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A ternary phase-field simplified multiphase lattice Boltzmann method (TPF-SMLBM)
is developed and employed in numerical investigation of a compound droplet placed on
solid substrate in shear flow at moderate Reynolds numbers. The TPF-SMLBM utilizes
the simplified multiphase lattice Boltzmann method as the flow solver and the ternary
phase-field model as the interface tracking algorithm. Compared with conventional lattice
Boltzmann method, this method preserves advantages in memory cost and boundary
treatment. The numerical investigations recover three major modes of motion, namely the
quasisteady sliding, tumbling-sliding, and tumbling-detachment. The quasisteady sliding
dynamics are analyzed from the perspective of energy conversion, which explains the
exponential shrinking rate of the wetting length in early evolution stage. By using the
force-balance analyses, the onset of tumbling motion is firstly elaborated as the breakup
of the balance in quasisteady sliding. A dimensionless parameter named as the tumbling
number Tu = Ca/Re−0.5, where Ca and Re are, respectively, capillary and Reynolds
numbers, is proposed to identify the mode transition towards tumbling. The physical
rational of this parameter can be established from both the force analyses and the balance
of timescales, and is further validated by abundant simulation results which show that its
criticality is roughly on the order of O(1) in the low-density–viscosity ratio scenarios. For
the tumbling-sliding mode, the re-adhesion of tumbling droplet portion generates extra
diffusive flow behavior and shrinks the wetted length of the sliding droplet portion. The
dynamics of detachment is also investigated, showing that the critical capillary number of
detachments can be scaled by Cac,detach ∼ Re−0.3.

DOI: 10.1103/PhysRevFluids.6.094304

I. INTRODUCTION

Droplet dynamics is of important value in both physical explorations and engineering applica-
tions. Compound droplet in a shear flow is a typical example of droplet dynamics problems which
can be traced back to the very early attempts made by Chambers and Kopac [1]. It has been attracting
increasing attention in recent years due to its potential values in some emerging technologies such
as advanced cell handling, drug delivery, additive manufacturing, and enhanced oil recovery [2–8].

From the physical perspective, the compound droplet in a shear flow is at least a ternary fluid
system [9]. Different portions of the droplet as well as the ambient fluid are separated by thin layers
of interfaces on which the surface tensions are imposed. Complexities of this problem stem from
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various factors such as distinct fluid properties of different phases, density and viscosity contrasts,
interfacial deformations, interactions with the solid surfaces, etc. These complexities are essentially
dynamic outcomes of the force balances. To quantify the force balances, dimensionless parameters
are commonly used. For a compound droplet in shear flow, interesting dimensionless parameters
could be the Reynolds number (Re), which defines the ratio of inertial force to viscous force, the
Weber number (We), which quantifies the ratio of inertial force to surface tension force, and the
capillary number (Ca) representing the ratio of viscous force to interfacial force.

Explorations on the compound droplet with translating behaviors have been conducted in exper-
imental, analytical, and numerical manners [10–13]. Specifically, numerical investigations of this
topic have been primarily on the configurations of one or more minor droplets confined within
another in a different phase. Abundant results have been reported on the migration, deformation,
breakup, and interaction of the compound droplets in flow currents [14–19]. Some other studies
have been addressing the issue of the compound capsules in shear flows, in which the droplets
are enclosed by elastic membranes [20]. The membrane encapsulates the droplet content, which
removes the surface tension effects and restricts topological changes. Therefore, studies on the
compound capsules were mainly on their migrations, tumbling motions, and deformations in the
ambient flow [21].

