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Particles transported in fluid flows, such as cells, polymers, or nanorods, are rarely
spherical. In this study, we numerically and theoretically investigate the dispersion of
an initially localized patch of passive elongated Brownian particles in a two-dimensional
Poiseuille flow, demonstrating that elongated particles exhibit an enhanced longitudinal
dispersion. In a shear flow, the rods translate due to advection and diffusion and rotate
due to rotational diffusion and their classical Jeffery’s orbit. The magnitude of the en-
hanced dispersion depends on the particle’s aspect ratio and the relative importance of
its shear-induced rotational advection and rotational diffusivity. When rotational diffusion
dominates, we recover the classical Taylor dispersion result for the longitudinal spreading
rate using an orientationally averaged translational diffusivity for the rods. However, in
the high-shear limit, the rods tend to align with the flow and ultimately disperse more due
to their anisotropic diffusivities. Results from our Monte Carlo simulations of the particle
dispersion are captured remarkably well by a simple theory inspired by Taylor’s original
work. For long times and large Péclet numbers, an effective one-dimensional transport
equation is derived with integral expressions for the particles’ longitudinal transport speed
and dispersion coefficient. The enhanced dispersion coefficient can be collapsed along a
single curve for particles of high aspect ratio, representing a simple correction factor that
extends Taylor’s original prediction to elongated particles.

DOI: 10.1103/PhysRevFluids.6.094501

I. INTRODUCTION

Understanding the transport of particles in fluid flow has led to the development of novel particle
separation techniques, mixing strategies, and laboratory-on-a-chip devices [1,2]. In many practical
cases of interest, the geometry of the particles themselves may be complex [3], and hence it is
important to understand how their shape [4] influences their bulk transport. Herein we study how
the elongated shape of passive, rodlike Brownian particles affects their dispersion in a steady, two-
dimensional Poiseuille flow.

In a seminal paper [5], Taylor quantified the dispersion of spherical solute particles subject to
Poiseuille flow in a cylindrical pipe. In Taylor’s original physical picture (see Fig. 1), when a
uniform patch of a solute is injected in a laminar flow, it spreads due to the combined effects
of advection and diffusion. At early times, the solute patch mimics the shape of the parabolic
flow profile, inducing lateral concentration gradients that drive net lateral transport by molecular
diffusion. Ultimately, the shear flow enhances the spreading of the solute, a phenomenon now known
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FIG. 1. Illustration of the classical Taylor dispersion process. At early times (t � td ) a plug of noninter-
acting Brownian tracer particles mimics the shape of the flow. The shear flow induces lateral concentration
gradients that molecular diffusion tends to minimize. The overall effect at late times (t � td ) is an enhanced
diffusive-like longitudinal spreading of particles as the solute patch is advected downstream at the mean speed
of the fluid flow.

as Taylor dispersion. Later Aris expanded on Taylor’s results in more rigorous mathematical detail
using the method of moments, and thus this phenomenon is also frequently referred to as Taylor-Aris
dispersion [6]. Perhaps the most complete mathematical treatment is due to Frankel and Brenner [7],
who derived a generalized theory of Taylor-Aris dispersion. This robust framework has since been
used to solve a wide class of dispersion problems, including the dispersion of active matter in shear
flow [8–11]. Of most relevance to the present work, Peng and Brady studied the upstream swimming
and dispersion of active Brownian particles in a two-dimensional Poiseuille flow with one degree
of rotational freedom for spherical and rod-shaped particles, demonstrating enhancement of the
dispersion factor for active Brownian particles due to their swimming (i.e., activity) [12]. Such an
enhancement was observed experimentally for bacteria in porous media [13]. Elsewhere, the effect
of channel geometry on the dispersion of passive tracers has been well documented to control or
enhance the dispersion properties [14–17], while the effect of the dispersion factor on pulsatile flow
has also been documented [18,19]. Previous studies have also focused on the Brownian motion of
ellipsoidal [20,21] and boomerang-shaped particles [22] in the absence of external flow. However,
despite these advances, the effect of a passive particle’s shape on dispersion in the presence of flow
has received relatively little attention.

It is now well known that confined rod-shaped particles or fibers have a tendency to migrate to-
wards channel walls when subject to a background shear flow [23–27]. This effect was characterized
by Nitsche and Hinch [28], who studied the lateral migration velocity and resultant distribution of
rod-shaped particles in quasi-two-dimensional shear flow, assuming a uniform particle concentration
in the longitudinal direction. In complement to this prior work, we characterize the longitudinal
transport properties of an initial concentration of confined Brownian rods in two-dimensional
Poiseuille flow, using both Monte Carlo simulations and theoretical considerations. The rods are
noninteracting Brownian tracers and modeled as elongated ellipsoids with the neglect of wall-based
hydrodynamic effects. Our study reveals and quantifies two main results: a reduced mean transport
speed for the rods compared to the mean speed of the fluid, and an enhanced rate of longitudinal
dispersion compared to spherical particles.

In the remainder of this section, we review Taylor’s classical analysis applied to spherical
particles in two-dimensional Poiseuille flow [5], followed by a discussion of extra physical con-
siderations relevant for elongated particles. In Sec. II we describe our Monte Carlo method for
calculating the dispersion coefficient for ellipsoidal particles in a two-dimensional Poiseuille flow.
We then turn to a simplified theoretical analysis in the spirit of Taylor’s original calculation in
Sec. III, deriving semianalytical expressions for the mean speed of the particles and the dispersion
coefficient, in excellent agreement with the Monte Carlo simulations. We conclude with a summary
of our results in Sec. IV.
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TAYLOR DISPERSION OF ELONGATED RODS

Consider a parallel plate channel separated by a distance of 2a with a fully developed Poiseuille
flow with a maximum velocity of U at y = 0, as depicted in Fig. 1. For isotropic solute particles
with a characteristic diffusion constant D, a diffusive timescale can be defined as td = a2/D, which
is the characteristic time for a solute particle to travel from the center of the channel to the walls
purely through molecular diffusion. There are two primary mechanisms of particle transport in this
problem, advection and diffusion, the relative importance of which is characterized by the Péclet
number

Pe = Ua

D
. (1)

