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This investigation concerns the response of wall turbulences in a channel flow to uniform
streamwise and spanwise magnetic fields through direct numerical simulations. More than
20 flow cases with different Stuart numbers were considered. It is found that the spanwise
magnetic field leads to flow relaminarization at Stuart numbers significantly smaller than
the streamwise magnetic field. The explanation of this phenomenon is not straightforward,
and a deep analysis of the fine turbulence structure is needed for a clear understanding.
This is achieved in a first step by considering Reynolds shear stress transport equations. It is
shown that there are source and destruction terms directly related to the magnetic field. The
destruction term overcomes the source terms under the spanwise magnetic field, leading
to significant drag reduction once the Stuart number exceeds a critical value. The source
term is not negligible and retards the relaminarization under the streamwise magnetic field.
Subsequently, the conditional averages of the fluctuating velocity field and the electric
current educed from the near wall coherent quasistreamwise vortices are discussed in
detail. The electric current field is decomposed into an electromotive and conductive part.
Their conditional averages are analyzed separately, in order to shed light on the topological
differences. It is further shown that the quasistreamwise vortex paradigm allows an easy
way to analyze the results leading to pertinent interpretations.
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I. INTRODUCTION

Flow control by magnetic fields at low magnetic Reynolds numbers has several applications in
technological processes wherein electro-conducting fluids are involved. The magnetohydrodynamic
(MHD) body force interacts directly with the turbulent flow field, and the resulting manipulation is
nonintrusive. Fraim and Heiser [1] showed in the early 1960s that a magnetic field aligned with the
mean flow can lead to significant drag reductions up to relaminarization providing that the intensity
of the imposed magnetic field is large enough. Extensive work was also devoted to the reaction of
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wall-bounded turbulent flows to uniform transverse magnetic field nonaligned with the mean flow. In
the late 1960s and early 1970s, several experiments were conducted in the liquid metal MHD facility
of Purdue University’s Magneto-Fluid-Mechanic Laboratory. These investigations were focused on
the MHD manipulation of turbulent internal flows (mercury) and essentially described the drag
coefficient evolution, the mean velocity, and the associated statistics of the fluctuating quantities
in a wide range of Reynolds and Hartmann numbers [2–4]. Consideration was also given to the
distinct behaviors of the turbulent flow field submitted to magnetic fields. One of them is the
persistence of paradoxical residual disturbances in the relaminarized regime. Branover and Gershon
[5] have shown that, because of the strong anisotropy induced by the magnetic field, the large-scale
disturbances in the entry region of a duct are stretched, enhanced, and sustained in the field direction.
This leads to the weakening of the interactions between velocity and magnetic fields. Numerical
simulations have also helped to increase understanding. Lee and Choi [6] extensively investigated
the effect of magnetic field orientation on the fine structure of turbulence in a fully developed
turbulent channel flow. They have shown that a spanwise or wall normal magnetic field is much
more efficient than the parallel one in terms of turbulent drag reduction. Based on the previous
work of Krasnov et al. [7], Boeck et al. [8] conducted a parametric study in terms of Reynolds and
Hartman numbers to investigate the response of the region subject to a wall normal magnetic field.

A wall normal uniform magnetic field imposed between two virtually infinite parallel walls is
known as a Hartmann flow [9]. In this configuration, the magnetic field interacts directly with
the mean flow, which asymptotically tends to be become flat in the bulk region as the Hartmann
number increases. This velocity-magnetic field interaction generates a spanwise electrical current
which flows along the parallel walls (also called sidewalls or Shercliff layers) in the case of a
duct configuration. Bulk opposite electrical current flows is set up in a region close to the wall by
continuity. As a result, the mean velocity gradient increases at the wall. This configuration has been,
for example, numerically studied either with direct numerical simulations [6,10] or with large eddy
simulations [11]. As the mean velocity interacts with the magnetic field, the Hartmann flow is not a
good candidate for a direct investigation of the effect of magnetic forces on turbulent fluctuations.
Turbulent fluctuations are closely related to the existence of coherent structures evolving in the inner
layer of a turbulent channel flow. These dominant structures are found mostly in the buffer layer
and characterized by a significant elongation in the longitudinal direction. These quasistreamwise
vortices have a key role in the regeneration mechanism involved in the near wall cycle of turbulence
[12–14].

The present investigation deals with the canonical fully developed turbulent channel flow,
corresponding to the channels with infinitely small aspect ratios. The sidewall effects inducing the
Shercliff layers present in a duct flow are in fact neglected [15]. The base flow is fully turbulent, and
the transition to turbulence aspects are obviously out of the scope of this study [16]. Moreover, the
imposed magnetic field is strictly parallel to the wall in the present investigation, and there are no
Hartmann layers. Consequently, there is no mean Lorentz force, and the mean flow does not directly
interact with the magnetic field. The streamwise Reynolds averaged Navier-Stokes equation stays
therefore identical to that of the canonical turbulent channel flow.

The aim of this investigation is to contribute to the understanding of the near wall turbulence
submitted to a streamwise or spanwise magnetic field. It will be shown, inter alia, that the spanwise
magnetic field is more efficient in terms of drag reduction than the streamwise one, according to
past research. The first alternative idea here is to attempt to understand these phenomena through
the analysis of the turbulent shear stress transport equations. Moreover, it is well known that the
near wall coherent structures play a fundamental role in the transport process. Thus, the second
alternative approach of this study lies in the analysis of the conditional averages of the electric
current fields and the MHD flow characteristics. We clearly claim that a clear understanding of
the MHD effects occurring in turbulent near wall flows is not possible without considering these
elements.

The paper is organized as follows. The governing equations and the details concerning the
direct numerical simulations follow in the next section. The flow and electric current statistics are
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discussed in Sec. III, wherein the shear stress transport equations are also analyzed to a considerable
exent. Section IV concentrates on the capital role played by the buffer layer coherent structures
together with the electric current fields and the coherent MHD events they induce.

II. PROBLEM DESCRIPTION

A. Governing equations

We consider a fully developed turbulent channel flow under the action of a magnetic field B.
MHD flows are governed by the Navier-Stokes equations submitted to the Lorentz force and coupled
with the Maxwell equations. In addition, this system is associated with the generalized Ohm law.
Therefore, for a Newtonian, incompressible and electro-conducting fluid, the full system can be
expressed as

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p+ν∇2u + 1

ρ
(j × B), (1)

∂B
∂t

= ∇ × (u × B)+ 1

μσ
∇2B, (2)

where u denotes the velocity field, p is the pressure, and j is the electric current density. Physical
parameters occurring in the MHD problem are ρ the density, ν the kinematic viscosity, μ the
magnetic permeability, and σ the electrical conductivity of the fluid. The set of equations (1) and
(2) are coupled with the incompressibility condition of the velocity field (∇ · u = 0), the solenoidal
feature of the magnetic field (∇ · B = 0), and the Ampère law (∇ × B = μj).