In the presence of substrates, the problem becomes more complicated due to a new factor
involved: the wetting condition on solid boundaries. In some scenarios, the physical and chemical
heterogeneities of the substance are considered, leading to the so-called contact-angle hysteresis
[22]. This hysteresis contributes to a critical condition below which the droplet would pin to the
substrate. Dimitrakopoulos and Higdon [23,24] employed the boundary element method to study
the deformation of a droplet adhering to the solid surface in shear flow and the yield condition
of droplet motion. Various surface properties and flow conditions were considered, yet the studies
have been restricted to very low Reynolds numbers so that the creeping-flow theory can be used to
facilitate analysis. Spelt [25] incorporated the inertial effect into the same problem by numerically
resolving the Navier-Stokes equations at moderate Reynolds numbers. By considering the balance
among forces exerted on the droplet, the scaling law between the critical Weber number of droplet
motion and the Reynolds number was established. This work was followed by Ding and Spelt
[26], who carried out three-dimensional simulations to enrich understandings in this problem. Other
than studying the onset of motions, Ding et al. [27] also investigated the entrainment process and
the pinch-off of droplets. An energy perspective was introduced to study the ligament dynamics,
showing an exponential rate of stretching. In some other studies, a constant contact angle is assumed,
due to which the droplet can move at any positive capillary number. With this assumption, Kang
et al. [28] numerically investigated the droplet sliding in a duct under the action of gravity. It was
found that the dimensionless contact-line velocity in sliding cases holds a linear relationship with
the capillary number, indicating that a local balance is reached between the viscous force and the
surface tension force. In this work, we will also employ the assumption of constant contact angles
since our research interests lie in the kinematics and dynamics of the moving droplet rather than the
onset of its sliding motion.

From the above reviews, we can see that existing research of the droplet dynamics on a substrate
in shear flow was focused on the case of a single droplet. Although the laws and tendencies acquired
in these studies are of reference value to the present investigation of a compound droplet, it is still
necessary to make thorough kinematic and dynamic analyses on this configuration. We can only
find very limited reports on this topic in the literature, most of which were dedicated to constructing
robust numerical schemes for modeling ternary fluid systems with contact-line dynamics. Zhang
et al. [29] proposed a diffuse-interface interpretation of the contact-line dynamics for a ternary fluid
system based on the two-phase flow counterpart [30], and presented some preliminary results of
the compound droplet on substrate in shear flow. Yu et al. [31] simulated this problem within the
lattice Boltzmann framework and summarized several kinematic modes without further elaboration
of the dynamics. Shang et al. [32] placed a smaller droplet into a larger one on the substrate and
numerically studied the dynamics of the compound droplet in shear flow.
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In this work, we would enrich understandings of this problem through numerical simulations.
The lattice Boltzmann method (LBM) is an important numerical tool for resolving multiphase
flow problems and has been widely employed in studying droplet dynamics [33–37]. However,
the conventional LBM might be less competitive in memory cost and boundary treatment due to
its evolution of distribution functions. The recently developed simplified lattice Boltzmann method
(SLBM) [38], which directly evolves the macroscopic variables within the lattice Boltzmann frame-
work, provides circumvention from these issues. To resolve the problem of interest in this work,
we device a ternary phase-field simplified multiphase lattice Boltzmann method (TPF-SMLBM)
in which the simplified multiphase lattice Boltzmann method [39] serves as the flow solver and
the diffuse-interface model [29] resolved by SLBM evolves the interfaces. Compared with the
conventional LBM, the present numerical strategy largely reduces the number of variables at each
mesh point and thus lowers the consumption of virtual memory. In the meantime, both the physical
boundary conditions and the wetting conditions on solid substrate can be directly implemented
without tedious transformation into equivalent conditions for distribution functions.

