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Counter-flow configurations, whereby two streams of fluid are brought together from
opposite directions, are highly efficient mixers due to the high turbulence intensities that
can be maintained. In this paper, a simplified version of the problem is introduced that is
amenable to direct numerical simulation. The resulting turbulent flow problem is confined
between two walls, with one nonzero mean velocity component varying in the space direc-
tion normal to the wall, corresponding to a simple shear flow. Compared to conventional
channel flows, the mean flow is inflectional and the maximum turbulence intensity relative
to the maximum mean velocity is nearly an order of magnitude higher. The numerical
requirements and turbulence properties of this configuration are first determined. The
Reynolds shear stress is required to vary linearly by the imposed forcing, with a peak at
the channel centerline. A similar behavior is observed for the streamwise Reynolds stress,
the budget of which shows an approximately uniform distribution of dissipation, with large
contributions from production, pressure-strain, and turbulent diffusion. A viscous sublayer
is obtained near the walls and with increasing Reynolds number small-scale streaks in
the streamwise momentum are observed, superimposed on the large-scale structures that
buffet this region. When the peak local mean Mach number reaches 0.55, turbulent Mach
numbers of 0.6 are obtained, indicating that this flow configuration can be useful to study
compressibility effects on turbulence.

DOI: 10.1103/PhysRevFluids.6.094603

I. INTRODUCTION

Counter-flow shear layers, also known as counter-current flows, have been previously recog-
nized as efficient flow configurations for mixing [1–4], thrust vectoring (flow control) [5–7], and
combustion [8,9]. Strykowski and Wilcoxon [2] showed that counter-current configurations could
be used to control axisymmetric jet flows and enhance their mixing characteristics using global
oscillations produced by self-excitation within shear layers. Strykowski and colleagues [8,9] also
showed that a counter-current flow configuration can be used in swirl combustors to efficiently
control the turbulent burning velocity (flame speed) and reduce pollutant emissions. The use of
counter-flow configurations for fundamental flow studies was first recognized by Humphrey and Li
[1] and later by various researchers including most notably Forliti et al. [3], who studied planar
shear layers. A shear layer develops when two fluid streams interact at a different velocity. Shear
flows are typically quantified by the velocity ratio (r) and the normalized velocity ratio (λ) defined
as r = U2/U1 and λ = (U1 − U2)/(U1 + U2) [3]. Here, U1 and U2 denote the velocity magnitude
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of the two flow streams (primary and secondary flows, respectively). A counter-flow forms when
r < 0. It has been shown theoretically [10] and experimentally [11] that a counter-flow shear layer
experiences transition from convective to absolute (global) instability when the secondary reverse
stream achieves a velocity magnitude of around 13% or higher of that of the primary stream, i.e.,
|r| > 0.136 or λ > 1.315 [3].

Humphrey and Li [1] studied vortex generation and collapse mechanisms at the interface of two
counter-flowing streams initially separated by splitter plates in a channel configuration (r = −1.0)
in the laboratory. The two flow streams were laminar with the Reynolds number, based on the
channel width and the mass average velocity in one of the flows, ranging from 370 to 1000. The use
of such a counter-flow channel configuration was found to be a relatively simple but effective way
to study vortex-induced mixing. However, their setup resulted in a stagnation zone which eventually
disrupted the shear layer. Later, Humphrey et al. [4] conducted a numerical study on counter-flow
shear layers based on the experimental setup of Humphrey and Li [1]. They investigated the effect
of the Reynolds number using symmetric and antisymmetric counter-flowing velocity profiles. It
was concluded that the convective transport at such Reynolds numbers was not able to remove
vortical structures due to their fast generation and amplification rate which consequently resulted in
rotational flow instabilities and a periodic breakdown.

Momentum-driven counter-flows, like the ones studied by Humphrey and Li [1], have proven to
be experimentally difficult to create. Therefore, suction-driven approaches, which typically utilize
suction-type centrifugal fans to drive the secondary backward stream, have been used to create
counter-flow shear layers as, for example, discussed in [3,11]. Forliti et al. [3] were the first to study
the characteristics of planar counter-flows. In their wind tunnel setup, a splitter plate separated the
primary stream and the suction-driven secondary stream. Velocity ratios up to r = −0.3 with U1 =
31 m/s were investigated. A critical normalized velocity ratio of λ = 1.3 was found for the onset
of the transitional instability which was in line with earlier theoretical predictions and experimental
measurements. It was concluded that locally unstable flows trigger the global instability in counter-
flow shear layers [3].

