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A wavelet-based adaptive wall-modeled large eddy simulation (WA-WMLES) method
is proposed for simulations of wall-bounded compressible turbulent flows. The approach
utilizes the wavelet-based adaptive large eddy simulation (WA-LES), incorporated into the
anisotropic-adaptive wavelet collocation method, to resolve the outer region of turbulent
boundary layer, while the inner part is approximated by the equilibrium wall-shear-stress
model. Such an approach for modeling the inner layer is crucial for wavelet-based adaptive
turbulent flow simulations because the mesh resolution requirement for WA-LES to resolve
inner viscous sublayer becomes computationally prohibitively expensive as the Reynolds
number increases. In the outer layer region WA-LES computations take advantage of the
wavelet-based local mesh refinement, which not only efficiently captures the physical
characteristics of flows on a nearly optimal adaptive computational mesh, e.g., massive
boundary layer separation, but also actively controls the error of the solution using
a priori defined wavelet filtering threshold. A flat plate turbulent boundary layer flow
and a separated flow over NASA’s wall-mounted hump are tested to verify and validate
the WA-WMLES approach. Good agreement of the results predicted by the WA-WMLES
method is achieved compared to the reference data from experiments and simulations.
The finest effective mesh resolution of the WA-WMLES is consistently higher than the
one used in the wall-modeled LES (WMLES) found in literature, but comparable to the
wall-resolved LES, while the similar accuracy is achieved with considerably fewer degrees
of freedom than in nonadaptive WMLES. These observations demonstrate both accuracy
and efficiency of the WA-WMLES method.

DOI: 10.1103/PhysRevFluids.6.094606

I. INTRODUCTION

The recent advancements in wavelet-based numerical methodologies to solve partial differential
equations, combined with the unique properties of wavelet analysis to unambiguously identify and
isolate localized dynamically dominant flow structures, allow the development of a hierarchical
adaptive eddy-capturing framework for turbulent flow simulation that fully captures spatial and
temporal turbulent flow intermittency and tightly integrates numerics and physics-based modeling
[1,2]. In the wavelet simulation, coherent flow structures are either totally or partially resolved on
dynamically adaptive computational meshes, while the effect of unresolved motions are represented
by the models. The separation between resolved (more energetic) eddies and residual (less energetic)
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components of the flow is achieved by means of the nonlinear wavelet thresholding filter. The value
of wavelet threshold controls the relative importance of resolved field and residual background flow
and, thus, the fidelity of turbulence simulations.

In the wavelet-based adaptive large eddy simulation (WA-LES), the stochastic and the least
energetic coherent parts of the turbulent velocity field are discarded and only the most energetic
coherent vortices are captured in the resolved numerical solution [3]. It is found in Ref. [4]
that the discarded subgrid-scale (SGS) coherent structures dominate the total SGS dissipation,
while the SGS incoherent modes have a negligible effect upon the large-scale dynamics and the
energy transfer. Therefore, similar to conventional LES methods, many standard LES closures are
applicable for the Adaptive LES method by modeling SGS coherent structures in terms of the
resolved energetic coherent vortices.

The effectiveness and efficiency of the wavelet-based adaptive wall-resolved LES (WA-WRLES)
method has been scrutinized for wall-bounded incompressible or compressible flows using either
the volume-penalization boundary condition [2,5] or body-fitted curvilinear meshes [6]. For wall-
bounded flows, the anisotropic-adaptive wavelet collocation method (A-AWCM) [7] with body-
fitted meshes allows anisotropic mesh clustering and stretching in the physical domain, and, thus,
overcomes the difficulty in simulating the flow over complex geometries by traditional wavelet-
based methods [8–11] while preserving the efficiency and error control of wavelet transform and
mesh adaptation procedure over the uniform meshes in the computational domain.

Despite significant savings achieved by wavelet compression in the WA-WRLES, its application
is still computationally prohibitively expensive for high Reynolds number wall-bounded flows.
This is a wide and lasting issue for all the efforts in the wall-resolved LES community and is
mainly due to progressive decrease of the viscous length scales in the inner region of a turbulent
boundary layer requiring very fine wall-normal mesh spacing �y that scales with Reynolds number
as �y ∼ xRe−13/14

x [12]. In contrast, energy-containing length scales in the outer-region are usually
determined by the geometry of the flow or more precisely the boundary layer thickness δ, which
decreases slowly with the Reynolds number and scales as δ ∼ xRe−1/7

x . In fact, as estimated by Choi
and Moin [12], the mesh resolution for the wall-resolved LES approach scales as Nwr ∼ Re13/7.
Alternatively, the wall-modeled LES [13,14] requires the mesh resolution scaling as Nwm ∼ Re.
Therefore, the wall-modeled LES is more applicable to high Reynolds number problems, despite
some side-effects, such as the log-layer mismatch (LLM) with the error in skin friction of about 5%
to 15% [15–17], which is observed when the near-wall RANS model and the resolved LES away
from the wall do not quite match their interception constants, C (in U + = log(y+)/κ + C) in the
log-law layers.

There are two well-known categories of wall-modeled LES methods: (1) the hybrid large eddy
simulation and Reynolds-averaged Navier-Stokes (LES-RANS) methods that switch to the RANS
formulations in the inner layer [16–19] and (2) the wall-shear-stress methods that model the wall
shear stress directly on the wall [20–23]. Recently a wavelet-based adaptive delayed detached eddy
simulation (WA-DDES) [24,25] that incorporates hybrid LES-RANS modeling framework into the
wavelet-based adaptive unsteady RANS (WA-URANS) [26,27] formulation has been proposed. The
developed WA-DDES resolves the typical log-layer mismatch issue encountered in the conventional
nonadaptive DDES methods mainly due to the use of wavelet-based adaptive mesh refinement and
have been examined in a variety of wall-bounded flow configurations. WA-DDES achieves high grid
compression relative to the effective mesh resolution at the highest level while obtaining accurate
solutions using relatively small wavelet filtering threshold, especially in the wall modeling RANS
region.

One major issue in the WA-DDES computations is the stringent restriction on step size for time
integration caused by very small wall-normal mesh spacings immediately adjacent to the wall, i.e.,
y+ < 1, despite the use of stretched meshes with relatively large parallel grid spacings to reduce
the total number of active nodes. The main objective of this work is to overcome this restriction
by developing the wavelet-based adaptive wall-modeled LES (WA-WMLES) method. For the rest
of context, the term “wall-modeled LES” is used for simplicity to refer to the aforementioned
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wall-shear-stress-modeled LES method. The key idea of the WMLES approach is to feed the
information to a RANS model at an exchange location (EL) from the LES flow field and then
solve the RANS equations (either ordinary differential equations (ODEs) for the equilibrium
model [15,28,29] or partial differential equations (PDEs) with 3D RANS computations for the
nonequilibrium model [22,23]). The RANS equations are then solved to find the wall stresses
(viscous fluxes) to impose the wall-stress boundary conditions back to the LES computation under
the assumption that the direction of the wall shear is aligned with the velocity vector at the EL.
The EL is a user-defined parameter and can be adjusted based on the boundary layer thickness. To
prevent the log-layer mismatch it was recommended in Ref. [15] that the exchange locations should
be located in the lower portion of the log-layer and within 10% of the boundary layer thickness,
which highlights one of the advantages of the WA-WMLES, namely, the removal of CFL restriction
due to near-wall mesh spacing as the first mesh point away from the wall is located above y+ � 40.
As a result, considerably cheaper explicit time integration schemes can be used in the WA-WMLES
computations. It is important to emphasize that the adaptive wavelet-based methodology [8–11] is
capable to achieve not only sparse data representation and high grid compression using the inherent
adaptive mesh refinement capabilities, but also to control the accuracy of the simulations through
wavelet filtering threshold, which is very important for simulation of unsteady turbulent flows with
boundary layer separation that can be captured by spatiotemporally adaptive meshes with nearly
optimal number of degrees of freedom.

The rest of the paper is organized as follows. Section II introduces the WA-WMLES governing
equations, including the Favre-filtered Navier-Stokes equations for compressible flows, the SGS
eddy viscosity model and the wall-modeled LES boundary conditions. The A-AWCM and the
implementation of the WA-WMLES into the A-AWCM framework are described in Sec. III. Sec-
tion IV presents the simulation results for the test cases using the WA-WMLES method. Concluding
remarks are given in Sec. V.