Key physical questions to be answered from the numerical simulations include the kine-
matic modes, the triggering factors for the mode transitions, and typical flow dynamics in each
mode. Specifically, three kinematic modes, namely the quasisteady sliding, tumbling-sliding, and
tumbling-detachment, are recovered in our simulations. These modes are mostly in line with the
previous work in a Poiseuille flow [31]. The pinch-off is not discussed here due to the difficulty
in distinguishing the numerical pinch-off and the true physical breakup [40]. Dynamics of the
quasisliding and the tumbling process will be established, following the paths of force and energy
balances proposed by Dimitrakopoulos and Higdon [2] and Ding et al. [27]. An exponential shrink-
ing rate of the wetted length in the early stage of evolution is mathematically derived, which agrees
well with the simulation results. The onset dynamics of the tumbling motion will be physically
explained from both the force balance point of view and the perspective of competing timescales,
based on which the tumbling number Tu = Ca/Re−0.5 is defined to quantify the transition. This
dimensionless parameter is justified through abundant numerical tests, and possesses the criticality
of O(1) upon onset of tumbling motion in the low-density–viscosity ratio scenarios considered here.
Regarding the tumbling process, it is found that the re-adhesion of the tumbling droplet would
generate extra diffusive flow behaviors and lead to the shrinking of wetted length of the droplet
portion which always adheres to the substrate. Discussions of the detachment dynamics will be
made mostly in a qualitative way. A scaling law of the critical capillary number of detachments
Cac,detach ∼ Re−0.3 is found based on the simulation results. Although a thorough mathematical
derivation for this scaling law is difficult, given the extreme complexities involved in this process,
it does imply that the viscous shear stress and surface tension force play a more dominant role
in the detachment process comparing with the onset of tumbling. It should be stressed that the
numerical studies in this work are carried out in low-density and viscosity ratio scenarios and in
two-dimensional conditions. Although the physical insights from the findings in this work are of
reference value to general applications, further verifications in three-dimensional simulations are
expected. In the meantime, higher density and viscosity ratios could reveal more delicate physical
phenomena and bring in more numerical challenges. Therefore, investigations in higher ratios of
density and viscosity and three-dimensional simulations would certainly enrich the knowledge on
this topic, which should be considered in our future work.

The remaining parts of the paper are organized as follows. Section II details the derivations and
formulations of the TPF-SMLBM used in the simulations. The validity of the numerical method is
established through two benchmark tests of ternary flow system in Sec. III. The validated method
is employed in Sec. IV for comprehensive investigations of the compound droplet dynamics on
substrate in shear flow. Concluding remarks are finally made in Sec. IV.

II. NUMERICAL METHOD

Numerical simulation of a ternary fluid system calls for robust multiphase flow solver and interfa-
cial tracking algorithm. In this work, we will establish a TPF-SMLBM to fulfill these purposes. The
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recently developed SMLBM will be employed as the flow solver [39], and the ternary phase-field
model [29] will be resolved within the lattice Boltzmann framework to update the interface positions
and interpret wetting conditions on the substrate.

A. Simplified multiphase lattice Boltzmann method as the flow solver

The LBM, being established at the mesoscopic scale, is a widely used numerical interpretation
for the flow system. The popularity of LBM in the fluid mechanics community stems from its major
advantages in kinetic nature, simplicity, and explicitness. LBM tracks the evolution of the so-called
distribution functions fα defined in the particle velocity space. To tackle the density discontinuity
encountered in multiphase simulations, He et al. [41] fine-tuned the original LBM by introducing
the incompressible transformation and proposed the following formulations for LBM resolution of
the multiphase flow field:

fα (r + eαδt , t + δt ) = fα (r, t ) − fα (r, t ) − f eq
α (r, t )

τν

+ Fα, (1)

where r and t are, respectively, the space location and time level; the subscript α denotes the lattice
velocity direction; eα is the lattice velocity vector; δt is the streaming time interval; τν represents the
relaxation parameter and is related to the kinematic viscosity through ν = c2

s δt (τν − 0.5), with cs

being the artificial sound speed; and Fα and f eq
α are the forcing term and the equilibrium distribution

function, which can be, respectively, expressed as

Fα =
(

1 − 1

2τ

)
(eα − u) · [�α (u)(Fs + G) − (�α (u) − �α (0))∇ψ (ρ)], (2)

f eq
α = ρc2

s �α (u) + ψ (ρ)�α (0), (3)

with �α (u) = ωα[1 + eα ·u
c2

s
+ (eα ·u)2

2c4
s

− |u|2
2c2

s
] and ψ (ρ) = p−ρc2

s ; ωα is the weighting coefficient
along a given lattice velocity direction α; ρ and u are the density and the velocity vector, respec-
tively; and Fs and G denote the surface tension force and other external forces, respectively. The
macroscopic variables can be obtained by p = ∑