A further potential application of counter-flow shear layers is in the study of compressibility,
which has major effects on the turbulent characteristics of fluid flows and is typically manifested
through, among others, reduction in turbulence production, acoustic-entropy oscillations, shear
layers growth suppression, shock formation, and nonlinear shock-turbulence interactions [12–15].
Many aspects of the complex interactions between compressibility effects and turbulence structures
are still not thoroughly understood. Traditional free shear layers (such as jets, wakes, and mixing
layers) and Poiseuille- and Couette-type flows (such as channel flows) have been utilized to study
compressible turbulence [13,15,16]. Spatially developing mixing layer simulations are computa-
tionally expensive and are sensitive to far-field and inflow-outflow boundary conditions [16,17], but
the basic compressibility effects are captured in temporal simulations as, for example, discussed by
Vreman et al. [18]. A drawback of the temporal approach is that the shear layer thickens as time
progresses and large structures rapidly fill the computational domain. Using much larger domains
is then inefficient for the early development stages of the flow. On the other hand, Poiseuille-
and Couette-type flows are relatively efficient to compute [19–21] and can achieve high Reynolds
numbers for much lower cost than what is typically required for a spatially developing boundary
layer [20]. Conventional channel flow is limited in terms of the fluctuating Mach number that can
be reached, due to the fact that the mean flow becomes hot, with the associated increase in the
speed of sound. A counter-flow channel configuration can potentially overcome the barriers of the
above-mentioned flows. Specifically, it retains a statistically stationary one-dimensional solution, in
common with conventional channel flows, but contains an inflectional mean flow, representative of
free shear layers.

Another version of channel flow that produces counter-flows of the kind considered here is from
Waleffe [22]. That flow was devised to study exact solutions of the Navier-Stokes equations in
a confined setting and in that context it was important that the base flow was linearly stable. In
the present study, however, we introduce a wall-bounded counter-flow channel configuration and
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FIG. 1. Two-dimensional schematic of the three-dimensional counter-flow channel configuration. The
streamwise and spanwise (in-plane, in the z direction) boundaries are periodic. The top and bottom boundaries
are isothermal no-slip walls. The red arrows show the theoretical directions of the mean flow in the upper and
lower halves of the channel. Profiles of the hyperbolic tangent forcing term (c1) and the mean streamwise
velocity are shown by the black and blue arrows, respectively. The black dashed line shows the channel
centerline at y = 0. An alternative coordinate in the y direction relative to the wall will be denoted ỹ (with
ỹ = 0 is at the wall) and will be used to compute the normalized wall distance (ỹ+).

argue that, in contrast, its unstable base flow is more relevant to free shear layers (jets, wakes, and
mixing layers) found in practice. In this connection, there are different questions about organized
structures that make such flows interesting from a theoretical perspective. A recent example is the
work of Mantič-Lugo and Gallaire [23,24] that proposed a self-consistent model of structures in a
backward-facing step configuration in which the time-averaged flow is unstable.

In the present numerical study we first introduce the counter-flow configuration and the direct
numerical simulation (DNS) approach used to study it. We spend some time on grid and domain
size requirements and explain the flow structure (Sec. III). Then in Sec. IV we increase the Reynolds
number and examine the flow near the walls, where the near-wall turbulence is buffeted by large
shear layer structures. Finally, in Sec. V the Mach number is increased to check whether the
configuration can sustain high turbulent Mach numbers.

II. METHODOLOGY

A. Configuration

DNS of compressible turbulent counter-flow channels with different domain sizes of the form
LxH × 2H × LzH are conducted. H denotes the channel half height and is set to H = 1 in the
current study. Lx and Lz are the domain lengths in the x (streamwise) and z (spanwise) directions,
respectively. Dimensionless streamwise and spanwise dimensions range from 6 to 24 and 3 to 12,
respectively. Figure 1 shows a schematic of the counter-flow channel configuration introduced in this
study. The streamwise and spanwise boundaries are periodic, while isothermal (Tw = 1.0) no-slip
walls are assigned to the boundaries in the normal direction (y). In order to accurately resolve
the near-wall region, the grid is stretched in the y direction using a stretching function with a
stretching factor of 1.7 as discussed in [25]. A tangent hyperbolic forcing function is used to drive
the flow in opposite directions on the upper and lower halves of the channel. This consequently
forms an antisymmetric mean “shear” velocity profile as shown schematically by the blue profile in
Fig. 1.

Unless otherwise stated, simulations are initialized using an approach originally developed for
DNS of conventional channel flows as discussed in [25]. Specifically, fluctuations based on sine
and cosine disturbances are superimposed over a mean classical turbulent velocity profile in the x
direction and in other directions only the sine and cosine disturbances are imposed. All simulations
are initially conducted for relatively long transient periods (as long as t = 400) to obtain fully
developed counter-flows before collecting the statistics for an additional period of t = 1000.
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B. Governing equations

The dimensionless governing equations of a compressible Newtonian fluid flow that conserve
mass, momentum, and energy are given as

∂ρ

∂t
+ ∂

∂x j
(ρu j ) = 0, (1)

∂ρui

∂t
+ ∂

∂x j
(ρuiu j + pδi j − τi j ) + c jδi j = 0, (2)