II. GOVERNING EQUATIONS

A. Favre-filtered Navier-Stokes equations

For conventional nonadaptive LES, the implicit or explicit linear lowpass filtering operator is
usually defined a priori and is tied to the corresponding computational mesh with under-resolved
mesh spacings relative to DNS. In contrast to standard LES, the wavelet-filtering operator used in
the wavelet-based Adaptive LES is constructed by using the wavelet thresholding filter, described
in Sec. III, which is nonlinear and depends on the instantaneous flow realization. Similarly to the
conventional lowpass-Favre filter for variable density flows, denoted as φ̂ = ρφ/ρ with the over-bar
(·) representing the lowpass filter, the wavelet-Favre filter is defined as φ̂>ε = ρφ

>ε
/ρ>ε , where

the wavelet threshold filtering operator (·)>ε
is given by Eq. (18). In the wavelet-Favre filtered

Navier-Stokes equations, consequently, the primitive variables are ρ>ε , p>ε , ûi
>ε , T̂ >ε , and ê>ε ,

representing, respectively, the wavelet filtered density of the fluid (gas) and pressure, the wavelet-
Favre filtered velocity, temperature and total energy per unit mass. For the sake of simplicity, the
variables ρ, p, ui, T , and e are used hereafter to denote all the primitive variables. Subsequently, the
wavelet-Favre filtered Navier-Stokes equations for conservation of mass, momentum, and energy
in compressible flows of calorically perfect gas with modeled turbulent terms can be written in the
following form:

∂ρ

∂t
+ ∂ (ρu j )

∂x j
= 0, (1)

∂ρui

∂t
+ ∂

∂x j
(ρuiu j ) = − ∂ p

∂xi
+ ∂τ̂i j

∂x j
, (2)

∂ρe

∂t
+ ∂

∂x j
[(ρe + p)u j] = ∂

∂x j
[uiτ̂i j − q j], (3)
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where

p = ρRT, (4)

e = 1

2
uiui + p

ρ(γ − 1)
, (5)

q j = −cp

(
μ

Pr
+ μT

PrT

)
∂T

∂x j
, (6)

τ̂i j = 2μS̃i j − τi j, (7)

−τi j = ρ
(
̂unf
i unf

j

>ε

− uiu j
) = 2μTS̃i j,

S̃i j = dev(Si j ) = Si j − 1

3

∂uk

∂xk
δi j,

Si j = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
. (8)

The parameter R is the gas constant, while cv and cp are the specific heat constants at constant
volume and pressure, respectively. The specific heat ratio γ = cp/cv ≡ 1.4 for diatomic gases, and
Pr = μcp/λ is the Prandtl number, where λ is the thermal conductivity. The term qj is the sum of
both the laminar and modeled turbulent heat fluxes with Pr = 0.72 and PrT = 0.9 being the laminar
and turbulent Prandtl numbers, respectively. The turbulent eddy viscosity is denoted by μT, which
is unknown and needs a turbulence model for closure. The term τ̂i j is the sum of the molecular
and SGS stress tensors, while Si j is the mean strain-rate tensor, S̃i j is the deviatoric tensor of Si j ,
δi j is the Kronecker δ, −τi j is the SGS stress tensor, and the summation convention for repeated

indices is assumed. Note that the unclosed term ̂unf
i unf

j

>ε

is defined by the unfiltered velocity unf
i .

The temperature-dependent dynamic molecular viscosity μ is given by the Sutherland’s law,

μ

μref
= Tref + S

T + S

(
T

Tref

)3/2

, (9)

where the constants S = 110.4K and Tref is the user-defined reference temperature.

B. The Anisotropic minimum dissipation SGS model

In this paper the anisotropic minimum dissipation (AMD) model proposed by Rozema et al. [30]
is chosen as the SGS model for the WA-WMLES computations. The AMD eddy viscosity provides
the minimum required dissipation to remove the SGS effects from the LES realizations and is given
by

μT = ρCAMD

max
{ − [

�k
∂ui
∂xk

�l
∂u j

∂xl

( ∂u j

∂xi
+ 1

2
∂up

∂xp
δi j

)]
, 0

}
∂um
∂xn

∂um
∂xn

, (10)

where �k , k = 1, 2, 3 denotes the mesh spacing in the xk , k = 1, 2, 3, directions. Note an additional
dilatation term ∂up

∂xp
in the numerator, which is absent in the original formulation of Rozema et al.

[30]. This term is added for compressible flows to account for the density variation and the violation
of divergence-free assumption on the velocity perturbation of the original derivation of Verstappen
[31]. Also note, that in Eq. (10) the effect of turbulent kinetic energy transfer due to density
stratification is neglected, i.e., in the derivation of Eq. (10) it is assumed that |u∇ρ| � ρ‖∇u‖.

The model coefficient is CAMD = 0.212 in most of the domain where the fourth-order central
difference scheme is used while it is tuned to CAMD = 0.3 for the first two wall-normal points away
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FIG. 1. An illustration depicting the nonorthogonal LES mesh, the closest LES mesh points (blue) to the
exchange locations, and the boundary points for the RANS ODEs on the wall (black) and the exchange layer
(red).

from the boundary where the second-order one-sided or central difference schemes are used. The
justification of use of the lower-order schemes are discussed in Sec. III.

C. The inner-layer wall model

The separate inner-layer wall model used in this paper follows the work reported in Ref. [15,28],
i.e., the equilibrium model. The model equations form a coupled system of ODEs, which read

d

dη

[(
μ + μwm

T

)du||

dη

]
= 0,

d

dη

[(
μ + μwm

T

)
u|| du||

dη
+

(
μ

PrL
+ μwm

T

Prwm
T

)
dT

dη

]
= 0, (11)

where η is the wall-normal coordinate, u|| the wall-parallel velocity component and T is the tem-
perature. This system of ODEs with specified boundary conditions is solved sequentially between
η = 0 and η = ηEL (ηEL is the wall-normal distance of the LES exchange location) using the Newton
iteration method with the second-order central difference discretization, which forms a tridiagonal
system. The boundary conditions at the wall at η = 0 for the velocity and temperature are no-slip
and isothermal and adiabatic and at exchange location at η = ηEL are u|| = u||,EL and T = T EL. All
boundary values at the exchange location are obtained following an interpolation procedure [28]
from the closest LES mesh point to the exchange location using linear interpolation

uEL
i = uLES

i + ∂ui

∂x j

∣∣∣∣
LES

(
xEL

j − xLES
j

)
. (12)

The use of interpolation Eq. (12) provides the flexibility to the LES mesh, which does not need to be
orthogonal at the wall. An illustration is given in Fig. 1 depicting the nonorthogonal LES mesh, the
closest LES mesh points to the exchange locations, and the boundary points for the RANS ODEs
on the wall and the exchange layer.

The wall-model eddy viscosity μwm
T follows the mixing-length model adopted in Ref. [15] and is

given by

μwm
T = κη

√
ρτw

[
1 − exp

(
−η+

A+

)]
, (13)

where A+ = 17 and κ = 0.41. The turbulent Prandtl number is Prwm
T = 0.9.
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D. The LES boundary conditions

The shear stress at the wall is assumed to be aligned with the wall-parallel velocity at the EL,
i.e., making the assumption that the shear stress direction remains unchanged across the unresolved
part of the boundary layer, which gives

(τ̂i jn j )
LES
w = τwm

w e||
i , (14)

where e||
i is the unit vector parallel to the wall and aligned with u||,EL

i , n j is the unit vector normal to
the wall and τwm

w is the wall shear stress value returned from the equilibrium wall model. Similarly,
the heat flux at the wall is given by

(q jn j )
LES
w = qwm

w , (15)

with qwm
w being the heat flux scalar returned from the equilibrium wall model. Note that the total

stress and heat flux terms τ̂i j and q j , defined by Eqs. (7) and (6), are used in these boundary condition
formulations. Due to the equilibrium assumption of the wall model the wall pressure is assumed to
be the same as the pressure at the exchange location, i.e., pEL, or equivalently(

∂ p

∂x j
n j

)LES

w

= 0, (16)

which can be rewritten as Robin-type boundary condition for the density. Thus, the WA-LES
Eqs. (1), (2), and (3) are solved with density, velocity, temperature, and viscous and heat fluxes
at the wall calculated from the no-penetration ujn j = 0, shear stress Eq. (14), heat flux Eq. (15)
boundary conditions, and the equilibrium assumption for the wall pressure.