α fα and ρuc2
s = ∑

α eα fα . In this work, the D2Q9
lattice velocity model is employed, which gives

ωα =
⎧⎨
⎩

4/9, α = 0
1/9, α = 1 ∼ 4
1/36, α = 5 ∼ 8

, (4)

eα = c

⎧⎨
⎩

(0, 0), α = 0
(cos [(α − 1)π /2], sin [(α − 1)π /2]), α = 1 ∼ 4
(cos [(2α − 9)π /4], sin [(2α − 9)π /4]), α = 5 ∼ 8

(5)

where c = δx/δt is the lattice velocity scale and δx is the lattice length.
It is noteworthy that the direct evolution of the distribution function has brought high con-

sumption of virtual memory and tedious transformation to the implementation of LBM in practical
problems. To alleviate this issue, Chen and Shu [38] recently proposed a SLBM by directly evolving
the macroscopic variables within the lattice Boltzmann framework and proved that the new method
preserves good numerical stability. By extending this theory to the multiphase scenario, the SMLBM
was developed [39]. The SMLBM starts from the macroscopic equations recovered from the above
multiphase lattice Boltzmann equation (1) through the Chapman-Enskog expansion analysis and
reconstructs the macroscopic solutions in the following predictor-corrector manner:

Predictor step:

p∗ =
∑

α

f eq_m
α (r − eαδt , t − δt ), (6)

ρ∗u∗c2
s =

∑
α

eα f eq
α (r − eαδt , t − δt ). (7)
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Corrector step:

p(r, t ) = p∗, (8)

ρ(r, t )u(r, t )c2
s = ρ∗u∗c2

s +
∑

α

eα

[
f ∼
α

(
r + 1

2
eαδt , t − 1

2
δt

)
− f ∼

α

(
r − 1

2
eαδt , t − 1

2
δt

)]

− δt

2

∑
α

eα

[
F∼

α

(
r + eαδt , t − 1

2
δt

)
− F∼

α

(
r − eαδt , t − 1

2
δt

)]
+ c2

s (Fs + G)δt ,

(9)

where the asterisk denotes the intermediate properties; f eq_m
α is calculated with Eq. (3) but utilizes

the pressure values at the space and time levels of (r, t − δt ); and F∼
α = τνFα . And, the nonequilib-

rium term f ∼
α is calculated by

f ∼
α

(
r − 1

2 eαδt , t − 1
2δt

) = [
τν

(
r − 1

2 eαδt , t − 1
2δt

) − 1
][

f eq
α (r, t ) − f eq

α (r − eαδt , t − δt )
]
. (10)

Detailed derivations of the above SMLBM formulations (6)–(9) can be found in Ref. [39]. The
SMLBM preserves some distinct advantages due to its direct evolution of macroscopic variables.
The distribution functions are no longer stored in computations, which reduces the memory cost.
In the meantime, the physical boundary conditions for the macroscopic variables can be directly
implemented without further transformations.