∂ρE

∂t
+ ∂

∂x j
(ρEuj + u j p + q j − uiτi j ) + c ju j = 0, (3)

where ρ represents the density, ui (i = 1, 2, 3) denotes the velocity component (u, v, and w,
respectively) in the ith direction (x, y, and z, respectively), E is the total energy, and p and δ

denote the pressure and the Kronecker delta, respectively. The equations are solved in three spatial
dimensions xi (i = 1, 2, 3). The forcing term c j drives the flow, with a value of c1 = −c0 tanh(ax2)
in the x1 direction and zero in other directions. The maximum value is set as c0 = 1. Here
−1 < x2 < 1; therefore, equivalent driving forces are applied in opposite directions to the upper
and lower halves of the domain which consequently result in the formation of a shear-forcing or
counter-flow condition with a constant flow rate. The coefficient a in the forcing term is positive
with a value of a = 100 in the present study. The viscous stress tensor (τi j) and the heat flux (q j)
are defined as

τi j = μ

Re

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3

∂uk

∂xk
δi j

)
, (4)

q j = −μ

(γ − 1)M2PrRe

∂T

∂x j
, (5)

where μ denotes the dynamic viscosity, T is the temperature, γ is the ratio of specific heats
with a value of γ = 1.4 here, and Pr is the Prandtl number with a value of Pr = 0.7 in this
study. Also, Re and M denote the Reynolds and Mach numbers based on a reference velocity
deduced from the forcing as u∗

ref = √
c0H/〈ρ〉b, where 〈ρ〉b is the bulk-averaged density, together

with the channel half height H and the wall temperature and viscosity. Angle brackets 〈 〉 denote
averages over the homogeneous spatial directions (x and z) and time throughout this study. The
additional subscript b here denotes an additional average over y. All quantities are nondimen-
sionalized by the bulk-averaged density, the reference velocity (u∗

ref ), and the wall temperature
and viscosity. The dynamic viscosity is calculated as μ = T 0.7. The temperature is calculated as
T = pγ M2/ρ. Here the pressure of an ideal Newtonian fluid is obtained using an equation of
state as

p = (γ − 1)
(
ρE − 1

2ρuiui
)
. (6)

A fourth-order finite-difference central scheme is used to discretize the governing equa-
tions which are recast in split skew-symmetric formulations to improve numerical stability
[26,27]. For nonperiodic boundaries a fourth-order one-sided boundary closure is used [28,29].
A low-storage three-stage explicit Runge-Kutta scheme [30] is used to advance the solution in
time.

C. Computational framework

The governing equations are discretized and solved using OpenSBLI, a PYTHON-based auto-
matic source code generation and parallel computing framework for finite-difference discretization
[31,32]. It automatically generates C codes for the Oxford Parallel library for Structured mesh
solver (OPS), an embedded domain specific language (DSL) with associated libraries and pre-
processors to generate parallel executables for applications on multiblock structured meshes
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TABLE I. DNS counter-flow channel cases.

Case M Re Domain Grid �t 〈u〉b 〈u〉p 〈M〉p Mtp

1 0.1 400 6 × 2 × 3 120 × 151 × 100 2 × 10−4 1.261 1.885 0.182 0.211
2 0.1 400 12 × 2 × 6 192 × 151 × 160 2 × 10−4 1.400 2.147 0.206 0.213
3 0.1 400 12 × 2 × 6 240 × 131 × 200 2 × 10−4 1.410 2.162 0.207 0.213
4 0.1 400 12 × 2 × 6 240 × 151 × 200 2 × 10−4 1.407 2.159 0.207 0.213
5 0.1 400 24 × 2 × 12 480 × 151 × 400 2 × 10−4 1.391 2.130 0.204 0.214
6 0.4 400 12 × 2 × 6 240 × 151 × 200 5 × 10−5 1.364 2.047 0.556 0.595
7 0.1 800 6 × 2 × 3 240 × 301 × 200 1 × 10−4 1.359 2.069 0.196 0.216
8 0.1 1600 6 × 2 × 3 480 × 601 × 400 5 × 10−5 1.401 2.124 0.198 0.217

[33,34]. OPS can target various computational architectures based on CUDA or OpenCL for
GPUs, MPI or OpenMP for CPUs and CUDA-MPI for multiple GPUs [34]. A comprehensive
discussion on the automatic derivation PYTHON interface of OpenSBLI and the automatic pro-
cedure of the OPS C code generation can be found in [31,32]. The results presented in this
numerical study are obtained using single (CUDA) and multiple (MPI + CUDA) NVIDIA P100
GPUs.

D. Problem specifications

In the present study various Mach and Reynolds number values, in addition to different channel
sizes and grid resolutions, are investigated. A list of test cases studied here is presented in Table I.
First, the effect of the domain size and the grid resolution on the turbulence characteristics and flow
structures are evaluated with M = 0.1 and Re = 400. The height of the channel is kept constant
and different domain sizes have different lengths in the streamwise x and spanwise z directions
as 6 × 2 × 3, 12 × 2 × 6, and 24 × 2 × 12. For the domain size study, a similar grid resolution
is maintained between the different cases (cases 1, 4, and 5 of Table I) as shown in Table II
based on the normalized cell sizes in different directions. The normalized wall distance value (ỹ+)
is defined as ỹ+ = ỹReτ , where ỹ is the coordinate in the y direction relative to the wall. The
normalized cell sizes in different directions, �x+, �ỹ+ (the height of the first grid point above
the wall), and �z+, are evaluated in a similar way to ỹ+. The friction Reynolds number is defined as
Reτ = 〈ρwall〉uτ H/〈μwall〉, where uτ = √〈τwall〉/〈ρwall〉. The effect of the grid resolution is studied
for the 12 × 2 × 6 domain size based on test cases 2, 3, and 4 of Table I.

