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Modeling realistic fluid and plasma flows is computationally intensive, motivating the
use of reduced-order models for a variety of scientific and engineering tasks. However,
it is challenging to characterize, much less guarantee, the global stability (i.e., long-time
boundedness) of these models. Previous work provided a theorem outlining necessary and
sufficient conditions to ensure global stability in systems with energy-preserving, quadratic
nonlinearities, with the goal of evaluating the stability of projection-based models. In this
work, we incorporate this theorem into modern data-driven models obtained via machine
learning. First, we propose that this theorem should be a standard diagnostic for the stability
of projection-based and data-driven models, examining the conditions under which it holds.
Second, we illustrate how to modify the objective function in machine learning algorithms
to promote globally stable models, with implications for the modeling of fluid and plasma
flows. Specifically, we introduce a modified “trapping SINDy” algorithm based on the
sparse identification of nonlinear dynamics (SINDy) method. This method enables the
identification of models that, by construction, only produce bounded trajectories. The
effectiveness and accuracy of this approach are demonstrated on a broad set of examples of
varying model complexity and physical origin, including the vortex shedding in the wake
of a circular cylinder.
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I. INTRODUCTION

Modeling the full spatiotemporal evolution of natural processes is often computationally ex-
pensive, motivating the use of reduced-order models (ROMs) that capture only the dominant
behaviors of a system [1–6]. Projection-based model reduction is a common approach for generating
such models; a high-dimensional system, such as a spatially discretized set of partial differential
equations (PDEs), is projected onto a low-dimensional basis of modes [7,8]. This projection leads
to a computationally efficient system of ordinary differential equations (ODEs) that describes how
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FIG. 1. Left: Decision diagram to determine global stability, modified from Schlegel and Noack [10] and
described in Sec. II C. Right: Illustration of a trapping region (blue sphere) for the Lorenz system; all outside
trajectories monotonically approach this region, and after entering, remain inside. Trajectories inside the red
ellipsoid experience positive energy growth, in this case precluding convergence to a fixed point.

the mode amplitudes evolve in time [9]. However, these models often suffer from stability issues,
causing solutions to diverge in finite-time. To address this issue, Schlegel and Noack [10] developed
a “trapping theorem” with necessary and sufficient conditions for long-term model stability for
systems that exhibit quadratic, energy-preserving nonlinearities.

Quadratic nonlinearity is pervasive in nature, with common examples including convection
in the Navier-Stokes equations and the Lorentz force in magnetohydrodynamics (MHD). The
trapping theorem provides conditions for the existence of a global trapping region, towards which
every system trajectory asymptotically and monotonically converges; once a trajectory enters this
region, it remains inside for all time, guaranteeing that all trajectories are bounded. These types of
guarantees are ideal for the application of real-time flow-control strategies. An example trapping
region is illustrated by the blue sphere in Fig. 1 for the Lorenz system. For convenience, we will
use the terms “global stability,” “long-term boundedness,” and “monotonically trapping region”
interchangeably, although systems exhibiting trapping regions are a strict subset of globally stable
systems (see Fig. 1 of Schlegel and Noack [10] for a useful organizational diagram of these various
notions of stability). In this work, we adapt the trapping theorem from projection-based modeling
to promote global stability in data-driven machine learning models.

Increasingly, reduced-order models of complex systems, such as fluids and plasmas, are
discovered from data with modern machine learning algorithms [11–36], rather than classical
projection-based methods that are intrusive and require intricate knowledge of the governing equa-
tions. These data-driven approaches for modeling fluid dynamics [37,38] range from generalized
regression techniques [11,15,19] to deep learning [25,31,32,34,35,39]. It is often possible to im-
prove the stability and performance of data-driven models by incorporating partially known physics,
such as conservation laws and symmetries [19,30,36], or known physical structure [40]. Thus,
incorporating physics into machine learning and developing hybrid data-driven and operator-based
approaches are rapidly growing fields of research [19,40–48]. Physics can be incorporated into
machine learning algorithms through model structure, by augmenting training data with known
symmetries, by adding constraints to the optimization, or by adding custom loss functions [38].
However, even physics-informed data-driven models often lack global stability guarantees, and
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the ability of these methods to find long-term bounded models depreciates as the state dimension
increases.

In this work, we use the Schlegel and Noack [10] trapping theorem to diagnose and promote
global stability of data-driven models with quadratic nonlinearities. Even though their theorem was
developed in the context of projection-based ROMs, we emphasize that it can be applied directly
to analyze data-driven model stability post hoc, and we examine conditions under which it holds.
Next, we describe how to use this theorem to promote global stability in machine learned models
by modifying the optimization loss function. We illustrate this approach on the sparse identification
of nonlinear dynamics (SINDy) algorithm [15,17] by implementing a custom optimization loss
term that promotes models that are globally stable by construction. A constrained version of the
SINDy optimization was previously developed to enforce energy-preserving quadratic structure
in incompressible fluids [19], and it has since been extended for arbitrary state size and global
conservation laws in magnetohydrodynamic systems [30,36]. These constrained SINDy variants
generally produce more stable models, and reflect a broader trend that stability issues can often be
improved by building physical constraints into system identification methods [19,49]. Our “trapping
SINDy” algorithm generalizes previous stabilized or constrained reduced-order models for fluids by
considering global rather than local stability, allowing for both transients and long-time attracting
sets. Promoting global stability also improves robustness to noise over unconstrained or constrained
SINDy. Recent works by Erichson et al. [50] and Sawant et al. [51] promote a more restrictive
Lyapunov stable origin in fluid flows by adding similar loss terms to the optimization problem.
Additionally, much of the literature has focused on the long-time energy properties of a dynamic
attractor [52] by either prescribing that the system be fully energy-preserving (or Hamiltonian)
[53–58] or applying real-time control [59]. Mohebujjaman et al. [46] also used a simple version
of the trapping theorem in order to constrain a hybrid projection-based and data-driven method.
The present work builds on these studies, providing a framework for addressing the long-standing
challenge of promoting global stability in data-driven models.

The remainder of this paper is organized as follows: In Sec. II, we introduce the general class
of systems with energy-preserving quadratic nonlinearities, investigate the circumstances under
which the trapping theorem holds, and indicate connections with other stability descriptions in
fluid mechanics. In Sec. III, we define our “trapping SINDy” algorithm. Our trapping SINDy
implementation is open-source and available through the PYSINDY software package [60]. This is a
rather technical section on nonconvex optimization; the reader may skip this section and proceed to
the results if the algorithmic details are not of interest. In Sec. IV, we demonstrate the effectiveness
of this new system identification technique on a wide range of examples. Abridged versions of
all of the results have been incorporated into a single PYSINDY example notebook and can be
reproduced in a few minutes on a laptop. In Sec. V, we conclude with suggestions for future work.
Similar trapping theorems are promising for data-driven models in fields such as neuroscience,
epidemiology, and population dynamics.

II. REDUCED-ORDER MODELING

Before describing how we incorporate the trapping theorem of Schlegel and Noack [10] into data-
driven models, here we briefly describe the family of projection-based ROMs for which the trapping
theorem was introduced, and we investigate the circumstances under which this theorem holds. It is
helpful to first motivate this work by reviewing the many scenarios under which energy-preserving
quadratic nonlinearities can arise. In fluid dynamics, the quadratic nonlinearity often represents
the convective derivative (u · ∇)u in the Navier-Stokes equations. This quadratic nonlinearity is
energy-preserving for a large number of boundary conditions. Examples include no-slip conditions,
periodic boundary conditions [9,61], mixed no-slip and periodic boundary conditions [62], and open
flows in which the velocity magnitude decreases faster than the relevant surface integrals expand
(e.g., two-dimensional rigid body wake flows and three-dimensional round jets) [63]. In magnetohy-
drodynamics, there are additional quadratic nonlinearities through ∇ × (u × B) and J × B, which
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are also energy-preserving with common experimental boundary conditions such as a conducting
wall [64], or a balance between dissipation and actuation in a steady-state plasma device [36,65].
Notably, dissipationless Hall-MHD has four invariants: energy, cross-helicity, magnetic helicity, and
generalized helicity [66], providing a wealth of potential model constraints for Hall-MHD ROMs.
Here u is the fluid velocity, J is the electromagnetic current, and B is the magnetic field.

A. Projection-based ROMs

In modern scientific computing, a set of governing partial differential equations is typically
discretized into a high-dimensional system of coupled ordinary differential equations. In this work
we will explicitly consider dynamics with linear plus quadratic structure, as are found in many fluid
and plasma systems:

u̇ = L0u + Q0(u). (1)

Here we assume that the PDE has already been discretized for numerical computation, resulting
in a coupled system of n differential equations. The state of the system u(x, t ) ∈ Rn is a high-
dimensional vector that represents the fluid velocity or other set of spatiotemporal fields, for example
sampled on a high-resolution spatial grid. Thus, L0 and Q0 are high-dimensional operators used
to perform the numerical simulation. The zero superscript distinguishes these operators from the
Galerkin coefficients defined below in Eq. (3).