For long times, specifically t � td , and large Pe (advection dominated), Taylor characterized the
laterally averaged concentration profile Cm(x, t ) with an effective dispersion constant κs that depends
on the properties of the flow, channel geometry, and particles [5]. Taylor’s original calculation was
performed for a circular pipe, but the same analysis can be readily applied to describe dispersion
in a two-dimensional channel (i.e., infinite parallel plates). Nondimensionalizing time using the
diffusive time scale td , and the lengths x and y using the half-width a of the channel, we find the
dimensionless form of the laterally averaged transport equation to be the one-dimensional advective-
diffusion equation

∂Cm

∂t
+ 2

3
Pe

∂Cm

∂x
= κs

∂2Cm

∂x2
, (2)

where the dimensionless effective dispersion constant is

κs = 8

945
Pe2. (3)

The dimensional effective dispersion constant κ ′
s is

κ ′
s = Dκs = 8

945

U 2a2

D
. (4)

As Pe � 1, Eqs. (2) and (3) imply a significant increase in the longitudinal spreading rate
resulting from the parallel shear flow. Relevant to more moderate Péclet numbers, Aris’s rigor-
ous expansion [6] introduced a correction to the expression of the effective dispersion constant,
which accounts for the additional contribution due to the presence of molecular diffusion in the
longitudinal direction:

κ ′
s∗ = D(κs + 1). (5)

In the present study, we focus on the advection-dominated regime (Pe � 1), coinciding with that
originally considered by Taylor for spherical particles. We also note from Eq. (4) that the effective
dispersion coefficient is inversely related to the molecular diffusion constant of the particle. In
Taylor’s analysis, the contribution of molecular diffusion to the expression for the effective dis-
persion, κs, arises exclusively from the lateral (y) diffusion term in the advection-diffusion equation
governing the concentration of particles. Thus, in scenarios where the diffusion may be anisotropic
(for example, when the solute particles are nonspherical or when their diffusivity depends on y), the
lateral diffusion coefficient, Dy, is the appropriate value to consider in such a scaling to estimate
the effective dispersion constant. We will now discuss important quantities pertaining to ellipsoidal
particles in a fluid.

The diffusion constants for an ellipsoidal particle constrained to translate and rotate in a
plane follow from the Stokes-Einstein relation [20,21,29]. Rotational and translational diffu-
sion for an ellipsoidal particle are decoupled due to its symmetry [30–32]. The translational
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FIG. 2. (a) Zoomed in schematic of a channel with a shear rate γ̇ (y). The figure also depicts the coordinate
axes for each particle in the channel and its translational diffusivities along its perpendicular and parallel
directions along with the rotational diffusivity. (b) The definition of the semimajor axis ap and the semiminor
axis bp.

diffusion constants D‖ and D⊥ for a prolate ellipsoid are labeled in Fig. 2 and are given by
[33,34]

D‖ = kbT

16πμap
p

[
− 2p

p2 − 1
+ 2p2 − 1

(p2 − 1)3/2 log

(
p +

√
p2 − 1

p −
√

p2 − 1

)]
, (6)

D⊥ = kbT

16πμap
p

[
p

p2 − 1
+ 2p2 − 3

(p2 − 1)3/2
log(p +

√
p2 − 1)

]
, (7)

where kb is Boltzmann’s constant, T is temperature, p ≡ ap/bp is the ratio of the semimajor and
semiminor axes of the particle, and μ is the dynamic viscosity. Note that for prolate ellipsoids,
p > 1, and D‖ → 2D⊥ in the “slender-body” limit p → ∞. We define an orientationally averaged
diffusivity as

D̄ = D⊥ + D‖
2

. (8)

Figure 3(a) shows how D⊥ and D‖ depend on the aspect ratio. A particle diffuses more readily along
its long axis than against it. The rotational diffusion constant is [35,36]

Dθ = 3kbT

16πμa3
p

p4

p4 − 1

[
(2p2 − 1) log(p +

√
p2 − 1)

p
√

p2 − 1
− 1

]
. (9)

FIG. 3. (a) Plot of D⊥/D̄ (dash-dotted curve) and D‖/D̄ (dotted curve). (b) The dimensionless rotation rate
for different aspect ratios as a function of the angle θ between the rod axis and the flow direction. In the absence
of Brownian motion, the rods rotate the fastest when aligned normal to the direction of flow and rotate most
slowly when aligned in the flow direction, spending more time in each revolution aligned with the flow.
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TAYLOR DISPERSION OF ELONGATED RODS

We note that Eqs. (6), (7), and (9) are commonly used to study the Brownian motion of ellipsoids
confined to one degree of rotational freedom [20,21].

Ellipsoidal particles rotate in a shear flow with a nonuniform rotational velocity in so-called
Jeffery’s orbits [37]. For a prolate spheroid confined to one degree of rotational freedom in the
plane within a two-dimensional Stokes flow, the rotation rate ω is a function of its angle θ relative
to the flow [38], specifically

ω(θ ) = γ̇
p2 sin2 θ + cos2 θ

p2 + 1
, (10)

where γ̇ is the local shear rate. In the slender-body limit (p → ∞), the expression of the rotation
rate reduces to ω(θ ) = γ̇ sin2 θ . Equation (10) is plotted in Fig. 3(b), which shows that elongated
particles (p > 1) rotate fastest along the direction of the flow and rotate slowest normal to the
direction of flow. Therefore, rods tend to spend more time aligned with the flow during a complete
orbit. For a parabolic velocity profile, the shear rate is a linear function across the channel with the
largest magnitude at the walls, as depicted in Fig. 2. The rotational degree of freedom prompts us to
define a rotational Péclet number

Per = U

aDθ

(11)

characterizing the ratio of the shear rate to rotational diffusion. For the case of a linear Couette
shear flow, previous work has focused on describing how weak Brownian motion affects the
three-dimensional Jeffery’s orbits [39]. More recent work has explored the purely rotational analog
of Taylor dispersion in which shear leads to a higher dispersion coefficient for rotation [40,41].
As mentioned previously, for the case of a Poiseuille flow, ellipsoidal particles (unlike spherical
particles) are known to migrate to the channel walls due to their anisotropic diffusivities and
different alignments at different local shear rates [23,26–28].