The effect of the Reynolds number is investigated by conducting DNS of M = 0.1 counter-flow
cases with Re = 800 and Re = 1600 (cases 9 and 10) on the 6 × 2 × 3 domain size. Finally, the
friction Mach number is increased from M = 0.1 to 0.4 to introduce higher compressibility effects.

TABLE II. Computational parameters of the counter-flow cases.

Case M Re Reτ uτ �x+ �ỹ+ �z+ 〈u〉+
p

1 0.1 400 124.474 0.286 6.223 0.385 3.734 6.578
2 0.1 400 130.841 0.299 8.177 0.404 4.906 7.182
3 0.1 400 131.376 0.299 6.568 0.470 3.941 7.224
4 0.1 400 131.482 0.299 6.574 0.406 3.944 7.209
5 0.1 400 130.745 0.298 6.537 0.404 3.922 7.145
6 0.4 400 193.835 0.210 9.691 0.599 5.815 9.716
7 0.1 800 225.726 0.251 5.643 0.345 3.385 8.218
8 0.1 1600 407.819 0.219 5.097 0.310 3.058 9.671
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Various time steps from �t = 5 × 10−5 to 2 × 10−4 are used depending on the particular case as
provided in Table I. In Tables I and II, subscript p denotes the peak values of the flow quantities
listed. Also, 〈u〉b is the bulk velocity (the average of the absolute mean streamwise velocity over the
channel).

It should be noted that, in this numerical study, the single prime ′ denotes the turbulent fluc-
tuations which for an arbitrary flow quantity (φ) is defined as φ′ = φ − 〈φ〉. Moreover, for the
higher Mach number case, the Favre average is defined as {φ} = 〈ρφ〉/〈ρ〉 and the double prime
′′ denotes the turbulent fluctuation with respect to the Favre average defined as φ′′ = φ − {φ}.
For the Reynolds stresses, the Favre average is related to the Reynolds average as 〈ρ〉{u′′

i u′′
j } =

〈ρuiu j〉 − 〈ρ〉〈ui〉〈u j〉. Also, the mean Mach number is defined as 〈M〉 =
√

〈u〉2 + 〈v〉2 + 〈w〉2/〈a〉,
where a is the local speed of sound, while the turbulent Mach number is defined as Mt =√〈u′u′〉 + 〈v′v′〉 + 〈w′w′〉/〈a〉.

III. FLOW STRUCTURES AND STATISTICS

A. Flow structure

Contours of the instantaneous streamwise velocity fluctuation for the counter-flow case with the
24 × 2 × 12 domain size are plotted on three x-z planes at different heights in Fig. 2. Also, contours
of the instantaneous streamwise velocity (u) for the same counter-flow case on different x-y and y-z
planes are shown in Fig. 3. The horizontal planes of Fig. 2 with y = 0, y ≈ 0.791, and y ≈ 0.905 cut
through the channel centerline [Fig. 2(a)], the peak of the mean streamwise velocity [Fig. 2(b)], and
the near-wall region (ỹ+ ≈ 12) [Fig. 2(c)], respectively. At y = 0, elongated streaks with opposing
flow directions are seen. Towards the upper wall the streaks disappear, in contrast to conventional
channel flow where streamwise streaks would be observed near the wall. The high velocity of the
fluctuating centerline streaks is associated with significant ejections of the flow from one half into
the other half of the counter-flow channel, something which is clear in the velocity contours shown in
Fig. 3 and also the Q-criterion isosurfaces shown in Fig. 4. From the isosurfaces of Fig. 4, which are
colored by the magnitude of the instantaneous streamwise velocity, it is clear that the counter-flow
configuration produces highly complex three-dimensional vortical turbulent structures particularly
in the vicinity of the channel centerline. The existence of the elongated streamwise streaks seen in
the y = 0 snapshot of Fig. 2 are also recognizable from the spatial distribution of the Q isosurfaces
of Fig. 4. In fact, such complex vortical structures are mainly generated near the channel centerline,
where the counter-flowing streaks break down. A level of spanwise flow coherence is seen in Fig. 2
(also seen in similar plots for the case with a 12 × 2 × 6 domain size that is not shown here).
Isosurfaces of the pressure (not shown here) revealed that the 6 × 2 × 3 case exhibited a quite
different flow pattern with a large vortical structure spanning the entire domain but this was not
clearly present for wider domains. Quantitative comparisons will be presented in the next section,
but there is a substantial domain dependency in the flow structures between 6 × 2 × 3 and 12 × 2 ×
6 domain sizes.