B. Ternary phase-field method as the interface tracking algorithm

1. Ternary phase-field model and lattice Boltzmann equation

As a typical Eulerian scheme, the SMLBM requires extra algorithms to update the interfaces
between different phases. The phase-field method has demonstrated its flexibility in describing
complex interfaces and thus has been attracting increasing attention in the community of multiphase
simulation. In this work, we consider the following Cahn-Hilliard equation for a ternary fluid system
[42]:

∂ϕi

∂t
+ ∇ · (uϕi ) = ∇ · (Mi∇μi ), (11)

where ϕ is the order parameter; the subscript i denotes the ith phase; Mi = M0/λi is the mobility,
with M0 being a constant diffusive parameter; u is the velocity vector; and λi = σi j + σik − σ jk is
a parameter that is related to the surface tensions between different phases, with σi j representing
the surface tension between phase i and phase j. The order parameter fulfills the constraint of∑3

i=1 ϕi = 1. And, from the formula of bulk energy proposed by Boyer and Lapuerta [42], the
chemical potential μ is obtained by

μi = 12

ξ
[λiϕi(1 − ϕi )(1 − 2ϕi ) − δϕ1ϕ2ϕ3] − 3

4
ξλi∇2ϕi, (12)

with δ = 6λ1λ2λ3/(λ1λ2 + λ1λ3 + λ2λ3) and ξ being the interface thickness.
In the presence of a solid substrate which is assumed to be smooth and chemically homogeneous,

a static contact angle θ can be used to quantify the wettability of the substrate. The value of
the contact angle is commonly associated with the surface tension through the Young equation
cos θi j = (σ js − σis)/σi j , where subscripts i and j represent the liquid phases, and the subscript s
denotes the substrate. The contact angle can be numerically interpreted by either a geometric way
or the energy point of view. Ding and Spelt [30] demonstrated that these two interpretations can be
equally transformed. In the present implementation in a ternary fluid system, the geometric wetting
condition proposed by Zhang et al. [29] is used, which gives

n · ∇ϕi = − tan

(
π

2
− θi

)
|∇ϕi − (n · ∇ϕi )n|, (13)
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where θi denotes the weighted contact angle of liquid phase i in the presence of solid substrate and
is calculated by

θi = ϕ j

ϕ j + ϕk
θi j + ϕk

ϕ j + ϕk
θik . (14)

Referring to the work of Huang et al. [43] for binary flow system, the following lattice Boltzmann
equation is tailored to equivalently express the above macroscopic equations (11) for ternary
interface tracking:

hi
α (r + eαδt , t + δt ) = hi

α (r, t ) − hi
α (r, t ) − hi,eq

α (r, t )

τi
, (15)

where h is the distribution function for the order parameter; τi is the relaxation parameter for the
order parameter of the ith phase and is related to the mobility by

M0

λi
= (τi − 0.5)ηδt . (16)

Here η is a diffusion parameter. The equilibrium distribution function reads

hi,eq
α =

{
ϕi − μiη(1 − ω0)/c2

s , α = 0

ωα (μiη + ϕieα · u)/c2
s , α = 1 − 8

. (17)

The consistency between the lattice Boltzmann equation (15) and the macroscopic equation
(11) can be established through the Chapman-Enskog expansion analysis, which is detailed in
Appendix A.

2. Numerical resolution

To maintain consistency with the numerical strategies of flow solver, the order parameters will
be resolved by the theory of SLBM [38]. With detailed derivations presented in Appendix B, the
following evolution equations for the order parameter can be obtained.

Predictor step:

ϕ∗
i =

∑
α

hi,eq
α (r − eαδt , t − δt ). (18)

Corrector step:

ϕi(r, t ) = ϕ∗
i +

∑
α

(τi − 1)

[
hi,∼

α

(
r + 1

2
eαδt , t − 1

2
δt

)
− hi,∼

α

(
r − 1

2
eαδt , t − 1

2
δt

)]
, (19)

where the nonequilibrium term is evaluated by

hi,∼
α

(
r − 1

2 eαδt , t − 1
2δt

) = [
τi

(
r − 1

2 eαδt , t − 1
2δt

) − 1
][

hi,eq
α (r, t ) − hi,eq

α (r − eαδt , t − δt )
]
. (20)

The evolved order parameters are utilized to update the fluid density and other parameters
through ζ = ∑3

i=1 ϕiζi, where ζ is a placeholder for density ρ, kinematic viscosity ν, and relaxation
parameter τ . In practice, we only need to resolve two order parameters, and the remaining one can
be evaluated by the unity condition

∑3
i=1 ϕi = 1.