II. MONTE CARLO SIMULATION

In this section, we model and simulate the dynamics of individual Brownian rods subject to a
Poiseuille flow to deduce macroscopic statistical quantities, specifically the mean particle speed
and dispersion coefficient using Monte Carlo simulation. The results show an enhanced dispersion
for elongated particles and allow us to establish a simple physical picture for the phenomenon
and its parametric dependencies. The system is assumed to be in the dilute limit where particle-
particle interactions are neglected. We note that this assumption becomes more accurate as time
progresses and the solute disperses. To see how low the concentration must be to avoid alignment
of the rods due to hard-core interactions, consider tobacco mosaic virus (TMV), with major axis
ap = 300 nm, minor axis bp = 20 nm, and aspect ratio of p = 15. The TMV is considered to be in
an isotropic phase when the volume fraction �s � 0.1 [42], which corresponds to a concentration
of approximately C � 0.1 g/cm3.

A. Method

We employ a Monte Carlo method to simulate the advection, translational diffusion, and rota-
tional diffusion of rods in a two-dimensional channel with Poiseuille flow u(y) where

u(y) = U

[
1 −

(
y

a

)2]
x̂ = u(y)x̂. (12)

We write the governing equations as stochastic differential equations since these equations directly
correspond to our numerical approach (see also [15]), but our equations could equally well be
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written in Langevin form [20]. The translational displacements of the particle in the laboratory
frame are given by

dx = u(y(t ))dt + √
2D‖dW‖ cos θ (t ) −

√
2D⊥dW⊥ sin θ (t ), (13)

dy = √
2D‖dW‖ sin θ (t ) +

√
2D⊥dW⊥ cos θ (t ). (14)

The white noise increments dW⊥ and dW‖ have zero mean and variance dt and are independent at
different times. Similarly, the stochastic differential equation for the particle orientation is

dθ = ω(y(t ), θ (t ))dt +
√

2DθdWθ , (15)

with the rotational velocity given by Eq. (10) for the flow (12),

ω(y, θ ) = −2U
y

a2

p2 sin2 θ + cos2 θ

p2 + 1
. (16)

The white noise increments dWθ have zero mean and variance dt .
We nondimensionalize equations (12)–(16) via x̃ = x/a, t̃ = t/td = t/(a2/D̄), ũ = u/U , ω̃ =

ωa/U and D̃ = D/D̄. Dropping the tildes, Eqs. (13)–(15) become

dx = Pe u(y(t )) dt + √
2D‖dW‖ cos θ (t ) −

√
2D⊥dW⊥ sin θ (t ), (17)

dy = √
2D‖dW‖ sin θ (t ) +

√
2D⊥dW⊥ cos θ (t ), (18)

dθ = Pe ω(y(t ), θ (t ))dt +
√

2
Pe

Per
dWθ , (19)

where Pe = Ua/D̄ [Eq. (1)] and Per = U/(aDθ ) [Eq. (11)]. The initial condition for the simulation
is n = 106 particles uniformly distributed across y and across all orientations θ , but with a Gaussian
distribution in x of unit variance centered at x = 0. The particles are noninteracting and evolve
independently. The boundary conditions at the walls are billiard-like. For a collision at a wall, the
center-of-mass trajectory of a particle has an angle of incidence equal to the angle of reflection, and
the orientation is assumed unchanged. The influence of this orientation collision condition on the
global long time statistics of the Monte Carlo simulation is examined in detail in Appendix A. To
solve the governing equations for each particle, we use Euler time stepping with a dimensionless
time step of dt = 4 × 10−5. Consequently, the typical magnitude of the white noise is therefore
much less than the width of the channel, so that it is exceedingly rare for there to be more than
one wall collision in a time step. Since the Monte Carlo evolution is implemented at each time step
on all the particles, the code is parallelized over many CPUs to reduce computational time. The
complete Monte Carlo simulation code is included as Supplemental Material [43]. Although it is
a slow method with a convergence rate that scales with 1/

√
n, the gridless stochastic differential

equation approach is convenient for combining and capturing all statistics [44–46].
We compute ensemble averages by carrying out r runs of the motion of the n particles. For

the results reported here we take r = 100. The time-dependent mean and the variance of the x
components of all n/r particles in a given run are calculated as

μi(t ) = r

n

n/r∑
j=1

xi, j (t ) and σ 2
i (t ) = r

n

n/r∑
j=1

[xi, j (t ) − μi(t )]2, (20)

and then these quantities are averaged over all runs yielding

μ̄(t ) = 1

r

r∑
i=1

μi(t ) and σ̄ 2(t ) = 1

r

r∑
i=1

{
σ 2

i (t ) + [μi(t ) − μ̄(t )]2}. (21)
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FIG. 4. (a) Monte Carlo results for the variance of the x-position of ellipsoidal particles (p = 1000) and
spherical particles at Pe = 104 for different Per as a function of dimensionless time. The rods disperse along
x like spheres when rotational Brownian motion dominates (Per � 1). The dispersion of rods is larger when
shear dominates (Per � 1), i.e., when the rod’s orientations follow Jeffery’s orbits. The complete theoretical
prediction for the variance of spherical particles in a two-dimensional channel has been reported previously and
is also shown here for comparison (dashed line) [16]. (b) Monte Carlo results for the orientational distribution
Pθ (θ ) for particles over the channel’s length. The rods spend more time aligned with the flow direction when
Per � 1.

When n → ∞, the mean particle speed and dispersion coefficient are given by

um = dμ̄

dt

∣∣∣∣
t→∞

and κ = 1

2

d σ̄ 2

dt

∣∣∣∣
t→∞

, (22)

respectively. In practice, there are transients in the dispersion that decay after a dimensionless time
of approximately 0.25td [14,15]. Therefore, to calculate the effective diffusivity, we fit the computed
variance to an expression of the form

σ 2(t ) = s − a1(1 − e−a2t ) + 2κt, (23)

using a least-squares method, where s = 1 is the initial variance in x. Likewise, we fit the mean
speed of the particles to

μ(t ) = b0 + b1e−b2t + umt, (24)

to find the mean speed um at long times.

