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Numerical simulations of turbulence provide nonintrusive access to all the resolved
scales and any quantity of interest, although they often invoke idealizations and assump-
tions that can compromise realism. In contrast, experimental measurements probe the true
flow with lesser idealizations, but they continually contend with spatiotemporal sensor
resolution. Assimilating observations directly in simulations can combine the benefits of
both approaches and mitigate their respective deficiencies. The problem is expressed in
variational form, where we seek the flow field that satisfies the Navier-Stokes equations and
minimizes a cost function defined in terms of the deviation of the computational predictions
and available observations. In this framework, measurements are no longer a mere record of
the instantaneous, local quantity, but rather an encoding of the antecedent flow events that
we aim to decode using the governing equations. Chaos plays a central role in obfuscating
the interpretation of the data: observations that are infinitesimally close may be due to
entirely different earlier conditions. We examine a number of state estimation problems:
In circular Couette flow, starting from observations of the wall stress, we accurately
reconstruct the wavy Taylor vortices that interact nonlinear to maintain a saturated state.
Through a discussion of transition to chaos in a Lorenz system, we highlight the challenge
of navigating the landscape of the cost function, and how the landscape can favorably
be modified by sensor weighting and placement. In turbulent channel flow, the Taylor
microscale and Lyapunov timescale place restrictions on the resolution of observations
for which we can accurately reconstruct all the missing scales. The notion of domain of
dependence of an observation is introduced and related to the Hessian of the cost function.
For measurements of wall shear stress, the eigenspectrum of the Hessian demonstrates the
sensitivity of short-time observations to the fine near-wall turbulent scales and to the large
scales only in the outer flow. At long times, backward chaos obfuscates the interpretation of
the data: observations that are infinitesimally close may be traced back to entirely different
earlier flow states—a dual to the more common butterfly effect for forward trajectories.

DOI: 10.1103/PhysRevFluids.6.100501

I. INTRODUCTION

A. Why data assimilation?

Flow simulations are continually pushing computational boundaries to establish new frontiers,
for example, turbulence at progressively higher Reynolds numbers [1,2] and phenomena that take
place at hypersonic speeds [3]. Simulations also attempt to probe ever more complex configurations
that involve multiphase, rheological, physiological effects [4–7]. Despite impressive advancements,
even at the highest levels of simulation fidelity some modeling assumptions invariably remain,
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including treatment of boundary conditions such as periodic and truncated simulation domains
[8,9] and initial conditions when multiple flow states exist for the same set of parameters [10]. At
extreme conditions, models are adopted to reduce the computational cost or to account for unknown
physics. Choices of model parameters, for example, in subgrid stress and wall models in large-eddy
simulations of high Reynolds number or in nonequilibrium chemical models at high speeds, have
direct impact on the accuracy and robustness of simulations.

Experiments, on the other hand, provide a level of realism that is difficult to reproduce computa-
tionally and can access extreme flow regimes, including very high Reynolds numbers that remain,
to date, intractable computationally [11]. Experiments must, however, contend with the difficulty of
performing nonintrusive measurements and the limitations of sensor resolution. In some instances, it
is not possible to directly measure a quantity of interest and it can only be inferred or computed from
other measurements. For example, while we may be interested in the pressure field in a turbulent
flow, the experimental measurements may only provide successive images of particle tracers that
must be interpreted and processed to compute the velocity field and subsequently the associated
pressure [12].

Data assimilation combines the respective strengths of both experiments and simulations, and
mitigates their deficiencies [13,14]: By infusing experimental measurements in simulations, we
enhance the fidelity of the computations and mitigate epistemic uncertainties. At the same time, the
numerical prediction are not only consistent with the observations, they also provide nonintrusive
access to the full flow state at much higher resolution than the original data [15]. The benefit of
solving these inverse problems, from observations to flow state, extends beyond simply enhancing
the resolution of scarce data. Inverse problems provide a unique perspective for the interpretation
of observations. A sensor signal is no longer a mere record of a measured quantity at a point in
space and an instance in time, but rather an encoding of the antecedent flow events that led to
the measurement [16]. By decoding the observations we reveal the hidden flow physics that is
unavailable from forward analysis, including the domain of dependence of an observation site, the
critical data resolution for an accurate state estimation, and the robustness of reconstructed flow
events to observation noise. This perspective also motivates a special notion of optimal layout and
weighting of measurements: Instead of concentrating measurements near a region of interest based
on knowledge of the forward problem, sensor placements can be optimized in order to provide
the most accurate interpretation, or reconstruction, of the entire flow field using data assimilation
[17,18].

B. Choice of approach

In choosing a data-assimilation approach for the interpretation, or augmentation, of observations,
it is important to differentiate some of the existing classes of techniques. One distinction is among
methods that actually satisfy the governing flow equations versus those that approximate the
velocity field using a statistical or reduced-order, perhaps machine-learned, model [19–22]. Here
our focus will be on predictions that satisfy the full Navier-Stokes equations and that best reproduce
observations. This choice is desirable if one is interested in the fundamental flow dynamics, as we
are here, or in forecasting beyond the observation time horizon.

Another classification is based on how observations are assimilated into numerical simulations.
Filters use the latest observations to update the state [23,24], while smoothers attempt to identify
the state whose evolution reproduces all the observations within the entire assimilation horizon
[14,25]. Again, since our interest is in the evolution of the flow state, or the dynamics, we will
focus on smoothers. In this context, we define a cost function which is the difference between
model predictions and observations, and we proceed to identify the flow state that (i) satisfies
the governing Navier-Stokes equations and (ii) minimizes the deviation from observations. The
minimization procedure requires the gradient of the cost function with respect to the initial flow
state; this gradient also quantifies the sensitivity of observations to initial flow field.
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Two smoothing techniques have been adopted successfully in turbulent flows: adjoint- and
ensemble-variational methods. Adjoint methods are the most efficient in terms of evaluating the
gradient [26]. The associated computational cost is always on the order of twice that of calculat-
ing the cost function, regardless of the size of the control vector. However, for chaotic systems
the accuracy of the gradient deteriorates for long integration time horizons [27,28]. Therefore,
the implementation of adjoint methods is restricted to short assimilation windows that can be
concatenated to span long periods of observations [20,29]. Ensemble methods do not require an
adjoint model [17]. They use an ensemble of estimates of the state and advance them in time,
collect model predictions and compare them to observations. The local gradient of the cost function
with respect to the state can be approximated at the location of the mean of the ensemble using
a quadratic approximation and used to update the estimated state. These methods are suitable for
long horizons, for example, when using statistical observations. The number of ensemble members,
however, increases with the size of the control vector and they are not necessarily as robust as adjoint
techniques. Some methods combine the idea of ensemble and adjoint to evaluate the sensitivity of
statistical observations to model parameters [28]. Here we adopt adjoint-variational method, because
we are interested in fundamental questions regarding the domain of dependence of observations,
the minimum observation resolution that enable reconstruction of the entire turbulent field, and the
robustness of reconstruction to observation noise.