This system can be simplified when the magnetic Reynolds number Rm = μσUcph, representing
the ratio between the advection and the diffusion terms of the magnetic field in Eq. (2), is small
enough. Under these circumstances, the magnetic field diffuses instantaneously in the flow without
being greatly altered by the induced electrical currents. The nondependency in time of the magnetic
field B (i.e., ∂B

∂t = 0) is guaranteed in liquid metals when the imposed magnetic fields are of
moderate intensity, and more precisely when the Hartmann number is smaller than Ha ∼ 103 [17].
It is recalled that the Hartmann number is defined as Ha2 = (Bh)2( σ

ρν
) and represents the ratio of

the Lorentz to the viscous forces. Here h denotes the half-height of the channel, while Ucp stands
for the centerline velocity of the equivalent laminar Poiseuille flow. B stands for the characteristic
intensity of the imposed magnetic field. In the remainder of the paper, the quantities are scaled by
the shear velocity uτ = √

τ0/ρ of the unmanipulated fully developed turbulent channel flow and the
kinematic viscosity ν. The full system in dimensionless form is

∂u
∂t

+ (u · ∇) · u = − ∇p+∇2u + Nτ ( j × B), (3)

∇2φ = ∇ · (u × B), (4)

j = − ∇φ + u × B, (5)

∇ · u = 0, (6)

where j is normalized by σBuτ , φ stands for the electric potential (normalized by Bhuτ ). B is
the magnitude of a reference magnetic field, and B represents the nondimensionalized solenoidal
permanent magnetic field.

The relevant nondimensional number appearing in Eq. (3), is a modified Stuart number Nτ =
( Ha

Reτ
)2 where Reτ = uτ h

ν
is the Kármán number of the unmanipulated flow. Note that here Nτ is

based on Reτ and results from the scaling of the momentum equations in inner variables. Thus, Nτ

is different from the Stuart number N = Ha2

Re , most commonly used in the literature, where the Re
number is based on the centerline (or bulk) velocity. The Stuart number, which is also called the
interaction parameter, represents the ratio of the Lorentz forces to the inertial terms.
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FIG. 1. Computational box and flow configuration. Lengths are scaled by the half channel height h.

The Reynolds number is defined as Re = Ucph
ν

and is set at 4200 throughout the study. This
corresponds to Reτ = 180, which is low but is large enough to unveil the fine interactions between
the near wall turbulence and the magnetic field. Investigating larger Re numbers is computationally
expensive, because the inclusion of the magnetic field increases the computation time roughly by a
factor of four compared to the unmanipulated case. We also make clear that more than 20 flow cases
have been investigated here.

The results are mainly presented as a function of the Stuart number Nτ , which is the relevant
physical parameter. The Ha number is also referred to in the paper from time to time.

The streamwise, wall normal, and spanwise directions are denoted by x, y, and z. The fluctuating
velocity components along these directions are ux, uy, and uz, respectively. Occasionally the indicial
notation of the shear stress tensor ui j is also used. Time-averaged quantities on homogeneous
periodical directions (i.e., the horizontal [x,z] plane) will be denoted by (·) throughout the paper.
We will denote mean flow quantities with uppercase letters and fluctuations with lowercase letters.
For the sake of brevity, the root mean squares of the turbulent quantities are denoted by (·)′, such as
u′

x = √
uxux, u′

y = √
uyuy, or j′ =

√
j j, etc.

B. Direct numerical simulations

We consider a fully developed turbulent channel flow whose dimensions are [4πh, 2h, 4
3πh]

respectively in the [x, y, z] directions (see Fig. 1). Periodic boundary conditions on the velocity
and electric potential are imposed in the streamwise x and spanwise z directions. We also consider
perfectly insulating walls (i.e., ∂φ

∂y |= 0) with no slip (ux, uz = 0) and no transpiration conditions
(uy = 0) on planes located at y = 0 and 2h. In a similar manner to [6], a global condition on mean
current is imposed in order to ensure

∫∫∫
V j dx dy dz = 0 on the entire computational box at each

time step. The numerical resolution is performed with the DNS code MULTIFAST (e.g., [18,19]).
Spatial numerical operators are expressed by using an explicit optimized (EO) finite differences
scheme. EO schemes are derived from the dispersion-relation-preserving (DRP) schemes as intro-
duced by Tam and Webb [20]. In contrast to compact scheme discretization, an explicit scheme
requires only the function value at the neighboring points in order to approximate the derivatives.
Hence, the derivative estimations are direct, while it necessarily implies a matrix inversion in the
compact schemes. More technical details about spatial discretization performed withsixth-order EO
schemes can be found in Bauer et al. [18].
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The mesh nodes are distributed uniformly along x and z and refined near the wall in the wall-
normal y direction. The mesh size 	y is set to one third of the Kolmogorov scale η near the wall
while 	y ≈ η at the centerline. The computational details can be found in the Appendix.

All calculations were performed on a mesh with 257(x) × 129(y) × 129(z) computational nodes,
and the temporal advancement was carried out using a time step 	t = 0.07.

The turbulent channel flow submitted to the magnetic forcing becomes fully developed after
100 000 time steps starting from the unmanipulated case. Once the flow is established, the compu-
tations are extended over 200 000 temporal iterations in order to produce a sufficient amount of data
necessary for the statistical convergence. The data are stored at the rate of 20 fields every 10 000
time steps. The results obtained by the DNS-MHD code developed here are in excellent agreement
with Krasnov et al. [21], who used a pseudospectral DNS at Re = 13 300 and a magnetic field
imposed along the spanwise direction with Ha = 20 (not shown).

III. MEAN FLOW AND FLUCTUATING VELOCITY FIELD

We will now revisit the effect of Lorentz forces resulting from uniform magnetic fields in the
streamwise and spanwise directions. The aim is to fully isolate the effects of uniform Bx and Bz on
the near wall flow in order to understand how they coact with the fine structure of the turbulence. As
the wall normal By field interacts directly with the mean flow and consequently leads to undesirable
magnetic brake effects, it is not examined here.

A. Pressure gradient and drag reduction

In the case of the wall normal magnetic field By, the streamwise Reynolds averaged Navier-
Stokes equation contains a mean Lorentz force. The mean velocity is directly affected by By. The
By effect on turbulent drag results from the competition between the drag increase due to the thin
Hartmann layer near the wall and the skin friction decrease due to the turbulence suppression. The
Hartmann effect dominates the drag at large Stuart numbers, resulting in a drag increase. On the
other hand, the skin friction decreases at small Nτ because of the predominance of turbulence
suppression. In the wall-parallel magnetic field cases, thus, the drag always decreases due to
the turbulence suppression [6,21,22].