A clear merit brought by using evolution formulations (18) and (19) instead of Eq. (17) is that
it allows direct implementation of the boundary conditions for the order parameter. Specifically,
the space derivatives in the boundary condition formulation (13) are approximated by one-sideite
difference scheme with the second order of accuracy. Moreover, without updating and storing the
distribution functions h, the number of interface-tracking related variables at each mesh point is
reduced from 18 to 2 when using the D2Q9 lattice velocity model, which indicates significant
reduction in memory cost.
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FIG. 1. Schematic diagram of a compound droplet placed on a substrate in a shear flow.

C. Numerical validations

Before employing the proposed method in studying the problem of interest, it is necessary
to validate its accuracy and robustness. To maintain compactness of this paper, we relocate the
validation to Appendix C, in which two numerical examples will be presented for validation
purposes.

III. APPLICATION TO COMPOUND DROPLET DYNAMICS ON SOLID
SURFACE IN SHEAR FLOW

A. Problem statement

The schematic diagram of the problem is illustrated in Fig. 1. The flow system includes three fluid
phases. The compound droplet with the initial radius of H consists of two equal portions of fluid 1
and fluid 2, while the ambient flow current belongs to fluid 3. The surface tensions and contact angles
between different phases are collectively written as σi j and θi j , respectively, where subscripts i and
j denote the indices of fluid phases. Without specific statements, the present work considers equal
surface tensions between different phases, and the contact angles are set as θ12 = 120◦, θ13 = 90◦,
and θ23 = 60◦. The height of the channel is 2H, and the top lid is moving at a constant velocity u0

which generates a shear rate of γ̇ = u0/2H . The computational domain has the length of 8H. The
left and the right boundaries are periodic, while the top wall fulfills the no-slip boundary condition.
Although the slip length could have influence of the droplet motion on the substrate, we still assume
the bottom wall to be no slip (zero slip length). The effect of slip length is left for future studies,
due to the limit of article length here. In numerical simulations, we carry out the preprocessing as
per suggestions of Zhang et al. [29]. The compound droplet is initially placed on the substrate with
no ambient flow current and gradually reaches an equilibrium shape. A linear velocity profile is
then implemented on fluid 3 at the dimensionless time marked as T=0, after which the shear rate
is maintained by imposing constant velocity on the top wall. We emphasize that this work concerns
the sliding droplets and therefore neglects the contact-angle hysteresis.

By utilizing the properties of H, γ̇ H , and 1/γ̇ as the scales of length, velocity, and time,
respectively, the dimensionless parameters of Reynolds number (Re), capillary number (Ca), Weber
number (We), and Ohnesorge number (Oh) can be defined as

Re = ρ1γ̇ H2

μ1
, (21)

Ca = μ1γ̇ H

σ12
, (22)

We = Ca · Re = ρ1γ̇
2H3

σ12
, (23)

Oh =
√

We

Re
= μ1√

ρ1σ12H
, (24)
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TABLE I. Parametric settings of density and viscosity ratios in simulation cases.

Density ratio Viscosity ratio

Case series 1 1:1.1:0.8 1:0.66:1.6
Case series 2 1:1:1 1:1:1
Case series 3 1:0.9:0.8 1:1.36:1.6

where ρ and μ are the fluid density and dynamic viscosity, respectively. The above dimensionless
parameters are based on fluid properties of fluid 1. Fluid properties of other fluid phases are obtained
by the specified ratios of density and viscosity. In the present work, we have carried out three sets of
tests as shown in Table I to illustrate the applicability of the conclusions in small density–viscosity
ratio scenarios. Further investigations in larger density and viscosity ratios will be considered in
future studies. The contact-angle hysteresis is neglected, meaning that the contact angle would be
a constant value for a given fluid. To circumvent the discussion of turbulence, which is not among
the present research interests, the Reynolds numbers in simulations are in the moderate range of 10
to 100. And, for each Reynolds number, simulations of cases at different capillary numbers will be
performed. For clarity, the interval of the capillary number in our numerical cases is 0.01.