In the next section, we introduce the adjoint-variational approach briefly. We proceed to apply
the method to the interpretation of measurements in circular Couette flow. The configuration is
designed such that many saturated states are possible, and we attempt to identify the particular one
that generated the wall stresses. In this case, the dynamics are not chaotic. We proceed to discuss
what to expect in case of transition to turbulence, and briefly remark on some recent results in that
domain. We then turn to canonical turbulent channel flow, explore the critical data resolutions that
enable an accurate turbulence reconstruction, and discuss the notion of domain of dependence of
measurements. Concluding remarks are provided in the final section.

II. ADJOINT VARIATIONAL DATA ASSIMILATION

Since our interest is in a high-fidelity interpretation of flow observations, throughout we will
adopt the Navier-Stokes equations to predict the evolution of the flow and will resolve all the
flow scale using direct numerical simulations. This choice eliminates any turbulence modeling
assumptions. Our flow thus satisfies the incompressibility constraint and momentum equations,

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p + 1

Re
∇2u. (2)

These equations are also referred to as the forward model in adjoint-variational method, and the
velocity u and pressure p as the forward state variables.

In lieu of experimental measurements, we perform independent simulations from a reference
initial condition uR

0 and extract surrogate observations,

mn = M
(
uR

n

)
. (3)

The reference initial state uR
0 then becomes the hidden truth that we aim to discover from its

observations mn alone. The objective of adjoint-variational data assimilation is to identify an
estimated initial condition u0 that reproduces the observations, by minimizing a cost function that
is proportional to the difference between the observations and their estimation,

J (u0) =
N∑

n=0

1

2
‖mn − M(un)‖2

O. (4)
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The norm ‖ · ‖O represents evaluation over the observation space, and un is the Navier-Stokes
evolution of the estimated initial condition. The estimated initial condition is sought iteratively
using a gradient-based minimization of the cost function.

In order to evaluate the gradient of J , we introduce the Lagrangian

L = J −
[

u†,
∂u
∂t

+ u · ∇u + ∇p − 1

Re
∇2u

]
− [p†,∇ · u], (5)

where the multipliers u† and p† are the adjoint velocity and adjoint pressure, respectively. The inner
product is an integration over the spatial domain and the time horizon,

[ f , g] =
∫ T

0

∫
V

f �g d3x dt, (6)

where t = 0 and t = T represent the start and end of the assimilation window. First-order optimality
requires that the derivatives of L with respect to both the adjoint and forward variables be zero. The
former condition yields the Navier-Stokes equations (1) and (2), which are enforced by simulating
the forward evolution of the estimated field. The latter condition, namely, that the derivatives of L
with respect to un vanishes, yields the adjoint equations,

∇ · u† = −∂J

∂ p
, (7)

∂u†

∂τ
− u · ∇u† + (∇u) · u† = ∇p† + 1

Re
∇2u† + ∂J

∂u
, (8)

where τ ≡ T − t is the reverse time. The adjoint system is driven by the source term, which
is derived analytically from the cost function (4) and determined by the mismatch between the
observations and their estimation, En = M(un) − mn.

The gradient of the cost function is determined by the adjoint field at the initial time t = 0
(τ = T ),

∇u0 J = ∂L

∂u0
= u†

0. (9)

Therefore, the adjoint field u†
0 is the sensitivity of the cost function to initial conditions. This

sensitivity can then be used in gradient-based optimization algorithms to minimize J . In the
examples presented in this paper, we adopt the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) method [30]. The above presentation was in terms of the continuous form of the
equations. Discretization of the continuous forward and adjoint systems may affect the accuracy
of evaluating the gradient of the cost function. To obtain the exact gradient, we adopted the discrete
adjoint approach where we first discretize the forward Navier-Stokes equations and then derive the
discrete adjoint system.

The adjoint-variational data assimilation procedure is presented schematically in Fig. 1. Starting
from an estimate of the initial flow state u0, the Navier-Stokes equations are evolved over the as-
similation time horizon. During the forward evolution, both the velocity fields and the discrepancies
between the observations and their estimates are stored. At the end of the assimilation horizon,
the adjoint equations are advanced backward in time, forced by the errors in the observations.
The resulting gradient of the cost function at the end of adjoint marching is used in the L-BFGS
algorithm to update the estimated initial condition. This procedure is then repeated for a prescribed
number of iterations or until a convergence criterion is reached.

The utility of data assimilation is far reaching, beyond the important application of augmenting
experimental measurements. These techniques enable us to pose new questions. In turbulence, for
instance, we can progressively increase the sparsity of observations and ask what is the largest
spatiotemporal spacing that still enables full reconstruction of the missing scales, and why? The
adjoint-variational approach in particular provides a unique perspective for interpretation of the flow
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FIG. 1. Schematic of adjoint-variational data assimilation. Starting from an estimate of the initial condition
u0, we compute the Navier-Stokes evolution. The forward fields un and the deviation from observations En are
stored. The adjoint equations are evolved from the final to the initial time, driven by observations errors. The
initial adjoint field u†

0 is the gradient of the cost function, and is used to update u0. The forward-adjoint loop is
repeated until convergence.

physics. Adjoint fields quantify the sensitivity of observations to the flow state. When observations
are spatiotemporally distributed, comparing their adjoint fields provides guidance for sensor place-
ment and relative weighting, and motivates effective strategies to optimize these sensing parameters.
Furthermore, adjoint equations can be derived to evaluate the domain of dependence of an isolated
measurement and the Hessian of the cost function at optimality, which yield a unique perspective
on the difficulty of estimating the state of turbulence from limited observations. These ideas will be
explored in the remaining sections with the aid of specifically designed examples.