III. NUMERICAL METHODS

A. Wavelet-based adaptive computations

The wavelet-based adaptive wall-modeled LES method described above is implemented using
the parallel adaptive wavelet-based collocation method (PAWCM) [8]. The PAWCM is based on
multiresolution wavelet analysis to construct time-dependent computational meshes with spatially
varying resolution that is required to adequately resolve the localized structures of the solution with
a priori prescribed accuracy. From previous studies on different wavelet-based turbulence modeling
methods for linearly forced homogeneous turbulence [32] and supersonic channel flow [24] the
Reynolds number scaling of wavelet-based adaptive methods is considerably slower than cubic,
i.e., Re3, required for the nonadaptive DNS. The study of the Re scaling of the WA-LES and WA-
MWLES at high Reynolds numbers is the subject of future investigation, since the primary objective
of the current work is to expand the application of the wavelet-based algorithms to simulation of
high Reynolds number flows.

The mesh adaptation in PAWCM is based on the analysis of wavelet decomposition of a spatially
dependent field, say u(x), sampled on a set of dyadic nested collocation points x j

k at different levels
of resolution j, formally written as

u(x) =
∑
l∈L1

c1
l φ

1
l (x) +

J∑
j=2

2n−1∑
μ=1

∑
k∈Kμ, j

dμ, j
k ψ

μ, j
k (x), (17)

where n denotes the number of spatial dimensions, bold subscripts denote n-dimensional indices,
while L1 and Kμ, j are n-dimensional index sets associated with scaling functions φ1

l and different
family wavelets ψ

μ, j
k , respectively. Each of the basis functions, i.e., φ1

l or ψ
μ, j
k , has one-to-one

correspondence with a mesh point l ∈ L1 or k ∈ Kμ, j . Scaling functions φ1
l carry the averaged sig-

nal, while the multidimensional second-generation wavelet functions ψ
μ, j
k define local, variational

details. The amplitudes are given by the coefficients c1
l and dμ, j

k , respectively, and hence have a
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unique correspondence to mesh points. The levels of resolution span over 1 � j � J , with 1 and J
being, respectively, the coarsest and finest levels of resolution present in the approximation. During
the wavelet transform, detail (or wavelet) coefficients dμ, j

k are obtained recursively from scaling
function coefficients cμ, j

k from level J to 2. After the wavelet transform, the coefficients c1
l (l ∈ L1)

and dμ, j
k (k ∈ Kμ, j) are stored, respectively, at the mesh points of the coarsest ( j = 1) and higher

(2 � j � J) levels of resolution. Note that for n-dimensional space, there are 2n − 1 families of
wavelet functions, indexed by μ.

Wavelet threshold filtering arises naturally from the series expansion (17). The filtering operation
is performed by applying the wavelet transform to the original field u(x), zeroing the wavelet
coefficients below a given threshold, ε = ε(x, t ) for generality, and transforming back to the
physical space. The resulting approximate field, say u>ε (x), composed of a subset of the original
wavelets, represents the dominant modes and can be formally written as the following conditional
series:

u>ε (x) =
∑
l∈L1

c1
l φ

1
l (x) +

J∑
j=2

2n−1∑
μ=1

∑
k∈Kμ, j

|dμ, j
k |>ε‖u(x)‖

dμ, j
k ψ

μ, j
k (x). (18)

In many implementations, the filter threshold is taken to be relative to some characteristic scale,
often represented by either the L2 or L∞ norm of u(x) taken globally over the domain and denoted as
‖u(x)‖ [3]. The resulting nonlinear filtering operation practically separates resolved flow structures
and unresolved residual motions. For a properly normalized threshold, the reconstruction error of
the filtered variable is shown [33] to converge as

‖u>ε − u‖ � Cε‖u‖, (19)

where C = O(1).
The dynamic mesh adaptation is tightly coupled with the wavelet filter. Due to the one-to-one

correspondence between wavelets and grid points, the nodes are omitted from the computational
mesh if the associated wavelets are excluded from the truncated approximation Eq. (18). The
multilevel structure of this wavelet approximation provides a natural way to obtain the solu-
tion on a nearly optimal numerical mesh, which is dynamically adapted to the evolution of
the main flow structures, both in location and scale, while higher resolution computations are
carried out in the regions where (and only where) steep gradients in the resolved flow field
occur.

The multiresolution wavelet decomposition Eq. (18) is used for both mesh adaptation
and interpolation, while a hierarchical finite difference scheme [9,10], which takes advantage
of the wavelet interpolating properties, is used to numerically differentiate the local func-
tion approximations and to provide the values of derivatives at the adaptive computational
nodes.

Second-generation wavelet bases, described above, rely on topologically rectilinear mesh and
inherently isotropic mesh elements. This restriction puts some limitations on the applicability of
the approach for simulation of complex geometry wall-bounded turbulent flows. These limitations
were recently overcome with the development of the A-AWCM [7]. The A-AWCM preserves active
error-controlling properties of the original AWCM [8–11], but provides an additional flexibility
to control mesh anisotropy and to solve the problem in complex domains by separating the
computational space from the physical one and introducing a mapping between them, thus, allowing
the use of anisotropic curvilinear meshes in complex geometries. At the same time, the structured
rectilinear assembly of collocation points in the computational space is retained, which allows the
use of computationally efficient discrete adaptive wavelet transform and derivative approximations.
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B. Numerical implementations for the WA-WMLES

1. Wall model implementation

The numerical implementation for the inner layer modeling computations in the WA-WMLES
method consists of the following steps:

(i) Impose viscous and heat flux boundary conditions Eqs. (14) and (15) using wavelet-based
finite difference scheme on curvilinear mesh, resulting in a linear algebraic system of equations that
relates the velocity ui and temperature T at the wall and neighboring internal points. These modified
wall velocity and temperature are unphysical and, hence, are not appropriate for evaluation of the
convective fluxes for the density, momentum, and energy as well as the viscous power term uiτ̂i j in
the energy equation. As suggested by Kawai and Larsson [15], these flux terms are set to zero at
the wall. In addition, the molecular viscosity at wall points is directly obtained from the equilibrium
wall-model computation rather than evaluated from the modified wall temperature values using
Eq. (9).

(ii) Update the wall shear stress τwm
w and heat flux qwm

w returned from the equilibrium wall model
before each LES time integration. To minimize the computational cost the no-penetration and wall
flux boundary conditions are imposed on the solution fields only for the first stage of the three-stage
Runge-Kutta (RK3-TVD) time integration scheme without performing the equilibrium wall-model
computations for intermediate stages of the time integration. As pointed out in Ref. [28] the effect of
this simplification on the accuracy is negligible. For the remaining RK stages, conserved variables,
i.e., density, momentum and internal energy on the wall are updated directly using the RK3-TVD
time integration scheme for the intermediate-stage solution fields. For the other regular boundaries,
such as inflow and outflow as well as inviscid or free-stream boundaries, the corresponding boundary
conditions are applied for all-three-stage solutions.

(iii) Use second-order one-sided and central difference schemes on the first and second points
away from the wall, respectively, when calculating the viscous flux terms. The wall values of ui and
T obtained in step (i) are only used to impose the desired viscous fluxes at the wall and not accurate
for calculating the gradients invoked in the viscous fluxes for the wall-adjacent points. Therefore, as
suggested by Kawai and Larsson [15], the second-order one-sided and central difference schemes
are used on the first and second points away from the wall, respectively. At other points, the standard
wavelet-based hierarchical fourth-order central difference scheme is used. Although the second-
order schemes reduce the accuracy of viscous flux calculation at the first and second points away
from the wall, the solution at these points is always highly under-resolved due to the coarse mesh
in the wall-normal direction no matter how accurate the numerical scheme is. The key point for
WMLES is that the wall viscous fluxes are intended to be accurate away from the wall and the LES
solution at the exchange layer is well resolved and uses high-order numerical scheme.