The goal of a projection-based ROM is to transform this high-dimensional system into a lower-
dimensional system of size r � n that captures the essential dynamics. One way to reduce the set
of governing equations to a set of ordinary differential equations is by decomposition into a desired
low-dimensional basis {ϕi(x)} in a process commonly referred to as Galerkin expansion:

u(x, t ) = u(x) +
r∑

i=1

ai(t )ϕi(x). (2)

Here, u(x) is the mean field, ϕi(x) are spatial modes, and ai(t ) describe how the amplitudes of
these modes vary in time. The proper orthogonal decomposition (POD) [9,67] is frequently used
to obtain the basis, since the modes ϕi(x) are orthogonal and ordered by maximal energy content.
The governing equations are then Galerkin-projected onto the basis {ϕi(x)} by substituting Eq. (2)
into the PDE and using inner products to remove the spatial dependence. Orthogonal projection
onto POD modes is the simplest and most common procedure, resulting in POD-Galerkin models,
although Petrov-Galerkin projection [3,4] improves model performance in some cases.

In this paper, we rely on a theorem that is derived explicitly from modal expansions of the
form of Eq. (2), i.e., linear and separable decompositions, although nonorthogonal modes can be
straightforwardly handled in the following analysis. This reliance on a simple basis is not ideal,
because there are many other modal expansions and bases that have been introduced for reduced-
order fluid [7,8] and plasma models [68–71], including balanced POD [72,73], spectral POD
[20], dynamic mode decomposition (DMD) [11,12,74], the Koopman decomposition [13,75,76],
resolvent analysis [77,78], and autoencoders [32,79,80]. Future work is required to expand our
strategy to these alternative and nonlinear bases, and we provide some potential avenues for progress
in the conclusion in Sec. V.

Now, if the governing equations for u(x, t ) are at most quadratic in nonlinearity, Galerkin
projection produces the following system of ODEs for the set of temporal functions ai(t ):

ȧi(t ) = Ei +
r∑

j=1

Li ja j +
r∑

j,k=1

Qi jka jak . (3)

Ei, Li j , and Qi jk are tensors of static coefficients, obtained from spatial inner products between the
ϕi(x) and the operators L0 and Q0, that define the model dynamics. The class of systems we consider
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are those with energy-preserving nonlinearity, for which

r∑
i, j,k=1

Qi jkaia jak = 0, (4)

or equivalently, for all i, j, k ∈ {1, . . . , r},
Qi jk + Qjik + Qk ji = 0. (5)

Qi jk is symmetric in swapping j and k without loss of generality.

B. Schlegel and Noack trapping theorem

This theorem provides necessary and sufficient conditions for energy-preserving, effectively
nonlinear, quadratic systems to exhibit a trapping region B(m, Rm), a ball centered at m ∈ Rr with
radius Rm. Outside this region, the rate of change of energy K is negative everywhere, producing a
Lyapunov function that renders this system globally stable. Recentering the origin by an arbitrary
constant vector m, the energy may be expressed in terms of the shifted state vector y(t ) = a(t ) − m
as

K = 1
2 yT y. (6)

Taking a derivative and substituting in Eq. (3) produces

d

dt
K = yT ASy + dT

my, (7)

AS = LS − mT Q, LS = 1

2
(L + LT ), and (8)

dm = E + Lm + Qmm. (9)

mT Q refers to miQi jk and Qmm to Qi jkmjmk . The trapping theorem may now be stated as follows:
Theorem 1. There exists a monotonically trapping region at least as small as the ball B(m, Rm) if

and only if the real, symmetric matrix AS is negative-definite with eigenvalues λr � · · · � λ1 < 0;
the radius is then given by Rm = ‖dm‖/|λ1|.1

In practice, the goal is then to find an origin m so that the matrix AS is negative-definite,
guaranteeing a trapping region and global stability. Without effective nonlinearity, described at
the beginning of Sec. II C, only the backwards direction holds; if we can find an m so that AS

is negative-definite, the system exhibits a trapping region. However, such systems can be globally
stable without admitting such an m. Subsequently, the goal of Sec. III is to use this theorem to define
a constrained machine learning optimization that identifies a reduced-order model with a guaranteed
trapping region. Even when the requirements of the trapping theorem are not fully satisfied, the
algorithm results in Sec. IV indicate that this approach tends to produce models with improved
stability properties.

To understand the Rm bound in Theorem 1, we transform into eigenvector coordinates z = Ty,
h = dmT T , where T are the eigenvectors of AS . Now Eq. (7) becomes

d

dt
K =

r∑
i=1

hizi + λiz
2
i =

r∑
i=1

λi

(
zi + hi

2λi

)2

− h2
i

4λi
. (10)

1If a system is long-term bounded (not necessarily exhibiting a monotonically trapping region) and effectively
nonlinear, only the existence of an m producing a negative semidefinite AS is guaranteed.
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We can see that the trapping region will be determined by the equation of the ellipsoid where K̇ = 0,

1 =
r∑

i=1

1

α2
i

(
zi + hi

2λi

)2

, (11)

αi = 1

2

√√√√ 1

λi

r∑
j=1

h2
j

λ j
� 1

2|λ1| ‖dm‖. (12)

The origin at y = 0 (a = m) lies on the ellipsoid, and in the worst-case scenario it lies at the tip of
the major axis. Thus, to guarantee that a ball centered at this origin entirely contains this region,
we estimate Rm as twice the size of the largest possible value of the half-axes αi. Note that our
definition of αi differs from Schlegel and Noack [10]; we believe that there is a minor typo in
their Eq. 3.14. Fortunately, the only consequence is a change in the estimate of Rm. Lastly, recall
that long-term bounded (not necessarily exhibiting a monotonically trapping region) and effectively
nonlinear systems only guarantee an m exists such that AS is negative-semidefinite. In the case of
mixed zero and nonzero eigenvalues, the ellipsoid becomes a paraboloid. The infinite extent of the
paraboloid precludes a monotonic trapping region but not other forms of global stability. This edge
case is not discussed further because in practice (numerically) there is no chance of arriving at an
eigenvalue of exactly zero.

C. Interpretation of the trapping theorem

The Schlegel and Noack [10] theorem, summarized in Theorem 1, provides necessary and
sufficient conditions for the projected ROM in Eq. (3) to be globally stable by admitting a trapping
region. This theorem is necessary and sufficient for systems that exhibit effective nonlinearity, i.e.,
the system does not manifest invariant manifolds where there exists some i such that Qi jka jak = 0
for all time, for which a linear stability analysis must be adopted. In other words, systems that start in
purely linear model subspaces, and remain in those subspaces, do not exhibit effective nonlinearity.
Fortunately, realistic fluid flows exhibit effective nonlinearity, although there are some subtleties
that we discuss in Sec. II D. In this case, we can always use the total fluid kinetic energy K as a
Lyapunov function for the trapping region. This is ideal, as finding a suitable Lyapunov function is
often the most difficult task in stability analysis. It is possible that other Lyapunov functions exist
with tighter bounds on the size of a trapping region, but this paper is primarily concerned with
promoting models with long-term boundedness (i.e., models that exhibit a trapping region of any
kind), rather than an algorithm for precisely capturing the shape and size of a trapping region. For a
postfit algorithm to find the optimal ellipsoidal estimate of the stability domain, see Kramer [81].