III. FLOW RECONSTRUCTION FROM LIMITED MEASUREMENTS

A. Traveling saturated waves in circular Couette flow

The first configuration that we will examine is the circular Couette flow between two concentric
cylinders, which was explored in detail by Wang et al. [26]. The gap between the inner and outer
cylinders is d = ro − ri = 1, and the ratio of radii is ri/ro = 0.714. The outer cylinder is stationary,
and the inner-cylinder tangential speed vi is adopted as the reference velocity scale in the definition
of the Reynolds number, Rei ≡ vid/ν = 400. The above parameters were selected such that we
can demonstrate the method in a flow that involves nonlinearly interacting, unsteady, traveling
waves, yet the total energy is constant and the flow is not chaotic. Another important feature is
that for the same Reynolds number, there are multiple admissible flow states and which one is
observed depends on the precise experimental geometry and protocol, for example, the aspect ratio
of the cell, the initial condition and the transients. Simulations may not be able to reproduce all the
experimental conditions, which may also include uncertainties. However, using observations from
the experiments within the saturated flow regime only, i.e., beyond any experimental transients,
we can adopt data assimilation strategies to reproduce the exact experimental state and the precise
evolution of the constituent waves as a function of time.

The observations that we attempt to interpret are the shear stresses on the cylinder walls as a
function of time, which are imprinted by the signature of the nonlinearly interacting, traveling,
wavy Taylor rolls. These observations spanned a time horizon T = 20 time units, which is more
than one rotation of the inner cylinder, and were collected from an independent computation. The
associated flow is the hidden truth that we aim to discover.

Our first estimate of the flow state can simply be the laminar profile between two concentric
cylinders. This state naturally fails to reproduce the observations since it is void of any Taylor
vortices. At the end of the first forward simulation, the adjoint model is then forced by the
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FIG. 2. Energy spectra averaged across the gap, log10〈‖û‖2〉d , where û is the Fourier transform of the
velocity perturbation field u − 〈uR〉. Insets: isosurfaces of (red) positive and (blue) negative azimuthal velocity
fluctuations, vθ − 〈vR

θ 〉 = {0.14,−0.14}. (a) Adjoint-variational estimation at t = T ; (b) the true state. Both
spectra are normalized by the maximum value of the true spectrum.

discrepancy in the wall shear stresses from the first guess and available observations. Upon reaching
the initial time, the adjoint field provides the gradient of the cost function with respect to the initial
condition, which is used in the L-BFGS algorithm to obtain the update direction of the initial
flow state. This procedure is repeated iteratively until our computational predictions reproduce the
available data of the wall stresses to within a prescribed level of accuracy.

Results reported here were obtained after one hundred forward-adjoint loops in order to ensure
accuracy. The resulting decrease in the cost function was three orders of magnitude from its initial
value. The predicted state u at the end of the assimilation time horizon is visualized in Fig. 2 where
it is compared to the hidden truth uR. The isosurfaces show positive and negative tangential velocity
perturbations. Qualitatively, the estimated flow has the correct number of wavy Taylor rolls and
azimuthal phase of the structures. Quantitatively, the root-mean-squared error EV = 〈‖u − uR‖2〉1/2

V ,
averaged over the volume V , is less than 5%. The spectra of the assimilated and true states are also
compared at the final time. This plot highlights the presence of a large number of axisymmetric
and wavy vortices, traveling around the azimuth and interacting nonlinearly. The agreement in the
spectra between the assimilated and true states is evident, in particular for energetic modes that
represent dominant flow structures. The scale in the figure is selected to highlight the accuracy of
the prediction across eight orders of magnitude.

This first example is by no means trivial as can be inferred form the energy spectra. The results
demonstrate that data assimilation can be adopted to augment limited experimental observations,
and mitigate uncertainty in computational parameters. Specifically, the adjoint approach did not
require any knowledge of the startup procedure of the true flow that led to the saturated state when
the measurements were collected. Instead, the forward-adjoint loop relied on the measurements to
directly discover the initial condition within the energy saturated state and its time evolution. It
should be noted, however, that this first example was designed to eliminate a challenge, namely
estimation of chaotic dynamics. Specifically, in the present case, once the energy of the system
reaches the saturated state, the flow is stable. What happens when the flow is chaotic? Before
tackling the problem of estimating a fully turbulent state, it is instructive to examine a transitional
system where organized and chaotic dynamics are juxtaposed.

B. Transition to chaos

Laminar-to-turbulence transition is difficult to predict due to its chaotic nature. Infinitesimal
changes in the system state can lead to significant modification of transition characteristics. For
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FIG. 3. (a) Evolution of the Lorenz system in physical space. Contours are the temperature perturbations
and arrows show the velocity field. (b) State-space evolution of the Fourier coefficients, starting from the true
initial condition with marked observations. (c) Time evolution of Y from the (gray) true and (blue) estimated
initial conditions, with marked observations. The assimilated trajectory latches onto the truth, reproduces
observations, and accurately forecasts the system for some time beyond the observation horizon [18].

example, spontaneously formed turbulent spots in bypass transition of boundary layers [31–33]
and puffs in pipe flows [34,35] appear sporadically and are difficult to anticipate. As the system
undergoes transition from an organized to a chaotic state, it is intuitive to expect that early
observations are more valuable, or beneficial, when attempting to estimate the initial condition.
A cost function J defined using sensors in the laminar region will vary smoothly when estimates of
the initial state approach the truth, which can promote convergence of the optimization procedure.
In contrast, when sensors are in the turbulent region, the cost function oscillates significantly in the
vicinity of the measurements since small changes in the initial condition can lead to significantly
different observations and, as a result, convergence may be more difficult.

