and the
thermal diffusivity κ of the fluid. Sometimes it is more convenient, and appropriate, to consider the
Grashof number Gr = Ra/Pr. The aspect ratio � is the ratio of the horizontal to the vertical extents
of the domain. The molecular Prandtl number spans a wide range reaching from Pr ∼ 10−6 in the
Sun’s convection region [1] to Pr ∼ 1024 in the Earth’s mantle [9].

In high-Reynolds-number flows, the turbulent viscosity νt and the turbulent thermal diffusivity κt

are vastly different from their molecular counterparts. The turbulent Prandtl number, which is given
by

Prt ≡ νt

κt
, (1)

is a key parameter in various engineering and geoturbulence models [10–12]. For example, Prt is
needed to model the convective turbulent heat transport in liquid metal reactors for nuclear energy
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generation [13]. It is essential to know the dependence of Prt on Pr, this being the primary objective
of the current work.

According to Reynolds analogy, the eddies which are responsible for the turbulent transport of
momentum are also responsible for transporting heat. This yields Prt ≈ 1. This analogy has been
observed to hold reasonably well for convection in air, water, and for Pr � 0.7 [12–14]. However,
for convection in liquid metals with Pr � 1, Prt values larger than unity have been found [13,15,16].
Abe and Antonia [14] studied the behavior of Prt in the near-wall region as well as in the central
region using direct numerical simulations (DNS) of a channel flow and found that Prt is consistently
higher for Pr = 0.025 than for Pr = 0.7. Bricteux et al. [13] studied a low-Pr flow through a
uniformly heated channel and observed that Prt ≈ 2 for Pr = 0.01. Recently, Tai et al. [17] studied
RBC in a cylindrical cell with � = 1 and observed that Prt within the thermal boundary layer (BL)
increased with decreasing Pr.

As Pr is an inherent property of the fluid, a significant variation of Pr in experimental studies of
convection is possible only when the fluid is changed. Moreover, the lowest Pr values that can be
achieved in a controlled laboratory experiment are of the order of 0.005 for liquid sodium [18], more
than three orders of magnitude higher than that in the Sun. The DNS of RBC, where the governing
equations are integrated numerically by resolving all relevant scales, is thus the only available tool
for exploring the governing parameters. While the Prandtl number can be varied relatively easily
in DNS, in studying very-low-Pr and very-high-Ra convection, the challenge of resolving very fine
length and time scales limits our scope [19–24].

Two-dimensional (2D) models of convection are thus commonly utilized to explore parame-
ter dependencies. Such an idealized model still provides useful insights on the convective flow
properties. For instance, 2D convection has been used to study the properties of convective flow
reversals [25–28], transition to the so-called ultimate regime of convection [29], logarithmic tem-
perature profiles [30], and the boundary layer (BL) structure [31,32]. Most DNS studies employ the
Oberbeck-Boussinesq (OB) model of convection, for which the molecular transport coefficients of
the fluid are assumed to be constant throughout the flow [1,8,33]. Here, we first study the variation of
Prt by performing a DNS of 2D-OB convection by varying Pr over five orders of magnitude, but also
compute Prt in a horizontally extended convection in a 3D square box. The relevant 3D data, taken
from Pandey et al. [23], correspond to four DNS runs for a constant Rayleigh number Ra = 105,
with Pr varying from 0.005 to 7. The simulations were performed in a rectangular box of dimensions
Lx : Ly : H = 25 : 25 : 1, where the velocity field satisfies the no-slip boundary condition on all the
boundaries. For the temperature field, isothermal and adiabatic conditions are used, respectively, on
the horizontal and vertical walls. Thus, this setup differs from the corresponding 2D cases, where
periodic boundary conditions are employed on the sidewalls.

Variations of temperature, pressure, and density are assumed to be weak in OB convection in or-
der to safely neglect the variations of the molecular transport properties of the fluid. Thus, it is clear
that the OB model is inapplicable in many cases, such as solar, stellar, or even planetary interiors.
If one includes these complexities, the resulting NOB convection model becomes very challenging
to study [1,34–40]. Recently, in the spirit of Sameen et al. [36,37], we followed a different path and
studied a simpler NOB model in a horizontally extended 3D domain. NOB behavior was created by
prescribing thermal diffusivity to depend on the temperature, while the other parameters were kept
constant [41,42]. We found in Ref. [42] that many properties of this simple NOB flow are similar to
those observed in fully compressible and inelastic models of convection, which are usually utilized
to study convection in solar and stellar interiors [1,3]. In this paper, we employ the same NOB model
in two and three dimensions to study the relation between Prt and Pr.

The broad finding of this paper is that the turbulent Prandtl number increases with decreasing
Pr, the precise rate depending on whether the flow is OB or NOB. To a first approximation,
the dimensionality of the flow, the precise sidewall boundary conditions, or the precise values of
Rayleigh and Grashof numbers do not matter significantly for the observed variation.

The paper is organized as follows. In Sec. II, we describe the flow domain, the numerical method,
and the parameters explored, in both OB and NOB convection. In Sec. III, we present the flow
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structure and behavior of Prt in OB convection. The scaling of integral quantities, flow structures
and the variation of Prt in NOB convection are presented in Sec. IV. Finally, the important findings
from the current study are summarized in Sec. V, where we return to implications for the Sun.