A generic nonlinear system may exhibit multiple fixed points, limit cycles, and other equilibrium
point behavior. However, any physical system should produce bounded trajectories, and the global
stability property from the trapping theorem is agnostic to any local stability properties. This
manuscript solely considers systems that are globally stable, or equivalently, long-term (ultimately)
bounded, by virtue of exhibiting globally trapping regions. Long-term boundedness means that there
exists some T0 and R0 such that ‖a(t )‖ < R0 for all t > T0. A trapping region encompasses an
attractor or attracting set, which is typically defined as a set of the system phase space that many
trajectories converge towards; this can be an equilibrium point, periodic trajectory, Lorenz’s “strange
attractor,” or some other chaotic trajectory. Whenever it does not detract from the discussion, we
omit the qualifiers “globally,” “monotonically,” and “long-term,” as this is the only characterization
of stability considered in the present work. Examples of physical systems that are globally stable
but do not exhibit a trapping region include Hamiltonian systems and systems that do not fit into
the trapping theorem assumptions (examined further in Sec. II D and summarized in Fig. 1). For
instance, fully energy-preserving systems satisfy K̇ = 0, so trajectories represent shells of constant
distance from the origin; these trajectories are globally bounded, but no trapping region exists.
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D. Model truncation, effective nonlinearity, and closure

Before implementing the trapping theorem into system identification, we investigate the cir-
cumstances under which truncated projection-based models will exhibit effective nonlinearity; the
reader may skip this section if the subtleties of the trapping theorem are not of interest, although the
discussion here is pertinent to Sec. IV E. Effectively nonlinear dynamics are ideal because they
can be decisively classified as globally stable or not, requiring no additional stability analysis.
To proceed, consider a Fourier-Galerkin model of Burgers’ equation derived from the Fourier
expansion u(x, t ) = ∑

ak (t )eikx, and further examined in Sec. IV E,

u̇ = −u∂xu + ν∂xxu �⇒ ȧk = −νk2ak −
∞∑

�=−∞
i�a�ak−� (13)

�⇒ K̇ = −ν

∞∑
k=−∞

k2a2
k −

∞∑
k,�=−∞

i�a�ak−�ak . (14)

The particular “triadic” structure of the nonlinear term in the spectral domain, where the only
nonzero terms acting on ak are those whose wave numbers sum to k, is identical to that arising
in isotropic turbulence [82]. The triadic term in K̇ transfers energy between length scales. Since the
viscous term scales with k2, energy is most effectively dissipated at the smallest scales; the com-
bination of the two terms leads to the traditional energy cascade in which energy flows “downhill”
from larger to smaller scales. This description implies that heavily truncating the Galerkin system
leads to under-resolving the dissipation rate, and a closure scheme may be required to reintroduce
the full dissipation. Towards this goal, modern sparse regression and deep learning methods have
been used to produce new closures for fluid models [25,83–87]. While the traditional explanation
for unstable Galerkin models derives from these truncated dissipative scales, increasingly there
are alternate explanations including fundamental numerical issues with the Galerkin framework
(potentially resolved in a Petrov-Galerkin framework) [88] and the Kolmogorov width issues of
linear subspaces more generally [32]. If true, this is probably good news for (incompressible, dissi-
pationless) Hall-MHD, where the conservation of energy and the cross, magnetic, and generalized
helicities lead to direct, inverse, and even bidirectional cascades [89]. Interestingly, the notion of
effective nonlinearity appears to be another approach from which we can attempt to resolve these
disagreements about the sources of ROM instability.

To proceed with this theme, we show that the triadic structure of the model has repercussions for
the presence of effective nonlinearity. Consider the truncated model

ȧk = −νk2ak −
r∑

�=−r

i�a�ak−�, k ∈ {1, . . . , r} (15)

with the initial condition aj = 1 for any j ∈ {±( r
2 + 1),±( r

2 + 2), . . . ,±r}, and ak = 0, k �= j.
For simplicity, we have assumed r is divisible by 2. In this case, the system has r invariant one-
dimensional (1D) subspaces for which

ȧ j = −ν j2a j . (16)

These invariant linear subspaces exist because higher wave-number modes that could interact to
transfer energy between coefficients have been discarded. In other words, Fourier-Galerkin models
with finite truncation do not exhibit effective nonlinearity. In contrast, POD-Galerkin models weakly
break the triadic structure of the nonlinearity [90], and therefore in general will weakly satisfy the
trapping theorem criteria for effective nonlinearity, to the extent that they differ from the Fourier
modes because of inhomogeneity in the system. There are also modern ROMs that attempt to
retain the full dissipation by utilizing bases that intentionally mix length scales [91]—these types
of models should be more likely to satisfy effective nonlinearity. Lastly, numerical errors appear to
weakly restore effective nonlinearity, since errors break any triadic structure. Proceeding with this
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analysis is complicated because the numerical errors also weakly break our foundational assumption
that Qi jk is energy-preserving. Future investigations should be pursued to explore relationships
between effective nonlinearity, the energy cascade, and closure models that reintroduce stabilizing
dissipation to truncated models.

It is difficult to quantify “how close” a model is to exhibiting effective nonlinearity, since a lack
of effective nonlinearity Qi jka jak = 0 must hold for all time, for any i, and for any valid system
trajectory. However, for an orthonormal set of temporal modes, and assuming there exists at least
one index i such that Qi j j �= 0, we propose quantifying the average strength of model effective
nonlinearity through the metric

Se = mini |Qi jka jak|
maxi |Qi jka jak| = mini |Qi j j |

maxi |Qi j j | . (17)

The bar in a jak denotes a temporal average. We will show in Sec. IV E that in system identification,
a lack of effective nonlinearity is not a terrible loss. Our trapping SINDy algorithm in Sec. III
minimizes K̇ whether or not a negative definite AS can be realized. However, without additional
stability analysis, such models are no longer provably stable for any initial condition. Although
Eq. (16) is a linearly stable system, this is not guaranteed for more general fluid models than the
simple Burgers’ equation considered here.

E. Constraints in model reduction and system identification

Before moving on to system identification, it is worth noting that enforcing these types of
existence-based stability conditions is subtle. There are modern techniques to implement implicit
constraints of the form

Ci(ȧ, a, t, . . . ) = 0, i ∈ {1, 2, . . . } (18)

into both model reduction [48,92] and system identification [19,49,93,94]. Precisely in this way, the
energy-preserving constraint in Eq. (5) is cast as an affine version of Eq. (18) in our optimization in
Sec. III.

However, enforcing stability in quadratic energy-preserving models is more complicated than
Eq. (18). To see this, note that there a few different circumstances under which we might want
to promote stability. If the true AS and the optimal m are known, we can simply constrain the
coefficients in Eq. (3) to produce this known negative-definite AS . This would imply that we
already know the optimally shifted eigenvalues of the system and an m that produces these negative
eigenvalues; if this is the case, so much information about the system of ODEs is already known
that machine learning methods are likely unnecessary.

But far more interesting are the cases in which (i) the underlying system is known to be globally
stable and effectively nonlinear, so we want to find the “correct” m and corresponding AS , or (ii)
it is not known if any m exists such that AS is negative-definite. In system identification, either
of these cases can be addressed by searching for a model that both optimally fits the data and is
globally stable. In this context, we adopt a mixed approach in the next section where we enforce
the energy-preserving constraint and then separately bias the optimization towards models with a
trapping region. This technique is a significant methodological extension because we can no longer
rely on constraints of the form in Eq. (18).

III. TRAPPING SINDy ALGORITHM

We now describe how to incorporate the trapping theorem of Schlegel and Noack [10] into data-
driven model identification, specifically for the SINDy algorithm. Before describing the modified
algorithm in Sec. III B, we first present the standard SINDy algorithm [15] along with a recent
variant that incorporates explicit constraints [19,49]. We then build on this framework to incorporate
the Schlegel-Noack trapping theorem.
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A. Standard and constrained SINDy algorithms

The goal of system identification is to identify a system of ODEs or PDEs that describe
how a given data set evolves dynamically in time. The SINDy algorithm [15] identifies sparse,
parsimonious models that remain interpretable and avoid the overfitting issues that are common in
this field. As in Loiseau et al. [19], we develop SINDy models for the dynamics of a, representing the
coefficients or amplitudes of a modal Galerkin expansion in Eq. (2). We assume that the dynamics of
a will be described as a sparse linear combination of elements from a library � containing candidate
terms such as

(19)

Here a ⊗ a contains all combinations of aia j without duplicates. The � matrix may contain
any desired candidate terms, but in this work we consider only terms up to quadratic polyno-
mials in a because we are searching for energy-preserving quadratic models. The expressions in
Eq. (19) are typically evaluated on a data matrix X obtained from time-series data of the state,
a(t1), a(t2), . . . , a(tM ):

(20)

A matrix of derivatives in time, Ẋ , is defined similarly and can be numerically computed from X .
In this case, Eq. (19) becomes Ẋ = �(X )�. The goal of SINDy is to determine a sparse matrix of
coefficients � = [ξ1 ξ2 · · · ξr], also written in vectorized form as �[:] = ξ,

ξ = [
ξ

a1
1 , . . . , ξ

ar
1 , ξ

a1
2 , . . . , ξ

ar
2 , . . . , ξ

a1
N , . . . , ξ

ar
N

]
, (21)

where N is the number of candidate functions and r is the state space size; nonzero elements in each
column ξ j indicate which terms are active in the dynamics of ȧ j (t ). The matrix of coefficients � is
determined via the following sparse optimization problem:

arg minξ

[
1
2‖�ξ − Ẋ‖2 + λ‖ξ‖0

]
. (22)

We deviate from the typical SINDy definitions by explicitly formulating the problem in terms of
the vectorized ξ ∈ RrN , �(X ) ∈ RrM×rN , and Ẋ ∈ RrM . The first term in the SINDy optimization
problem in Eq. (22) fits a system of ODEs �ξ to the given data in Ẋ . The ‖ξ‖0 term counts the
number of nonzero elements of �, and the elements of � smaller than a threshold value, λ, are
zeroed out. However, it is not technically a norm and leads to a nonconvex optimization, so several
convex relaxations have been proposed [15,17,49].