B. Results

In Taylor’s original picture, flow enhances spreading due to differences in the flow speed across
the channel. Our simulations reveal that this enhancement is, in fact, increased for rodlike particles,
as shown in Fig. 4(a). Physically, spherical particles rotate uniformly in shear. However, rodlike
particles have a nonuniform rotation rate [Fig. 3(b)] and thus spend more time aligned with the
flow than perpendicular to the flow. This alignment effect becomes stronger as the rotational Péclet
number, Per, increases [see Fig. 4(b)]. For small values of Per, the rod-shaped particles rotate
randomly and spread identically to spherical particles. As the shear rate increases, the strong
alignment in the direction of the flow causes the perpendicular “side” of the particles (which has a
lower diffusivity than spherical particles) to diffuse across the shear layers. We can be somewhat
more quantitative by noting that the effective lateral diffusivity Dy (defined more precisely in the
next section) is smaller for rods than spheres. Thus, since we expect κ ′ ∝ U 2a2/Dy, and since
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FIG. 5. (a) Effective diffusivity, κ , of rod-shaped particles, normalized by the effective diffusivity for
spheres, as a function of Per for various values of Pe. The triangles represent Monte Carlo simulations for
Pe = 100, the circles represent Pe = 1000, and the squares represent Pe = 10 000. (b) Variation of normalized
effective diffusivity with aspect ratio p. In both panels, the dash-dotted line represents the maximum theoretical
value of dispersion for the corresponding aspect ratio. The maximum possible dispersion constant is estimated
when all rod-shaped particles are aligned in the direction of the flow and is defined as per Eq. (26).

κ ′
s ∝ U 2a2/D, we have

κ

κs
= κ ′

κ ′
s

∼ D

Dy
. (25)

Our Monte Carlo results for the effective diffusivity are shown as a function of rotational Péclet
number in Fig. 5 for various values of the Péclet number [Fig. 5(a)] and aspect ratio [Fig. 5(b)]. Since
all of the curves collapse in Fig. 5(a), we can conclude that the Pe2 scaling holds for rod-shaped
particles at Pe � 100, as is the case for spherical particles [Eq. (3)]. Figure 5(b) demonstrates that
at low Per, rod-shaped particles behave like spherical particles as rotational diffusion dominates,
and the rods are oriented randomly. Furthermore, as the Per increases, we see the rods tend to align
themselves in the direction of the flow due to their Jeffery’s orbit and ultimately spread more. Rods
with larger aspect ratios have a stronger alignment and a lower perpendicular diffusion constant
(D⊥), and thus spread more.

For a given set of parameters, the maximum possible value of dispersion anticipated, κm, can be
estimated by simply assuming all of the particles maintain perfect alignment with the flow. Thus
Dy = D⊥ and

κm

κs
= D̄

D⊥
. (26)

The ratio κm/κs depends solely on the aspect ratio of the rod, p, and increases monotonically from
κm/κs = 1 when p = 1 (spherical particle) to κm/κs = 3/2 as p → ∞ (slender body limit). Figure 6
shows the maximum possible dispersion as a function of the aspect ratio and allows us to define a
region where we expect to find values of κ in practice.

We note that the results of the Monte Carlo simulations presented here make physical sense only
for Per < Pe, as we now describe. The ratio of Per = U/aDθ and Pe = Ua/D̄ is the ratio of the
rotational and translational diffusive timescales

Per

Pe
= D̄

a2Dθ

∼ a2
p

a2
� 1. (27)

Since we focus on the physically relevant regime where ap � a, this condition suggests restricting
our attention to Per � Pe, a fact we will exploit in the following section to derive semianalytical
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TAYLOR DISPERSION OF ELONGATED RODS

FIG. 6. The maximum possible dispersion κm normalized by κs as a function of aspect ratio p. The shaded
area corresponds to the region of possible values of κ/κs for all p and Per.

expressions for the dispersion coefficient, κ , and mean particle speed, um. For example, an elongated
TMV particle with ap = 300 nm and p = 15 in a channel with a = 2 μm flowing in water with a
velocity U = 1 mm/s will have Per = 10 and Pe = 750, and is therefore likely to exhibit enhanced
dispersion.

III. THEORETICAL ANALYSIS

In this section, we generalize Taylor’s continuum analysis of the dispersion of spherical particles
in a shear flow to ellipsoidal particles. We write the Fokker-Planck equation for the probability
density function for the particles’ positions and orientations. We then use an asymptotic analysis to
determine an effective one-dimensional transport equation with an effective dispersion coefficient
and the longitudinal transport speed analogous to Eq. (2). We note that alternative analytical
approaches could be employed to arrive at similar quantities of interest [7,10]. In the present work,
we restrict our attention to the physically relevant regime where Per � Pe, which facilitates a
simpler analysis in the spirit of Taylor’s original calculation, while still demonstrating excellent
quantitative agreement with the full Monte Carlo simulation.

A. Conservation equation: The Fokker-Planck model

We define the probability distribution by P(x, θ, t ) = C(x, θ, t )/N , where C(x, θ, t )
x
y
θ

gives the number of solute particles in a small region of dimensions 
x
y
θ about (x, y, θ ) at time
t , and N is the total number of particles. Conservation of particles implies the probability distribution
obeys the Fokker-Planck equation

∂P

∂t
+ ∇ · J + ∂

∂θ
Jθ = 0, (28)

where the translational flux is J and the rotational flux is Jθ . Each of these fluxes has contributions
from both advection and diffusion:

J = uP−D · ∇P and Jθ = ωP−Dθ

∂P

∂θ
, (29)

with u given by the flow in Eq. (12), and ω given by the rotation rate of the Jeffery’s orbit in Eq. (10).
The diffusion tensor D is given by [47]

D(θ ) = e eD‖ + (I − e e)D⊥, (30)
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where e = cos θ ex + sin θ ey. In the xy (laboratory) basis, the components of the translational
diffusion tensor are[

Dxx(θ ) Dxy(θ )
Dxy(θ ) Dyy(θ )

]
=

[
D‖ cos2 θ + D⊥ sin2 θ (D‖ − D⊥) sin θ cos θ

(D‖ − D⊥) sin θ cos θ D‖ sin2 θ + D⊥ cos2 θ

]
. (31)

Thus, the conservation equation (28) can be written as

∂P

∂t
= −u(y)

∂P

∂x
+ Dxx(θ )

∂2P

∂x2
+ 2Dxy(θ )

∂2P

∂x∂y
+ Dyy(θ )

∂2P

∂y2
+ Dθ

∂2P

∂θ2
− ∂

∂θ
[ω(y, θ )P]. (32)

The symmetry of the rod-shaped particles makes the probability distribution periodic in θ , with
P(x, θ + π, t ) = P(x, θ, t ). We also demand no-flux boundary condition at the walls [28,48], hence

(J · ŷ) = Dxy(θ )
∂P

∂x
+ Dyy(θ )

∂P

∂y
= 0 at y = ±a. (33)

We consider dispersion of solute relative to a frame traveling with an a priori unknown mean
particle speed um, prompting the change of variables X = x − umt . In classical Taylor dispersion
for spherical particles, um coincides with the mean speed of the flow, specifically um = 2U/3. In
preparation for the asymptotic procedure outlined in Sec. III B, Eqs. (32) and (33) in the Lagrangian
frame are nondimensionalized via the following scalings (as in the Monte Carlo):

t = a2

D̄
t̂, u = Uû, Di j = D̄D̂i j, (X, y) = a(X̂ , ŷ), ω = U

a
ω̂.