Figure 5 shows the two-point correlations for the fluctuating part of the velocity components as a
function of the spanwise distance (z) at different channel heights for the test case with a 24 × 2 × 12
domain size. The correlations plotted in Fig. 5 are accumulated and averaged over a period of
t ≈ 120. The values are also spatially averaged over all grid points in the x direction at each y
location. The two-point correlation is evaluated in the spanwise direction with a reference point at
z = 0 as [35]

R(z)u′
iu

′
i
= 〈u′

i(0)u′
i(z)〉√

〈u′2
i (0)〉〈u′2

i (z)〉
. (7)

All two-point correlations decay to zero which indicates that the size of the channel is large
enough in the spanwise direction [36]. The case with a 12 × 2 × 6 domain size exhibits very close
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FIG. 2. Instantaneous field of the streamwise velocity fluctuation (u′ = u − 〈u〉) on x-z planes at different
channel heights for the counter-flow cases with M = 0.1, Re = 400, and a 24 × 2 × 12 domain size at t =
1400: (a) y = 0.0, (b) y ≈ 0.791 (ỹ+ ≈ 27), and (c) y ≈ 0.905 (ỹ+ ≈ 12).

flow characteristics to the case with a 24 × 2 × 12 domain size in terms of the flow structures
and mean and turbulent flow statistics, as we see in the next section. Therefore, it is selected to
investigate the effect of the Reynolds and Mach numbers with a reasonable computational cost in
this study.
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FIG. 3. Instantaneous field of the streamwise velocity (u) on various planes for the counter-flow case with
M = 0.1, Re = 400, and a 24 × 2 × 12 domain size at t = 1400. The red lines show the outlines of the x-z
plane cutting through the channel centerline (the figure shows the full height of the channel from y = −1 to
y = 1).

B. Mean flow and turbulence statistics

In this section the effect of the domain size and grid resolution is investigated using the test cases
with M = 0.1 and Re = 400 (cases 1–5 of Table I). Figure 6 shows a direct comparison between
those cases based on the mean flow streamwise velocity and the Reynolds stresses. Please note that
in the graphs provided in this paper, the markers (if applicable) are shown for a limited number
of grid points as specified in the captions. Except for the test case with the smallest domain size
(6 × 2 × 3) the other test cases exhibit very close profiles and peak values. Case 1 with a domain
size of 6 × 2 × 3 has lower peak streamwise velocity and mean Mach number by around 12.7% and
12.0%, respectively, compared to case 4 which has a larger domain size (12 × 2 × 6) but a similar
grid resolution. With respect to the turbulent Mach number, all cases exhibit very close profiles and
peak values around 0.21 as provided in Table I. With the peak mean Mach number also around
0.21, these cases can be considered effectively incompressible, albeit with approximately a 10%
variation in mean density and temperature that would need to be taken into account in modeling
this flow. Over the core of the channel (out to y = 0.75), the mean velocity shows an approximately
power-law behavior given by 〈u〉 = 3|y|0.8.

As shown in Fig. 6, for the streamwise Reynolds stress 〈u′u′〉, all cases with different grid
resolution show very similar profiles with comparable peak values. Comparing with the cases with
larger domain sizes, the small-domain case exhibits around 4.0% higher and 11.0% lower peak
values of the wall-normal 〈v′v′〉 and the spanwise 〈w′w′〉 Reynolds stresses, respectively. However,
〈u′u′〉 is more dominant than the other two normal stresses, and the overall outcome is the very
similar peak values of the turbulent Mach number, as shown in Table I.

An interesting feature of Fig. 6 is the exactly linear behavior of the shear stress and the
approximately linear behavior of the streamwise normal stress. As with conventional channel flow
the linear variation of the shear stress derives from the imposed forcing. Neglecting the viscous
terms, the momentum equation for such parallel mean flow reduces to

d

dy
〈ρuv〉 − tanh(ay) = 0. (8)
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FIG. 4. (a) Isosurfaces of the Q criterion with an isovalue of Qiso = 200 colored by the magnitude of the
streamwise velocity (u) for the counter-flow case with M = 0.1, Re = 400, and a 24 × 2 × 12 domain size at
t = 1400. (b) Zoomed view of the region within the dashed rectangle in (a). The legend limits are cut off for a
better visualization. The light violet lines in (a) show the outlines of the x-z plane cutting through the channel
centerline (the figure shows the full height of the channel from y = −1 to y = 1).

Integrating Eq. (8) gives

〈ρuv〉 − 1

a
ln(| cosh(ay)|) + C = 0, (9)

where the constant C can be obtained by applying a no-slip boundary condition at the walls, i.e.,
ρuv = 0 at y = ±1. For a = 10 and a = 100 the constant is C ≈ 0.930 and C ≈ 0.993, respectively.
Equation (9) is plotted in Fig. 7 for different a values along with 〈ρuv〉 obtained by the present DNS
for case 4 of Table I (M = 0.1 and Re = 400). The DNS has lower values compared to Eq. (9) due
to the viscous effects close to the walls, which were neglected. The DNS case has a friction velocity
of uτ ≈ 0.3 as shown in Table II which gives a wall shear stress of τwall ≈ 0.1. When this value is
added to the value of 〈ρuv〉 obtained by Eq. (9), the shifted curves can then be seen to match the
DNS, also showing that the statistical averaging time is long enough to get well-converged statistics.
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FIG. 5. The two-point correlations of u′, v′, and w′ at different channel heights for the counter-flow case
with a 24 × 2 × 12 domain size: (a) y = 0.0, (b) y ≈ 0.12, (c) y ≈ 0.35, (d) y ≈ 0.78, (e) y ≈ 0.90, and (f)
y ≈ 0.997 (first grid point above the wall).