Since the original SINDy algorithm, Loiseau et al. [19] introduced an extension to directly
enforce constraints on the coefficients in �. In particular, they enforced energy-preserving, skew-
symmetry constraints on the quadratic terms for incompressible fluid flows, demonstrating improved
model performance over standard Galerkin projection. The quadratic library in Eq. (19) has
N = 1

2 (r2 + 3r) + 1 terms. With the energy-preserving structure, it can be shown that the number of
constraints is p = r(r + 1)(r + 2)/6 and therefore the number of free parameters is rN − p = 2p.
This constraint is encoded as Cξ = d, C ∈ Rp×rN , d ∈ Rp, and the constrained SINDy algorithm
solves the following minimization:

arg minξ

[
1
2‖�ξ − Ẋ‖2

2 + λ‖ξ‖1 + δ0(Cξ − d )
]
. (23)
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In general, we can use nonconvex regularizers that promote sparsity in ξ, but the trapping SINDy
modifications below require a convex regularizer such as the L1 norm. The third term δ0 is an
indicator function that encodes the constraint Cξ = d, guaranteeing that the energy-preserving
structure in the quadratic nonlinearity is retained in the identified model. There are also variants
of the constrained SINDy objective function in Eq. (23) that utilize sparse relaxed regularized
regression (SR3) in order to improve performance [49,95].

B. Proposed trapping SINDy algorithm

Model constraints in system identification, such as global conservation laws or other physical
considerations, often result in improved models, but do not generally guarantee global stability.
Here, we will additionally promote globally stable models that exhibit a monotonically trapping
region. Recall from Theorem 1 that m is an arbitrary, constant vector, of the same state size as
a, that specifies the center of a possible trapping region. Stability promotion is then achieved by
jointly determining the sparse model coefficients � and state vector m such that AS from Eq. (8) is
negative-definite.

To proceed with our trapping SINDy formulation, we must relate the model coefficients in ξ to the
matrix AS appearing in the trapping theorem. We first define the projection operators PL ∈ Rr×r×rN ,
PQ ∈ Rr×r×r×rN , and P ∈ Rr×r×rN . The operator PL projects out the symmetric part of the linear
coefficients through LS = PLξ. The same is true for the quadratic coefficients, Q = PQξ. The
operator P = PL − mT PQ provides a concise representation of AS through the following equation:

AS = LS − mT Q = Pξ = (PL − mT PQ)ξ. (24)

We now phrase a tentative version of the trapping SINDy optimization problem, in analogy to
the constrained SINDy optimization in Eq. (23), that incorporates an additional loss term to reduce
the maximal (most positive) eigenvalue λ1 of the real, symmetric matrix AS:

arg minξ,m

[
1

2
‖�ξ − Ẋ‖2

2 + λ‖ξ‖1 + δ0(Cξ − d ) + λ1

η

]
. (25)

Note that we have introduced a new hyperparameter η, which modulates the strength of the λ1

loss term. Although λ1 is a convex function of the matrix elements [96], AS = (PL − mT PQ)ξ is
not affine in ξ′ = [ξ, m]. The result is that this new term is not convex, but convex composite. It
is possible to approximately solve this problem with a variable projection technique, where we
essentially treat ξ and m as independent, solve the convex problem in ξ, and then substitute ξ∗, the
solution at each iteration, into the optimization for m. In practice, this algorithm performs fairly well,
although the convergence properties are unclear. Equation (25) is also amenable to other approaches,
such as Gauss-Newton [97] or the prox-linear algorithm [98], because λ1 is a convex function of the
elements of AS , and Pξ is smooth in m and ξ. Although we institute a modified algorithm below,
these convex-composite approaches are a promising future direction for effectively solving this
nonconvex optimization problem.

To produce an algorithm with better performance and better understood convergence properties,
we adopt a relax-and-split approach [99], similar to the approach taken in Champion et al. [49].
We introduce an auxiliary variable A that represents the projection of AS = Pξ onto the space of
negative definite matrices, and we introduce two new terms in the optimization:

arg minξ,m,A

[
1

2
‖�ξ − Ẋ‖2

2 + λ‖ξ‖1 + δ0(Cξ − d ) + 1

2η
‖Pξ − A‖2

2 + δI (�)

]
. (26)

The new least-squares term enforces a “soft” constraint (or bias) towards AS = Pξ being negative-
definite by minimizing the difference between Pξ and its projection into the space of negative-
definite matrices. The auxiliary variable A is updated to approximate AS = Pξ, and then, through the
δI term, enforced to be negative-definite by requiring that the diagonalized matrix � = V −1AV lies
in I = (−∞,−γ ], γ > 0. Directly enforcing Pξ to be negative-definite tends to badly distort the
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TABLE I. Description of the trapping SINDy hyperparameters.

λ Specifies the strength of sparsity-promotion through the regularizer R(ξ). λ = 0 already works well for
low-dimensional systems because the ‖Pξ − A‖2

2 term promotes stability.

η Specifies how strongly to push the algorithm towards models with negative-definite AS . If η � 1, ξ∗ is
unaffected by the minimization over m. If η � 1, the problem is increasingly nonconvex.

γ Determines how far to push the eigenvalues of AS towards being negative definite. Typically γ � 0.1 works
for a variety of problems regardless of the true eigenvalues of AS .

model fit to the data. Instead, the auxiliary variable A in Eq. (26) allows the algorithm to accurately
fit the data with ξ and then relax the coefficients towards a negative-definite AS to promote global
stability.

This flexible formulation also allows A, our proxy for the projection of Pξ onto the space of
negative-definite matrices, to vary, and therefore fit the particular eigenvalues of the system in
question. In other words, the proposed approach pushes AS into the space of negative-definite
matrices in Rr×r with minimal assumptions about the eigenvalues, only assuming that they are
negative. Contrast our algorithm to a more restrictive approach that prescribes an A, meaning we
already know a set of negative eigenvalues of Pξ that is compatible with the data. A description of
each of the hyperparameters λ, η, and γ is provided in Table I. Note that Eq. (26) is not convex in
A, and this is the most challenging aspect of this formalism.

Now that we have defined our problem in Eq. (26), we need to solve it. If we denote the convex
part of the optimization,

F (ξ, m, A) =‖�ξ − Ẋ‖2
2/2 + λ‖ξ‖1 + δ0(Cξ − d ) + ‖Pξ − A‖2

2/2η, (27)

and fix initial guesses for m and A, then we can define the solution vector ξ∗ through

ξ∗ = arg minξ[F (ξ, m, A)]. (28)

If λ = 0, ξ∗ is structurally identical to the ξ∗ in Champion et al. [49]:

H =
(

�T � + 1

η
PT P

)−1

, (29)

ξ∗ = H[I − CT (CHCT )−1CH]

[
�T Ẋ + 1

η
PT A

]
+ HCT (CHCT )−1d. (30)

H is positive-definite, I is the identity matrix, and Cξ∗ = d can be verified using Eq. (30). The
minimization over ξ with λ �= 0 is still convex but not analytically tractable as in Eq. (30). Since
it is convex, it can be solved with standard convex optimization libraries such as CVXPY [100]. It
can also be shown to reduce to a constrained quadratic program over the unit box with a positive-
semidefinite cost matrix. A barrier to this route is that typical numerical solvers either assume that
the quadratic cost matrix is sparse or positive-definite. Neither assumption is true here.

Now that we have solved the minimization over ξ, we can use prox-gradient descent on (m, A);
each algorithm iteration we alternate between solving for ξ∗ and solving for (m∗, A∗). Again, we can
think about this problem as a variable projection [101,102], which is a value function optimization
over the remaining variables (m, A). To make this viewpoint more precise, we define

F̃ (m, A) = F (ξ∗, m, A). (31)

The problem we want to solve is now written more simply as

arg minm,A[F̃ (m, A) + δI (�)].
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FIG. 2. Illustration of trapping SINDy progress on noisy Lorenz data. The minimization results in the
transition from a poor initial guess to identification of the correct attractor dynamics.