II. GOVERNING EQUATIONS AND NUMERICAL DETAILS

A. Two-dimensional Oberbeck-Boussinesq convection

We study the OB model of convection in a 2D domain by performing DNS from Pr = 10−4 to
12.73 at a constant Grashof number Gr = 109. The relevant nondimensional governing equations
are [20]

∂u
∂t

+ u · ∇u = −∇p + T ẑ + 1√
Gr

∇2u, (2)

∂T

∂t
+ u · ∇T = 1√

GrPr
∇2T, (3)

∇ · u = 0, (4)

where u = (ux, uz ), p, and T are respectively the velocity, pressure, and temperature fields defined
on a rectangular domain of horizontal dimension L = �H and vertical height H . The Rayleigh
number is defined as Ra = γ g�T H3/(νκ ), γ being the (isobaric) thermal expansion coefficient of
the fluid, g the acceleration due to gravity, and �T the temperature difference between bottom and
top plates. These equations are nondimensionalized using H , the free-fall velocity u f = √

γ g�T H ,
the free-fall time t f = H/u f , and �T as length, velocity, time, and temperature scales, respectively.

We perform the DNS of OB convection by integrating Eqs. (2)–(4) using a spectral element
solver NEK5000 [43]. The flow domain is discretized into a finite number of elements (Ne) and
the turbulence fields within each element are expanded using N th order Lagrangian interpolation
polynomials, resulting in NeN2 mesh cells in the flow. The top and bottom plates satisfy isothermal
and no-slip boundary conditions, whereas the sidewalls are periodic. The simulations are initiated
from the conduction state with random perturbations and the analyses are performed after the initial
transients have decayed. To sufficiently resolve the boundary layers near the horizontal plates, we
place a larger number of mesh cells in those regions than in the bulk. We have verified that the flows
are spatially well resolved according to criteria summarized in Scheel et al. [44] and Pandey [32].

Convective flows at fixed Ra become increasingly turbulent as Pr is lowered [20,21,23,45].
This increases the computational cost for exploring low-Pr convection even at moderate Rayleigh
numbers because the finest length and time scales, namely the Kolmogorov scales (or smaller),
need to be properly resolved. The study of convection with varying Pr for a given Ra becomes
extremely challenging when Pr � 1 [22]. So we study convective flows at a constant Grashof
number Gr = 109 from Pr = O(10) down to Pr = 10−4. As mentioned already, the Rayleigh
number is also simultaneously varied to keep Gr a constant. Note that the momentum equation (2)
remains the same for flows at a constant Gr, and the Prandtl number appears explicitly only in
the temperature equation. However, as the momentum and temperature evolution equations are
coupled, the momentum equation also feels the change in Pr via the temperature field [20]. Table I
summarizes important simulation parameters, and shows the challenges in studying very low-Pr
convection: note that the same spatial resolution is required for OB1 and OB7 simulations, even
though Ra is smaller by five orders of magnitude in the latter.

B. Two-dimensional non-Oberbeck-Boussinesq convection

The relevant incompressible (∇ · u = 0) nondimensional governing equations are

∂u
∂t

+ u · ∇u = −∇p + T ẑ + 1√
Gr

∇2u, (5)

∂T

∂t
+ u · ∇T = ∇ ·

[
f (T )√

Gr Prtop

∇T

]
. (6)
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TABLE I. Parameters of the OB simulations in a � = 2 box with a fixed Grashof number Gr = 109.
The total number of spectral elements is Ne = 46 000. Here, N is the order of the Lagrangian interpolation
polynomials; Nu, NuεT , and Nuεu are the Nusselt numbers computed using Eqs. (9)–(11), respectively; Re
is Reynolds number computed using the root-mean-square velocity. The “error bars” in Nu and Re are the
differences between the mean values from the first and second halves of the data sets.

Run Pr Ra N Nu NuεT Nuεu Re

OB1 12.73 1.273 × 1010 7 104.2 ± 1.3 103.7 103.7 6103 ± 844
OB2 0.7 7 × 108 3 43.0 ± 1.6 43.3 43.2 16 429 ± 4095
OB3 0.1 1 × 108 5 23.7 ± 0.6 23.4 23.4 28 605 ± 5200
OB4 0.025 46 2.546 × 107 5 14.8 ± 0.3 14.8 14.9 41 477 ± 11 350
OB5 0.005 5 × 106 7 8.43 ± 0.01 8.41 8.29 61 771 ± 14 510
OB6 0.001 1 × 106 7 4.52 ± 0.17 4.53 4.47 98 920 ± 16 465
OB7 0.0001 1 × 105 7 1.69 ± 0.05 1.69 1.73 14 7811 ± 21 082

The Rayleigh and Prandtl numbers at the top boundary are defined as Ratop = γ g�T H3/(νκtop)
and Prtop = ν/κtop. The NOB simulations are also performed in the same 2D box of � = 2 by
integrating Eqs. (4)–(6) using NEK5000 [43]. Following Pandey et al. [42], we use two different
functional forms of κ (T ), which are given by