(iv) Impose the no-penetration boundary condition for the wall velocity after the final stage of
the RK3-TVD for each time step.

(v) Map the points within the LES domain closest to the exchange-location (EL) points to the
wall points.

(vi) Distribute the equilibrium wall-model calculations evenly among all the parallel processes
to guarantee load-balancing for the equilibrium wall-model computations. The CPU time of the
equilibrium wall-model computation including the MPI communication is around 10% of the total
CPU time required for each time step integration.

(vii) Synchronize the results of equilibrium wall-model calculations between all the parallel
processes. After the wall stress and heat flux are returned from the equilibrium wall-model solver,
these data are redistributed to corresponding processors that contain wall points for the LES
computation.

(viii) Enforce the nonadaptive under-resolved mesh near the wall below the exchange location
to reduce the total degrees of freedom effectively and to turn-off mesh adaptation in the inner layer
region.
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TABLE I. Strong scalability test for the three-dimensional WA-WMLES simulations of flat plate turbulent
boundary layer with approximately 10 million adaptive mesh points. Data are based on CPU time for fixed
time steps.

No. cores No. points/core Speed up Efficiency

28 371 K 28 1
56 186 K 56 1.00
112 93 K 101 0.90
224 46 K 187 0.84
448 23 K 251 0.56

2. Parallel algorithm

The parallel algorithm for the A-AWCM [8] is also briefly introduced in this section. The domain
is partitioned using the Zoltan partitioning library [34] from Sandia National Laboratories. Zoltan
geometric (recursive coordinate bisection) and Zoltan hypergraph parallel partitioning algorithms
are used. Dynamic load balancing is implemented via domain repartitioning during the grid adap-
tation step and reassigning tree data structure nodes to the appropriate processes. The user provides
an imbalance tolerance vector to trigger the repartitioning if necessary. The type of repartitioning
depends on the imbalance of the wavelet distribution. Highly imbalanced data are partitioned
without considering current decomposition, moderately imbalanced data are repartitioned while
trying to stay close to the current decomposition, and nearly balanced data are refined by small
changes only. For detailed discussions about the parallelization the reader is referred to Ref. [8].

To demonstrat the scalability of the parallel A-AWCM implementation, a 3D WA-WMLES of a
flat pate turbulent boundary layer (TBL) flow with inflow Reθ = 7000 and Mach number Ma = 0.3
is tested. The simulations with approximately 10 million adaptive mesh points have been performed
on the Bridges system at Pittsburgh Supercomputing Center, part of the Extreme Science and
Engineering Discovery Environment (XSEDE). Details of the mesh setup are given in Sec. IV A.
The corresponding strong scaling data are shown in Table I. The deterioration of the performance
is observed when the number of grid points per core drops below 2 × 104, which is also consistent
with the results reported in Ref. [8] for linearly forced homogeneous turbulence.

IV. SIMULATIONS AND RESULTS

A. Zero pressure gradient flat plate turbulent boundary layer flow

1. Numerical setup

To demonstrate the effectiveness and accuracy of the WA-WMLES method we start by consid-
ering a subsonic zero pressure gradient flat plate turbulent boundary layer flow, which also used for
validation of inflow conditions, required for more complex flow presented later. The computational
domain size is 28δ × 14δ × 4.8δ in streamwise, wall-normal, and spanwise directions, respectively,
where δ is the boundary layer thickness at the inflow plane. The effective mesh resolution for the
WA-WMLES is 2560 × 192 × 512 with seven levels of resolution, base (coarsest level) resolution
of 40 × 3 × 8, uniform mesh spacing in the wall-tangential directions, and stretched mesh with a
hyperbolic tangent distribution in the wall-normal direction. The wall-parallel mesh spacings at the
finest level are �x+ ≈ 23 and �z+ ≈ 20. The smallest allowed wall-normal mesh spacing is about
�y+ ≈ 17. Note that, in the actual implementation, the initial adaptive mesh is either generated
starting from a uniform coarse mesh at a user-defined lowest allowed level of resolution jmin (usually
2) and is recursively refined wherever it is necessary up to the finest allowed level based on the
user-defined initial condition or imported from existing wavelet-based adaptive simulations so that
the initial mesh is usually even coarser than the final adaptive mesh when the flow is fully developed.
In other words, the initial mesh is already adaptive and does not use unnecessary mesh points.
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A locally nonadaptive under-resolved mesh region at level j = 6 is specified between the wall
and the wall-parallel plane at y/δ = 0.035 with the height of the EL points being 0.092δ (about
y+ = 180 at the inlet). To test the sensitivity of the results to the EL height the value of 0.035δ

(about y+ = 60 at the inlet) is also tested, but a significant log-layer mismatch is observed (not
shown). As explained by Kawai and Larsson [15] this is mostly due to feeding into the equilibrium
wall model the under-resolved LES solution with only two mesh points present between the wall
and the EL location at level j = 6.

Freund’s sponge zone [35] is imposed for the nonreflective conditions at the top and outflow
boundaries, with zone thicknesses of 1.0δ and 2.0δ, respectively. For the Freund’s zone parameters,
to accelerate the convection of the flow structures out of domain the artificial convective velocity is
chosen to be at supersonic speed 1.2a∞, where a∞ is the free-stream speed of sound. The damping
term coefficient is set to be 2a∞/D, where D is the characteristic length of the domain. The higher
this parameter, the more backflow structures are dissipated out before entering the physical domain.
The target fields for the sponge zones at these two boundaries are the ensemble-averaged fields of
the resolved solutions. The periodic condition is imposed in the spanwise direction.

At the inflow, the local one-dimensional inviscid (LODI) relations [36] of the Navier-Stokes
characteristic boundary conditions (NSCBC) are used for derivation of a linearised Navier-Stokes
equation for the evolution of the density fluctuation with the characteristic out-going velocity and
other linear coefficients being evaluated by the ensemble-averaged solution. This provides a soft
boundary condition for the density. Note that in the actual implementation, the ensemble-averaged
solution uses the initial condition (a RANS solution as described later) during the early stage
of the simulation and then it switches to the calculated running time-average solution, once the
time-average fields sufficiently converge. The velocity inflow conditions are the mean profiles plus
the fluctuation components obtained from a synthetic turbulence generator (STG) [37]. The mean
velocity profiles at the inflow are obtained from an incompressible LES solutions [38] at Reθ =
7000. A low free-stream Mach number Ma = 0.3 is assumed for this case and therefore a uniform
temperature with an error of about 1.5% is imposed at the inflow plane. The inconsistency of the
incoming pressure perturbations with zero temperature fluctuation and outgoing acoustic waves
with nonzero temperature fluctuations is absorbed in the characteristic-based density fluctuations at
the inflow. For moderate and high Mach number simulations, this method should be improved by
introducing the temperature fluctuations using the Morkovin’s strong Reynolds analogy [39].

STG inflow conditions consist of a superposition of spatiotemporal Fourier modes with random
amplitudes and phases. It should be noted that the lateral size of the energy containing structures,
created by the STG at the inflow, is small in the inner layer and large in the outer layer. In addition,
the time-dependent synthetic velocity fluctuations, imposed at the inflow plane are convected with
a global (bulk) velocity, which results in roughly the same streamwise size for all the vortical struc-
tures downstream of the inflow. The combination of these two features determines the formation
of strongly anisotropic (elongated) eddies near the wall and nearly isotropic eddies away from
the wall. Note that the invoked global (uniform) velocity is a macroscale velocity parameter in
the formulation of this STG approach [37] to artificially construct desired flow structures and is
intentionally chosen to be considerably larger than the streamwise convective velocity, which varies
in the wall-normal direction. One significant advantage of STG approach [37] is that the transition
length, required for the incoming turbulent boundary layer to become fully developed, is about 2 to
4 boundary layer thicknesses compared to 5 to 20 boundary layer thicknesses required in the digital
filter-based (DFB) approach adopted in Ref. [40].