The approximate linearity of the streamwise normal stress (〈u′u′〉) motivated an investigation of
the associated stress transport equation, which can be written as

0.0 = P11 − ε11 + �11 + Dt
11 + Dv

11, (10)

where P11, ε11, �11, Dt
11, and Dv

11 are production, dissipation, pressure strain, turbulent diffusion,
and viscous diffusion terms, respectively, defined as

P11 = −2〈u′v′〉∂〈u〉
∂y

, (11)

ε11 = 2

〈
du′

dx
τ ′

11 + du′

dy
τ ′

12 + du′

dz
τ ′

13

〉
, (12)

�11 = 2

〈
p′ du′

dx

〉
, (13)

Dt
11 = −d〈u′u′v′〉

dy
, (14)

Dv
11 = d

dy

(
1

Re

d〈u′u′〉
dy

)
. (15)

The above budget terms are plotted in Fig. 8 for the counter-flow cases with 6 × 2 × 3 and
12 × 2 × 6 domain sizes (M = 0.1 and Re = 400). The budget terms for a steady parallel mean
flow sum up to zero as demonstrated by the present DNS. It can also be seen in Fig. 8 that
increasing the domain dimensions does not have a significant influence on the budget terms. The
peak of the production term is at the channel centerline, which is consistent with the profiles of
the Reynolds stresses as shown in Fig. 6. The dissipation term is approximately constant across
the channel core, while the diffusion terms are only of consequence near the walls. The flow is
clearly far from an equilibrium state between production and dissipation, with the dissipation only
the fourth largest term near the centerline, where the main balance to the production comes from
the turbulent diffusion and the pressure strain term. From the perspective of the stress transport
equation, the linearity of the normal stress seems to be due to a complicated balance in the spatial
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FIG. 6. Mean velocity and Reynolds stresses of the counter-flow cases with M = 0.1 and Re = 400 on
different domain sizes and grid resolutions. Please note that for the 〈u〉+ panel, the data are averaged over the
two halves of the channel and ỹ+ is relative to the wall. The markers are shown for every ten grid points.

distribution of the production, pressure strain, and turbulent diffusion terms which change rapidly
in the wall-normal direction.

IV. EFFECT OF THE REYNOLDS NUMBER

A. Mean flow and turbulence statistics

Figure 9 shows a direct comparison between the cases with a 6 × 2 × 3 domain size, M = 0.1,
and Re = 400, 800, and 1600 (cases 1, 7, and 8 of Table I) based on various mean flow quantities,
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FIG. 7. A direct comparison between the exact solution of 〈ρuv〉 based on Eq. (9) and the present DNS
with M = 0.1 and Re = 400 (case 4 of Table I). The markers are shown for every ten grid points.

including the streamwise velocity 〈u〉, temperature 〈T 〉, density 〈ρ〉, and Mach number 〈M〉, and
also the turbulent Mach number Mt . Increasing Re does not significantly affect the mean flow.
For instance, the peak mean streamwise velocity increases by around 9.8% and 12.7% when Re
increases to 800 and 1600, respectively. Moreover, the peak turbulent Mach number only increases
by around 7.7% and 8.8% when Re increases to 800 and 1600, respectively. When plotted in wall
units it can be seen that the viscous sublayer extends outwards, but at the highest Re the peak 〈u〉+
remains under 10, increasing by 1.5 for each doubling of Re. The mean temperature is seen to be
more sensitive than the mean density, indicating that the mean pressure is increasing as the Reynolds
number increases. From the wall-normal momentum equation this would equate to a change in the
wall-normal turbulent stress, as seen in Fig. 10, which provides the Reynolds stresses. However, the
dependency of the mean temperature on the Reynolds number is quite small and the peak mean

FIG. 8. Energy budget of the streamwise normal stress 〈u′u′〉 and its terms for the cases with M = 0.1,
Re = 400 and (left) domain size of 6 × 2 × 3 and (right) domain size of 12 × 2 × 6. The markers are shown
for every ten grid points.
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FIG. 9. Mean velocity, temperature, density, and Mach number profiles and the turbulent Mach number
(Mt ) profile of the counter-flow cases with M = 0.1 and Re = 400, 800, and 1600. Please note that for the 〈u〉+

panel, the data are averaged over the two halves of the channel and ỹ+ is relative to the wall. The markers are
shown for every 10, 20, and 40 grid points for the cases with Re = 400, 800, and 1600, respectively.

temperature at the channel centerline increases by ∼3.5% as the Reynolds number is doubled.
On the other hand, the dependency of the mean density on the Reynolds is much lower (almost
not noticeable) compared to that of the mean temperature. All the normal stresses exhibit more
sensitivity to Re and their peak values noticeably increase as the Re increases, with values shown
in Table III. Both the normal stresses based on wall-parallel fluctuations show the development
of a near-wall peak that indicates the emergence of a separate mechanism of near-wall turbulence
production which will be studied further in the next section. The shear stress is again linear, in
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FIG. 10. Reynolds stresses for the counter-flow cases with M = 0.1 and Re = 400, 800, and 1600. The
markers are shown for every 10, 20, and 40 grid points for the cases with Re = 400, 800, and 1600, respectively.

accordance with the imposed forcing, with a slight increase in the centerline shear stress as Re
increases.