Employing these scalings leads to the dimensionless conservation equation

ε
∂P

∂ t̂
= −Per(û(ŷ) − ûm)

∂P

∂X̂
+ εD̂xx(θ )

∂2P

∂X̂ 2
+ 2εD̂xy(θ )

∂2P

∂X̂∂ ŷ

+ εD̂yy(θ )
∂2P

∂ ŷ2
+ ∂2P

∂θ2
− Per

∂

∂θ
[ω(ŷ, θ )P] (34a)

and zero-flux boundary condition

εD̂xy(θ )
∂P

∂X̂
+ D̂yy(θ )

∂P

∂ ŷ
= 0 at ŷ = ±1, (34b)

where we have defined ε = Per/Pe � 1, consistent with the physically relevant regime [Eq. (27)].
Recall that our focus in the present work is on Taylor’s regime wherein Pe � 1. Henceforth, we
drop the hat decorations denoting dimensionless quantities to reduce clutter.

B. The dispersion coefficient and mean particle speed

Our goal is to derive an effective transport equation for long times, analogous to Eq. (2), for the
particle concentration valid long after transverse diffusion has spread the solute across the width
of the channel. Taylor’s original result [5] similarly describes the concentration evolution in long
time, specifically after the dispersing plug’s length is much larger than Utd = a Pe. Consistent with
Taylor’s condition and our assumptions hitherto, we introduce the slow space variable ξ = ε2X
for our modified Taylor dispersion analysis. Our Monte Carlo simulations indicate an enhanced
dispersion factor that scales with Pe2 (as in classical Taylor dispersion) and when combined with
the selected slow space variable scaling suggest a long timescale T = ε2t . Finally, we observe that
(34a) suggests that the timescales for the different relaxation processes are well separated when
ε � 1 and Per = O(1), with the orientational dynamics occurring most rapidly. In the long-time
regime considered here, we assume that these rotational degrees of freedom have relaxed to their
steady-state values [28]. Amalgamating these considerations suggests that we seek solutions of the
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FIG. 7. (a) Plot of the orientational distribution, g(θ ; y), for Per = 10 and (b) plot of ḡ versus the orientation
angle, θ , for several values of Per. When Per is small and rotational Brownian motion dominates, the
orientational distribution of the particles is approximately uniform; the particles have a greater propensity
to align themselves with flow as Per increases. The laterally averaged orientationally distribution compares
well with the particles distribution from Monte Carlo simulations as seen in Fig. 4(b). In both (a) and (b), we
choose p = 1000, while the form of the rotation rate, ω, allows us to restrict our plotting domain to 0 � θ � π .

form

P(x, y, θ, t ) = 1

N
g(θ ; y)C(ξ, y, T ), (35)

where g represents the orientational distribution of the particles at each shear layer, y, and C is the
net concentration of particles at position (ξ, y). We then expand the concentration, C, and unknown
mean particle speed, um, in powers of ε as follows:

C(ξ, y, T )=C (0)(ξ, y, T ) + εC (1)(ξ, y, T )+ε2C (2)(ξ, y, T )+O(ε3), um = u(0)
m +εu(1)

m + O(ε2).
(36)

After inserting the expansions (36) into Eqs. (34) and gathering like powers of ε, at leading order
we find the following periodic boundary-value problem for g:

∂2g

∂θ2
− Per

∂

∂θ
[ω(y, θ )g] = 0,

∫ 2π

0
g dθ = 〈g〉 = 1, (37)

which is solved using a truncated Fourier series of the form [28]

g = 1

2π
+

M∑
n=1

[an(y) cos(2nθ ) + bn(y) sin(2nθ )]. (38)

To solve for the Fourier coefficients an(y) and bn(y), we insert the Fourier series (38) into
Eq. (37), imposing the differential equation at every point θi = π i/I where i = 1, . . . , I. The result
is an overdetermined, linear system of dimension I × 2M. For each value of yk = −1 + 2k/K ,
where k = 0, . . . , K , the solution vector containing the Fourier coefficients was found by a standard
QR least-squares algorithm in MATLAB [49]. For the computations reported here, we take I = 501,
M = 100, and K = 1001, providing more than sufficient accuracy for all values of Per reported here.

In Fig. 7 we plot both the orientational distribution, g, for varying y and the laterally averaged
orientational distribution

ḡ = 1

2

∫ 1

−1
gdy (39)
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FIG. 8. Plots of (a) the orientationally averaged lateral diffusion coefficient, Dy, and (b) the lateral migra-
tion velocity, vd , for p = 1000 as a function of the position along the width of the channel. As we move from
a rotational Brownian motion (Per � 1) to a shear dominated regime (Per � 1), the particles migrate more
strongly from y = 0 to the channel walls, where they simultaneously experience lower diffusion back into the
bulk.

for several values of the rotational Péclet number, Per. We observe that as we move from a rotational
Brownian motion to shear-dominated regime (increasing Per), the particles have a propensity to
align themselves with the flow direction, a feature quantitatively consistent with the results of our
Monte Carlo simulations shown in Fig. 4. Indeed, as Per → ∞, the solution to Eq. (37) develops a
boundary layer near θ = 0, although this limit technically violates the assumptions under which the
present asymptotic analysis is valid.