A helpful prototype system to explore the influence of transition and chaos on data assimilation
is the Lorenz model of unstable convection in two dimensions [18]. The setup is periodic in the
horizontal direction, and both gravity and a temperature difference between the lower and upper
boundaries, �� = �(0) − �(H ), act in the vertical direction. Small initial perturbations amplify in
time, and lead to convection cells that oscillate about an equilibrium and suddenly overturn (Fig. 3).
The process of oscillation and overturning repeats in a chaotic fashion [36]. The early amplification
of perturbations is akin to growth of instability waves in wall-bounded flows, and the resulting
sporadic overturning of the cells is a surrogate for the chaotic inception of turbulence.

For the Lorenz system, the temperature fluctuations � and velocity potential ψ can be expressed
in Fourier space in terms of the horizontal and vertical wave numbers ka = a2π/H and ky = 2π/H ,

�(x, y, t ) ∝ Y (t )
√

2 cos

(
1

2
kax

)
sin

(
1

2
kyy

)
− Z (t ) sin (kyy), (10)

ψ (x, y, t ) ∝ X (t )
√

2 sin

(
1

2
kax

)
sin

(
1

2
kyy

)
. (11)
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FIG. 4. The dependence of the cost function of the Lorenz system on (Xo,Yo) near the global optimal. Left:
The landscape of the cost function when all observations are uniformly weighted. Right: The landscape of J
when the observations are weighted by a Gaussian that preferentially weights early measurements.

The time evolution of the Fourier coefficients Q = [X,Y, Z]� is given by

dX

dt
= σ (Y − X ),

dY

dt
= −XZ + ρX − Y, and

dZ

dt
= XY − βZ. (12)

Similar to Saltzman [37], we adopt the initial condition [Xo,Yo, Zo]� = [0, 1, 0]� which becomes
our hidden truth, and we consider a = √

1/2, σ = 10, ρ = 28. The small size of the system enables
us to efficiently evaluate and visualize the cost function, and to explore ideas related to sensor
placement and weighting (see also the Appendix in [18]).

Consider when observations are available for Y only, at time instances tm = {5, 6, . . . , 20} which
span the early periodic solution and later chaotic behavior (see Fig. 3). We attempt to discover the
initial condition [Xo,Yo, Zo]� that reproduces the measurement vector m = [Y (tm)]� by minimizing
the cost function J = 1

2‖m − M(Y )‖2. For this small system, we can directly evaluate J and plot its
dependence on the control vector near our estimate. Figure 4 shows that the cost-function landscape
is highly oscillatory, laden with local minima and, as a result, difficult to navigate to identify the
global minimum. The idea of preferentially weighting early observation was evaluated by Buchta
and Zaki [18]. The weighted cost function is J = 1

2‖W (m − M(Y ))‖2, where W is a diagonal
matrix with larger elements corresponding to earlier observations. The resulting cost-function
landscape (Fig. 4) is much smoother and amenable to efficient gradient-based optimization.

Using the preferential weighting of upstream observations, [18] performed an ensemble, rather
than adjoint, variational estimation of the initial condition and the results are shown in Fig. 3(c).
While the predicted initial state is visibly displaced relative to the truth, the predicted trajectory
quickly latches onto the true one, reproduces all the observations and provides an accurate forecast
for the shown duration past the observation horizon.

While the idea of sensor weighting was motivated here by physical arguments, it is based on
rigorous mathematical foundation. The shape of the cost function depends on the observation
operator M, which determines the measured quantities and their placements, and the measurement
weighting W . Since at optimality the gradient of J vanishes, we are particularly interested in how
the design of observations affects the Hessian of the cost function. Preferentially weighting early
measurements reduces the maximum eigenvalue of the Hessian, thus reducing extreme curvature.
Buchta and Zaki [18] adopted this strategy not only for the Lorenz system above, but also for
the much more complex and higher dimensional configuration a transitional, high-speed boundary
layer. They were able to achieve significant improvement in the accuracy of inflow estimation
from discrete wall-pressure probes by preferentially weighting sensors upstream of transition. It
should be cautioned, however, that weighting early observations should not be naively adopted. In
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FIG. 5. State-space evolution from estimates of the initial Fourier coefficients of the Lorenz system.
(a) Divergence of trajectories starting from the true and a slightly perturbed initial condition. (b) Trajectory
from estimated initial condition. Despite a large initial separation from the truth, the assimilated trajectory
latches onto the truth, reproduces observations, and accurately forecasts the system for some time beyond the
observations horizon.

a transitional boundary layer, for instance, a wall-pressure probe should not be placed arbitrarily
upstream. An obvious consideration is the potentially low signal-to-noise ratio. Additionally, if
placed ahead of the receptivity site or, more subtly, in a region where the sensor does not have
sensitivity to the incoming instability wave, the associated observations can not assist in minimizing
the cost function. Also note that, in a fully turbulent flow, the cost landscape is mountainous
independent of the choice of observed quantities, their spatiotemporal placement and their relative
weighting. In that case, optimal sensor placement and weighting can target improving the condition
number of the Hessian, which has been adopted with success in problems involving prediction of
scalar sources in turbulent environments [16,17]. We will return to a discussion of the Hessian after
we examine the accuracy of adjoint-variational estimation of channel-flow turbulence from limited
observations.