Figure 2 shows the evolution of the viscous drag as a function of the Stuart number. The volume-
averaged Lorentz force is assumed to be zero because the global condition

∫∫∫
V jdx dy dz = 0 is

maintained. The longitudinal mean pressure gradient term is for each time step deduced from the
integration of the viscous shear stress on the walls. Note that the mean pressure gradient −( ∂P

∂x ) in
Fig. 2 directly provides the drag reduction. The drag decreases with the Hartmann number, and the
flow reaches a relaminarized state at a value of Nτ ≈ 0.11 (Ha = 60) for a streamwise magnetic
field. The flow is relaminarized at a significantly lower Stuart number Nτ = 7 × 10−3 (Ha = 15)
under the spanwise magnetic field Bz compared to Bx. Therefore, imposing a transverse magnetic
field is undeniably more efficient than imposing Bx in terms of drag reduction.

B. Mean velocity and turbulent shear stresses

The mean streamwise velocity profiles Ux are shown in Fig. 3 for both streamwise and spanwise
magnetic field orientation. It is seen that, up to the relaminarization, Ux is only moderately altered
by Bx [Fig. 3(a)] and Bz [Fig. 3(b)]. However, once a magnetic intensity threshold is exceeded, the
flow is suddenly relaminarized and Ux coincides subsequently with the Poiseuille profile. These
thresholds depend on the magnetic field orientation, and they are Nτ = 0.11 (Ha = 60) and Nτ =
7 × 10−3 (Ha = 15) for the streamwise and spanwise oriented magnetic fields, respectively.

Figure 4(a) shows a visible increase of the turbulent activity associated with the streamwise
velocity fluctuations with Nτ before relaminarization. Additional investigations (not shown here)
have revealed that the time- and volume-averaged rms of the streamwise velocity fluctuations
increased by up to 40% in the range 0 < Nτ < 0.09 (0 < Ha < 55), prior to its sharp decline. This
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FIG. 2. Evolution of streamwise pressure loss for various streamwise and spanwise magnetic field inten-
sities. The mean pressure gradient −( ∂P

∂x ) is nondimensionalized by the unmanipulated turbulent channel flow
counterpart. The dotted-dashed line represents the laminar limit.

behavior has been discussed in detail in the literature. It has been tentatively linked to the transfer
from small to large scales in the outer region, and to the observation that the magnetic field increases
the scale of streamwise energy containing eddies [6,22]. It can be also noted that streamwise velocity
fluctuations are not completely damped in the inner region at Nτ = 0.11 (Ha = 60) as also observed
by Tsinober [23]. It is interesting to note that in the near wall region the rms of the streamwise
velocity fluctuations u′

x is only faintly altered up to the relaminarization in the low buffer layer
y < 15. We recall that the rms of a quantity q is here denoted by q′ and defined by q′ = √

q.q. The
wall normal component u′

y [Fig. 4(b)] and the spanwise turbulent intensity u′
z [Fig. 4(c)] together

with the Reynolds shear stress [Fig. 4(d)] are, however, more gradually affected by Bx.
Figure 5 shows that in the low buffer layer (y < 15) the Reynolds shear-stress and fluctuating

velocities are only slightly altered under the effect of the spanwise magnetic field Bz. This is
particularly the case for the fluctuating streamwise component [Fig. 5(a)], which evolves identically
in the full depth of the channel until a sudden decrease around Nτ = 7 × 10−3 (Ha = 15) leads to
the relaminarized state.

FIG. 3. Effect of the Hartmann number on the mean streamwise velocity profile Ux . (a) Streamwise uniform
magnetic field Bx . (b) Spanwise uniform magnetic field Bz. Standard log-law profile (2.5 ln y + 5.5) of the
canonical turbulent channel flow is represented by the blue dashed-dot line.
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FIG. 4. Effect of the streamwise magnetic field on (a) streamwise, (b) wall-normal, (c) and spanwise
turbulent activities and (d) Reynolds shear stress.

FIG. 5. Same as Fig. 4 but in the case of the spanwise magnetic field.
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FIG. 6. Same results as Fig. 5(d), but the quantities are now scaled by the local shear velocity and the
viscosity. See text for details.

It is important to emphasize one point albeit briefly, without showing the corresponding results.
One of the main characteristics of drag reduction in wall turbulence is the relative insensitivity of
the turbulent intensities when they are scaled with the local shear velocity uτ = √

τw/ρ where τw is
the local wall shear stress (and not that of the unmanipulated flow). This is a more or less universal
feature of wall turbulence, independent of the drag reducing mechanism [14]. Denoting these scaled
rms quantities by u′∗

i , it is found here that u′∗
i profiles collapse more or less independently of the

Stuart number Nτ under both the streamwise and spanwise magnetic field. Figure 6 shows, for
instance, the −uxuy

∗ versus y∗ profiles for the spanwise magnetic field. There is an acceptably good
collapse of these profiles, especially in the inner layer.

Lee and Choi [6] have shown that the Lorentz force-induced term in the local streamwise vorticity
transport equation is negatively correlated with the ∂uy

∂z component of ωx, and as a result is weakened
by Bz. Krasnov et al. [21] have also confirmed that the main effect of a transverse magnetic field is
the suppression of momentum transfer in the wall-normal direction. Such effects are absent in the
Bx case.

C. Electric current field

Figure 7 shows the rms distributions of the electric current field under Bx and Bz at Nτ =
6 × 10−3 (Ha = 14). Remember that there is no interaction between the magnetic field and the
streamwise mean velocity, and that there is no mean electric current involved. Thus, the statistics
of the electric current fluctuations depend only slightly on Nτ . We carefully checked this point by
analyzing the current field intensities at different Stuart numbers (not shown here). The turbulent
current fields are significantly more intense under the spanwise than the streamwise magnetic field
(Fig. 7). It is found for the Bz case that j′y, and j′x peak in the neighborhood of the buffer layer, at
y = 30 and y = 45, respectively, while the maximum in j′z is at the wall y = 0. Thus, there is no
clear local maxima in the j′ distributions under the streamwise magnetic field.

In order to gain further insight into the electric current field, we decomposed j into two com-
ponents according to j = −∇φ + u × B. Thus, the electric field is decomposed into a conductive
jc = −∇φ and an electromotive jem = u × B part. Figure 8 shows the rms of these components
for jy and jz. For the sake of brevity, we do not present the jx profiles because the magnitudes of the
corresponding components j′c,x and j′em,x are comparably small. The first striking result emerging
from Fig. 8 is the emancipation of clear local maxima in j′c and j′em situated in the middle buffer layer
or slightly above. Consider for instance Fig. 8(b) corresponding to the spanwise magnetic case. First,
note that jz is purely conductive and that consequently j′em,z = 0. Second, the peaks in j′em,y and j′c,y
of the wall normal current are situated at y ≈ 20 in the middle of the buffer layer. The local maxima
of j′em,y and j′c,y under Bx in Fig. 8(a) are also positioned near the same location. It is well known that
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FIG. 7. Distribution of the electric current fluctuating intensities for Bx (white symbols) and Bz (black
symbols). Circles: j ′x; squares: j ′y; triangles: j ′z. Nτ = 6 × 10−3 (Ha = 14).

the coherent shear stress producing eddies largely populate the buffer layer, and their impact on the
self-organisation of the conductive and electromotive current fields is undeniable. We will discuss
these points in Sec. IV. Last, it is interesting to note from Fig. 8 that the rms of the electromotive
and conductive components are twice as large than j′. Noting simply that j′2 = j′c

2 + j′em
2 + jc jem

leads to jc jem < 0, that is, the fluctuating electromotive current is negatively correlated with the
conductive current. This is consistent with the electric field induced by the coherent quasistreamwise
buffer layer vortices, as will also be discussed in Sec. IV. There is no doubt that the decomposition
j = jc + jem is a prime necessity to sort out these characteristics.