Proceeding to O(ε), Eq. (34a) yields

∂

∂y

(
Dyyg

∂C (0)

∂y
+ Dyy

∂g

∂y
C (0)

)
= 0. (40)

After averaging Eq. (40) over particle orientations, we find the following steady advection-diffusion
equation:

∂

∂y

(
Dy(y)

∂C (0)

∂y
+ vd (y)C (0)

)
= 0, (41)

where the flux term on the left-hand side of (41) consists of an orientationally averaged lateral
diffusion coefficient and migration velocity

Dy(y) = 〈Dyyg〉 and vd (y) =
〈
Dyy

∂g

∂y

〉
= ∂Dy

∂y
, (42)

respectively [28]. Hence, the solution of the advection-diffusion equation (41) is of the form

C (0)(ξ, y, T ) = Cm(ξ, T )/Dy. (43)

The angle bracket notation in (42) is the same as that used in Eq. (37) to denote the orientational
average of the contained quantity. Due to the form of Dyy(θ ) given by Eq. (31), Dy can be expressed
as

Dy = 1 + πa1(y)ζ where ζ = D⊥ − D‖
D⊥ + D‖

. (44)

Figure 8(a) shows how the preferential alignment in regions of high shear near the wall reduces
the lateral diffusion coefficient, in contrast to the center of the channel where Dy = 1 as for spherical
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particles. As shown in Fig. 8(b), particles near the center of the channel (y = 0) migrate towards
regions of high shear (y = ±1) with a migration velocity vd . Simultaneously, the particles close to
channel walls diffuse less strongly back into the bulk as shown in Fig. 8(a).

After averaging over particle orientations once more and using Eq. (43), at O(ε2) we find from
Eq. (34a)

−D−1
y Per

(
u − u(0)

m

)∂Cm

∂ξ
+ ∂2

∂y2
(DyC (1) ) = 0 (45a)

and, from Eq. (34b), the corresponding boundary condition

∂

∂y
(DyC (1) ) = 0 at y = ±1. (45b)

We obtain an expression for the leading-order mean particle speed, u(0)
m , by first taking the lateral

average of Eq. (45a) and then by demanding that the advective flux vanishes in the traveling frame,
ξ . Hence, we find that

u(0)
m = D−1

y u(y)

D−1
y

, (46)

where the bar notation denotes the lateral average, as was introduced in Eq. (39). Finally, integrating
(45a) subject to the boundary condition (45b), we find

C (1) = PerD
−1
y G(y)

∂Cp

∂ξ
where G(y) =

∫ y

−1
dz

{∫ z

−1
D−1

y (y′)
[
u(y′) − u(0)

m

]
dy′

}
. (47)

At O(ε3), Eq. (34a) averaged over particle orientations gives

D−1
y

∂Cm

∂T
= −Pe2

r D−1
y

(
u − u(0)

m

)
G(y)

∂2Cm

∂ξ 2
+D−1

y Peru(1)
m

∂Cm

∂ξ
+2

∂

∂y

( 〈Dxyg〉
Dy

)
∂Cm

∂ξ
+ ∂2

∂y2
(DyC (2) ),

(48a)

where we have substituted Eqs. (43) and (47) for C (0) and C (1), respectively. The boundary condition
(34b) averaged over particle orientations is

1

Dy
〈gDxy〉∂Cm

∂ξ
+ ∂ (DyC (2) )

∂y
= 0 at y = ±1. (48b)

After taking the lateral average of Eq. (48a), using the boundary condition (48b), and choosing

u(1)
m = − 1

2PerD−1
y

[
D−1

y 〈Dxyg〉]
y=±1

(49)

so as to again nullify the advective flux, we find

∂Cm

∂T
= κPe2

r

∂2Cm

∂ξ 2
, (50)

where

κ = −D−1
y G

(
u − u(0)

m
)

D−1
y

(51)

is the effective dispersion coefficient.
Finally, after returning to the laboratory frame (x, t ), we obtain

∂Cm

∂t
+ Peum

∂Cm

∂x
= κPe2 ∂2Cm

∂x2
, (52)
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FIG. 9. Plots of (a) the mean speed of the particles, um, and (b) the effective dispersion coefficient, κ ,
as a function of Per for different aspect ratios, p at Pe = 1000. Circles are the results of our Monte Carlo
simulations; solid lines are the theoretical predictions of κ and um given by Eqs. (51) and (53), respectively.

where the mean speed particle speed, um, is

um = D−1
y u(y)

D−1
y

− 1

2PeD−1
y

[
D−1

y 〈Dxyg〉]
y=±1

. (53)

Equation (52) is the sought-after effective transport equation, analogous to Eq. (2), for ellipsoidal
particles. We note that for spherical particles, where p = Dy = 1, we find that um = 2/3 and κ =
8/945, the latter being consistent with Eq. (3).

As shown in Fig. 9(a), even for elongated particles (p > 1), the mean speed of the particles
is approximately the mean speed of the flow (um ≈ 2/3) when Per � 1. As Per is increased, the
particles migrate towards the channel walls where the local fluid velocity is smaller. The different
orientational distributions at each shear layer cause the particles to have different local Dy values,
which is balanced by a net lateral migration velocity, as seen in Fig. 8. There is a local minimum
in the mean speed of the particles around Per ≈ 10, as seen in Fig. 9. Beyond Per � 10, the
orientational distributions are quite similar at each shear layer away from the center of the channel,
making the local diffusion constant Dy very similar across y. As a result, the overall lateral migration
is actually smaller for large values of Per.

Figure 9 demonstrates that the theoretical predictions and the Monte Carlo simulations show
excellent agreement. Furthermore, in Fig, 10, by normalizing the dispersion factor κ with respect
to its maximum possible value κm and minimum possible value κs, the curves for different p
approximately collapse along one master curve. As p decreases from approximately 10 to 1, the
results diverge from the master curve and approach the flat line corresponding to Taylor’s case of
p = 1. This observation suggests that in the limit of large p and large Pe, the asymptotic dispersion
coefficient for elongated particles can be captured by a single curve, which depends only on Per.
This curve ultimately may serve as a simple and accessible correction factor to extend Taylor’s result
to the case of highly elongated rods.

The same asymptotic calculation can be readily to extended to the more general case when the
rods are not confined to rotate strictly in the xy-plane and is presented in Appendix B. While the
quantitative results differ, the tendency for the particles to align with the flow results in an enhanced
dispersion via the same underlying physical mechanism.