As we turn to the fully turbulent case, we should keep in mind important points that are well
captured by the results of the Lorenz system. Firstly, due to the intricate landscape and numerous
local minima of the cost function (Fig. 4), the first guess, or estimate, of the state in the variational
algorithm has an impact on convergence and, hence, the final estimated state. Therefore, the
construction of the first guess should exploit any known characteristics of the initial state. Absent
such knowledge, multiple starting points for the assimilation procedure can be adopted. Secondly,
for chaotic nonlinear systems, there is no guarantee of a unique solution to the inverse problem.
The results in Fig. 3(c) show that measurements, and extended portions of the trajectory, can be
accurately reproduced from more than one initial condition. This point can be further clarified by
contrasting the “butterfly effect” and its dual, or “adjoint butterfly effect,” which are illustrated in
Fig. 5. In the former case, a small change in the initial condition leads to significant deviation
in the forward evolution due to chaos, and the same is of course true of turbulence. In practical
terms, a simulation that starts from a perfectly measured state will diverge from the experiment and
from other simulations that have as little as different round-off errors. This behavior can impede
our attempt to predict the initial condition that reproduces the measurements, limit the assimilation
time horizon and compromise the accuracy of forecasts. As for the dual butterfly effect, it may be
less familiar but is crucially important, especially for the adjoint approach. Infinitesimally close
observations can be reproduced by initial conditions that have large separation as we remarked
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FIG. 6. (a) True vortical structures visualized using the λ2 vortex identification criterion, with threshold
λ2 = −2. The isosurfaces are colored by wall-normal height, y. Pixels on the black cross-flow planes represent
scarce observations, or subsampled velocity data. (b) Vortical structures computed from interpolation of the
observations.

earlier. In terms of the adjoint, the small deviations in the observations lead to entirely different
adjoint evolution and are traced back to different initial conditions. From a practical standpoint,
errors in the observations can thwart accurate estimation of the state.

C. Turbulent channel flow

In this section, we will attempt to reconstruct fully turbulent channel flow from sparse velocity
data, and explore the critical data resolution that guarantees an accurate estimation. In order to
minimize uncertainties, have full control of the resolution of observations, and be able to assess the
accuracy of our reconstruction, we extracted our observations from an independent direct numerical
simulation. The flow in the channel was driven by a fixed pressure gradient at Reτ = uτ h/ν = 180,
where uτ is the friction velocity and h is half-channel height. The observations are collected
by subsampling the velocity field as shown in Fig. 6(a). The observations were distributed in
the streamwise, wall-normal, and spanwise directions separated by �x+

m = 47, �y+
m ∈ [1.8, 24],

and �z+
m = 28, respectively, and their temporal resolution was δt+

m = 0.46. Taken all together,
the observations are 1/4096 of the data resolution required for direct numerical simulations. The
estimation window was T = 4.2 (T + = 50), which was approximately one Lyapunov timescale of
the flow [38]. This setup for observations is motivated by the trade-off between field of view and
resolution in volume measurements in experiments, for example, in particle image velocimetry.

Estimating the turbulent state by simply interpolating the available sparse observations is fruit-
less, especially if we are interested in the velocity gradients. Figure 6(b) shows the outcome of such
approach, where only a small portion of the vortical structures are captured in the interpolated flow
field. Naturally, the accuracy of the computed structures further deteriorates if the observations are
contaminated by noise [39].

Adjoint-variational data assimilation was performed in order to accurately estimate the flow state.
The first guess of the estimated initial condition was a simple interpolation of the observations,
and we performed 100 forward-adjoint loops. The procedure reduced the cost function to 2.8%
of its initial value. The accuracy of the predicted flow evolution can be evaluated by comparison
to the hidden truth. The volume-averaged estimation error is plotted in Fig. 7(a) (black line) as a
function of time. Within t ∈ [0, T ] (gray region), the error decays monotonically and the flow more
closely shadows the true trajectory in state space. At the end of the assimilation window, t = T ,
the error becomes an order of magnitude smaller than at the initial time. This trend is interesting
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FIG. 7. (a) Temporal evolution of volume-averaged error of the adjoint-variational estimated velocity field.
Black line: initial condition at t = 0 is estimated using data within t ∈ [0, T ]; Green line: flow state at t = 2T is
estimated using data within t ∈ [2T, 3T ]. (b) Horizontally averaged error Exz(ω+

z ) in spanwise vorticity field at
t = T . (Solid) Adjoint-variational estimation was performed using velocity data that is (black) noise-free and
(blue) contaminated by 10% noise relative to the local velocity. (Blue dashed) Vorticity is evaluated directly
from interpolation of noisy velocity data. Errors are normalized by mean vorticity 〈∂u/∂y〉 at the wall. (c, d)
Estimated and true vortical structures at t = T , visualized using the λ2 vortex identification criterion, with
threshold λ2 = −2 and colored by wall-normal distance y.

and can be explained with reference to the notion of adjoint chaos introduced above. Perturbations
to the adjoint system amplify in backward time. As such, when one considers the adjoint equations
(7) and (8), the forcing by the cost function at final time has the maximum potential for amplification
during the backward evolution to the initial condition. More precisely, the disparity between model
predictions and observations at late times have the most pronounced impact on the gradient direction
for updating the initial condition. As a result, while the assimilated initial state is thus optimized to
reproduce the time history of observations, it places progressively higher emphasis on later ones.

As commonly known based on everyday experience with weather prediction, forecasts are
progressively less accurate. The same is true here: beyond the observation horizon, the errors in
the estimated flow amplify although accuracy within [T, 2T ] may be considered acceptable since
it is commensurate with the levels during the assimilation horizon. It is important to note that
the reported levels of error are on the order of a percent. While the levels of errors are much
more restrictive than the public demands for weather forecasts, they are essential for accurate
interpretation of flow experiments and probing the flow physics. The errors amplify exponentially
due to the chaotic nature of the flow and finally saturate when the turbulence in the channel is entirely
decorrelated from the true flow. Should new observations become available, adjoint-variational data
assimilation can be performed again starting from the previous estimate of the flow. In Fig. 7(a)
additional observations were made available within t ∈ [2T, 3T ] (light green region). The data
assimilation procedures were repeated, and was able to drive the estimated trajectory towards the
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true state, again (green line). This figure nicely captures the influence of both forward and adjoint
chaos: The very small differences between the green and black curves at t = T lead to significant
differences at long times due to forward amplification of perturbations. Meanwhile, the errors in the
green curve decay during the assimilation horizon t ∈ [2T, 3T ] due to amplification of perturbations
in backward time during the adjoint estimation.

The robustness of the algorithm for predicting vorticity from noisy observations is examined
in Fig. 7(b). For references, we are also plotting the errors from simple interpolation of the noisy
observations (dashed curve) when the noise level is 10%. In this case, the errors in the near wall
region reach approximately 30% of the mean wall vorticity. By contrast, the adjoint-variational
estimation (black solid line) reduces the error to 4% of the wall vorticity. The reconstructed
vortical structures are visualized in Fig. 7(c) and compared to the true flow in Fig. 7(d). Although
some of the small-scale structures are not perfectly captured, most of the estimated wall-attached
and detached vortical structures are almost identical to the true flow. This compelling estimation
accuracy demonstrates the capacity of our algorithm to augment under-resolved turbulence data.