We apply prox-gradient descent to this nonconvex problem, so that

m∗ = m − αm∇mF̃ (m, A), (32)

A∗ = projI [A − αA∇AF̃ (m, A)], (33)

where αm and αA are step sizes. All that remains is to compute the gradients of the value
function F̃ ,

∇AF̃ (m, A) = 1

η
(A − Pξ∗), (34)

∇mF̃ (m, A) = 1

η
PQξ∗(A − Pξ∗). (35)

These are Lipschitz continuous functions with Lipschitz constants LA, Lm satisfying

αA � 1

LA
� η, (36)

αm � 1

Lm
� η

‖(PQξ∗)i jk (PQξ∗)l jk‖F
, (37)

in order for guaranteed convergence of fixed step-size, prox-gradient descent [103]. While the
denominator in Eq. (37) varies with the update in ξ, in practice one can reduce αm until convergence
is found. The full trapping SINDy optimization is illustrated in Algorithm 1.

Algorithm 1. Trapping SINDy.

Input: Numerical data Ẋ and optional initial guesses for m and A.
Output: Optimal model coefficients ξ∗ and shift vector m∗.
1: procedure SINDy (Ẋ , λ, η, γ )
2: Construct �(X ), P, C, and d.
3: while |ξk − ξk+1| > ε

ξ

tol and |mk − mk+1| > εm
tol

4: ξk+1 ⇐� arg minξk
[F (ξk, mk, Ak )],

5: V k+1�k+1(V k+1)−1 ⇐� Ak − αA∇AF̃ (m, A)|mk ,Ak ,
6: Ak+1 ⇐� V k+1projI [�k+1](V k+1)−1,
7: mk+1 ⇐� mk − αm∇mF̃ (m, A)|mk ,Ak ,
8: end procedure
In words, 2: initialize variables, 3: start iteration loop, 4: convex minimization for ξk+1, 5: prox-gradient step
for Ak+1, 6: project Ak+1 into I , rotate into Pξk+1 basis, and 7: prox-gradient step for mk+1. Note that
inequalities (36) and (37) should be satisfied, and there tends to be a sweet spot for η. It is often useful to start
with η � 1 and then reduce η until the model coefficients are significantly affected.

ε
ξ

tol and εm
tol are convergence tolerances. The V k+1 are the eigenvectors of Pξk+1 and are used to

transform Ak+1 into the same basis as Pξk+1. An example of the algorithm iterating on noisy data
from the chaotic Lorenz system is shown in Fig. 2, demonstrating how the algorithm transitions
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from a poor initial guess that decays to a fixed point to a stable model converging to the correct
attractor. We also implement an optional FISTA method [104,105] for reducing the convergence
time in the (m, A) optimization. Algorithm 1 is computationally intensive, but it can be parallelized
for speed in future work, following other SINDy variants [106]. Initial guesses are allowed for m
and A in order to facilitate continuation of previous optimization runs. Along with these methods,
we also implement the λ1 variant of the trapping algorithm in Eq. (25) in the open-source PYSINDY

code [60].
A key insight into the trapping algorithm is that the energy-preserving constraint Cξ = d is non-

negotiable. Although in practice small errors in Cξ = d do not significantly affect the optimization
problem, the ‖Pξ − A‖2

2 term in the optimization loses its physical interpretation if the coefficients
are not exactly energy-preserving. Thus, the goal is to satisfy Cξ = d exactly, and then to push
a potential model towards a more refined model that exhibits a trapping region, potentially at the
expense of the fit to the data (this can also mitigate overfitting).

With regard to choosing hyperparameters, there is some work to do for each new problem.
Fortunately, the results in Sec. IV are fairly insensitive to the precise hyperparameter values. Rather,
we rediscover a common occurrence in sparse regression techniques—the existence of cutoffs in the
hyperparameter space where the model quality sharply drops. These sharp boundaries are actually
grounded in reality; if sparsity-promotion is increased in the regression, it will eventually start to
truncate out the smallest physical scales in the system, and at “large enough” values, it truncates the
primary dynamics of interest.

More specifically for our Algorithm 1, if the system has some small scales, poor choices of λ

(sparsity-promotion) or γ (smallest eigenvalue of AS) can truncate these scales during the regres-
sion. A reasonable strategy, assuming no prior system knowledge, is to start with λ = 0, γ ∼ 0, η �
1, and then scan the values. For η (the strength of the long-term boundedness term), there tends to
be a “sweet spot” regime. If η−1‖Pξ − A‖2

2 � ‖�ξ − Ẋ‖2
2, then ξ∗ is essentially unaffected by the

minimizations over m and A. In practice, this means that poor initial guesses for ξ∗ do not improve as
the full optimization problem is solved. In the opposite extreme, η−1‖Pξ − A‖2

2 � ‖�ξ − Ẋ‖2
2, the

optimization in Eq. (26) is increasingly nonconvex and potentially pulls ξ∗ far away from the data.
Finding the η regime where updating m perturbs ξ∗, instead of leaving ξ∗ unaffected or mangled,
requires scanning η. Because each problem requires some data-craftsmanship, there are plans to
parallelize the algorithm to efficiently scan large ranges in the hyperparameters. Finally, prior system
knowledge can also constrain the hyperparameter space.

IV. RESULTS

We now investigate the utility of our trapping SINDy algorithm to identify stable, sparse,
nonlinear models for a number of canonical systems. These examples illustrate that it is possible
to both effectively discover stable models that exhibit trapping regions and improve the discovery
of systems that do not satisfy Theorem 1 or the requirement of effective nonlinearity. For each
system, we train SINDy on a single trajectory with a random initial condition and evaluate the
model on a different trajectory of the same temporal duration with a new random initial condition.
It is difficult to quantity model performance for chaotic systems, such as the Lorenz system, where
lobe-switching is extremely sensitive to initial conditions and the coefficients of the identified
model, and for systems with transients, for which the precise timing of instability must be matched to
achieve the correct phase. Two reasonable definitions for the model quality are the relative Frobenius
error in the model coefficients (for models with closed forms) and the time-averaged error in Ẋ ,

Em = ‖�True − �SINDy‖F

‖�True‖F
, (38)

Ef = ‖Ẋ True − Ẋ SINDy‖2

‖Ẋ True‖2
. (39)
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TABLE II. Description of the sampling, trapping SINDy hyperparameters, and identified trapping region
for the dynamic systems examined in Sec. IV. Trajectory data do not include any added noise, so λ = 0 works
for most of the systems. The SINDy models are identified from a single trajectory. These parameters produce
reasonable results for these systems, but a hyperparameter scan can lead to further improvements. The errors
in the last two columns are approximate up to O(1) factors. An empty table element indicates that the variable
is not applicable to the system.

Dynamic system r �t M λ η γ m∗ Rm Reff λ1 Em Ef

Mean field 3 0.01 50 K 0 1010 1 [0, 0, 1.3] 1.3 218 −1 10−5 10−12

Atmospheric oscillator 3 0.005 50 K 0 108 0.1 [0, −0.9, 0.4] 300 597 −0.01 10−4 10−7

Lorenz attractor 3 0.005 50 K 0 0.1 1 [−1.2, 0.1, 38] 106 4.4 −1 10−3 10−5

Triadic MHD 6 0.001 50 K 0 103 0.1 [0, . . . , 0] 0 10−6 10−10

Burgers’ equation 10 0.1 30 K 0 500 0.1 [−0.2, 0, . . . ] 0.1 10−3

Cylinder wake 5 0.1 30 K 0.1 1 0.1 [−1.2, . . . , 1.1] 29 17 −0.1 10−3

It should be understood that the time-average in Ef is computed after dividing the numerator and
denominator. When appropriate, we also report a far more demanding relative prediction error,

Epred = ‖X True − X SINDy‖F

‖X True‖F
. (40)

Table II summarizes the sampling, hyperparameters, and identified trapping regions for each
example discussed in Secs. IV A–IV F. Table II is intended to be instructive rather than exhaustive.
For clarity, the training and testing trajectories used to generate this table do not have added noise,
although Fourier modes from the Burgers’ equation and POD modes from the von Kàrmàn street are
obtained from direct numerical simulation (DNS), and subsequently contain minor numerical noise;
the performance on noisy data will be explored further in Sec. IV C. To compare trapping region

sizes Rm across different examples, we also report Reff = Rm/

√∑r
i=1 y2

i , which is normalized to
the approximate radius of the training data. The denominator denotes the root-mean-square of the
temporal average of each component of the trajectory.