B. Grid independence

To determine the appropriate mesh size to be used in the numerical investigation, we firstly
perform grid independence study. Two mesh sizes, namely 801 × 201 and 1601 × 401, are used
in the tests. The interface locations are shown in Fig. 2, indicating that converged results can be
obtained on the mesh size of 801 × 201. Therefore, the following computations will be carried out
on this mesh size.

C. Results

1. Kinematic modes

Forces exerted on the compound droplet placed in the shear flow include the form drag, the shear
stress, and the surface tension. Delicate balance among these forces would result in various flow
phenomena. A general tendency is that, by increasing either the Reynolds number or the capillary

FIG. 2. Grid-independence tests at equal density and viscosity ratios with Re=50 and Ca=0.10. The black
and the red curves represent the results obtained on mesh sizes of 801 × 201 and 1601 × 401, respectively.
The solid and the dashed lines are interface locations of fluid 1 and fluid 2, respectively. Note that the left and
the right boundaries of the computational domain are periodic.
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FIG. 3. Illustration of three kinematic modes for a compound droplet moving in the shear flow. Presented
in each subfigure are interface locations at dimensionless time of T=5 (black lines), 15 (red lines), 30 (blue
lines), and 50 (green lines). The solid lines represent the interface location of fluid 1, and the dashed lines
depict the interface of fluid 2. Simulation results are from case series 1. Note that the channel is periodic on its
left and right boundaries. The reference kinematic modes from Ref. [31] are also included as the small window
figures for comparison.

number, larger deformation of the compound droplet can be expected. This is in line with the
physical deduction that the form drag and viscous shear stress from ambient fluid contribute to
the deformation of droplet, while the surface tension and wall shear stress obstruct this process.
In our simulations, three typical kinematic modes have been recovered: the quasisteady sliding
mode, the tumbling-sliding mode, and the tumbling-detachment mode. Specifically, the quasisteady
sliding mode refers to the cases in which the compound droplet would slightly deform without
switching the relative location of its two fluid portions and then slide on the substrate in a roughly
constant speed. The tumbling motion of the compound droplet may occur in higher Reynolds or
capillary numbers, which is identified by the switching between the relative location of two fluid
portions of the droplet. By further increasing the Reynolds or the capillary numbers, the droplet
portion of fluid 1 could detach from the portion of fluid 2 during its tumbling motion. For the
ease of analysis, we term the quasisliding mode as mode A, the tumbling-sliding mode as mode
B-1, and the tumbling-detachment mode as mode B-2, which are illustrated in Fig. 3. Although
these kinematic modes of a compound droplet in shear flow have been reported in the literature
(see the small figures extracted from Ref. [31]), associated dynamic analyses are limited. In Secs.
III C 2–III C 5, endeavors will be made to establish physical rational for each kinematic mode and
the transition dynamics.