Intuitively, as the spatiotemporal spacing of observations is increased, reconstruction of the
entire turbulent state becomes more difficult. Through a systematic effort and numerous data
assimilation experiments, we explored the critical resolution of observations that can enable an
accurate reconstruction of the turbulence, with 90% correlation coefficient between the assimilated
and true states. Two important physical scales emerged as key factors: the Taylor microscale � and
the Lyapunov timescale τσ . The former is evaluated from the two-point velocity correlation, but
perhaps more informative is its physical interpretation in the context of isotropic turbulence where
it measures the distance traversed by a Kolmogorov eddy during its lifetime as it is swept by the
root-mean-squared velocity. This description can be reframed in backward time: An observation of a
Kolmogorov eddy will be swept that distance during its adjoint lifetime. As a result, if observations
are spaced at twice the Taylor microscale, their signal can be decoded to accurately reconstruct the
entire volume. The Lyapunov timescale τσ is the e-folding time of an initial disturbance. Even if
the observation sites are closer than 2�, the temporal sampling interval cannot exceed τσ or else
Lyapunov amplification of errors will become dominant. In effect, the spatiotemporal data resolution
must satisfy

�m � 2�, δtm � τσ , (13)

to guarantee an accurate turbulence reconstruction. In the direction of mean advection, we can trade
spatial and temporal resolutions of observations,

δtm � 2�/Ua, �xm � Uaτσ . (14)

These criteria were examined in detail and supported by numerical experiments [15] at Reτ = 180.
Future investigations at higher Reynolds numbers, with larger separation of scales, can further verify
and refine these conditions.

The criteria discussed above hint to the notion of the domain of dependence of observations.
Intuition suggests that this domain depends on the type of observation, its placement in the flow
and its separation in time from the initial condition. Absent any advection, we can picture that
an isolated observation soon after the initial condition depends on a small spherical region due to
diffusion of nearby effects, and that region is larger for later observations. When mean advection is
present, we can picture an plume-like region upstream of the observation site, which marks all the
potential locations where early events could have reached the sensor. This intuitive picture will be
more precise using the adjoint field in the next section.

D. Domain of dependence and Hessian matrix

The domain of dependence of a sensor can be mathematically defined by its sensitivity to
the initial flow state. This idea is best explored in terms of variations, specifically whether and
to what extent a small change in the initial flow state affects the observation at the sensing
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FIG. 8. Schematic of forward-adjoint duality (15) in turbulent channel flow. Top: Forward evolution of an
initial perturbation, with isosurfaces showing the streamwise velocity u′, colored by wall-normal distance y.
The associated impact on the observation is evaluated at the wall at t+ = t+

m = 20. Bottom: Backward evolution
of the adjoint field starting from an impulse at the wall, up to τ = tm, where isosurfaces mark (red) positive
and (blue) negative adjoint streamwise velocities u†. Modification to the observation due to any initial forward
perturbation can be efficiently computed from its inner product with this single adjoint field at t = 0 (τ = tm).

location and time. We can therefore consider a small perturbation to the true flow u′ = u − uR,
which is governed by the linearized Navier-Stokes equations u′ = Au′

0, and evaluate its associ-
ated influence on the observation, M(u) − M(uR) = M(u′) for a linear observation operator.
The same deviation in the observation can also be evaluated using the Lagrangian duality
relation,

M(u′) = [u′(tm),φ(xm)] = [Au′
0,φ] = [u′

0,A†φ] = [u′
0, u†(τ = tm; xm, tm)], (15)

where φ is the observation kernel, and A† is the adjoint linearized Navier-Stokes operator. Here
we focus on an individual observation from a sensor placed at xm recorded at the time instant tm,
which is the elementary building block of the cost function. For this instantaneous observation,
the inner product in Eq. (15) involves only spatial integration. As the final expression in Eq. (15)
demonstrates, the sensitivity of observation to the initial state is quantified by the adjoint field
u†(τ = tm; xm, tm). The support of u† represents the domain of dependence of an observation
recorded at (xm, tm).

The Lagrangian duality (15) is illustrated in Fig. 8. In this example, the observation kernel φ

corresponds to evaluating the streamwise wall stress at (xm, tm) from the velocity field. The top
panel shows the forward approach: we perturb every velocity component at every point in the
initial condition separately, and evaluate the corresponding deviation in the wall observation. This
approach is therefore computationally expensive because it requires (nx × ny × nz × 3) forward
simulations, each evolved until t = tm. The last equality in (15) is significantly more efficient.
The adjoint field u†(τ = tm; xm, tm) is obtained from a single simulation of the adjoint equations
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backward in time,

∇ · u† = 0, (16)

∂u†

∂τ
− uR · ∇u† + (∇uR) · u† = ∇p† + 1

Re
∇2u†, (17)

u†(τ = 0) = φ(xm). (18)

Note that the adjoint equations (16)–(18) are different from the earlier adjoint system (7) and (8)
that was driven by a time-dependent forcing from the cost. Here the adjoint field is initiated at τ = 0
from an impulse at the sensor position [Eq. (18)], and its evolution uses the true reference state uR

[Eq. (17)]. The resulting adjoint field thus quantifies the sensitivity of wall observations to deviation
from the reference initial state. Any such deviation u′

0 affects the observations at tm if and only if u′
0

is nonzero within the support of u†, as shown in the bottom panel of Fig. 8.
We will focus the application of the above formulation on wall observations in turbulent channel

flow due to their theoretical significance. The generation of all the interior vorticity in the channel
can be traced back to the wall [40,41]. The converse problem, specifically whether the entire
initial turbulent state can be decoded from wall signals, has not been addressed comprehensively.
Previous efforts using a variety of approaches [15,19,42,43] have demonstrated that the near-wall
turbulence and only the outer large-scale structures can be reconstructed from the wall stresses. By
quantifying the domain of dependence of wall sensors, we attempt to demystify the difficulty of
flow reconstruction from wall observations.