D. Shear stresses transport

The key elements that explain the rapid relaminarization under the transverse magnetic field
are intrinsically related to the transport process of the turbulent shear stresses. The mean trans-
port equation of the Reynolds shear stress tensor uiu j under a uniform magnetic field can be

FIG. 8. RMS of electromotive and conductive electric currents contributions under (a) a longitudinal or
(b) a spanwise magnetic field (Nτ = 6 × 10−3). Same symbols as legend in Fig. 7. Blue lines: wall-normal
currents (on y direction); black lines: spanwise currents (on z). Solid lines: conductive currents jc; dash-dotted
lines: electromotive currents jem.
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expressed as

Duiu j

Dt
= Pi j + Ti j + π

(s)
i j + π

(d )
i j + Di j + εi j + Mi j . (7)

The production, turbulent diffusion, pressure strain, pressure diffusion, molecular diffusion, and
dissipation terms appearing on the right-hand side are

Pi j = −u juk
∂Ui

xk
− uiuk

∂Uj

xk
, Ti j = −∂uiu juk

∂xk
,

π
(s)
i j = p

(
∂u j

∂xi
+ ∂ui

∂x j

)
, π

(d )
i j = −

(
∂ pu j

∂xi
+ ∂ pui

∂x j

)
,

Di j = ∂2uiu j

∂xl∂xl
, εi j = −2

(
∂ui

∂xl

∂u j

∂xl

)
. (8)

The term directly related to the magnetic field is

Mi j = Nτ (ε jklui jk .Bl + εilku j jl .Bk ) (9)

where

ul ji = −ul
∂φ

∂xi
+ ulεi jku jBk (10)

and εi jk is the Levi-Civita operator. Hereafter, the subindices 1, 2, and 3 will directly be replaced by
the corresponding directions z, y, and x, respectively, in order to alleviate the notations and facilitate
the reading. For example, the production in the Du3u2

Dt transport equation will be denoted by Pxy.
Remember that the quantities are scaled here with respect to the shear velocity of the unmanipulated
turbulent channel flow and the kinematic viscosity. Thus, the Stuart number appearing in Mi j is
given by Nτ = (Ha/Reτ )2. The MHD induced terms can be further decomposed into a source (S)
and annihilation (A) component. Hereafter, this decomposition is denoted by Mi j = SSt

i j + ASt
i j for

the streamwise magnetic field and Mi j = SSp
i j + ASp

i j for the spanwise one. The uniform streamwise
magnetic field corresponds to By = Bz = 0, resulting in the following:

(1) Mzz: SSt
zz = 2Nτ (uz

∂φ

∂y ) and ASt
zz = −2Nτ uzuz

(2) Myy: SSt
yy = 2Nτ (uy

∂φ

∂z ) and ASt
yy = −2Nτ uyuy

(3) Mxx: SSt
xx = 0 and ASt

xx = 0

(4) Mxy: SSt
xy = Nτ (ux

∂φ

∂z ) and ASt
xy = −Nτ uxuy.

The spanwise magnetic field with Bx = By = 0 leads to
(1) Mzz: SSp

zz = 0 and ASp
zz = 0

(2) Myy: SSp
yy = −2Nτ (uy

∂φ

∂x ) and ASp
yy = −2Nτ uyuy

(3) Mxx: SSp
xx = 2Nτ (ux

∂φ

∂y ) and ASp
xx = −2Nτ uxux

(4) Mxy: SSp
xy = Nτ (uy

∂φ

∂y − ux
∂φ

∂x ) and ASp
xy = −2Nτ uxuy

corresponding to Nτ = 6 × 10−3 (Ha = 14). This corresponds to the situation just before the flow
is relaminarized under the spanwise magnetic field (Fig. 2). First, consider the transport of the
Reynolds shear stress tensor (uxuy < 0) under the streamwise magnetic field Bx. It is obvious that
ASt

xy = −Nτ (uxuy) is a destruction term, since it is opposite in sign to uxuy < 0. We find out, thus, that

SSt
xy = Nτ (ux

∂φ

∂z ) is always negative in all the cases investigated here. This term constitutes therefore

a source term in the Duxuy

Dt equation. Figure 9(c) shows the distributions of these quantities. For
comparison, the production term Pxy = −2uyuy

∂Ux
∂y is also shown in Fig. 9(c) (right-hand blue scale).
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FIG. 9. Nτ = 6 × 10−3 (Ha = 14). (a) MHD transport terms Mi j under longitudinal Bx . (b) Mzz (plain line
with symbol), S-dashed line: SSt

zz , A-dashed line: ASt
zz , blue line: dissipation εzz. (c) Mxy (plain line with symbol),

S-dashed line: SSt
xy, A-dashed line: ASt

xy, blue line: production Pxy. (d) Myy (plain line with symbol), S-dashed
line: SSt

yy , A-dashed line: ASt
yy, blue line: dissipation εyy. (e) MHD transport terms Mi j under streamwise Bx for

Nτ = 0.08 (Ha = 50) and dissipation terms εyy (empty blue circles) and εzz (plain blue circles).

It is interesting to note that there is an equilibrium in a rough sense between SSt
xy and −ASt

xy in the
whole layer and particularly at y > 50. Thus, the net contribution of the direct streamwise MHD
effect to the shear stress transport is almost zero [Figs. 9(a) and 9(c)]. The negative peak appearing
in MSt

xy in the buffer layer is an order of magnitude smaller than Pxy and is entirely negligible,
as are the individual source and destruction terms that are an order of magnitude smaller than Pxy

[Fig. 9(c)]. This means that the direct contribution of the imposed Bx is insignificant on the Reynolds
shear stress transport.
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The net contribution of MSt
zz to the spanwise turbulent velocity intensity transport Duzuz

Dt under Bx

is also small as seen in Fig. 9(b). Note that, since the production term is Pzz = 0, the MHD source
and destruction terms SSt

zz and ASt
zz are compared to the dissipation εzz in Fig. 9(b). It is interesting

to note that individually, both SSt
zz and ASt

zz are far from being negligible and reach values as large as
εzz/2, particularly at the edge of the buffer layer. However, the balance is such between the MHD
source and annihilation terms that their sum ends up being insignificant. The SSt

yy and ASt
yy terms

appearing in the normal velocity intensity transport equation Duyuy

Dt under Bx shown in Fig. 9(d) are
also not negligible when viewed individually, and are even comparable with the dissipation. Note,
for instance, that SSt

yy ≈ εyy/2 at y > 50. But the net effect MSt
yy is still irrelevant compared to εyy.