κ1(T ) = κtop(1 + 49T + 450T 6), (7)

κ2(T ) = κtop(1 + 149T + 350T 3). (8)

Thus, κ (T ) increases towards the heated bottom plate, where the diffusivity in both cases is κbot =
500κtop. The parameters are Prtop = 12.73 and Ratop = 1.708 × 108, corresponding to Prbot = 0.025
and Rabot = 3.4 × 105. The Grashof number is Gr = Rabot/Prbot = 1.34 × 107. We have performed
four more simulations with the diffusivity variation specified by κ2(T ) for Prtop = 1.0, 0.5, 0.25, and
0.1, while Ratop = 1.708 × 108. Important parameters of the NOB simulations are summarized in
Table II.

The strongly varying temperature field in the vicinity of the top plate requires a finer local spatial
resolution which is adjustable in a spectral element method. Therefore, we designed an asymmetric
mesh containing larger number of grid points near the top plate than near the bottom plate, and
verified that all the NOB simulations were adequately resolved as discussed in Pandey et al. [42].

One consequence of using a temperature-dependent diffusivity is that the temperature profile
becomes asymmetric with respect to midplane [42] [see Fig. 1(a)]. We compute the horizontally

TABLE II. Parameters of the NOB simulations for Ratop = 1.708 × 108. The simulation domain is divided
into 9900 spectral elements. Here, κ (T ) is the functional form of the temperature-dependent thermal diffusivity
specified by Eqs. (7) and (8); Prtop is the Prandtl number specified at the top plate; Gr is the Grashof number;
〈Pr〉 is the globally averaged Prandtl number; N is the order of the Lagrangian interpolation polynomials. The
error bars in Nu and Re are computed as in Table I.

Run κ (T ) Prtop Gr 〈Pr〉 N Nu NuεT Nuεu Re

NOB1 κ1(T ) 12.73 1.342 × 107 7.2 × 10−2 5 6.57 ± 0.01 6.57 6.57 2048 ± 1
NOB2 κ2(T ) 12.73 1.342 × 107 5.3 × 10−2 5 6.23 ± 0.02 6.24 6.23 2574 ± 3
NOB3 κ2(T ) 1.00 1.708 × 108 4.4 × 10−3 7 4.72 ± 0.07 4.72 4.67 20 350 ± 176
NOB4 κ2(T ) 0.50 3.416 × 108 2.2 × 10−3 11 4.19 ± 0.24 4.19 3.98 34 740 ± 855
NOB5 κ2(T ) 0.25 6.832 × 108 1.1 × 10−3 13 3.73 ± 0.04 3.77 3.60 59 634 ± 229
NOB6 κ2(T ) 0.10 1.708 × 109 4.7 × 10−4 13 3.52 ± 0.06 3.53 3.51 121 752 ± 84
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FIG. 1. Horizontally and temporally averaged (a) temperature and (b) Prandtl number profiles for NOB
simulations show that the isothermal bulk region shrinks with decreasing Pr. The profiles are asymmetric with
respect to the midline at z = 0.5H .

and temporally averaged temperature profile 〈T 〉x,t . Figure 1(a) shows that 〈T 〉x,t does not vary
appreciably in the bulk of the flow. The profiles are asymmetric with respect to the midline, i.e.,
the temperature drop is larger in the top region than in the bottom region, which is a signature of
the NOB nature of the flow [34,39]. Figure 1(a) also reveals that the stratification in the top region
in NOB1 is stronger than that in NOB2, which is due to a weaker variation of κ with temperature
in the latter. The mean temperature in NOB2 is smaller than that in NOB1, which indicates that
the departure from OB conditions becomes weaker with decreasing polynomial order of κ (T ). We
have verified this result by performing an additional simulation with the thermal diffusivity varying
linearly with T , i.e., κ (T ) = κtop(1 + 499T ), but we do not present the results to avoid clutter.

We compute the depth variation of the horizontally averaged Prandtl number, 〈Pr〉x,t =
ν/〈κ (T )〉x,t , and plot it in Fig. 1(b). The figure shows that Pr drops sharply from its value at the
top plate and does not change appreciably in the bulk region. It shows that Pr in the bulk is nearly
two orders of magnitude lower than that at the top plate. We compute the mean Pr of the flow as
〈Pr〉 = ν/〈κ〉A,t , where 〈·〉A,t denotes the averaging over the entire simulation domain and time, and
list the values of 〈Pr〉 in Table II and find that 〈Pr〉 < 0.1 for all the simulations. Thus, the flow
properties of our NOB simulations are similar to those observed in low-Pr convection.

C. Supporting results from three-dimensional Oberbeck-Boussinesq convection

To assess the robustness of 2D results, we study 3D convection in a square box, utilizing the
database from Pandey et al. [23], where the properties of turbulent convective superstructures were
explored for � = 25. We select four cases for a fixed Rayleigh number Ra = 105, where Pr is varied
from 0.005 to 7. These simulations also use the NEK5000 spectral element solver. The parameters
of these four simulations are listed in Table III.