The domain of dependence of a wall stress ν∂u/∂y sensor is in fact the adjoint field in Fig. 8
(bottom panel). Unlike the forward evolution of an impulse, the adjoint structures are advected
upstream of the observation point and expand as a function of reverse time. This behavior was
introduced conceptually in the previous section, and is here evaluated using the adjoint equations.
The isosurfaces of u† are symmetric in the spanwise direction because disturbance to the forward u
velocity on either side of the measurement cannot be distinguished. At τ = tm (t = 0), the adjoint
field u†(τ = tm; xm, tm) measures the sensitivity of wall observation to initial velocity at every point.
The upstream orientation and pancake-like shape of the adjoint isosurfaces in Fig. 8 implies that the
wall observation at t+

m = 20 is most sensitive to upstream and near-wall perturbations at the initial
time.

Since channel-flow turbulence is statistically homogeneous in the horizontal dimensions, obser-
vations can be sampled over the entire wall. The cost function associated with small deviation in the
observation becomes

J (u′
0; tm) = 1

2S

∫
S

(
∂u′

∂y

)2

dxm dzm = 1

2S

∫
S
[u′

0, u†]2 dxm dzm, (19)

where the last equality invoked the Lagrangian duality (15) and S is the area of the wall. The cost
function (19) is quadratic in u′

0, and its gradient vanishes at the true solution (u′
0 = 0). As a result, the

difficulty of flow reconstruction near the true solution can be characterized by the Hessian matrix,

H(x1, x2; tm) ≡ ∂J
∂u′

0∂u′
0

= 1

S

∫
S

u†u† dxm dzm. (20)

Written explicitly, the Hessian has the form

Hi j (x1, x2; tm) = 1

S

∫
S

u†
i (x1, τ = tm; xm, tm)u†

j (x2, τ = tm; xm, tm) dxm dzm, (21)

which demonstrates that the Hessian matrix is the auto-correlation of the adjoint field, which corre-
sponds to the observability Gramian in control theory [44]. Here the Hessian analysis characterizes
the difficulty of interpreting observations in order to reconstruct the flow state near optimality, and
our particular interest is in nonlinear time-dependent turbulent flows.
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FIG. 9. (a) The largest eigenvalue of the Hessian matrix Ĥ(kx, kz; tm ) for observing ∂u/∂y|wall instanta-
neously at t+

m = 20. Color and line contours are for Reτ = 180 and 590, respectively. The eigenvalues are
normalized by the supremum. (b) Visualizations of the leading eigenfunctions of the Hessian at selected
wave-number pairs: (k+

x , k+
z ) = (0.08, 0), (0, 0.14), (0, 0.02) for modes IA, IB and II . Contours show the

velocity magnitude and arrows are in-plane velocity components.

Eigen-analysis of the Hessian matrix can be viewed from two perspectives: (i) The leading
eigenfunctions describe the directions that adjoint-variational method will most effectively target
during the data assimilation procedure. In other words, these flow structures will be the easiest to
reconstruct from observations. The associated eigenvalues quantify the curvature of the cost function
along the corresponding eigendirection. (ii) Eigenanalysis of the Hessian matrix is equivalent to a
proper-orthogonal decomposition of the adjoint field u†. As such, the leading eigenfunctions are the
dominant shapes of the domain of dependence. In the forward sense, these eigenfunctions are also
the optimal perturbations that will lead to the most significant change in wall signals at tm, and the
corresponding sensitivity is quantified by the eigenvalues.

A sample eigenspectrum and eigenfunctions of the Hessian for observing ∂u/∂y|wall is shown in
Fig. 9. Exploiting periodicity in the horizontal x-z plane, the Hessian is expressed in Fourier space,

Ĥ(kx, kz; tm) = 1

S

∫
S

û†(kx, kz, τ = tm; xm, tm)û†(kx, kz, τ = tm; xm, tm) dxm dzm. (22)

The largest eigenvalue of Ĥ(kx, kz; tm) at each wave-number pair is plotted in Fig. 9(a). Two
Reynolds numbers Reτ = 180 and 590 are considered, and their eigenspectra (color and line con-
tours) coincide when the wave number are scaled in viscous units. The maximum eigenvalue decays
with increasing magnitude of the horizontal wave-number vector (k+

x , k+
z ), and the separation of

eigenvalues over three orders of magnitudes demonstrates the ill-conditioned nature of the Hessian.
Two local peaks marked IA and IB correspond to spanwise and streamwise rolls. Another important
point is marked II , which represents the energetic large-scale structures with λ+

z = O(300). The
mode shapes of IA, IB and II are plotted in Fig. 9(b).

Within the considered time horizon, t+
m = 20, the initial disturbances that can most effectively

influence wall measurements have large wave numbers, and the corresponding eigenvectors are
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clustered near the wall [modes IA and IB in Fig. 9(b)]. These modes are not energetic in channel-flow
turbulence, but are nonetheless the directions that adjoint-variational data assimilation will attempt
to reconstruct first. Another important remark is that, beyond the buffer layer, most eigenfunctions
are vanishing (see [45] for more details), which implies that wall observations are not very sensitive
to the turbulence far from the wall. A very important exception is in a small region near mode
II , where the eigenfunctions remain finite in the core of the channel. These modes represent
the sensitivity of wall signals to outer large-scale structures. This sensitivity arises because these
streamwise-elongated motions are immune to shear sheltering [46,47], have a footprint in the
near-wall region and modulate the near-wall structures [48–51]. As a result, they have a signature
encoded in the wall stress. The analysis of the Hessian eigenspectrum thus provides a rigorous
explanation of the empirical findings by earlier studies [15,19,43]: while wall observations can be
decoded to discover all the turbulent scales near the wall, only the outer large-scale motions can be
accurately estimated from wall stresses.