A. Mean-field model

Often the trajectories of a nonlinear dynamical system, which has a linear part exhibiting some
stable directions, will approach a slow manifold of reduced dimension with respect to the full state
space. As an example of this behavior, consider the following linear-quadratic system originally
proposed by Noack et al. [1] as a simplified model of the von Kàrmàn vortex shedding problem
explored further in Sec. IV F:

d

dt

⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣μ −1 0

1 μ 0
0 0 −1

⎤
⎦

⎡
⎣x

y
z

⎤
⎦ +

⎡
⎣ −xz

−yz
x2 + y2

⎤
⎦. (41)

Systems of this form commonly arise in PDEs with a pair of unstable eigenmodes represented
by x and y. The third variable z models the effects of mean-field deformations due to nonlinear
self-interactions of the instability modes. The system undergoes a supercritical Hopf bifurcation at
μ = 0; for μ � 1 trajectories quickly approach the parabolic manifold defined by z = x2 + y2. All
solutions asymptotically approach a stable limit cycle on which z = x2 + y2 = μ. It is enough to
notice that m = [0, 0, μ + ε], ε > 0 produces

AS = LS − mT Q =
⎡
⎣−ε 0 0

0 −ε 0
0 0 −1

⎤
⎦, (42)
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(a)

(b)

FIG. 3. Identified models and trapping regions for the mean-field and atmospheric oscillator systems.
(a) Trapping SINDy model (black) of a mean-field system trajectory (red) with μ = 0.01 and initial condition
[μ, μ, 0]. The trajectory is shown within the estimated trapping region and ellipsoid where K̇ � 0. The
prediction error is Epred ≈ 0.6%. (b) Same illustration for the atmospheric oscillator with random initial
condition chosen from the unit ball. There is large-scale separation in this system, so that |λ1| � |λ2|, |λ3|.
This leads to an overestimate of the trapping region size. The prediction error is Epred ≈ 6%.

so this system exhibits a trapping region. We illustrate a stable and accurate model identified by our
trapping SINDy algorithm in Fig. 3(a).

This system is of particular interest because it is a prototypical example of how quadratic
interactions in a multiscale system can give rise to effective higher-order nonlinearities. If the
dynamics are restricted to the slow manifold, the system reduces to the cubic Hopf normal form
[1,107]

d

dt

[
x
y

]
=

[
μ − (x2 + y2) −1

1 μ − (x2 + y2)

][
x
y

]
. (43)

Systems of this type arise in weakly nonlinear pattern-forming systems and are often called Stuart-
Landau equations. In this case, the nonlinear interactions are no longer energy-preserving, since the
manifold restriction removes the fast, dissipative degree of freedom. We might intuitively expect
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that this type of manifold reduction would inherit the trapping properties of the underlying system,
but to our knowledge a general theory of such situations has not yet been worked out, even for the
quadratic energy-preserving case.

B. Atmospheric oscillator model

Here we examine a more complicated Lorenz-like system of coupled oscillators that is motivated
from atmospheric dynamics:

d

dt

⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣μ1 0 0

0 μ2 ω

0 −ω μ2

⎤
⎦

⎡
⎣x

y
z

⎤
⎦ +

⎡
⎣ σxy

κyz + βz2 − σx2

−κy2 − βyz

⎤
⎦. (44)

For comparison, we use the parameters in Tuwankotta et al. [108]—μ1 = 0.05, μ2 = −0.01, ω = 3,
σ = 1.1, κ = −2, and β = −6—for which a limit cycle is known to exist. The trapping SINDy
algorithm finds m such that AS is negative-definite for a wide range of parameter and hyperparameter
choices, and accurate model results are illustrated in Fig. 3(b) alongside the mean-field model
results.

So far, we have illustrated that the trapping algorithm successfully produces accurate and
provably stable models on simple systems that exhibit well-behaved attractors. In the next sections,
we investigate progressively noisier (Sec. IV C) and higher-dimensional (Secs. IV D–IV F) systems
that typically provide significant challenges for model discovery algorithms.

C. Noisy Lorenz attractor

The Lorenz 1963 system [109] is among the simplest systems exhibiting chaotic dynamics,
developed to model thermal convection in the atmosphere based on computer simulations from
his graduate students Ellen Fetter and Margaret Hamilton:

d

dt

⎡
⎣x

y
z

⎤
⎦ =

⎡
⎣−σ σ 0

ρ −1 0
0 0 −β

⎤
⎦

⎡
⎣x

y
z

⎤
⎦ +

⎡
⎣ 0

−xz
xy

⎤
⎦. (45)

For this system, it is possible to write AS explicitly as

AS =
⎡
⎣ −σ 1

2 (ρ + σ − m3) 1
2 m2

1
2 (ρ + σ − m3) −1 0

1
2 m2 0 −β

⎤
⎦. (46)

For Lorenz’s choice of parameters, σ = 10, ρ = 28, β = 8/3, this system is known to exhibit a
stable attractor. For m = [0, m2, ρ + σ ] (m1 does not contribute to AS , so we set it to zero),

AS =
⎡
⎣−σ 0 1

2 m2

0 −1 0
1
2 m2 0 −β

⎤
⎦,

λ1 = −1, λ± = −1

2

[
β + σ ∓

√
m2

2 + (β − σ )2
]
, (47)

so that if λ± < 0, then −2
√

σβ < m2 < 2
√

σβ. Our algorithm successfully identifies the optimal
m, and identifies the inequality bounds on m2 for stability. As this analysis is invariant to m1, in
principle the trapping region is given by a cylinder, extruded in the m1 direction, rather than a
sphere.
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FIG. 4. Comparison between the constrained SINDy (magenta) and trapping SINDy (black) results for the
Lorenz system using three different values of the sparsity-promotion strength λ. Unconstrained SINDy results
are not pictured because most of the models diverge. Each model is trained on a single Lorenz attractor with
noise sampled from N (0, 4) and an initial condition of [1, −1, 20] (blue). The illustrations depict the model
performance on data evolved from four random initial conditions between [−10, 10] (these testing data are not
shown but the attracting set is unchanged). Trapping SINDy produces stable models that follow the underlying
attractor for all values of λ.

We can show further improvements in model quality. We train unconstrained, constrained, and
trapping SINDy models four times; the data for each are a single Lorenz attractor with four different
noise instantiations. Then we test the performance of the resulting models with a random initial
condition in [−10, 10] × [−10, 10] × [−10, 10]. For direct comparison, we use the L1 regularizer
for each method. Figure 4 illustrates the increased performance with our trapping SINDy algorithm
over the constrained SINDy algorithm on noisy Lorenz data for varying threshold levels λ = {0,
0.01, 0.1}. The unconstrained method is not pictured because most of the identified models diverge
at these high noise levels. At all values of λ and most initial conditions, the unconstrained method
overfits to the data and produces unstable and diverging models. The traditional constrained SINDy
variant mostly manages to produce stable models but produces increasingly poor data fits as λ

increases. In contrast, the trapping version continues to produce stable models that lie on the correct
attractor. In this way, the additional optimization loss terms that promote stable models provide both
a trapping region of known size and additional robustness to noise, even when the models appear
otherwise stable, as with many of the constrained SINDy models that incorrectly decay to a fixed
point.

D. Triadic MHD model

Magnetohydrodynamic systems exhibit quadratic nonlinearities that are often energy-preserving
with typical boundary conditions. We consider a simple model of the nonlinearity in two-
dimensional incompressible MHD, which can be obtained from Fourier-Galerkin projection of the
governing equations onto a single triad of wave vectors. For the Fourier wave vectors k1 = (1, 1),
k2 = (2,−1), and k3 = (3, 0) and no background magnetic field, the Carbone and Veltri [110]
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V1
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V1 V2 V3 B1 B2 B3

FIG. 5. The triad model for 2D inviscid MHD training data (blue, upper triangle) and a trapping SINDy
model (black) capturing Hamiltonian dynamics on testing data (red, lower triangle).

system is⎡
⎢⎢⎢⎢⎢⎣

V̇1

V̇2

V̇3

Ḃ1

Ḃ2

Ḃ3

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

−2ν 0 0 0 0 0
0 −5ν 0 0 0 0
0 0 −9ν 0 0 0
0 0 0 −2μ 0 0
0 0 0 0 −5μ 0
0 0 0 0 0 −9μ

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

V1

V2

V3

B1

B2

B3

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

4(V2V3 − B2B3)
−7(V1V3 − B1B3)
3(V1V2 − B1B2)
2(B3V2 − V3B2)
5(V3B1 − B3V1)
9(V1B2 − B1V2)

⎤
⎥⎥⎥⎥⎥⎦, (48)

where ν � 0 is the viscosity and μ � 0 is the resistivity. Without external forcing, this system
is stable, dissipating to zero, so we consider the inviscid limit ν = μ = 0. The system is now
Hamiltonian and our algorithm correctly converges to m = 0, AS = 0. The results in Fig. 5 provide a
useful illustration that trapping SINDy converges to stable energy-preserving models even when the
trapping theorem is not satisfied. These results also provide a reminder that there are a large number
of dynamical systems beyond fluids, such as MHD, which may benefit from these types of tech-
niques. The reason our algorithm converges to the correct behavior is because it is still minimizing
K̇ ; in this case, trapping SINDy converges to K̇ ≈ 0 and can make no further improvement.