III. TURBULENT PRANDTL NUMBER IN OBERBECK-BOUSSINESQ CONVECTION

A. Flow structure and global transport of heat and momentum

Low-Pr convection is characterized by larger contrast in the scales of the velocity and temper-
ature fields [1,22,23]. The temperature field is highly diffusive due to a shorter thermal diffusion
time scale H2/κ compared to the momentum diffusion time scale H2/ν in low-Pr convection. The
finest scales of the velocity field are thus much finer compared to those of the temperature field; in
contrast, in high-Pr convection flow, the temperature field exhibits very fine structures [39,46–48].

100503-6



NON-BOUSSINESQ CONVECTION AT LOW PRANDTL …

TABLE III. Parameters of the OB simulations in a � = 25 3D rectangular box with a fixed Rayleigh
number Ra = 105 (taken from Pandey et al. [23]). OB1 is not a turbulent flow for these flow conditions and
will not be considered further.

Run Pr Ne N Nu NuεT Nuεu Re

3D OB1 7.0 1 352 000 5 4.1 ± 0.01 4.1 4.1 11 ± 0.03
3D OB2 0.7 1 352 000 5 4.3 ± 0.02 4.3 4.3 92 ± 0.4
3D OB3 0.021 2 367 488 7 2.6 ± 0.01 2.6 2.6 1120 ± 8
3D OB4 0.005 2 367 488 11 1.9 ± 0.01 1.9 1.9 2491 ± 20

To illustrate this, we show in Fig. 2 instantaneous snapshots of temperature and the vertical velocity
fields for OB1 and OB7. The characteristic scales of the thermal structures are very different in
the two flows. The thickness of the thermal structures is similar to the thermal BL width δT , which
is related to the Nusselt number Nu as δT = 0.5H/Nu [32]. The Nusselt number quantifies the
turbulent heat transport in a convective flow and is defined as the ratio of the total to the conductive
heat transport. We compute Nu using the simulation data as

Nu = 1 +
√

RaPr 〈uzT 〉A,t . (9)

The Nusselt numbers for all the OB simulations are listed in Table I. We find Nu ≈ 104 for OB1
and 1.7 for OB7, which yield δT ≈ 0.005H and 0.3H for the two cases. Thus, the total heat transport
is dominated by the molecular diffusion for OB7 (Pr = 10−4), whereas by turbulent convection for
OB1 (Pr = 12.73).

FIG. 2. Instantaneous temperature (a),(b) and vertical velocity (c),(d) fields for OB1 (a),(c) and OB7
(b),(d) simulations. The temperature variation is much smoother and the thermal structures are coarser in
(b) than in (a), whereas the velocity field in (d) is much more patchy and intermittent than in (c).
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FIG. 3. Temperature profiles for OB simulations show that the isothermal bulk region shrinks with decreas-
ing Pr and barely exists for Pr = 10−4. The dashed line corresponds to the linear profile in the conduction state
Tconduction = 1 − z in dimensionless form.

The global heat transport is related to the globally averaged thermal and viscous dissipation rates
as [49]

NuεT =
√

RaPr 〈εT 〉A,t , (10)

Nuεu = 1 +
√

RaPr 〈εu〉A,t , (11)

where εT and εu are the thermal and viscous dissipation rates, respectively, defined by

εT (x) = κ (T )

(
∂T

∂xi

)2

, (12)

εu(x) = ν

2

(
∂ui

∂x j
+ ∂u j

∂xi

)2

, (13)

with ui being the ith component of the velocity field. The NuεT and Nuεu , provided in Table I, agree
very well with Nu for all the simulations. This is another indication that the numerical resolution
is adequate for all the simulations [32]. The turbulent momentum transport is quantified using the
Reynolds number Re, which is computed as Re = √

Ra/Pr urms with urms = 〈u2
i 〉1/2

A,t as the root-
mean-square velocity. Table I lists Re for all the simulations and we observe that Re increases with
decreasing Pr. The velocity field uz(x, z, t0) for OB7 in Fig. 2(d) exhibits fine vortex structures with
broader range of length scales compared to OB1, which is smoother. For the three-dimensional case
the average 〈·〉A,t has to be substituted by a combined volume and time average 〈·〉V,t in different
Nusselt number definitions.

Figure 2 also reveals that the bulk of the flow is well mixed and nearly isothermal for OB1
[Fig. 2(a)], whereas a strong temperature gradient is present in OB7 [Fig. 2(b)]. We quantify this by
plotting 〈T 〉x,t as a function of z in Fig. 3, which shows that, except near the plates within the thermal
BLs, 〈T 〉x,t ≈ 0.5 in the bulk of the flow for OB1. Thus, the mean temperature in the bulk region
is the arithmetic mean of the prescribed values at the top and bottom, which is a characteristic of
the OB convection. For OB7, however, the temperature profile departs only slightly from the linear
conduction profile, with no well-mixed bulk region in the flow.