The present discussion has focused on an instantaneous observation, at t+
m = 20. In practice,

observations are accumulated over a time horizon that may extend over a longer duration. Due to
the Lyapunov behavior of the adjoint system, the adjoint field amplifies exponentially in reverse
time at the same rate as the forward system. The notion of the adjoint chaos is, however, different
from the familiar forward problem: To start, the initial guess of the flow state in a data assimilation
procedure is generally far from the truth, and the associated gradient of the cost function is
determined by the adjoint system. The exponential amplification of the adjoint in backward time
can lead to a very large gradient, which imposes a severe restriction on the step size in gradient
descent optimization. Even if the initial estimate is near optimality, the Hessian matrix, which is
represented by the adjoint field starting from an observation kernel, has exponentially amplifying
eigenvalues with observation time. This property translates into a cost function landscape with
extreme curvatures, which can thwart the search for the global optimum. More subtle but very
important is an increase in the separation between the largest and smallest eigenvalues of the
Hessian, and hence an increase of its condition number. As a result, solving the inverse problem
becomes progressively more ill conditioned and errors in observations can strongly obscure the
reconstruction of the initial state. Effective strategies to address these difficulties include limiting
the assimilation horizon based on knowledge of the Lyapunov timescale [15,52], and for longer
horizons adopting a sliding window [20] or a cycling scheme [29]. These techniques should also
be combined with strategies for optimizing sensor placement and weighting [17,18] in order to
maximize the accuracy of predictions.

IV. CONCLUSION

Data assimilation combines experimental observations with numerical simulations in order to
achieve high-fidelity predictions of the entire flow state. The data-infused simulations improve
the accuracy of the computations and reduce the uncertainty of predictions. At the same time,
experimental measurements are augmented with nonintrusive access to a much higher resolution
than the sensor data. These benefits have been demonstrated by applying adjoint-variational data
assimilation in order to reconstruct a nonlinearly saturated flow and wall turbulence, from limited
observations. When the flow configuration admits multiple states, such as in circular Couette flow,
the observed one may originate from a complicated history and particulars of the experimental
setup. Data assimilation can successfully and accurately reconstruct the true state from sparse
observations, such as wall stress measurements, without the requirement of matching the detailed
experimental setup and protocol [26]. In wall turbulence, starting from sparse velocity data, adjoint-
variational assimilation provided reconstructions of the full velocity and vorticity fields that are
nearly perfectly correlated with the truth and robust to observation noise [15].

The importance of data assimilation extends beyond augmenting observations. In particular,
adjoint-variational methods provide a unique perspective on flow physics that arises from the
process of decoding observations. The adjoint field quantifies the sensitivity of the observation
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kernel to changes in the flow state, and hence the domain of dependence of the sensor. This view
motivates a shift in focus from clustering measurements in order to locally observe all the scales
to optimally distributing observations in order to ensure sensitivity to the entire state. In order to
guarantee accurate reconstruction of the flow, a critical data resolution must be satisfied, whereby
the domains of dependence of adjacent observation sites overlap. This resolution was shown to be
on the order of the Taylor microscale of turbulence.

The search for the true flow is performed by minimizing a cost function that is defined in terms of
the disparity between model predictions and observations. Success must therefore contend with the
landscape of this cost function, which is mountainous for nonlinear chaotic systems. We have shown
an example of the cost landscape explicitly using the Lorenz system—a practically impossible task
in high dimensions such as for turbulence. Luckily the adjoint system provides a solution [45]: At
optimality, the Hessian matrix of the cost can be computed relatively efficiently from the adjoint
field, and its eigendecomposition provides important information. The leading eigenfunctions are
the flow structures that have the most impact on observations. The eigenvalues are the curvatures of
the cost landscape along the associated eigendirections, and describe the difficulty of approaching
optimality along those directions. As such, from the perspective of data assimilation, or the inverse
problem, the leading eigenfunction are the most accurate to decode from observations.

The above ideas were applied to the interpretation of observations of the wall stress in turbulent
channel flow. Within a short time horizon, these observations are most sensitive to near-wall small-
scale perturbations, and strongly affected by outer large-scale structures. At longer observation time
horizons, the sensitivity amplifies exponentially due to the chaotic nature of the adjoint system,
leading to a more mountainous cost function, larger gradient, and a deteriorating ill-conditioned
Hessian. Therefore, the inverse problem becomes progressively more difficult to solve, and errors
in observations can strongly contaminate the estimated initial state. These difficulties restrict
assimilation time horizon to the order of the Lyapunov timescale.

The difficulty of turbulence reconstruction can be alleviated by designing optimal measurement
layouts, which can be guided by the Hessian analysis. The weighting of observations and spatiotem-
poral placement of sensors can be optimized to mitigate undesirable features of the cost landscape.
For example, in transitional or turbulent flows earlier observations can be favorably weighted in
order to reduce extreme curvature, and thus improve the estimation accuracy of the initial state. In
turbulent flows, the sensor placement can be designed to mitigate the poor condition of the Hessian
[18]. These strategies have been applied to prediction of high-speed boundary layer transition and
scalar source reconstruction in turbulent environments [16,17].

At much higher Reynolds numbers, the challenges examined herein become more severe and
new ones arise. The higher Lyapunov exponent will further restrict the duration of the assimilation
window. In addition, a larger number of observations, or sensors, will be required at higher Reynolds
numbers, which can render estimation of the entire flow field prohibitive both experimentally and
computationally. Measurements can therefore be concentrated in a small region of interest, and the
data assimilation can reconstruct the flow within this subdomain along with the effective boundary
conditions due to the influence of the larger configuration. Finally, turbulence modeling may be
required in the forward and adjoint equations, which introduces uncertainty with respect to model
parameters. All these considerations are exciting future avenues of inquiry.

Furthermore, the results from the adjoint-variational approach provide a benchmark for assessing
emerging data-assimilation techniques, for example, recent machine learning strategies that inte-
grate data and physics-based, or equations, constraints. Notable among the growing suite of these
methods are physics-informed neural networks [21], evolutionary deep neural networks (EDNN,
which is pronounced “Eden”; see [22]), and Deep Operator Networks (DeepONet; see [53]). A
systematic comparison of adjoint-variational and machine-learning data assimilation techniques
is currently under investigation, and future efforts may combine the two classes of methods in
multifidelity data-assimilation strategies.
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