A nonlinear CFL-type restriction based on the sum of the local flow velocity and speed of sound
is used to control the integration time step for the RK3-TVD scheme.

With exception of the nonadaptive under-resolved mesh region near the wall, the mesh adaptation
in the rest of the domain is based on magnitude of wavelet coefficients of control variables satisfying
criteria |dμ, j

k | > ε‖u(x)‖ as in Eq. (18) with a relative wavelet filtering threshold ε and the L2 norms
of the corresponding variables used as an absolute threshold. A zonal distribution of the wavelet
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FIG. 2. Wall-normal profiles at a streamwise location x/δ = 24 downstream of the inlet of the flat boundary
layer case with uniform and zonal variable ε for the WA-WMLES method. (a) Wavelet threshold ε for
momentum and total energy. (b) Time and spanwise averaged u′′

rms. Comparison is made with the data reported
by Ref. [40].

threshold ε field used for adaptation on momentum and total energy fields with distinct values of
ε = 0.01 and ε = 0.05 in the inviscid and viscous zones is shown in Fig. 2(a). These two specific
values of ε are conservatively chosen based on previous work [2,6,41], where a systematic grid
convergence and parameter study for ε was conducted for the WA-LES approach. For the wall-
bounded turbulent flows the wavelet threshold parameter in the range ε ∈ [0.01, 0.1] with the similar
grid spacing in the wall-parallel directions was recommended.

The variation of pressure is much smaller than that of the momentum and total energy in the low
Mach number flow, and hence to resolve the pressure more accurately smaller values of ε = 0.005
and ε = 0.001 are used in the viscous and inviscid zone, respectively. A relatively small value of
the ε outside of the boundary layer is used to remove unphysical perturbations associated with the
ε-bounded relative error in the inviscid region. These perturbations are present if a uniform wavelet
threshold is used. This is illustrated in Fig. 2(b), where the streamwise velocity root mean square
u′′

rms � 0.01Uref outside of the boundary layer is observed when a uniform ε = 0.05 for momentum
is used throughout the domain as opposed to approaching zero when smaller value of ε is used
outside the boundary layer region. Moreover, this zonal treatment of ε also improves the result
in the boundary layer region, which is depicted in Fig. 3(a) showing the difference between two
WA-WMLES computations with uniform ε = 0.05 (the blue line) and zonal distribution of ε (the
red line). Better correspondence of the WA-WMLES results using the zonal wavelet threshold with
the reference WA-URANS results is observed. Finally, it should be pointed out that in addition
to adapting on flow variables the mesh is also adapted on the physical coordinates with uniform
ε = 0.005.

2. Simulation results

The resulting adaptive mesh contains about 7.0 million points for the zonal ε with the corre-
sponding compression ratio of 97.2%, defined as the percentage of discarded wavelets with respect
to the nonadaptive case. It is interesting to note that the adaptive mesh with uniform ε uses about
6.5 million nodes, which is just slightly coarser than the former, thus, justifying the efficiency of
using smaller ε in the inviscid region where solution is relatively smooth. The zonal treatment of
ε for the newly developed WA-WMLES method is consistent with previously published studies
on WA-WRLES with variable thresholding [5] and WA-DDES [24,25], where different values of
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FIG. 3. Result comparison of the flat plate turbulent boundary layer case with uniform and different zonal
variable ε for the WA-WMLES method. (a) Time and spanwise averaged skin friction distributions. (b) Time
and spanwise averaged streamwise velocity profiles in the inner-layer scale.

wavelet threshold were used in WA-URANS and WA-LES regions. A similar issue in identifying the
height of the exchange-layer exists for all prevailing WMLES methods, where an a priori defined
boundary layer thickness is used to determine the the EL height. Further investigation on the use of
variable threshold ε that depends on the solution, e.g., the vorticity field, and identifies the inviscid
and viscous flow regions is deferred for a future work.

Note that due to adaptive nature of the PAWCM, marginally resolved simulations as the non-
adaptive WMLES case result in aliasing errors that spread and considerably increase the number
of adaptive mesh points used in the simulations, as opposed to the well-resolved calculations with
very fine mesh at the effectively highest resolution. Therefore, for the grid convergence study, the
nonadaptive WMLES requires adjustment of grid spacings while the WA-WMLES usually uses
different values of wavelet threshold since the grid spacings at the effectively highest resolution are
already very small and even at the level comparable to some nonadaptive WRLES. Meanwhile, the
adaptation induced error between the wavelet-based adaptive mesh and the full mesh at the highest
resolution is controlled by the wavelet threshold [cf. Eq. (19)]. To demonstrate the grid convergence
of WA-WMLES, the simulations for the flow configuration shown in Fig. 2(a), but with doubled
and halved wavelet thresholds ε are conducted. A summary of different wavelet thresholds with
corresponding numbers of adaptive mesh points to demonstrate the sensitivity of the results on ε in
the viscous zone is given in Table II. The wavelet threshold in the inviscid zone is kept unchanged.

Figure 3(a) plots the mean skin friction distributions over the wall predicted by different wavelet
threshold ε. The time averaged statistics are accumulated within a period of about 25δ/Uref . The
spanwise averaged statistics are computed by interpolating the continuous wavelet basis onto 2D,
nonadaptive sampling mesh at level j = 5, and averaging across multiple slices in the streamwise
and wall-normal plane. As mentioned above, the uniform ε case produces relatively poor results

TABLE II. Wavelet thresholds ε used in different variables for the hump flow.

Momentum Energy Pressure No. mesh
Threshold ε Inviscid/Viscous Inviscid/Viscous Inviscid/Viscous points

Uniform 0.05/0.05 0.05/0.05 0.005/0.005 6.5 million
Baseline 0.01/0.05 0.01/0.05 0.001/0.005 7.0 million
Doubled 0.01/0.10 0.01/0.10 0.001/0.010 4.2 million
Halved 0.01/0.025 0.01/0.025 0.001/0.0025 18.2 million
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due to the error related to the presence of acoustic waves in the inviscid zone, despite the use of
the same value of ε in the viscous zone as the baseline case. The results for the doubled ε case are
similar to the uniform ε case since high ε used in the viscous zone induces large errors, but, in turn,
results in fewer adaptive mesh points. The halved ε case corresponds to the smallest error associated
with the mesh adaptation and hence predicts the most accurate results compared to the reference
WA-URANS simulation results at the expense of substantial increase of the adaptive mesh points
(18.2 million), which, in general, is too large to be considered as an effective WMLES computation.
However, since the error in the prediction of skin friction coefficient for the baseline zonal ε case is
within 5%, it is sufficiently acceptable to compromise between the accuracy and the computational
efficiency.

The comparison of mean streamwise velocity profiles in the inner-region at a station 10δ down-
stream of the inflow plane is given in Fig. 3(b). The following notations for averaged and fluctuating
components are adopted in this paper: {φ} = 〈ρφ〉/〈ρ〉 and φ′′ = φ − {φ} denote, respectively,
Favre average and fluctuating quantities, while a Reynolds average quantity is denoted as 〈φ〉. Good
agreement between the WA-WMLES results and the reference WA-URANS data validates both the
WA-WMLES approach and the STG inflow conditions. The results of the simulation demonstrate
that computational domain with about 10 times the boundary layer thickness of the inflow plane
is sufficient for turbulent boundary layer simulations with the STG inflow conditions, which is
consistent with the prior STG studies [37,42] for the wall-resolved LES and DNS.

Moreover, the difference between results using different zonal ε is minimal, especially for the
baseline and low ε cases. This also suggests that the use of the baseline ε is appropriate in terms of
accuracy and efficiency.