It has been reported that the flow at low Prandtl numbers possesses convection rolls which are
similar to a “flywheel,” with fluid rotating rigidly near the axis of the rolls [50–52]. However, this
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FIG. 4. Time traces of (a) horizontal velocity, (b) vertical velocity, and (c) temperature taken at the center
at r0 = (L/2, H/2) for run OB7 with Pr = 10−4 and Ra = 105. A shorter segment of the entire time trace is
shown only to highlight the irregular and stochastic nature of all fields. The signals indicate that the flow is
turbulent despite the moderate Rayleigh number, but that the temperature field is coarse due to high diffusivity.

laminar flywheel state has been observed for low Rayleigh numbers which are not far from the onset
of convection [53]. For Pr = 10−4 at Ra = 105, the flow is not at all laminar, but highly turbulent.
This is corroborated by the time trace of velocity and temperature at a fixed position in the flow. We
record the time evolution of the velocity and temperature fields at various positions in the flow, and
show them in Fig. 4 for the center of the domain for OB7. Both the velocity and temperature fields
vary turbulently at the center (and elsewhere as well).

B. Turbulent Prandtl number

To estimate the turbulent viscosity νt and the turbulent thermal diffusivity κt , we decompose the
velocity and temperature fields into their mean and fluctuating parts,

u(x, t ) = U (x) + u′(x, t ), (14)

T (x, t ) = 
(x) + T ′(x, t ), (15)

where U (x) and 
(x) are the time-averaged velocity and temperature fields. In the litera-
ture, the turbulent viscosity is usually estimated by the flux-gradient method, according to
which νt = −〈u′

xu′
z〉/(∂Ux/∂z) and the turbulent thermal diffusivity by κt = −〈u′

zT
′〉/(∂
/∂z)

[12,13,17,32,54–56]. In turbulent convection, however, both νt and κt computed using this method
become undefined at some heights. This is because the mean velocity gradient ∂Ux/∂z often changes
sign due to the absence of a well-defined mean flow. To overcome this ambiguity, we use the k − ε
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FIG. 5. Vertical profiles of the (a) turbulent kinetic energy, (b) thermal variance, (c) turbulent viscous
dissipation rate, and (d) turbulent thermal dissipation rate for 2D OB simulations. The turbulent Prandtl number
Prt (z) is computed using these profiles and is shown in Fig. 6.

approach (k will be denoted as ku in the following), according to which the turbulent diffusivities
can be estimated by

νt = cνk2
u/εu′ , (16)

κt = cκkukT /εT ′ , (17)

where ku = 〈u′2〉/2 is the turbulent kinetic energy, kT = 〈T ′2〉 is the thermal variance, and εu′ and εT ′

are, respectively, the mean turbulent viscous and thermal dissipation rates, computed from Eqs. (12)
and (13). In this approach, νt is proportional to the square of the turbulent kinetic energy; this is
plausible because stronger turbulent fluctuations produce stronger turbulent mixing, resulting in
higher turbulent viscosity [57]. In engineering turbulence models, the proportionality constant cν ≈
0.09 is most often used [57]; it has also been found by renormalization group theory in Refs. [10,58].
The coefficient cκ is less well known, though cκ ≈ 0.1 has been considered in an RBC simulation
[11]. Not knowing the prefactors at low molecular Prandtl numbers, we leave the specific values
of these coefficients open, as we are interested primarily in the variation of the ratio νt/κt . To fix
the ratio cν/cκ , we choose it such that the turbulent Prandtl number in our flow agrees with that
observed in the literature for Pr = 0.7. We also treat cν/cκ as a constant independent of Pr and Ra.

The vertical profiles ku(z), kT (z), εu′ (z), and εT ′ (z) for all the simulations are shown in Fig. 5. We
note that ku and kT vanish at the plates because of the no-slip and isothermal boundary conditions.
Figure 5(a) shows that ku exhibits a maximum in the center plane at z ≈ H/2 [59,60]. The turbulent
kinetic energy increases with decreasing Pr (see Table I). Figure 5(b) shows that, in contrast to ku, kT
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FIG. 6. (a) Vertical profiles of the turbulent Prandtl number in OB convection; Prt (z) varies rapidly near the
plates, whereas slowly in the bulk region, whose extent is indicated by dashed vertical lines. (b) The rescaled
averaged Prt in the bulk region increases with decreasing Pr. The error bars represent the standard deviation
of Prt in the bulk region. Here 〈Prt 〉bulk is obtained by using cν/cκ = 0.0266 in two dimensions, whereas
cν/cκ = 1.43 in three dimensions such that it is approximately 0.85 for Pr = 0.7. The solid line represents the
best fit curve for the entire 2D data range, and is also a good fit for the 3D data.

exhibits maxima near the plates and decreases towards the central region. The maxima of kT occur
near the edge of the thermal BL; this makes sense because it is the contrast in the temperatures of
the plumes and the ambient fluid that causes these maxima [32,42]. The peaks in kT are, however,
absent for Pr = 10−4, which indicates the presence of very thick thermal BLs, extending all the way
to the center plane, leading to the absence of a well-mixed bulk region, consistent with Fig. 3.