B. Flow structure

To complement the statistical picture obtained in the previous section, it is also useful to consider
some instantaneous flow fields. Figure 11 shows the instantaneous streamwise velocity on x-z planes
at different channel heights. At the lowest Re, the flow near the wall is buffeted by the turbulence
originating at the centerline. In particular it is noteworthy that significant regions of reverse flow are
present near the wall. This is something that develops in boundary-layer flows at high enough Re, as
the turbulence intensity in the logarithmic-law region of the boundary layer increases above that of
the self-sustaining near-wall turbulence. The present configuration contains this phenomenon even
at low Re.

TABLE III. Peak values of the Reynolds stresses of the cases with Re = 400, 800, and 1600.

Case Re 〈u′u′〉p 〈v′v′〉p 〈w′w′〉p −〈u′v′〉p

1 400 2.630 1.074 1.133 0.894
7 800 2.927 1.113 1.203 0.922
8 1600 2.959 1.211 1.317 0.943
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FIG. 11. Instantaneous field of the streamwise velocity (u) on x-z planes at different channel heights for the
counter-flow cases with M = 0.1 and Re = 400 (left), Re = 800 (middle), and Re = 1600 (right) at t = 400:
(a) y = 0.0 (channel center) and (b) ỹ+ = 12.

Additional smaller-scale streaky structures are visible at ỹ+ = 12 for the case with Re = 1600
(and less evidently on the same plane height for the case with Re = 800). These streaks are
superimposed on the large-scale unsteadiness but are of a scale that suggests they are connected
to the usual streaks seen at the edge of the viscous sublayer in turbulent channel and boundary
layer flows. For reference, given that Reτ is approximately 400, the near-wall streak width in the
y direction would be δy = 0.25 in the channel scale shown in Fig. 11. The additional turbulence
intensity from these features would explain the increases in 〈u′u′〉 and 〈w′w′〉 seen in Fig. 10. It
was previously noted that the peak 〈u〉+ is just under 10, with the peak at ỹ+ = 60. This is just
below what would be required to sustain a near-wall turbulence cycle, so it seems likely that the
streak here forms as a response to the outer-layer forcing. Additional evidence for this is that the
streaks that are visible in Fig. 11 clearly align with the imposed unsteady flow, rather than being
strictly aligned with the x axis. Nevertheless, it appears that one would not have to go much higher
in Re (perhaps one more doubling) before a self-sustaining near-wall turbulence cycle would be
present, giving an additional means of turbulence production on top of the main inflectional shear
layer.

V. EFFECT OF THE MACH NUMBER

Figure 12 shows a direct comparison between the cases with a 12 × 2 × 6 domain size and
M = 0.1 and 0.4 (cases 4 and 6 of Table I) based on various mean flow quantities, including
the streamwise velocity {u}, temperature 〈T 〉, density 〈ρ〉, and Mach number 〈M〉, and also the
turbulent Mach number Mt . Additionally, Fig. 13 provides the Favre Reynolds stresses of the same
counter-flow cases. As shown in Table II, when M increases from 0.1 to 0.4 the friction Reynolds
number, Reτ , increases by around 47.0%. Also, the friction velocity, uτ , reduces by around 29.7%,
and the peak mean normalized velocity increases by 34.8%. The flow significantly heats up when
M increases; for instance, the peak mean temperature is around 2.3 times higher for the case
with M = 0.4 compared to the case with M = 0.1. Mean and turbulent Mach numbers also show
significant increases when M increases. The peak turbulent Mach number increases from 0.21 to
0.6 when M increases from 0.1 to 0.4. With respect to the normal stresses, as shown in Fig. 13,
by increasing the Mach number, the peak streamwise stress increases and the peaks of the other
two normal stresses reduce. For instance, as shown in Table IV, the peak 〈ρ〉{u′′u′′} increases by
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FIG. 12. Mean velocity, temperature, density, and Mach number profiles and the turbulent Mach number
(Mt ) profile of the counter-flow cases with M = 0.1 and 0.4 (Re = 400). Please note that for the 〈u〉+ panel,
the data are averaged over the two halves of the channel and ỹ+ is relative to the wall. The markers are shown
for every ten grid points.

around 0.5% when M increases from 0.1 to 0.4. The Favre shear stress 〈ρ〉{u′′v′′} remains almost
intact when the Mach number increases and varies linearly with y as also seen in the previous
sections.