Hence, in the case of a streamwise magnetic field, the MHD contributions to the transport equations
and the flow organization are found to be individually strong but collectively negligible at this
particular Stuart number. Note in Fig. 9(a) that MSt

yy and MSt
zz are negative; that is, the destruction

overcomes the sources terms in the related transport equations. The net destruction effects over uyuy

and uzuz increase with Nτ . However, an order-of-magnitude larger Stuart number of approximately
Nτ > 6 × 10−2 is necessary, so that MSt

yy and MSt
zz can be compared to the related dissipation terms

εyy and εzz.
Figure 9(e) recapitulates the MHD transport terms MSt at Nτ = 0.08 (Ha = 50) before the

relaminarization under Bx (Fig. 2). It is seen that MSt
xy stays negative. Therefore, the direct effect

of the streamwise magnetic field on (uxuy) becomes even enhancing at this large Stuart number.
But the terms MSt

yy and MSt
zz exceed the dissipation terms εyy and εzz by a factor larger than three

above the buffer layer. Thus, the wall normal and spanwise velocity fluctuations are now strongly
weakened by the magnetic field. There is an indirect subsequent effect on the Reynolds shear stress
that also consequently decreases [Fig. 4(d)]. To resume, the primary Bx effect is the damping of the
wall normal and spanwise turbulent activity, with a feedback on the Reynolds shear stress. This is a
slow process in terms of turbulent drag reduction.

The situation is entirely different under the uniform spanwise magnetic field Bz. The destruction
and source terms in the Reynolds shear stress transport equation are now ASp

xy = 2Nτ (−uxuy)

and SSp
xy = Nτ (uy

∂φ

∂y − ux
∂φ

∂x ), respectively. Note that ASp
xy is twice as large in Bz than Bx (ASt

xy =
Nτ (−uxuy)). More interestingly, it is found here that the source term is SSp

xy � ASp
xy , independent

of Nτ . Figure 10(c) compares the ASp
xy and SSp

xy profiles directly with the production Pxy. It can be
clearly seen that SSp

xy is nearly an order of magnitude smaller than −ASp
xy . This leads to a net MHD

destruction MSp
xy > 0, which becomes substantial [Fig. 10(a)]. In addition, the destruction term ASp

xy

reaches values as large as 1
4Pxy at y > 50 as can clearly be seen in Fig. 10(c).

It would therefore be interesting at this stage to estimate the value of the interaction parameter
required to entirely annihilate the production Pxy = −2uyuy

∂Ux
∂y at the edge of the buffer layer. It

has been indicated before that the turbulent quantities scaled by the local shear stress velocity and
the viscosity are more or less invariant with Nτ and compare with the unmanipulated channel flow
in a rough sense. Thus, equilibrating the MHD destruction and production terms results in P∗

xy =
−2Nτ (uxuy

∗) where (∗) stands for the quantities scaled by the local uτ . One has here P∗
xy = 0.05

and −uxuy
∗ = 0.7 at y = 30, in agreement with Mansour and Moin [24]. This estimation leads

to Nτ ≈ 0.02 (Ha ≈ 30). Thus, at Nτ ≈ 0.02, the net MHD destruction would be larger than the
shear stress production in the logarithmic and the outer layer. The sudden relaminarization under Bz

takes place at Nτ = 0.006 (Ha = 15), which is three times smaller than the estimated value (Fig. 2).
Yet this rough estimation is quite fair, considering that Bz severely reduces the turbulent activity
in a large part of the turbulent layer. Furthermore, as Reτ becomes large enough, −uxuy

∗ → 1, in
the logarithmic layer extending into a large region delimited by 3

√
Reτ < y∗ < 0.15Reτ [25]. The

shear decreases as ∂U ∗
x

∂y∗ ∝ 1
κy∗ in the log layer, where κ is the von Kármán constant, while uyuy

∗ is
insensitive to Reτ , in a rough sense, according to the Townsend attached eddy hypothesis [26]. This
implies that the direct MHD destruction may possibly be more competitive in terms of contracting
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FIG. 10. Nτ = 6 × 10−3 (Ha = 14). (a) MHD Transport terms Mi j under transverse Bz. (b) Mxx (plain
line with symbol), S-dashed line: SSp

xx , A-dashed line: ASp
xx , blue line: production Pxx . (c) Mxy (plain line with

symbol), S-dashed line: SSp
xy , A-dashed line: ASp

xy , blue line: production Pxy. (d) Myy (plain line with symbol),
S-dashed line: SSp

yy , A-dashed line: ASp
yy , blue line: dissipation εyy.

the production P∗
xy at large Reynolds numbers Reτ , wherein the log layer extends over a large range

of y∗. The fact still remains that there is a net Reynolds shear stress destruction effect induced by
the uniform spanwise magnetic field. Furthermore, the direct contribution of the turbulence to the
friction coefficient in the canonical turbulent channel flow is a weighted integral of the distribution
of the Reynolds shear stress across the channel [27]. Indeed, the original FIK decomposition [27]
is directly applicable here, because the mean momentum equation is formally identical to that of
the unmanipulated channel flow. The turbulent part of the skin friction coefficient denoted by Cf t

and scaled by the bulk velocity is exactly Cf t = 6
∫ 1

0 (1 − y∗)(−uxuy)∗ dy∗, where (·)∗ denotes the
quantities scaled by the outer variables based on the bulk velocity and the channel half-width. This
relation shows that Bz acts on turbulent drag by modifying progressively the Reynolds shear stress
through the whole channel, as Nτ increases. For all these reasons, the relaminarization under Bz

requires smaller Stuart number than Bx.
The resultant MSp

xx in the streamwise velocity transport Duxux
Dt is negligible. Indeed, MSp

xx is an
order of magnitude smaller than the production Pxx near the wall [Fig. 10(b)]. Nonetheless, the
direct effect of the spanwise magnetic field on the wall normal turbulent velocity intensity transport
Duyuy

Dt is substantial. The destruction term ASp
yy = −2Nτ (uyuy) largely overcomes the MHD source

term SSp
yy in Fig. 10(a). It can be clearly seen in Fig. 10(d) that the effect of the resulting MSp

yy is
relentless and that MSp

yy is directly comparable to the dissipation εyy in the whole layer. Therefore,
the spanwise magnetic field significantly dumps the wall normal turbulence activity, and this by
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direct MHD effects. Overall the imposed Bz interacts with the Reynolds shear stress transport
phenomena, and it is subsequently more efficient in terms of drag reduction compared to Bx. This
interaction is a result of the precise reorganization of the flow field induced by the magnetic field,
near and around the near wall coherent eddies. Indeed, the results presented in this section can hardly
be interpreted through simple considerations concerning the correlations between the fluctuating
velocity field and the Lorentz force [6]. The role of the near wall coherent structures is crucial as
will be discussed in the next section.