Figures 5(c) and 5(d) demonstrate that the turbulent viscous and thermal dissipation rates are
largest at the plates and decrease into the bulk region. We also observe that the dissipation rates
increase with decreasing Pr; the nondimensional dissipation rates are computed as εu′ ∼ (Nu −
1)/(

√
GrPr) and εT ′ ∼ Nu/(

√
GrPr). Our data show that Nu increases as Pr0.35 for Gr = 109. This

yields εu′ ∼ Pr−0.65 and εT ′ ∼ Pr−0.65 as Gr is the same for all the simulations. The increase of the
dissipation rates with decreasing Pr for a constant Gr is also consistent with Scheel and Schumacher
[61].

The profiles of turbulent viscosity and turbulent thermal diffusivity are computed using profiles
of Fig. 5 as

νt (z) = k2
u (z)/εu′ (z), (18)

κ t (z) = ku(z)kT (z)/εT ′ (z), (19)

where we have used the overbar to denote the turbulent Prandtl number without specifying cν/cκ ,
whereas Prt without the overbar includes cν/cκ . The ratio Prt (z) = νt (z)/κ t (z) as a function of z is
plotted in Fig. 6(a). As mentioned earlier, we do not specify the coefficients cν and cκ and merely
plot the ratio of the profiles shown in Fig. 5. Figure 6(a) shows that Prt (z) varies slowly in the bulk
region. In the vicinity of the plates, Prt increases with increasing distance from the plates, which
is reasonable as the turbulent fluctuations strengthen near the plates, leading to higher turbulent
transport of momentum and heat. The local maxima near the plates in Fig. 6(a) are observed due to
the peaks of kT (z) in Fig. 5(b). Note however that νt and κt in RBC have been observed to scale as
z3 in the vicinity of the plates [17,32,55,62], which suggests the constancy of Prt (z) in the near-wall
region. As we are mainly concerned here with the behavior of Prt in the bulk region, we do not
explore further the near-wall variation of the turbulent Prandtl number.
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FIG. 7. Ratio of the turbulent and the molecular viscosity, νt/ν, in (a), and the turbulent and the molecular
thermal diffusivity, κt/κ , in (b). Both ratios are shown as functions of Pr and Ra for the 2D OB simulations.
Dashed horizontal lines help indicate the departure from unity. We observe νt � ν for all cases, whereas the
condition κt � κ is satisfied for flows with Pr > 10−3.

To illustrate the variation of Prt with Pr, we plot Prt averaged in the bulk region as a function of
Pr in Fig. 6(b). We find that 〈Prt 〉bulk increases with decreasing Pr, which is qualitatively consistent
with the observations in RBC in a cylindrical cell within the thermal BL region [17]. As we have
not specified cν/cκ , only the variation of Prt is of interest here. Here, 〈Prt 〉bulk is obtained by using
cν/cκ = 0.0266 such that it is approximately 0.85 for Pr = 0.7. The value of cν/cκ is 1.43 for the
3D cases. Similar data plotted in the figure from the 3D simulations also agree with the trend. Note
that we did not include the 3D run at Pr = 7 which resulted in a Reynolds number of only 11, hence
far from turbulent. In summary, all available OB data in the bulk obey the same scaling law.

At this stage, it is also instructive to see how the magnitudes of the turbulent viscosity and
turbulent thermal diffusivity individually differ from their molecular counterparts. Therefore, we
compute the turbulent diffusivities using cν = 0.09, cκ = 0.1, and show in Fig. 7 the ratios νt/ν

and κt/κ for our OB simulations in two dimensions. Here, νt and κt are bulk-averaged turbulent
diffusivities. Figure 7(a) shows that the turbulent viscosity is much higher than the molecular
viscosity for all cases explored, and is nearly three orders of magnitude larger than ν for Pr = 12.73,
with the contrast between νt and ν increasing further as Pr decreases; νt/ν ≈ 106 for Pr = 10−4.
On the other hand, Fig. 7(b) shows that the ratio κt/κ decreases from nearly 5000 for Pr = 12.73 to
nearly 0.5 for Pr = 10−4. Thus, the turbulent and the molecular thermal diffusivities do not differ
much when Pr � 10−3 at the accessible Rayleigh numbers.

Our findings suggest that the disparity between the turbulent and molecular Prandtl numbers
becomes very strong as Pr becomes low. If this trend continues for lower Prandtl numbers, the
turbulent convective flow in the solar and stellar interiors would correspond to very high turbulent
Prandtl numbers. Many nonlinear relations between Prt and Pr have been proposed in the literature
[14,15]. The data in Fig. 6(b) suggest that 〈Prt 〉bulk can be fitted as a power law, and the best fit yields
〈Prt 〉bulk = (0.68 ± 0.03)Pr−0.32±0.02. Abe and Antonia [14] performed channel flow simulations for
Pr = 0.7 and 0.025 to compute Prt using the flux-gradient methods, and also observed an increasing
Prt with decreasing Pr. This result is consistent with less detailed results of Bricteux et al. [13],
Reynolds [15], Jischa and Rieke [16], Tai et al. [17].