E. Forced Burgers’ equation

The viscous Burgers’ equation has long served as a simplified one-dimensional analog to the
Navier-Stokes equations [111,112]. The forced, viscous Burgers’ equation on a periodic domain
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x ∈ [0, 2π ) is

d

dt
u = −(U + u)∂xu + ν∂2

xxu + g(x, t ), (49)

where ν is viscosity, and the constant U models mean-flow advection. We project this system onto
a Fourier basis and assume constant forcing acting on the largest scale, i.e., g(x, t ) = σ (a1(t )eix +
a−1(t )e−ix ), as in Noack et al. [113]. After Fourier projection, the evolution of the coefficients ak (t )
is given by the Galerkin dynamics

ȧk = (δ|k|1σ − νk2 − ikU )ak −
r∑

�=−r

i�a�ak−�. (50)

In the subcritical case, σ < ν, the origin of this system is stable to all perturbations, and
all solutions decay for long times. However, in the supercritical case, σ > ν, the excess energy
input from the forcing cascades to the smaller dissipative scales. The “absolute equilibrium” limit
σ = ν = 0 has a Hamiltonian structure; for long times, the coefficients approach thermodynamic
equilibrium and equipartition of energy [114]. This structure does not correspond to any physical
behavior of the Navier-Stokes equations, although it does approximate some properties of the
inviscid Euler equations [115]. Due to its rich dynamics, this modified Burgers’ equation has also
been investigated in the context of closure schemes for Galerkin models [113]. We simulate the PDE
in Eq. (49) with a high-resolution Godunov-type finite volume method using a van Leer flux limiter,
implemented in the open-source Clawpack solver [116,117].

We illustrate the model performance in Fig. 6(a) for the subcritical case with σ = 0.01 and ν =
0.025, the supercritical case with σ = 0.1 and ν = 0.025, and the absolute equilibrium. In all cases,
U = 1. For the subcritical condition, all the eigenvalues of LS are negative, and thus the algorithm
finds stable models. For the supercritical condition, σ > ν, there is some subtlety. The algorithm
does not converge to a negative-definite AS , although it finds a solution with K̇ � 0. As mentioned
in Sec. II D, this system does not exhibit effective nonlinearity. This lack of effective nonlinearity
was also true for the MHD example in Sec. IV D, since the initial condition with no magnetic
field perturbation, B1(0) = B2(0) = B3(0) = 0, remains on the purely hydrodynamic manifold. In
the inviscid limit, we did not need to consider this subspace because the system already does not
satisfy the trapping theorem by virtue of being Hamiltonian. Lastly, in the absolute equilibrium
regime, the trapping SINDy algorithm correctly identifies vanishing eigenvalues of AS . In practice,
we find excellent models for all of the aforementioned systems, and for all practical purposes these
models are typically stable, regardless of effective nonlinearity or Hamiltonian dynamics, because
the SINDy trapping algorithm is minimizing K̇ . However, without effective nonlinearity we are not
guaranteed to produce a stable model for every possible initial condition.

In Fig. 6(b) we illustrate the r = 10 model built from the DNS data in the supercritical regime
with σ = 0.1, ν = 0.025. It struggles a bit with the transient, but otherwise the performance is
accurate. Part of the reason for the poor fit to the transient is that λ = 0 is used here. The biasing
towards stability appears to mitigate some of the need for sparsity-promotion; in other words,
sparsity-promotion is not necessarily needed to produce a stable model, but it may be needed for a
more accurate or interpretable model, since the number of coefficients in Qi jk is O(r3) despite the
constraints. Using finite λ may improve the model further, especially the transients, but instead
of further investigating this example, we move on and conclude the results by addressing the
challenging von Kàrmàn vortex shedding behind a circular cylinder.

F. von Kàrmàn vortex street

Here we investigate the fluid wake behind a bluff body, characterized by a periodic vortex
shedding phenomenon known as a von Kàrmàn street. The two-dimensional incompressible flow
past a cylinder is a stereotypical example of such behavior, and it has been a benchmark problem for
Galerkin models for decades [1]. The transition from a steady laminar solution to vortex shedding is
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FIG. 6. Summary of trapping SINDy performance for the forced Burgers’ equation. (a) Trapping SINDy
model (black) for the modified Burgers’ equation in the three dynamic regimes. For improved illustration, the
ground truth data (blue) are generated from the 10D Noack et al. [113] model rather than DNS. (b) Temporal
evolutions of each (ai, aj ) pair for i, j = 1, . . . , 10 obtained from DNS training data (blue, upper triangle),
DNS testing data (red, lower triangle), and trapping SINDy prediction on both DNS datasets (black). The
trapping algorithm struggles a bit with the transients, but obtains the correct attractor behavior.
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given by a Hopf bifurcation, as a pair of eigenvalues of the linearized Navier-Stokes operator cross
the real axis.

The transient energy growth and saturation amplitude of this instability mode is of particular
interest and has historically posed a significant modeling challenge. Early Galerkin models of vortex
shedding, based on a POD expansion about the mean flow, captured the oscillatory behavior but
were structurally unstable [118]. This was later resolved by Noack et al. [1], who recognized that
the transient behavior could be explained by Stuart-Landau nonlinear stability theory, in which
the unsteady symmetric flow is deformed to the neutrally stable mean flow via a nonlinear self-
interaction of the instability mode. In that work, an eight-mode POD basis was augmented with a
ninth “shift mode” parametrizing this mean flow deformation. This approach was later formalized
with a perturbation analysis of the flow at the threshold of bifurcation [119].

This modification encodes the intuition that the dynamics take place on the parabolic manifold
associated with the Hopf bifurcation; without it, the energy quadratic models tend to overshoot and
oscillate before approaching the post-transient limit cycle. Nevertheless, the nine-mode quadratic
Galerkin model does resolve the transient dynamics, nonlinear stability mechanism, and post-
transient oscillation, accurately reproducing all of the key physical features of the vortex street.
Moreover, in Schlegel and Noack [10], stability of the quadratic model was proven with m9 =
mshift = ε, ε > 1, and mi = 0 for i = {1, . . . , 8}. Recall from the discussion in Sec. II D that
POD-Galerkin models will generally weakly satisfy the effective nonlinearity criteria, and it is
unclear if the shift-mode complicates this picture.

Although the POD-Galerkin model is an accurate description of the flow past a cylinder, it is an
intrusive model, in the sense that evaluating the projected dynamics requires evaluating individual
terms in the governing equations, such as spatial gradients of the flow fields. POD-Galerkin
models, therefore, tend to be highly sensitive to factors including mesh resolution, convergence
of the POD modes, and treatment of the pressure and viscous terms. Recent work by Loiseau
et al. [19,120,121] has bypassed the Galerkin projection step by using the SINDy algorithm to
directly identify the reduced-order dynamics. This approach has been shown to yield compact,
accurate models for low-dimensional systems (r = 2 or 3), but preserving accuracy and stability for
higher-dimensional systems remains challenging. Higher-dimensional regression problems often
become ill-conditioned; for example, in the cylinder wake example, the higher modes 3–8 are
essentially harmonics of the driving modes 1–2, and so it is difficult to distinguish between the
various polynomials of these modes during regression. Because these higher harmonics are driven
by modes 1–2, the 3D constrained quadratic SINDy model with modes 1–2 plus the shift mode
from Loiseau et al. [19] already performs well enough to capture the energy evolution with minor
overshoot and correct long-time behavior. Details of the DNS and the POD-Galerkin technique used
to reproduce the 9D shift-mode model can be found in Appendix.