IV. CONCLUSION

In this study, we have examined the bulk transport properties of elongated rods in a
two-dimensional Poiseuille flow at high Péclet number using Monte Carlo simulation and
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FIG. 10. The fraction of the maximum possible dispersion enhancement achieved for a rod of aspect ratio
p as a function of the rotational Péclet number Per. The data approximately collapse along a single curve for
p � 10.

semianalytical theory inspired by Taylor’s original work. For low rotational Péclet number, where
rotational diffusion dominates rotational advection, the rods behave identically to spherical particles
with similar values of the dispersion constant and mean particle speed. As the rotational Péclet
number increases, the shear-induced rotation starts dominating rotational diffusion and the rods
align themselves more (on average) with the direction of the flow. This alignment effect makes
it more difficult for the rods to diffuse across the streamlines as compared to spherical particles.
This reduced lateral diffusion directly results in an enhanced spreading of particles longitudinally,
characterized by a larger value of the dispersion factor, as quantified by Monte Carlo simulations that
in turn exhibit excellent agreement with our semianalytical theory. Furthermore, the same theory
allows us to characterize the mean speed of the particles, which always remains below the mean
speed of the flow and exhibits a distinct minimum as the rotational Péclet number is varied. Our
work reveals both when the nonspherical shape of the particle has an appreciable influence on the
bulk dispersion properties as well as the conditions under which an elongated particle can be safely
approximated as spherical (isotropic) in application.

The present study focuses on two-dimensional flows but could be extended to three-dimensional
parallel shear flows in future work. While the quantitative details will inevitably differ, we similarly
expect an enhanced spreading in three-dimensional flows due to the physical mechanism of flow
alignment highlighted within the present work. The subtle roles of channel geometry, more detailed
particle shapes, and other more physically relevant boundary conditions on the dispersion process
also deserve future attention.
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APPENDIX A: INFLUENCE OF ROD ORIENTATION WALL COLLISION CONDITION IN
MONTE CARLO SIMULATION

For all the previously presented simulation results, conservation of particles in the channel was
ensured via a billiards-like reflection boundary condition wherein the orientation of the particles
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FIG. 11. Predictions for the effective dispersion coefficient assuming different boundary conditions in
Monte Carlo simulations with (a) Pe = 1000 and (b) Pe = 100. The unfilled points represent the case when
the orientation of the particles is unaffected by the collisions, the filled points represent the case when the
rods align themselves in the direction of the flow after collision, and the shaded points refer to the case when
the orientation of the particles is fully randomized after each collision. The solid lines indicate the theoretical
prediction derived in Sec. III B [Eq. (50)].

is unchanged following wall collision. For active Brownian particles, Peng and Brady similarly
assumed that the orientation of the particles is unaffected by collisions with the walls of the
channel [12]. Similar to the billiards-like reflection condition, an alternative method to ensure the
conservation of particles in the channel is the “potential-free” method where a suitably tuned force
is applied to the particle only if it is predicted to escape the channel boundaries due to Brownian
effects at a given time step [50]. Both the billards-like reflection and “potential-free” methods
are convenient idealizations to the detailed hydrodynamic boundary interactions, yet have been
successfully used to model the no-flux boundary condition at the wall in prior works on Taylor
dispersion [12,15,51]. This section presents a discussion of two alternative idealized orientation
collision conditions that affect the local alignment statistics and, consequently, the dispersion factor.
The first case is when the rods are prescribed to align in the direction of the flow immediately after
wall collision, which we will refer to as an aligning collision condition. The second case is when
the rods have a uniformly random orientation following each wall collision, which we will refer to
as a randomizing collision condition.

As demonstrated in Fig. 11(a), for the case of aligning collisions, the particles’ overall alignment
with the flow is stronger, which results in greater dispersion. In contrast, randomizing collisions
systematically reduce dispersion by weakening overall alignment. The unchanged wall condition
sits between these extremes and is best predicted by the continuum theory presented in Sec. III B.
We repeated the same set of simulations for a lower value of Pe in Fig. 11(b) and observed the same
overall trends, but with an increased deviation between the predictions from the three idealized
boundary conditions. One way to interpret this finding is as follows: for a fixed Per, the dispersion
is decreasingly sensitive to the details of particle-wall interactions as Pe is increased. For the
physically relevant regime defined by Pe � Per [corresponding to ap � a: Eq. (27)], the timescale
for equilibration of the orientational dynamics is much faster than the translational timescales of
the problem. Thus following a collision, particle orientations rapidly relax to their steady-state
orientational distributions. Consistent with this interpretation, and as evidenced in these Monte
Carlo simulations, the overall dispersion statistics are most weakly influenced by the details of
the wall collisions when Pe � Per.

These results ultimately highlight the role of the assumed particle-wall dynamics on the long-
term dispersion behavior. Considering the detailed hydrodynamics associated with particle-wall
collisions would thus inevitably affect the overall spreading statistics, and should be explored in
future work.
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APPENDIX B: UNCONSTRAINED ROTATION: 3D INFINITE PARALLEL PLATES

In this Appendix, we extend the analytical prediction based on the continuum model to the three-
dimensional case of infinite parallel plates, where the rods have two degrees of rotational freedom.
For this calculation, we assume there are no gradients along the z direction (into the page in relation
to Fig. 2). The diffusion tensor D for the governing Fokker-Planck equation for particles in 3D is
given by [47]

D(θ, φ) = e eD‖ + (I − e e)D⊥, (B1)

where e = cos θ cos φ ex + sin θ cos φ ey + sin φ ez. In the present work, θ is the angle the rod
makes along the xy plane (with θ = 0 corresponding to the positive x-axis) and φ is the angle
made by the rod along the xz plane (with φ = 0 corresponding to the positive x-axis). In the xyz
(laboratory) basis, the components of the translational diffusion tensor are⎡

⎣Dxx(θ, φ) Dxy(θ, φ) Dxz(θ, φ)
Dxy(θ, φ) Dyy(θ, φ) Dyz(θ, φ)
Dxz(θ, φ) Dyz(θ, φ) Dzz(θ, φ)

⎤
⎦, (B2a)

where

Dxx(θ, φ) = D‖ cos2(θ ) cos2(φ) + D⊥[1 − cos2(θ ) cos2(φ)], (B2b)

Dxy(θ, φ) = D‖ sin(θ ) cos(θ ) cos2(φ) − D⊥ sin(θ ) cos(θ ) cos2(φ), (B2c)

Dxz(θ, φ) = D‖ cos(θ ) sin(φ) cos(φ) − D⊥ cos(θ ) sin(φ) cos(φ), (B2d)

Dyy(θ, φ) = D‖ sin2(θ ) cos2(φ) + D⊥[1 − sin2(θ ) cos2(φ)], (B2e)