What does a decreasing Prt with increasing Pr imply? Note that Prt is a ratio of the turbulent
momentum flux compared to the turbulent heat flux for unit mean velocity and temperature gra-
dients. Thus, an increasing turbulent Prandtl number indicates that turbulent fluctuations transport
momentum more effectively than heat. This is not counterintuitive because, with decreasing Pr, the
momentum transport (Re) increases whereas the heat transport (Nu) decreases in RBC.
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FIG. 8. Instantaneous temperature (a),(b) and vertical velocity (c),(d) fields for NOB2 (a),(c) and NOB6
(b),(d) simulations. Characteristic thickness of the thermal structures are larger in (b) than in (a). The velocity
field in (c) is smoother, whereas more intermittent structures can be observed in (d) due to a much higher
Reynolds number in the latter (see Table II).

IV. TURBULENT PRANDTL NUMBER IN NON-OBERBECK-BOUSSINESQ CONVECTION

A. Flow structure and global transport of heat and momentum

We plot the instantaneous temperature and vertical velocity fields for NOB2 and NOB6 in Fig. 8.
The figure reveals that the hot plumes emanating from the bottom plate are coarser compared to their
colder counterparts from the top plate. This is due to the difference between the thermal diffusivities
at the top and bottom plates, mentioned earlier. We also observe from Fig. 8 that the average
temperature is larger than 0.5, which is due to the specified positive correlation between κ and T
[37]. The finding is in agreement with the observations of Fig. 1(a). Due to a larger diffusivity of
the hotter plumes, their thermal diffusion time scale [= H2/κ (T )] is shorter. As a result, hotter
structures diffuse quickly compared to the colder ones and occupy a larger fraction of the flow, thus
resulting in a higher mean temperature.

To see how the global heat transport varies with Pr in NOB simulations, we compute the Nusselt
number as Nu = (〈uzT 〉A,t + Jd )/Jc, where Jd = −〈κ (T )∂T/∂z〉A,t is the heat flux due to molecular
diffusion and Jc is the heat flux in the conduction state. We refer to Pandey et al. [42] for a
detailed discussion on the computation of heat and momentum transport, as well as dissipation
rates in this NOB flow. The values of Nu are listed in Table II. The variation of Nu with the mean
Prandtl number 〈Pr〉 for simulations with κ2(T ), shown in Fig. 9(a), reveals that Nu increases as
〈Pr〉0.13±0.01. The Nusselt numbers for all simulations are of the order of unity, thus indicating that
the molecular diffusion is significant in transporting heat, even when the flow has a rich turbulent
structure. The power law exponent of the Nu − Pr scaling is in the range observed in OB convection
[22,45,63,64]. As for OB convection, we also compute the Nusselt number using the viscous and
thermal dissipation rates as Nuεu = [(γ g)−1〈εu〉A,t + Jd ]/Jc and NuεT = 〈εT 〉A,t H/Jc�T [42], and
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FIG. 9. (a) The Nusselt number and (b) the Reynolds number as a function of the globally averaged Prandtl
number for NOB simulations with κ2(T ). The power law exponents in both the Nu and Re scalings are in the
range of exponents observed in OB convection.

list them in Table II. We find that the Nusselt number computed using the three methods agree
reasonably well, further indicating that the NOB flows are sufficiently resolved. We estimate the
momentum transport in the NOB simulations by computing the Reynolds number as Re = urms

√
Gr,

and plot it as a function of the mean Prandtl number in Fig. 9(b). We find that Re decreases as
〈Pr〉−0.81±0.01. The Pr dependence of Re in the NOB flows is qualitatively similar to that in OB
convection [63,65,66].

B. Turbulent Prandtl number in the non-Oberbeck-Boussinesq case

We show again vertical profiles of ku, kT , εu′ , εT ′ in Fig. 10. The profiles are fairly symmetric
with respect to the midplane z = H/2, consistent with Pandey et al. [42]: quantities related to the
velocity field are not affected much by using only a temperature-dependent thermal diffusivity.
However, Figs. 10(b) and 10(d) show that kT and εT ′ are asymmetric with respect to midplane, and
the thermal dissipation rate increases rapidly towards the top plate. This is because of a larger ∂T/∂z
in the region near the top plate. An asymmetric kT (z) is consistent with unequal thicknesses of the
thermal boundary layers at the two plates [42].

Using the profiles shown in Fig. 10, we compute Prt in each horizontal plane as Prt (z) =
νt (z)/κt (z) and show them in Fig. 11(a). For comparison, we also show the results from our
simulation for the 3D box of � = 16 (NOB0, black curves in both panels, from Pandey et al. [42]),
for the same diffusivity profile and the same governing parameters as for NOB1. Note that Prt in
Fig. 11 is already rescaled using the same cν/cκ = 0.0266 as used for the OB cases in Sec. III. Note
also that, in contrast to the OB case, the profiles of Prt are asymmetric with respect to the midplane.
The turbulent Prandtl number varies rapidly near the plates, with the lowest Prt (z) at the top.

Figure 11(a) shows that the variation of Prt near the plates is very similar for NOB0 and NOB1.
In the bulk region, however, the magnitude of Prt in 3D flow is consistently lower than for the 2D
flow. This is plausible because the turbulent momentum transport in a 2D convective flow is higher
than in the 3D flow with the same control parameters, whereas the heat transport in the two flows
does not differ as much [32]. For instance, we observe Nu = 5.4 and Re = 1100 for NOB0 [42]
compared to 6.6 and 2048 for NOB1 (see Table II). Since Prt is the ratio of the momentum and heat
transports due to turbulent fluctuations for unit mean velocity and temperature gradients, a relatively
higher momentum transport in NOB1 leads to a higher Prt in NOB1 than in NOB0.