With the trapping SINDy algorithm, we obtain new five-dimensional and nine-dimensional mod-
els for the cylinder wake and compare the performance against the same-size analytic POD-Galerkin
models. The 5D trapping SINDy model is provably stable, and we illustrate the identified trapping
region in Fig. 7(a). We also compare the 5D SINDy and 9D POD-Galerkin models in Fig. 7(c). The
5D trapping SINDy model outperforms the 9D POD-Galerkin model by significantly improving the
transient and improving the identification of the long-term attractor. For the 9D trapping SINDy
model, we managed to reduce the largest eigenvalue of AS to O(10−2–10−4) but were unable to
produce accurate trapping SINDy models with fully negative-definite AS . In practice, these models
are functionally stable; we tested a large set of random initial conditions and did not find unbounded
trajectories. Further searching in the hyperparameter space, or more algorithm iterations for better
convergence, could potentially produce fully stable models. Despite this setback, the 9D trapping
SINDy model performs quite well. The Galerkin model and the trapping SINDy model exhibit
comparable performance and the SINDy model improves the transient prediction. The energies in
Fig. 7(b) illustrate convergence to the true fluid flow energy for all the SINDy and POD-Galerkin
models, with only the 9D trapping SINDy model capturing the precise timing of the transient.
The flow reconstructions in Fig. 7(d) are quite accurate for both models. This is a surprisingly
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FIG. 7. Summary of the differences between DNS, POD-Galerkin models, and trapping SINDy models.
(a) Trapping SINDy 5D model (black) of a von Kàrmàn trajectory (red). The trajectory is shown within the
estimated trapping region and ellipsoid where K̇ � 0. (b) Comparison of the energies for DNS and the five- and
nine-mode POD-Galerkin and trapping SINDy models. (c) Five-mode trapping SINDy (black) and nine-mode
POD-Galerkin (blue) models with a random initial condition, and the von Kàrmàn trajectory used for training
(red). (d) Predictions of the vorticity field for the von Kàrmàn street at four snapshots in time, with a movie
available [122]. The trapping SINDy model outperforms the 9D POD-Galerkin model, although an initial phase
error in the trapping SINDy prediction (visible in the first snapshot) persists throughout the prediction.

strong performance with SINDy; recall that (i) the Galerkin model is far more invasive a procedure
than SINDy, requiring computation of spatial derivatives and inner products from the DNS; (ii) the
Galerkin model can still be quite sensitive to the DNS data, boundary conditions, and mesh size;
and (iii) the 9D trapping SINDy model is far sparser and has far fewer “active” terms than the 9D
POD-Galerkin model.

The difficulty in producing provably stable, 9D trapping SINDy models here appears to reveal
an interesting optimization tradeoff. While sparsity-promotion tends to promote more accurate
models and reduce the complexity of the nonconvex optimization problem (since there are fewer
active terms to manage), it also deemphasizes our proposed metric for the strength of effective
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nonlinearity, Se from Eq. (17), by reducing the values of unimportant model terms. For instance,
the SINDy model here exhibits weak effective nonlinearity, Se ≈ 10−5, compared with Se ≈ 10−2

for the POD-Galerkin model. This small value of Se may indicate increased difficulty in obtaining a
fully negative-definite AS . SINDy models with weaker sparsity-promotion exhibit larger Se, but
then it becomes exceedingly difficult to obtain accurate models in the nonconvex optimization
problem. Without any sparsity-promotion, this is an ill-conditioned, nonconvex optimization in a
330-dimensional space. In this way, there appears to be some tradeoff between sparsity-promotion
and the strength of effective nonlinearity. Given these points, we consider the sparse five-mode and
nine-mode SINDy models to be promising first steps towards incorporating stability constraints into
higher-dimensional data-driven models.

Before concluding, we should note that the eight-mode (no shift mode) POD-Galerkin model
from Noack et al. [1], and all eight-mode models found by trapping SINDy, do not exhibit global
stability. The problem fundamentally stems from the marginal stability of the mean flow and the
very weak effective nonlinearity, both of which are somewhat addressed by the shift mode in the
nine-mode model. This should be taken as a cautionary warning; success of these algorithms still
relies on useful representations that capture the stability information of the underlying dynamics.
This may require high-resolution data or the alternative dynamic bases mentioned in Sec. II A.

V. CONCLUSION

The present work develops physics-constrained system identification by biasing models towards
fulfilling global stability criteria, and subsequently produces long-term bounded models with no
extra assumptions about the stability properties of equilibrium points and equilibrium trajectories.
To produce globally stable models, we have implemented a new trapping SINDy algorithm based
on the Schlegel-Noack trapping theorem [10]. Biasing models towards stability, and postfit, proving
that identified models are globally stable, will likely become increasingly important for both
projection-based and data-driven models of fluids and plasmas. Our approach, which relies on using
the energy as a Lyapunov function for an entire class of models with fixed nonlinear structure, is
challenging for application to higher-order nonlinearities where generic Lyapunov functions are
often unknown. Fortunately, data-driven methods are now increasingly used to discover Lyapunov
functions and barrier functions for nonlinear control [93,123–130]. These methods build a heuristic
Lyapunov function for a given dataset, rendering the search for a Lyapunov function tractable but
possibly at the cost of model generality.

We demonstrated the effectiveness of this optimization to identify stable models and additionally
managed to improve the discovery of models that do not conform to the assumptions of the trapping
theorem. Our trapping SINDy algorithm resulted in more accurate and stable models for a range of
systems, including simple benchmark problems, noisy data from chaotic systems, and DNS from
full spatial-temporal PDEs. In these examples, we found that our modified SINDy algorithm could
effectively discover stable, accurate, and sparse models from significantly corrupted data. Even
when an explicit stable trapping region was not found, improved stability was observed. Finally, we
explored relatively high-dimensional reduced-order models, with O(10) degrees of freedom, which
are typically challenging for unconstrained data-driven algorithms.

There is considerable future work for biasing machine learning methods to discover models that
satisfy existence-style proofs of stability, especially those that require nonconvex optimization; we
find that the lack of convexity in the trapping SINDy algorithm leads to deprecating algorithm
speed and tractability as the size of the problem increases. There are many fluid flows that have
known stable and unstable projection-based and data-driven reduced-order models, and which
would benefit from a larger class of models with trapping region guarantees. Future work should
apply this methodology to heavily researched systems such as the fluidic pinball [21,131] and the
lid-cavity flow [132,133]. Other promising future work includes adapting this structure to N-body
coupled Stuart-Landau equations for which stability theorems already exist [134]. However, the
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nonconvexity of this formulation may require adaptation to a deep learning approach for high-
dimensional N-body problems that occur in fluids and modern neuronal models.

For all of the examples in this work, we train our trapping SINDy algorithm on a single trajectory,
although most data-driven methods can improve performance by processing data from multiple
trajectories. Very large data can be effectively addressed with modern approaches, such as manifold
Galerkin projection [121] and autoencoder [32,79,80,135,136] methods. These approaches may also
address the significant Kolmogorov width limitations of linear transformations [137], and help ease
the nonconvexity of our new optimization problem. There are also modern reduced-order modeling
techniques, such as “lift & learn” [29], which produce quadratic ROMs regardless of the nonlinear
structure of the underlying governing equations. Similarly, Koopman analysis aims to produce a
map from the original state-space, where the dynamics are nonlinear, to a new coordinate system,
typically infinite-dimensional, where the dynamics become linear [13,16,75,79,138–141].

However, adapting our methodology to these alternative bases requires additional work to
understand how the trapping theorem, or similar theorems, change under these (often nonlinear)
coordinate transformations. For instance, Pan et al. [28] build stable Koopman models by requiring
that the real parts of the eigenvalues of the linear Koopman operator are nonpositive, although the
relationship between this linear stability and the trapping theorem is unclear. In related work, neural-
network-based encoders are often used to reverse this mapping; encoders can input quadratically
nonlinear fluid flow data and apply nonlinear transformations to find useful reduced-order models
beyond what is capable with traditional projection-based methods [142]. A natural question that
arises is as follows: assuming the original energy-preserving, quadratically nonlinear fluid flow
exhibits a trapping region, under what conditions can we conclude that global stability holds in a
new coordinate system given by b = g(y), for some map g : Rr → Rs? The transformation could be
an encoder, the reverse lifting map [29], or some other coordinate transform. Understanding how the
stability properties manifest in the transformed system is a promising future direction for extending
this stability theorem for ROMs with alternative dynamic bases.
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APPENDIX: VON KÀRMÀN DNS AND POD-GALERKIN DETAILS

We simulate the flow past a circular cylinder at Reynolds number Re = 100 with unsteady incom-
pressible DNS using the open source spectral element solver Nek5000 [143]. The domain consists
of 17 432 seventh-order spectral elements (∼850 000 grid points) on x, y ∈ (−20, 50) × (−20, 20),
refined close to a cylinder of unit diameter centered at the origin. Diffusive terms are integrated
with third-order backwards differentiation, while convective terms are advanced with a third-order
extrapolation. The nine-mode augmented POD-Galerkin model is computed following Noack et al.
[1], using gradients extracted directly from the DNS code. Mean-subtracted POD modes are
computed from a set of 100 equally spaced snapshots over one period of vortex shedding. The
shift mode is calculated as the difference between an unsteady base flow, obtained with the selective
frequency damping algorithm [144] and the mean of the snapshots, orthonormalized with respect to
the remaining POD modes with a Gram-Schmidt procedure. The transient DNS is initialized with
the unstable steady state perturbed by the leading linear instability mode with energy 10−8. We
compute the transient POD coefficients by projecting 3000 snapshots sampled at �t = 0.1 onto this
POD basis.
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