Dyz(θ, φ) = D‖ sin(θ ) sin(φ) cos(φ) − D⊥ sin(θ ) sin(φ) cos(φ), (B2f)

Dzz(θ, φ) = D‖ sin2(φ) + D⊥[1 − sin2(φ)]. (B2g)

The xy components of this tensor are identical to Eq. (31) when φ = 0, which corresponds to the
constrained problem considered hitherto. For the 3D case, we define the orientationally averaged
diffusivity as

D̄ = D‖ + 2D⊥
3

. (B3)

The dimensional form of the conservation equation for the probability distribution P(x, θ, φ, t ),
for the particles is

∂P

∂t
= −u(y)

∂P

∂x
+ Dxx(θ, φ)

∂2P

∂x2
+ 2Dxy(θ, φ)

∂2P

∂x∂y

+ 2Dxz(θ, φ)
∂2P

∂x∂z
+ 2Dyz(θ, φ)

∂2P

∂y∂z
Dyy(θ, φ)

∂2P

∂y2

+ Dzz(θ, φ)
∂2P

∂z2
+ Dθ

[
1

cos2 φ

∂2P

∂θ2
+ 1

cos φ

∂

∂φ

(
cos φ

∂P

∂φ

)]

−
[

∂

∂θ
(ωθg) + 1

cos φ

∂

∂φ
(cos φ ωφg)

]
, (B4a)
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where

ωθ (θ ) = γ̇ (y)

2
(1 − β cos 2θ ), ωφ (θ, φ) = γ̇ (y)

4
β sin 2θ sin 2φ, and β = p2 − 1

p2 + 1
. (B4b)

The symmetry of rod-shaped particles makes the the probability distribution periodic in θ and
φ, with P(x, θ + π, φ, t ) = P(x, θ, φ, t ) and P(x, θ, φ + π, t ) = P(x, θ, φ, t ). We also demand the
no-flux boundary condition at the walls,

(J · ŷ) = Dxy(θ, φ)
∂P

∂x
+ Dyz(θ, φ)

∂P

∂z
+ Dyy(θ, φ)

∂P

∂y
= 0 at y = ±a. (B4c)

Upon nondimensionalizing in the same way as Sec. III A, moving into the mean frame of
reference of the particles, and employing the assumption of no gradients in the z direction, the
conservation equation becomes

ε
∂P

∂t
= −εPer(u(y) − um)

∂P

∂X
+ ε3Dxx(θ, φ)

∂2P

∂X 2
+ 2ε2Dxy(θ, φ)

∂2P

∂X∂y

+ εDyy(θ, φ)
∂2P

∂y2
+ LP(θ, φ; y), (B5a)

with zero-flux boundary conditions

εDxy(θ, φ)
∂P

∂X
+ Dyy(θ, φ)

∂P

∂y
= 0 at y = ±1, (B5b)

where

LP(θ, φ; y) =
[

1

cos2 φ

∂2P

∂θ2
+ 1

cos φ

∂

∂φ

(
cos φ

∂P

∂φ

)]

+ 2yPer

[
∂

∂θ
(ωθ P) + 1

cos φ

∂

∂φ
(cos φ ωφ P)

]
. (B6)

Using the same asymptotic procedure as outlined in Sec. III B, at leading order we obtain[
1

cos2 φ

∂2g

∂θ2
+ 1

cos φ

∂

∂φ

(
cos φ

∂g

∂φ

)]
+ 2yPer

[
∂

∂θ
(ωθg) + 1

cos φ

∂

∂φ
(cos φ ωφg)

]
= 0 (B7a)

subject to the normalization condition∫ 2π

0

∫ π

0
gcos φ dθ dφ = 1, (B7b)

where

ωθ (θ ) = 1

2
(1 − β cos 2θ ), ωφ (θ, φ) = 1

4
β sin 2θ sin 2φ, and β = p2 − 1

p2 + 1
. (B8)

Following [28], the boundary value problem (B7) was solved using a truncated generalized
Fourier (Laplace) series of the form

g= 1

4π
+

M∑
l=1

Al (y)N2l (sin φ)+
M∑

m=1

M∑
l=m

[
Bm

l (y)N2m
2l (sin φ) cos(2mθ ) + Cm

l (y)N2m
2l (sin φ) sin(2mθ )

]
,

(B9)
where Nm

l are the fully normalized associated Legendre functions [52], related to the unnormalized
associated Legendre functions, Pm

l , by

Nm
l = (−1)m

√(
l + 1

2

)
(l − m)!

(l + m)!
Pm

l . (B10)
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FIG. 12. Theoretical predictions for mean particle speed and dispersion factor for the case of unconstrained
rotation at Pe = 1000, as described in Appendix B. Plots of (a) the mean speed of the particles, um, and (b) the
effective dispersion factor, κ , as a function of Per for different aspect ratios p.

We note that symmetry of particle orientations under (θ, φ) → (θ + π, φ + π ) eliminates both
even degrees and orders of the Legendre functions. Furthermore, owing to the form of the rotation
rates ωθ and ωφ , we may restrict our attention to the domain 0 � θ � π and 0 � φ � π/2.
Following an analogous procedure to that outlined in Sec. III B, inserting the expansion (B9) into
(B7a) and enforcing the differential equation at every point

θi = π i

I
, i = 1, . . . , I, and φ j = π j

2J
, j = 1, . . . , J, (B11)

results in an overdetermined system of equations of dimension IJ × M(M + 2) for the coefficients
Al (y), Bm

l (y), and Cm
l (y). For each value of y (discretized from y = 0 to y = 1 using 200 equally

spaced values), the resulting system was again solved using a standard QR least-squares algorithm
in MATLAB with I = 72, J = 144, and M = 32. For p = 2, we needed only M = 16 modes for
convergence. Having now solved the leading order (orientational) problem, solving the higher order
equations becomes identical to the procedure outlined in Sec. III B. The final expressions for κ

and um are also the same [Eqs. (51) and (53), respectively], but with orientational averages now
computed over both angles θ and φ, specifically:

〈�〉 =
∫ 2π

0

∫ π

0
� cos φ dθ dφ. (B12)

Predictions for the mean particle speed, um, and dispersion factor, κ , are presented in Fig. 12. The
overall trends are remarkably similar to the constrained rotation problem considered in the main text
(Fig. 9), but with the departures from the spherical case reduced in magnitude.
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