The maximum CFL number is set to be 0.7 over the entire domain with the resulting time step
�t ≈ 1.0 × 10−3δ/Uref , where Uref is the free-stream reference velocity. This time step is around
one to two orders of magnitude larger than that of the WA-DDES method [24] for a boundary
layer flow at the same Reynolds number, which implies a significant reduction of total numbers
of time integration steps and, hence, the overall computational cost. For the current WA-WMLES
simulation, 224 cores as shown in Table I are used, which results in 10 s per time integration. It
requires about 25δ/Uref time interval for statistical convergence. Therefore, it takes about 15.5 × 103

CPU core hours (224 cores ×[10/3600 × 25/(1 × 10−3)] h).
The per point cost of adaptive simulations is three times more expensive for the PAWCM

compared to the nonadaptive simulations, which makes the adaptive method in principle outperform
the corresponding nonadaptive one when less than 33% of the mesh points are retained in the
calculation. Therefore, once the compression ratio exceeds 67%, the computation on the adaptive
mesh becomes cheaper than on the nonadaptive finest mesh. For the results reported in both
previous [2,6,24,27,41] and current work the compression ratios above 90% are observed for most of
three-dimensional cases. However, due to inherent overhead from the buffer zone communication
among cores in the parallel algorithm proposed in Ref. [8] the MPI synchronization procedures
during parallel wavelet transform and derivative calculations may be the bottle neck for efficiency of
the PAWCM compared to other nonadaptive and simple data structure methods in practice. Further
improvement of the PAWCM is under investigation and out of scope of this work.

The adaptive mesh colored by the levels of resolution is presented in Fig. 4. Figure 5 displays
the Q-criterion isosurface colored by the instantaneous spanwise momentum. A zoom-in slice in the
streamwise and wall-normal plane of the adaptive mesh with the streamwise momentum contours
on the background is illustrated in Fig. 6. WA-WMLES results demonstrate that most of the adaptive
mesh points in the lower part of the boundary layer are on level j = 6 with few scattered nodes on
the finest level J = 7. In the upper region of the boundary layer due to significant increase in the
length scale of the flow structures most of the adaptive grid points belong to levels j = 4 and 5.

The mean velocity profile and the turbulence statistics at a streamwise location x/δ = 24 down-
stream of the inlet are plotted in Fig. 7. The WA-WMLES results are compared with nonadaptive
WMLES results of Iyer and Malik for the flat plate turbulent boundary layer upstream of a wall-
mounted hump with the same inflow Reθ (case fWM3 in Ref. [40]). The agreements of these profiles
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FIG. 4. The adaptive mesh colored with levels of resolution for the subsonic flat plate turbulent boundary
layer flow. Axis labels are in the unit of the boundary layer thickness at the inflow.

between the WA-WMLES and the reference WMLES are fairly acceptable. The discrepancies may
be attributed to the different free-stream Mach numbers (Ma = 0.3 versus Ma = 0.1 in Ref. [40])
and inflow turbulence generation techniques. In addition, there is an artificial hump or plateau in
the profile of streamwise turbulent normal stress {u′′u′′} around the edge of the boundary layer, as
shown in Fig. 7(c). This attributes to the sudden switch of wavelet thresholds as demonstrated in
Fig. 2(a) with the same issue also observed in Fig. 2(b).

B. Separated flow over NASA’s wall-mounted hump

The second flow configuration used for demonstration of the WA-WMLES method involves a
wall-mounted hump geometry, also known as the 2D NASA hump case, representative of the upper
surface of an airfoil. It represents the NASA Revolutionary Computational Aerosciences (RCA)
standard test case. The original experimental study of this problem is reported in Ref. [43]. The
computational configuration in this work mainly follows the NASA 2004 CFD Validation Workshop
[44] and represents the baseline validation case with no plenum for flow control. An adverse pressure
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FIG. 5. The instantaneous Q-criterion isosurface colored by instantaneous spanwise momentum for the
subsonic flat plate turbulent boundary layer flow. Axis labels are in the unit of the boundary layer thickness at
the inflow.
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FIG. 6. Zoomed-in view of a slice in the streamwise and wall-normal plane of the adaptive mesh with the
streamwise momentum contours for the subsonic flat plate turbulent boundary layer flow in the background.
Axis labels are in the unit of the boundary layer thickness at the inflow.

gradient downstream of the hump causes the boundary layer separation. The experimental setup
includes end plates attached to both sides of the wall hump model. Following most of numerical
studies for this test case, the flow blockage effect of the end plates is mimicked by a specially
contoured inviscid top wall. The top wall profile is suggested and provided by the NASA Turbulence
Modeling Resource (TMR) [45] website in form of discretized coordinates. The low-speed flow
upstream of the hump corresponds to a fully developed turbulent boundary layer flow with hump-
chord (c)-based Reynolds number of Re = 936 000. To minimize computational resources caused
by CFL time step limitation the incoming free stream Mach number of Ma = 0.2 for WA-WMLES
is used instead of Ma = 0.1, observed in the experiment. The reference static pressure (pref ) is
located at x/c = −2.14, while the leading edge of the hump is defined at x/c = 0.

1. Numerical setup

The domain size and the boundary conditions are as follows. The streamwise domain spans from
x/c = −2.14 to x/c = 4 with the contoured hump located between x/c = 0 and x/c = 1. Following
the nonadaptive WMLES simulation in Ref. [40], the spanwise size is chosen to be 0.3c.

A standard k-ω SST model-based steady RANS auxiliary computation is performed with the
mesh size 817 × 217 posted on the TMR [46] website using the open source NASA code CFL3D.
[47] This RANS solution is then utilized as the initial condition for the WA-WMLES computation.
The CFL3D RANS results are first interpolated on to a 2D dyadic nested wavelet collocation mesh
in the x-y plane, then extruded to the 3D domain along the spanwise direction. The time integration
step is around 5.4 × 10−5 c/Uref using the RK3-TVD scheme with the maximum CFL number set
to 1.0.

The boundary conditions are similar to the flat plate turbulent boundary layer flow presented
in Sec. IV A. Freund’s sponge zone of thickness c is imposed for the nonreflective conditions at
the outflow boundary. The target fields for the sponge zones at these two boundaries are the initial
RANS fields. The periodic condition is imposed in the spanwise direction. At the inflow, the LODI
NSCBC are used with the mean velocity and temperature profiles from the RANS solution. Note that
the RANS solution extends its inflow plane upstream of the leading edge of the flat plate. The inflow
profiles for the WA-WMLES computation are directly extracted at location x/c = −2.14. Due to
different Mach numbers between the auxiliary RANS and the experiments, the slight difference
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FIG. 7. The mean velocity profile and the turbulence statistics at a streamwise location x/δ = 24 down-
stream of the inlet. Comparisons are made with the results of the inflow flat plate turbulent boundary layer in
Ref. [40]. (a) Time and spanwise averaged streamwise velocity. (b) Time and spanwise averaged streamwise
velocity in wall units. (c) Time and spanwise averaged turbulence statistics. Symbols denote the data reported
in Ref. [40], while lines denote the results of the current WA-WMLES method.

of the streamwise velocity between these two is depicted in Fig. 8. The sensitivity of the inflow
velocity profile has been discussed in Ref. [48], showing that its effect is minimal. In addition,
velocity fluctuations obtained from the STG approach are imposed at the inflow plane.

The top wall follows the special profile modeled as an inviscid slip wall. The Euler equations are
integrated at the top wall, where the no-penetration condition is explicitly imposed. The pressure
and density are corrected based on the pressure balance of the centrifugal force and constant entropy
condition, i.e.,

∂ p

∂n
= κρ|uτ |2, (20)

p

ργ
= p∞

ργ
∞

, (21)
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FIG. 8. Time and spanwise averaged streamwise velocity profile at the inflow plane x/c = −2.14 for the
hump flow compared with the RANS data from the k-ω SST model-based RANS computation using CFL3D.

where ∂ p
∂n = ∂ p

∂x j
n j is the pressure gradient with respect to the inward normal direction pointing

into the fluid, κ is the signed local curvature, uτ is the tangential velocity at the inviscid wall, and
p∞ and ρ∞ are the reference upstream pressure and density, respectively. In terms of numerical
implementation, the finite difference form of Eq. (20) and algebraic equation Eq. (21) are solved
together iteratively for pressure and density at a local slip-wall mesh point. To suppress the acoustic
resonance between the top and bottom walls, as discussed in Ref. [48], a Freund’s damping term
with the time-averaged pressure as the target pressure is applied in the vicinity of the top wall. Prior
to the time-average pressure converges to a relatively smooth field, the RANS initial condition is
used as the target pressure field.