IV. TURBULENT STRUCTURES AND CONDITIONAL AVERAGING

A. Coherent structures identification

Coherent structures play a fundamentally important role in the transport of momentum and scalar
quantities (see Tardu [28] for a review). Curiously enough, the contribution of the Reynolds shear
stress producing eddies to the generation of the current field, and to the direct MHD-induced terms in
the shear stress transport equations, has not yet been investigated to our best knowledge. This should
therefore be an important point to consider, especially with respect to the analysis of the fluctuating
current field. As we highlighted before, the rms distributions of the latter, once decomposed into
electromotive and conductive parts, present clear local peaks in or near the buffer layer (Fig. 8).
This is all the more reason to investigate the specific MHD flow elements induced by the coherent
quasistreamwise vortices.

The quasistreamwise vortices (QSVs) are detected with the classical λ2 technique introduced
by Jeong and Hussain [29]. The parameter λ2 is the second largest negative eigenvalue of the
tensor SikSk j + �ik� jk , where Si j = (ui, j + u j,i )/2 and �i j = (ui, j − u j,i )/2 are the symmetric
and antisymmetric parts of the velocity gradient tensor ui, j = ∂ui

∂x j
. The conditional averages are

performed in a way similar to Jeong et al. [30]. In short, the local maxima of −λ2, with either
positive or negative streamwise vorticity ωx are determined in the homogeneous planes, and the line
connecting these maxima is attributed to the vortex axis. Structures with inclination and tilting
angles of ±30◦, whose centers are located at y � 10, and extending at least 110 wall units in
the streamwise direction are selected. Each individual structure is aligned into a subdomain of
dimensions nz × ny × nx = 110 × 80 × 350 wall units. The median plane P0 of the conditional
structure is subsequently unambiguously determined. The conditional averages are performed
using 25 statistically independent snapshots separated in time by 100h/Ucp. All in all, more
than 100 structures with either positive or negative streamwise vorticity were selected to perform
the conditional averages. We present only the results emerging from the educed structures with
positive streamwise vorticity ωx > 0, the extension of the results for structures with ωx < 0 being
straightforward. Hereafter, the conditional average of a quantity q is denoted by 〈q〉. Figure 11(a)
shows the streamlines associated to the conditional structure educed from this process. The median
plane P0 is also shown in this figure. The length and the diameter of the structure are 170 and 20 wall
units, respectively. The conditional positive and negative streamwise velocity contours in the plane
P0 are shown in Fig. 11(b). Figure 11(c) shows the relative locations of the quadrant events, i.e., Q1

(ux > 0, uy > 0), Q2 (or ejections, ux < 0, uy > 0), Q3 (ux < 0, uy < 0), and Q4 (or sweeps, ux > 0,
uy < 0) with respect to the conditional structure. Figure 11 is both qualitatively and quantitatively
in agreement with Jeong et al. [30] (their Fig. 13).

B. Conditional averages and discussion

The conditional averages in the P0 plane of the source and annihilation terms, constituting Mi j

[Eq. (9)] are shown in Figs. 12 and 16, for the streamwise and spanwise magnetic fields, respectively.
Figure 12 shows that the source and annihilation sites coincide quasiperfectly around the

quasistreamwise vortices under Bx. Furthermore, the intensities of 〈SSt
i j 〉 compare quite well with

〈ASt
i j 〉, pointing at a quasiequilibrium between the MHD source and destruction effects at this
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FIG. 11. Conditionally averaged QSV (ωx > 0) in case of a unmanipulated turbulent channel flow, (i.e.,
without magnetic field) for Reτ = 180. (a) Fluctuation-based streamlines and location of the midplane P0;
(b) streamwise fluctuating contours 〈ux〉 in P0 (Min = −3.5; Max = 2.5; Step = 0.5); (c) coherent Reynolds
stress contours −〈uxuy〉 in P0 (Min = −1; Max = 3; Step = 0.5).

particular Stuart number. The streamwise magnetic field significantly affects the individual source
and destruction terms in the wall normal and spanwise velocity fluctuations transport equations.
Yet, for example, the global Bx effect remains weak at Nτ = 6 × 10−3 (Fig. 9). The rms peak
values of the electromotive and conductive current profiles [Fig. 8(a)] are intimately connected
to the interaction between the imposed magnetic and the coherent velocity fields. Figure 13 shows
the conditional averages of electromotive jem and conductive jc distributions in the P0 plane under
Bx. It is clearly seen that the generation of the electromotive current in the wall normal direction
y [Fig. 13(a)] or along the spanwise direction z [Fig. 13(b)] induces a conductive current field of
opposite sign and of almost equivalent intensity. This is schematically shown in Fig. 13(c). From
this last figure, it is now relatively easy to understand the role played by the conditional averages of
the direct source and annihilation terms in the Reynolds shear stress transport equation. The electric
current field shown in Fig. 13(c) indeed explains why the term 〈SSt

xy〉 = Nτ 〈ux
∂φ

∂z 〉 is negative, and
why it is therefore an MHD source term. The quasistreamwise vortex with positive streamwise
vorticity shown in Fig. 13(c) induces a wall normal velocity uy < 0 site, at the sweep right-hand
side of the structure. The uy < 0 zone produces a negative electromotive current field jem,z < 0
through u × B. This is shown by the orange arrows. Reasoning in the same way for all coherent
events implies that the current field is centrifugal.

Now, since div( j) = 0, a conductive current field is necessarily set up in the plane P0 as shown
by the dashed blue arrows in Fig. 13(c). In the right high-speed zone dominated by the Q4 events
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FIG. 12. MHD transport terms of turbulent intensity and Reynolds stress in the P0 plane for Bx (ωx > 0).
(a) Mzz, contours: ASt

zz = −2Nτ 〈uzuz〉; lines: SSt
zz = 2Nτ 〈uz

∂φ

∂y 〉. (b) Myy, contours: ASt
yy = −2Nτ 〈uyuy〉; lines:

SSt
yy = 2Nτ 〈uy

∂φ

∂z 〉. (c) Mxy, contours: ASt
xy = −Nτ 〈uxuy〉; lines: SSt

xy = Nτ 〈ux
∂φ

∂z 〉. Dashed lines are negative
values.