We observe from Fig. 1(b) that the major change in the molecular Prandtl number occurs in
the thin thermal BL region near the top plate. Therefore, to see the variation of Prt with Pr in our
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FIG. 10. Vertical profiles of the (a) turbulent kinetic energy, (b) thermal variance, (c) turbulent viscous
dissipation rate, and (d) turbulent thermal dissipation rate for NOB simulations. In contrast to OB simulations,
the profiles in (b) and (d) are asymmetric about z = H/2.

FIG. 11. (a) Turbulent Prandtl number as a function of z and (b) Prt (z) as a function of Pr(z) for
z/H ∈ [0.10 0.9999] for the NOB simulations. NOB0 corresponds to the results from our simulation in a
3D rectangular box of � = 16 performed for κ1(T ) (taken from Pandey et al. [42]). Panel (b) indicates that
Prt nearly scales as 1/Pr. Further, the variation of Prt with Pr is qualitatively similar for both the NOB0 and
NOB1 flows. Markers indicate the turbulent Prandtl number averaged in the bulk region between z = 0.2H and
z = 0.8H as a function of the averaged Pr in the same bulk region.
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NOB flows, we plot Prt (z) as a function of Pr(z) for z/H ∈ [0.10 0.9999] in Fig. 11(b), which
shows that Prt varies nearly inversely with Pr, this being steeper than Prt ∼ Pr−0.31 observed for OB
simulations.

V. FINAL DISCUSSION

A. Summary

We have studied the variation of the turbulent Prandtl number with respect to the molecular
Prandtl number using direct numerical simulations of thermal convection in OB and NOB settings.
For the 2D case, we have � = 2, Pr between 12.73 and 10−4, and Gr = 109. We also computed the
turbulent Prandtl number in large-aspect-ratio 3D simulations. We computed Prt within the k − ε

framework. We found that the averaged turbulent Prandtl number in the bulk region 〈Prt 〉bulk ∼
Pr−0.31, over five orders of magnitude of the molecular Prandtl number, Pr. This result suggests that
low-Prandtl-number turbulent convection behave effectively as high-Prandtl-number flows.

Since OB approximations do not apply to natural convective flows [1], we explored NOB con-
vection by varying the thermal diffusivity with temperature, which breaks the top-down symmetry
of the flow. We performed DNS for a fixed Ra at the top plate and varied Pr at the top plate,
with the mean Pr over the entire domain reaching up to 5 × 10−4. This simple NOB flow exhibits
several properties of fully compressible flows [42], and the estimated 〈Prt 〉bulk has the behavior
〈Prt 〉bulk ∼ Pr−1, a much stronger dependence than in OB flows.

B. Outlook and closure

Our findings indicate that the convection processes in solar and stellar interiors, which correspond
to extremely low-Pr flows, may be characterized by very high turbulent Prandtl numbers. Indeed, our
results have important implications for the modeling of low-Prandtl-number convection anywhere.

For one set of conditions with varying thermal diffusivity, we found the result that the turbulent
Prandtl number varies inversely with the molecular Prandtl number. (We have also explored the
temperature dependence of viscosity, whose preliminary assessment is essentially similar.) The
smallest molecular Prandtl number in these simulations is quite small, in fact the smallest ever, but
it is still not as small as in the Sun; but, given the simplicity of the fit, perhaps we can extrapolate
the trend and make some tentative deductions. One such deduction is that the turbulent Prandtl
number in the Sun’s convective region is of the order of Prt ∼ 104. This large value has important
implications.

Now consider the case where the initial velocity and temperature fields are represented by two
cosine waves. And the two waves are partially correlated. A short time later, since the effective
viscosity is 10 000 times larger than the effective thermal diffusivity, the velocity fluctuations
get smoothed out whereas the temperature fluctuations remain unmixed. We thus have the case
of temperature structures being advected essentially by a structureless, random velocity field. This
velocity field is much smaller in magnitude than one might expect from standard phenomenology. In
our opinion, this offers an explanation for how large amounts of thermal energy can be transported
despite small velocities, a conundrum articulated in Hanasoge et al. [67]. This also opens up our
inquiry towards new theoretical ideas, e.g., of temperature plumes persisting through the entire
convection zone despite the very high Rayleigh numbers in the Sun.

As a final caveat, we mention that rotation is an important factor of structure formation and
turbulent transport that needs to be taken into account in order to get a more realistic picture
of convection in the Sun. Rotation, however, mostly affects the meso- and larger scales which
would include supergranules and hypothetical giant cells; see simulations of solar convection
in Refs. [68–70]. As most of our study in this paper is concerned with small-scale turbulence
properties, which would correspond to scales below the solar granules diameter with ∼103 km,
we focused in the present work to two-dimensional simulations and do not include the effects of
rotation. This work is proceeding at this time.
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