At the bottom wall, a nonadaptive mesh on level j = 6 with two layers of mesh cells adjacent
to the wall is used as discussed in Sec. III B. The finest level is J = 7 and further details about the
mesh resolution are discussed below. The height of the exchange layer is chosen following the same
principle as mentioned in Sec. IV A and is located at the wall-normal distance d/c = 3.27 × 10−3

close to the fourth point from the wall mesh point at j = 6. At the inlet, this height corresponds
to y+ ≈ 100 with the inflow boundary layer thickness δ/c = 0.062. Again, this complies with the
suggestion in Ref. [15] to locate the EL below 10% of the boundary layer and that at least three LES
cells below the EL are required to prevention from using the under-resolved LES solution that is
highly contaminated by numerical and modeling errors as the wall-model input. This height is also
close to what is chosen in Refs. [40,50]. The wall boundary conditions are imposed as described in
Sec. III B.

The underlying base (coarsest level) mesh size is 60 × 4 × 4 in the streemwise, vertical, and
spanwise directions and the finest allowed level of resolution is J = 7. Therefore the effective dyadic
nested wavelet collocation mesh consists of 3840 × 256 × 256 ≈ 252 million points at the finest
level of resolution. Hyperbolic tangent distributions in vertical direction are used for mesh clustering
in the vicinity of the bottom and top walls. The former is aimed to resolve the boundary layer
above the LES-RANS exchange layer while the latter is to resolve the shape of the top-wall profile
with large curvature. In the streamwise direction, a mild mesh clustering is also made around the
separation point while relatively large mesh spacings are set at the inflow and outflow regions using
different coefficients in the hyperbolic tangent functions.

The mesh spacings at the finest level in wall and chord units are summarized in Table III
along with corresponding mesh information for selected simulations in the literature. Note that
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TABLE III. Grid information used for the hump flow simulations. Both wall and chord units are listed. The
wall unit is normalised by the kinematic viscosity over the friction velocity. All wall unit numbers in this table
are evaluated at the inflow flat-plate turbulent boundary layer. The subscript “1” denotes the first wall-normal
mesh spacing.

Grid WA-WMLES WMLES [49] WMLES [50] WMLES [40] WRLES [48]

�x+ 90 600 300 360 25
�x/c (3.8 ∼ 38)×10−4 (12 ∼ 180)×10−4 (12 ∼ 200)×10−4 (15 ∼ 100)×10−4 7.2×10−4

�z+ 40 100 120 180 12.5
�z/c 1.2×10−3 3.1 × 10−3 3.8 × 10−3 5.0 × 10−3 3.6×10−4

�y+
1 13 20 50 36 0.8

�y1/c 3.6 × 10−4 5.5 × 10−4 13 × 10−4 (2.0 ∼ 33) ×10−4 2.2 × 10−5

Span size/c 0.3 0.4 0.6 0.3 0.4
Total size/million 7.5 9.4 12.9 11 420

the finest effective mesh resolution of the WA-WMLES is consistently smaller than the one used
in nonadaptive WMLES, but relatively close to the WRLES, while the similar accuracy is achieved
with considerably fewer degrees of freedom than in nonadaptive WMLES. The combination of
small mesh size with aggressive compression ratio and effective fine mesh spacing with controlled
error are the key attractive points of the WA-WMLES.

As discussed in the previous section different levels of wavelet threshold ε are used in the inviscid
and viscous regions, whose sizes are estimated by the boundary layer thickness and the size of the
separation bubble. The relative threshold values used for adaptation of the momentum, temperature
and pressure variables in different regions are summarized in Table IV. Note that as in previous
section in addition to adapting on flow variables the mesh is also adapted on the physical coordinates
with uniform ε = 0.005 and chord length c as an absolute threshold to resolve the geometry and the
curvilinear Jacobian. The size of the resulting adaptive mesh based on the above mentioned variable
threshold configuration is around 7.5 million with a compression ratio of 97%. It should be noted
that the values of ε used in WA-WMLES are conservatively smaller compared to a typical range of
[0.01,0.1] used in WA-WRLES [2,6]. Numerical experiments demonstrate that the reduction of ε

for the pressure in the inviscid zone leads to better resolution of the acoustic waves and fewer mesh
points compared to larger values of the threshold that result in finer meshes due to contamination of
the solution by unphysical disturbances.

2. Simulation results

The adaptive mesh refinement over the separation region is presented in Fig. 9, where the
adaptive mesh colored by the levels of resolution is shown. As can be seen from the figure, the
mesh resolution throughout most of the boundary layer corresponds to levels j = 5 and j = 6
with significant adaptive mesh refinement in the separation shear layer region. The flow structure
is shown in Fig. 10, where the Q-criterion isosurface colored by the instantaneous streamwise
momentum is displayed. Along the front of the hump, stream-wise streaky and small scale vortices
are observed, while downstream the hump, larger scale horse-shoe shape vortices are present
indicating the strong-intensity turbulent shear layer over the separation recirculation region.

TABLE IV. Wavelet thresholds ε used in different variables for the hump flow.

Zone Momentum Energy Pressure Physical coordinates

Inviscid 0.01 0.01 0.001 0.005
Viscous 0.05 0.05 0.005 0.005
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2     3     4     5     6     1     7     

Level

FIG. 9. The adaptive mesh of the WA-WMLES computation colored with levels of resolution for the hump
flow.

The effect of the wall model is demonstrated in Fig. 11, where the contours of the instantaneous
skin friction coefficient Cf , calculated from the wall shear stress returned from the wall model,
are plotted on the streamwise and spanwise plane. Note that in the region of flat plate boundary
layer the reasonably high skin friction due to streamwise streak structures is properly predicted by
the RANS model. It should be emphasized that without the wall model the viscous flux would be
underestimated by the under-resolved WA-LES mesh employed near the wall. The separation region
can be identified by the negative dominant values of Cf with subsequent growth of the skin friction
coefficient with the resolved fluctuations after the flow reattachment.

The instantaneous field of the streamwise momentum on a streamwise and vertical plane is
presented in Fig. 12. In addition to the flow over the bottom slip wall and the separation region,
the local flow acceleration and deceleration on the contracted and then expanded top wall are also
resolved well by the inviscid boundary condition Eq. (21) using the wavelet-based adaptive finite
difference scheme with anisotropic adaptive body-fitted mesh.

The time average is performed after 5 chords flow-through times from the RANS initial condition
and accumulates for 10 chords flow-through times. The spanwise averaged statistics are computed
by interpolating the continuous wavelet basis onto 2D, nonadaptive sampling mesh at level j =
5 and averaging across multiple slices in the streamwise and vertical plane. The time and span-
wise averaged pressure and streamwise momentum contours are plotted in Figs. 13 and 14. Due
to the relatively low Mach number, the pressure deviation from the free-stream reference value is

0.2   0.4   0.6   0.8   0.0   1.0   

X_Momentum

FIG. 10. The instantaneous Q-criterion isosurface colored by instantaneous streamwise momentum for the
hump flow.

094606-19



GE, VASILYEV, AND HUSSAINI

FIG. 11. The instantaneous skin friction coefficient on the streamwise and spanwise plane for the hump
flow.

much smaller than that of the momentum, which implies the need of using relatively small wavelet
threshold for better resolution of the pressure field, especially in the inviscid region.

The time and spanwise averaged skin friction and pressure coefficients over the wall are,
respectively, plotted in Figs. 15(a) and 15(b), where the WRLES data [48], nonadaptive WMLES
results [40,50], the CFL3D results of k − ω SST RANS model used as the initial condition for
WA-WMLES, and the experimental data [43] are plotted for comparison. Note that all WMLES
results are obtained with the same equilibrium wall model Eq. (11). As seen in Fig. 15(a), the
upstream Cf is slightly low for the current simulation because the applied RANS inflow velocity
profile from the CFL3D calculation has slightly lower momentum. Nevertheless, the upstream Cf

for the WA-WMLES is very close to the results of RANS computation, which validates the WA-
WMLES method along with the synthetic turbulence generator for the inflow boundary conditions
and RANS velocity inflow profile. In the flow acceleration region, only the WRLES results agree
well with the experimental Cf . The skin friction coefficient curves over the hump surface are close
for all WA-WMLES and nonadaptive WMLES, but differ from the other three sets of data. In the
region after reattachment, the WA-WMLES Cf deviates from the nonadaptive WMLES reference
results and gets close to the RANS, which is consistent with the inflow RANS velocity profile
with slightly lower momentum than the other reference data. As to the surface pressure distribution
shown in Fig. 15(b), all cases are very close to each other upstream the half way of the hump
front and deviate from each other after that. Overall the WA-WMLES and both WMLES results for
pressure coefficient are close to each other and the discrepancies among all cases are smaller than
those of the Cf results.