Figure 14 shows the vorticity fluctuation (ω′ =
√

〈ω2
x + ω2

y + ω2
z 〉) and the components of the

vorticity turbulent fluctuations for the cases with different Mach numbers. By increasing the Mach
number, values of the vorticity fluctuation and the vorticity turbulent fluctuations reduce noticeably.
This trend is comparable to the relationship between the spanwise and wall-normal Reynolds
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FIG. 13. Favre Reynolds stresses for the counter-flow cases with M = 0.1 and 0.4 (Re = 400). The markers
are shown for every ten grid points.

stresses and the Mach number as seen in Fig. 13. The vorticity reduction is a sign for the reduction
of three-dimensional structures in the flow and hence turbulence stabilization.

In a conventional plane channel flow, Coleman et al. [20] were able to reach turbulent Mach
numbers around 0.35 for which the changes relative to incompressible flow were explainable based
on the mean density changes. The higher fluctuating Mach number found in the counter-flow
channel proposed in the present study suggests more scope for exploring true compressibility
effects. Indeed, a further increase in the Mach number to M = 0.7 was found to give turbulent flow
containing eddy shocklets with a turbulent Mach number beyond Mt = 0.9. This then necessitates a
change to a shock-capturing numerical method requiring additional verifications, hence being better
deferred to a future publication. Mild compressibility effects are observed up to M = 0.4 which can

be quantified using the dilatation defined as θ = ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
. Specifically, negative values of

the dilatation (below a certain threshold) can be associated with the existence of compression waves
and/or shocklets [37,38]. Figure 15 shows the probability density function (PDF) of the dilatation

TABLE IV. Peak values of the Favre stresses of the counter-flow cases with Re = 400 and M = 0.1 and 0.4.

Case M 〈ρ〉{u′′u′′}p 〈ρ〉{v′′v′′}p 〈ρ〉{w′′w′′}p −〈ρ〉{u′′v′′}p

4 0.1 2.638 1.019 1.274 0.875
6 0.4 2.650 0.847 1.121 0.855
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FIG. 14. Vorticity fluctuation and the components of the vorticity turbulent fluctuations of the counter-flow
cases with M = 0.1 and 0.4 (Re = 400). The markers are shown for every ten grid points.

FIG. 15. Probability density of the dilatation on an x-z plane at y ≈ 0.51 and t = 1400 for the counter-flow
cases with M = 0.1 and 0.4 (Re = 400).
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(θ ) on an x-z plane at y ≈ 0.51 for the counter-flow cases with M = 0.1 and 0.4. It is observed that
the dilatation trend widens when moving from M = 0.1 to M = 0.4 but stays almost symmetric,
indicating that shocklets are not detected in the flow.

VI. CONCLUSIONS

A counter-flow turbulent channel configuration, amenable to simulation and modeling, has
been introduced. The counter-flow channel has periodic streamwise and spanwise boundaries and
isothermal no-slip walls and is driven by a mean pressure gradient introduced by adding a forcing
term to the streamwise momentum and total energy equations. The forcing term was a tangent
hyperbolic function that forced the flow in opposite directions on the upper and lower halves of
the channel. Direct numerical simulations of the counter-flow configuration were performed for
combinations of various domain sizes (6 × 2 × 3, 12 × 2 × 6 and 24 × 2 × 12), grid resolutions,
friction Mach numbers (M = 0.1 and 0.4), and Reynolds numbers (Re = 400, 800, and 1600). The
OpenSBLI framework, a high-order finite-difference automatic code generation computational fluid
dynamics framework, was used to perform the high-fidelity simulations.

The counter-flow results showed a linear shear-stress behavior consistent with the forcing and
also an approximately linear streamwise normal stress behavior over 75% of the channel width.
In some sense this mimics high Reynolds turbulent boundary layers giving reverse flow near the
wall, with near-wall streaks aligned with disturbances further away from the wall. As the Reynolds
number increased, the near-wall streaks became more pronounced, leading to local peaks in the
streamwise and spanwise normal stresses. With an increase of the Mach number up to M = 0.4,
it was shown that turbulent Mach numbers up to 0.6 could be obtained. Thus the counter-flow
configuration seems to provide a useful framework to study some of the fundamental physics
associated with high Reynolds number and high Mach number turbulent flows, as well as being
a model problem exhibiting a high degree of sustained turbulent mixing.

The DNS counter-flow channel results discussed in this paper are openly available in Zenodo
[39]. The OpenSBLI code is available at [40].
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[37] R. Samtaney, D. I. Pullin, and B. Kosović, Direct numerical simulation of decaying compressible
turbulence and shocklet statistics, Phys. Fluids 13, 1415 (2001).

[38] J. Wang, T. Gotoh, and T. Watanabe, Shocklet statistics in compressible isotropic turbulence, Phys. Rev.
Fluids 2, 023401 (2017).

[39] See, 10.5281/zenodo.4635349.
[40] See, https://opensbli.github.io.

094603-21

https://doi.org/10.1016/j.cpc.2021.108063
https://doi.org/10.1016/j.jpdc.2019.04.019
https://doi.org/10.1063/1.4923042
https://doi.org/10.1017/S0022112099008976
https://doi.org/10.1063/1.1355682
https://doi.org/10.1103/PhysRevFluids.2.023401
https://doi.org/10.5281/zenodo.4635349
https://opensbli.github.io