[Fig. 11(c)] wherein ux > 0 one has jc,z > 0 (i.e., ∂φ/∂z < 0), and consequently 〈ux
∂φ

∂z 〉 < 0. The
same arguments apply in a similar manner to the Q2 events at the low-speed side of the structure.
In these zones, therefore, the source term is 〈SSt

xy〉 < 0, and it is quasiperfectly opposed to the
MHD annihilation term 〈ASt

xy〉 = −Nτ 〈uxuy〉. The same holds true for the Q3 and Q1 sites centered,
respectively, at y = 25 and y = 10 in Fig. 11(c).

We now emphasize that the conditional averages of the electromotive and conductive currents are
roughly of opposite magnitudes in the plane P0, i.e., 〈 jem,z〉 ≈ −〈 jc,z〉, because, again, div( j) = 0
[Fig. 13(a)]. Since jem = u × B and Bx = 1, here one has 〈 jem,z〉 = 〈uyBx〉 = 〈uy〉.
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FIG. 13. (a) Contours of spanwise electromotive currents: 〈 jem,z〉. Lines represent spanwise conduction
currents 〈 jc,z〉. (b) Contours of wall-normal electromotive currents: 〈 jem,y〉. Lines represent wall-normal con-
duction currents 〈 jc,y〉. (c) Conceptual model of the electric currents distribution in the plane P0 of a QSV
(ωx > 0) under a streamwise magnetic field.

Let us assume that jem,z ≈ uy, locally near the QSVs. Therefore, jc,z = −( ∂φ

∂z ) ≈ −uy. Recapitu-

lating leads to Nτ 〈ux
∂φ

∂z 〉 ≈ Nτ 〈uxuy〉, i.e., to the quasiequilibrium between the source and destruction
terms. The same approach can be applied to the MHD terms in the wall normal velocity transport
Duyuy

Dt equation, showing why the net 〈MSt
i j 〉 remain weak. Note that these arguments are valid only

in or near the median plane P0, since the current fields behave differently near or close to the ends
of the structure wherein ∂φ

∂x is not necessarily negligible.
The topology of the electric current field is different under the spanwise magnetic field.

Figures 14(a) and 14(b) show the conditional averages 〈 jz〉 and 〈 jy〉 induced by Bz in the P0 plane.
Note that the spanwise current field is purely conductive and 〈 jz〉 = −〈 ∂φ

∂z 〉. A strong negative
〈 jz〉 < 0 field concentrates underneath the structure in the viscous sublayer y < 5. This is mainly
because of the accumulation of current lines in this zone, as a result of the imposed electrical insu-
lation at the wall. At the top of the vortex, there is a layer of positive lower intensity 〈 jz〉 extending
from the high buffer layer to the logarithmic layer. This is expected since

∫ 〈 jz〉dx dy dz = 0. The
conditional average 〈 jy〉, on the other hand, gathers around the high- and low-speed zones of the
coherent structure [Fig. 14(b)]. The loop structure of the current field around the QSV is illustrated
in Fig. 14(c), showing inter alia the setup of the longitudinal current 〈 jx〉 downstream of the QSV,
which is invisible in the plane P0.

The conditional averages of the electromotive 〈 jem,y〉 and conductive 〈 jc,y〉 = −〈 ∂φ

∂y 〉 currents
in the P0 plane for the Bz case are presented in Fig. 15(a). We again notice the local collapse of
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FIG. 14. (a) Spanwise 〈 jz〉 (composed only of −〈 ∂φ

∂z 〉) and (b) wall-normal electric currents contours 〈 jy〉 in
the plane P0 under a spanwise magnetic field Bz. Both figures show typical electric current lines. (c) Example
of 3D electric current lines induced by a QSV (ωx > 0) under Bz.

electromotive and conductive current fields with 〈 jc,y〉 ≈ −〈 jem,y〉. Figure 15(b) collects all of this
information and provides a conceptual model of the current field generated around the QSV.

Let us return again to the shear stress tensor transport mechanism in the light of Fig. 15. Consider
Nτ 〈uy

∂φ

∂y 〉 of the source term in 〈MSp
xy 〉. The term −〈ux

∂φ

∂x 〉 will not be discussed, because ∂
∂x ≈ 0

along the longitudinal structures, except at the ends. Note, first, 〈uy
∂φ

∂y 〉 = −〈uy jc,y〉 ≈ 〈uy jem,y〉 is
negative, as expected, at both the high- and low-speed sides of the vortex [Figs. 15(b) and 16(a)].
Second, the core of the conditional wall normal velocity 〈uy〉 is in the high buffer layer, far from
〈 jc,y〉, which is squeezed in the low buffer layer. This is due to the specific current topology induced
by the QSV in the HSP zone. Consequently, the source term Nτ 〈uy

∂φ

∂y 〉 is small at the right-hand
side of the structure [Fig. 16(a)]. At the left LSP side, the conductive current field extends in a
larger zone. The size of the latter is limited to about 10 wall units along y and z. It is an easy task to
estimate the conditional averages, by noticing that 〈 jem,y〉 ≈ −〈uy〉 and that Nτ 〈uy

∂φ

∂y 〉 ≈ −Nτ 〈uyuy〉.
The ratio of the latter to the destruction term 〈ASp

xy 〉 = −2Nτ 〈uxuy〉 is approximately 10−1 in close
agreement with Fig. 16(a). In short, the conditional annihilation 〈ASp

xy 〉 term becomes an order of
magnitude larger than the source 〈SSp

xy 〉 leading to a net destruction of the shear stress by direct
MHD effects as discussed in the previous section.

We underlined the strong MHD damping effect on the turbulent wall normal velocity transport in
the previous section [Fig. 10(d)]. The conditional destruction term 〈ASp

yy 〉 = −2Nτ 〈uyuy〉 is directly
related to the coherent wall normal velocity intensity, therefore the interpretation of the Fig. 16(b)
is straightforward. What is striking, on the other hand, is to note that 〈ASp

yy 〉 reaches values up to five
times the local mean dissipation εyy at y ≈ 20, particularly at the HSP side. Moreover, the source
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FIG. 15. (a) Wall-normal electrical current contributions under Bz. Contours: 〈 jc,y〉, lines: 〈 jem,y〉. Black
spots are the positions of extreme values of wall normal fluctuating velocities uy. (b) Conceptual model of the
electric currents distribution in the plane P0 of a QSV (ωx > 0) under a spanwise magnetic field.

term 〈SSp
yy 〉 = −2Nτ 〈uy

∂φ

∂x 〉 remains weak around the structure, again because ∂
∂x ≈ 0 along the QSV

as indicated before.