FIG. 12. The instantaneous streamwise momentum on the streamwise and wall normal plane for the hump
flow.
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FIG. 13. The time and spanwise averaged pressure on the streamwise and wall normal plane for the hump
flow.

FIG. 14. The time and spanwise averaged streamwise momentum on the streamwise and wall normal plane
for the hump flow.
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FIG. 15. Time and spanwise averaged skin friction and pressure coefficients over the wall for the hump
flow. Comparisons are made with the wall-resolved LES data [48], nonadaptive WMLES results [40,50],
the RANS data using the k-ω SST model by CFL3D, i.e., the initial condition of WA-WMLES, and the
experimental data [43]. (a) Skin friction coefficient Cf . (b) Pressure coefficient Cp.
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TABLE V. Comparison of separation and reattachment locations. Note that all WMLES cases use the
equilibrium wall model.

Case Separation (x/c) Reattachment (x/c) Bubble length (�x/c) Error in bubble

WA-WMLES 0.677 1.138 0.461 6.0%
WMLES [50] 0.680 1.084 0.404 −7.1%
WMLES [40] 0.655 1.105 0.450 3.4%
WRLES [48] 0.641 1.09 0.449 3.2%
Experiment [43] 0.665(±0.005) 1.10(±0.005) 0.435 –

The separation and reattachment locations for the current simulation and the reference data are
compared in Table V. Note that the listed data of the nonadaptive WMLES results correspond to
case “EQWM G2” in Ref. [50] and case “fWM3” in Ref. [40]. The bubble length and the error in
bubble length are also compared. Overall the WA-WMLES results are similar to results of the other
simulations, especially taking into account that many aspects of numerical simulations may affect
the predicted separation bubble. Some factors include but not limited to detailed implementations of
the wall-modeled viscous flux boundary conditions, the upstream turbulent boundary layer in terms
of momentum thicknesses, treatment of the outflow boundary conditions, and spatial and temporal
discretization errors. These factors can hardly be exactly the same depending on the limitation of
each solver.

The time and spanwise averaged streamwise velocity profiles {u} at x/c = −0.81 are plotted in
Fig. 16. This location is a proper station to compare the solution of upstream turbulent boundary
layer flow. The mean velocity agrees well with the nonadaptive WMLES result [40] as shown in
Fig. 16(a). In Fig. 16(b), the same profile in wall unites is compared with the RANS data using
the k-ω SST model by CFL3D. This good agreement shows that the WA-WMLES resolves the
fully developed turbulent boundary layer. Note that the y+ value at the crossing point between
the WA-WMLES and the log-law profiles is the exchange location of the WA-LES solution with the
equilibrium wall-model computation.
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FIG. 16. Time and spanwise averaged streamwise velocity profile at x/c = −0.81 for the hump flow
compared with the nonadaptive WMLES case [40] (a) and the velocity profile, scaled by wall units, compared
with the RANS data using the k-ω SST model by CFL3D(b). (a) Velocity profile scaled by the free-stream
velocity. (b) Velocity profile scaled by the wall units.
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FIG. 17. Time and spanwise averaged profiles (lines) of turbulence fluctuation statistics at x/c = −0.81
for the hump flow compared with the nonadaptive WMLES case [40] (symbols).

Similarly, the time and spanwise averaged turbulent stress profiles {u′′u′′}, {v′′v′′}, and {u′′v′′} at
the same location are shown in Fig. 17. The slight differences between the present WA-WMLES
and nonadaptive WMLES [40] may attribute to different effective mesh resolution applied in the
two methods, the error introduced by the wavelet filtering threshold as well as other different
flow configurations such as the free-stream Mach number (0.2 versus 0.1) and inflow turbulence
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FIG. 18. Time and spanwise averaged velocity profiles at different streamwise locations. The experimental
data [43] and those of the nonadaptive WMLES [40] are shown for comparison. (a) Streamwise velocity.
(b) Vertical velocity.
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FIG. 19. Time and spanwise averaged turbulent stress profiles at different streamwise locations. The
experimental data [43] and those of the nonadaptive WMLES [40] are shown for comparison. (a) {u′′u′′},
(b) {v′′v′′}, and (c) {u′′v′′}.

generation techniques (Fourier modes method versus digital filtering method). As already discussed
in Sec. IV A, the zonal wavelet thresholds cause an artificial plateau in {u′′u′′} around the edge of
the boundary layer, as observed in Fig. 17.

The time and spanwise averaged velocity profiles in the streamwise (a) and vertical (b) directions
at multiple streamwise stations are shown Fig. 18. These stations are chosen upstream from the
separation location downstream to the reattachment region mainly due to poor predictions of
the RANS computations [44] in this part of the flow. The present WA-WMLES results are in
satisfactory agreement with the experimental data. Slightly larger discrepancies for the vertical
velocity profile are observed at stations between x/c = 0.9 and x/c = 1.1 are also generally seen in
other nonadaptive WMLES simulations [40,50]. One explanation for the larger discrepancies in the
vertical velocity for the WA-WMLES is that the grid adaptation based on the momentum is actually
performed based on the momentum magnitude instead of independently for each component.
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Considering the vertical velocity is one order of magnitude smaller than the stream-wise velocity,
the relative errors controlled by the wavelet threshold result in a larger absolute vertical component
error.

The turbulent stress profiles {u′′u′′}, {v′′v′′}, and {u′′v′′} at different stations are plotted in
Fig. 19. All results agree fairly well with the experimental data except those with over-prediction
at x/c = 0.65, where the turbulence stress values are relatively small. This is also observed in
other nonadaptive WMLES simulations [40,50]. As seen in Fig. 19 the turbulent stresses at the
other considered stations in general are in closer agreement with the experimental data than the
nonadaptive equilibrium WMLES results of case “fWM3” in Ref. [40]. Overall, the performance of
the WA-WMLES method with the equilibrium wall model for this particular challenging separated
flow problem is satisfactory, especially taking into account the relatively small number of adaptive
mesh points despite fairly fine effective mesh resolution as summarized in Table III.

V. CONCLUSIONS

A wavelet-based adaptive wall-modeled large eddy simulation method is proposed for simu-
lations of wall-bounded compressible turbulent flows. The approach utilizes the wavelet-based
adaptive large eddy simulation, incorporated into the anisotropic-adaptive wavelet collocation
method, to resolve the outer region of turbulent boundary layer, while the inner part is approximated
by the wall-shear-stress model. For the first time, the WA-WMLES method extends the application
of the wavelet-based adaptive method to a realistic wall-bounded turbulent flow configuration at a
relatively high (order of a million) Reynolds number based on the length scale of the body shape.
Previously reported wavelet-based methods, such as WA-LES and WA-DDES, would have required
substantially larger computational resources to solve the same problem. The WA-WMLES method
with the considered equilibrium wall model performs fairly well for wall-bounded flows with
zero, mild (with flow deceleration), and moderate (with shape induced flow separation) pressure
gradients, as demonstrated by the two test cases: the flat plate turbulent boundary layer flow and
the separated flow over the NASA wall-mounted hump. The combination of small mesh size with
aggressive compression ratio, the effective fine mesh spacing with controlled error through carefully
chosen wavelet filtering threshold, and ability to reliably predict turbulent flow characteristics for
practically challenging problems are attractive features of the WA-WMLES method. Further devel-
opment of WA-WMLES may include the use of variable threshold ε that depends on the solution,
e.g., the vorticity field, and identifies the inviscid and viscous flow regions. Finally, to improve the
performance of the WA-WMLES method for problems with strong pressure gradients (e.g., shock
wave induced separation) the approach needs to be extended to the nonequilibrium wall model.
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