V. CONCLUDING REMARKS

Conditional averages of both the electric current field and the directly implied MHD shear stress
transport terms educed near the inner layer coherent eddies are significantly different under the
streamwise and the spanwise magnetic fields. A clear understanding of the electric field behavior
requires its decomposition into electromotive and conductive parts. The electromotive current
induced near the quasilongitudinal vortices is quasibalanced by the conductive current under Bx.
This is a direct consequence of the solenoidal feature of the electric current. The resulting total
current intensity is therefore low. The streamwise magnetic field Bx is, in fine, not efficient enough
to alter the near wall turbulence structures, while at equivalent Stuart numbers the spanwise field
already relaminarizes the flow. The electric current field topologies are significantly different under
Bz than under Bx. We have shown that Bz generates a net electric current around the structures, in
the opposite direction to their rotations. At the same time, a conductive current field accumulates
in the viscous sublayer because of the electrical insulation at the wall. It has to be emphasized here
that these hidden peculiarities were able to be analyzed due to the conditional averages educed from
the active coherent structures.

Annihilation and source terms which are directly related to the magnetic field emerge from
the shear stress transport equations. The magnetic field destruction of the Reynolds shear stress
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FIG. 16. MHD transport terms of turbulent intensity and Reynolds stress in the P0 plane for Bz (ωx > 0).
(a) Mxy, contours: ASp

xy = −2Nτ 〈uxuy〉; lines: Nτ 〈uy
∂φ

∂y 〉. (b) Myy, contours: ASp
yy = −2Nτ 〈uyuy〉; lines: SSp

yy =
−2Nτ 〈uy

∂φ

∂x 〉. Dashed lines are negative values.

overcomes its MHD source counterpart under Bz independently of the Stuart number. Small enough
Stuart numbers are then sufficient for the net MHD destruction to become comparable to the
production of the Reynolds shear stress. That leads to a rapid flow relaminarization, once Nτ exceeds
a critical threshold of about 6 × 10−3. The source terms induced by the streamwise magnetic field
impedes the drag reduction. The net destruction of the shear stresses by direct MHD effects requires
an order of magnitude larger Stuart numbers under Bx than Bz. The Bx field first attenuates the wall
normal turbulent velocity intensity, contrarily to Bz, which directly attacks uxuy. Basically this is a
slower process, and the relaminarization is delayed to much larger Nτ under Bx.
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APPENDIX: COMPUTATIONAL DETAILS

Supplementary details on the direct numerical simulations are provided here. We recall that the
mesh nodes are distributed uniformly along x and z and refined near the wall in the wall-normal
y direction. The mesh size 	y is set to one third of the Kolmogorov scale η near the wall while
	y ≈ η at the centerline. The y coordinate for the jth node is obtained from a uniform distribution

094605-20



TRANSPORTATION AND COHERENT STRUCTURES IN MHD …

s( j) = ( j−1)
ny

(where ny stands for the total node number in the wall normal direction) modified
through the following expression:

y( j) = 2
tanh

[
αs( j) − 1

2

]
tanh

(
α
2

) , (A1)

where α = 0.38 controls the intensity of the refinement near the boundaries. A Jacobian approach
is used to evaluate the derivatives along the y direction. The first and second derivatives used for
convective and diffusive terms are then given by

δ f

δy
= ds

dy

δ f

δs
,

δ f

δy
= d2s

dy2

δ f

δs
+

(
ds

dy

)2
δ2 f

δs2
, (A2)

where δ denotes spatial derivatives estimations. The coefficients related to the mesh geometry, ds
dy

and ( ds
dy )2, found in Eq. (A2) are evaluated analytically from the relation (A1). Considering the

temporal flow evolution, the solution at the next time (sub)iteration k + 1 is explicitly obtained by
integrating Eq. (3). The time interval [t, t + 	t] is then divided into nk substeps (t1 = t, t2, . . . , tnk =
t + 	t ).

By applying the fractional step method, the velocity is corrected to become solenoidal for each
time iteration. Making use of the conventional Einstein notation for spatial coordinate and velocity
components (for which subscripts 1,2,3 refer respectively to the spanwise z, wall-normal y, and
streamwise x component), the temporal advancement of Eq. (3) can be expressed as

uk+1 = uk + T pmean + T pfluc + T adv + T diff + T fext, (A3)

where

T pmean = −
∫ tk+1

tk

(
∂ p

∂xi

)
dt, T pfluc = −

∫ tk+1

tk

∂ p′

∂xi
dt, T adv = −

∫ tk+1

tk

∂uiu j

∂x j
dt,

T diff =
∫ tk+1

tk

∂2ui

∂x2
j

dt, T fext = Nτ

∫ tk+1

tk

εi jm( j j .Bm)dt ;

εi jk is the Levi-Civita operator. ( ∂ p
∂xi

) and ∂ p′
∂xi

dt stand, respectively, for the mean gradient pressure
and the pressure gradient fluctuation. T pmean is evaluated through the global flow rate conservation.
The advection, diffusion, and external force terms, respectively, T adv, T diff , and T fext, are estimated
explicitly from previous k − 1 and the current k fields as

T adv + T diff + T fext = αk	t

(
− ∂̂uiu j

∂x j
+ ∂̂2ui

∂x2
j

+ Nτ
̂εi jm( j j .Bm)

)
k

+βk	t

(
− ∂̂uiu j

∂x j
+ ∂̂2ui

∂x2
j

+ Nτ
̂εi jm( j j .Bm)

)
k−1

, (A4)

where (̂·) denotes spatially discretized operators.
The term εi jm( j j .Bm) depends on the velocity field ui and the electric potential φ. The time

advancement is performed by a Runge-Kutta third-order (RK3) scheme in which the coefficients
involved in the three iteration steps are α1,2,3 = [ 8

15 , 5
12 , 3

4 ] and β1,2,3=[0,− 17
60 ,− 5

12 ]. T pfluc is
the fluctuating pressure gradient evaluated from the pressure at k + 1. Indeed, Eq. (A3) can be
reformulated as

uk+1 = ũk+1 − (αk + βk )	t ̂∇p′k+1, (A5)

where ũk+1 = uk + T pmean + T adv + T diff is a first estimation of the velocity field, based on terms
known at the current time iteration. The quantity p′k+1 is then calculated by applying the divergence-
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free operator to Eq. (A5) and solving the resulting Poisson equation:

̂∇2 p′k+1 = 1

	t (αk + βk )
̂∇ · ũk+1. (A6)

The Poisson equation for the pressure is solved in the Fourier domain (through FFT decomposition)
at each [x, z] plane.

For each time step, the iteration procedure derived from the RK3 time resolution of the [φ, ui]
coupling is then the following:

(1) Compute φk from the current velocity field uk by solving the current conservation equation

[Eq. (4)]: ̂∇2φk = ̂∇ · εi jmukBm

(2) Compute T adv + T diff + T fext from previous and current fields estimations
(3) Correct the velocity field ũk+1 [see Eq. (A5)] by solving the Poisson equation (A6).
It is worth noting that no additional iteration procedure is required to solve the two-way coupling

of the φ and ui through the steps 1–3 since the time step for solving turbulent wall bounded flow by
an explicit time advancement scheme is necessarily very small.
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