It should be noted that the kinematic modes of a compound droplet could also be related to
the contact angles of the composed fluids. In the range of Reynolds numbers investigated here,
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FIG. 4. Pressure contours and interface locations at dimensionless time T=1 for cases with different contact
angles of θ13 = 60◦ (top), 90◦ (middle), and 150◦ (bottom). Density and viscosity ratios are both 1:1:1. Re=50,
Ca=0.10.

we found that a key factor to trigger the tumbling motion is the contact angle between the front
fluid portion of the droplet and the ambient fluid, namely the contact angle θ13 between fluid 1 and
fluid 3 in Fig. 1. For illustration purposes, we consider equal ratios of density and viscosity, and
present results in three sets of contact angles of (θ13, θ12, θ23) = (90◦, 120◦, 60◦), (60◦, 60◦, 90◦),
and (150◦, 120◦, 90◦). As shown in Fig. 4, if the contact angle θ13 is smaller than 90◦, no tum-
bling motion would happen, and the compound droplet only exhibits larger deformation at higher
Reynolds or capillary numbers. A preliminary explanation for this phenomenon is that a nonacute
contact angle θ13 may contribute to the form drag exerted from the ambient fluid to the compound
droplet, especially in the frontal part, which provides necessary torque to the tumbling motion
towards the downstream. With an acute contact angle θ13, the droplet is more easily deformed into a
streamline shape under the action of form drag. Such response quickly dissolves effect of the form
drag, and thus leads to insufficient torque to trigger the tumbling motion. The reduced form drag can
be qualitatively demonstrated by the smaller high-pressure region in the frontal area of the droplet,
as shown in Fig. 4. To avoid overspreading of the discussions, here we only study the configuration
which can lead to the tumbling motion, based on which detailed dynamics will be investigated. As
stated before, the contact angles used in the following simulations are θ12 = 120◦, θ13 = 90◦, and
θ23 = 60◦.
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FIG. 5. Time histories of the wetted length on the substrate for the droplet portion of fluid 1 at Re = 50.
Data are collected in case series 1. Inserted interface locations are for the case of Re = 50 and Ca = 0.05 at
two dimensionless time of T=10 and 20.

2. Quasisteady sliding

For the configuration investigated in this work, the compound droplet exhibits quasisteady sliding
either at lower Reynolds numbers for a given capillary number or at smaller capillary numbers
when the Reynolds number remains unchanged. The former scenario implies that the form drag
contributes to the deformation of the droplet. The latter case suggests that the surface tension force
helps the droplet to adhere to the substrate, while the viscous stress from the ambient fluid could be
benefiting to the deformation or even the tumbling of the droplet.

By looking into the evolution of the wetted length (lw ) for the sliding cases considered here,
we can investigate the response of the droplet to the forces exerted by ambient fluid. As illustrated
in Fig. 5, it is found that the wetted length would be shrinking in early stage of evolution, and
then expand until reaching the steady state. Intuitively, the initial shrinking of the wetted length of
droplet portion of fluid 1 results from both the pressing from the ambient fluid on the frontal part of
the droplet and the initially stationary droplet portion of fluid 2. This early stage of evolution can be
physically interpreted as that the force exerted from the surrounding fluid is partially converted into
the surface energy. This interpretation has been utilized by Ding et al. [27] in studying the ligament
dynamics of a pinned droplet stretching in shear flows and can be mathematically expressed as

σ
d

dt
Si ∼

∫
Si

n · T · udS, (25)

where Si is the interface length; T is the stress tensor; and n is the unit normal vector pointing
outward from the droplet surface. The interface length refers to the length of interface shared with
other fluids, which is tentatively scaled as Si ∼ H2/lw. The remaining terms on the right-hand side
of Eq. (25) are scaled as T ∼ μγ̇ and u ∼ γ̇ H . After substitution, the following relationship can be
derived:

− 1

lw/H

d (lw/H )

d (γ̇ t )
∼ μγ̇ H

σ
= Ca. (26)

Note that lw/H and γ̇ t represent the dimensionless wetted length and the dimensionless time,
respectively. Equation (26) indicates an exponential evolution rate of the wetted length in the early
shrinking stage, and the shrinking rate would be amplified by enlarging the capillary number. These
implications are well supported by the numerical results shown in Fig. 5.

The subsequent expansion stage of evolution can be explained in a similar manner as that the
accumulated surface energy is partially released and absorbed by ambient fluid through viscous
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FIG. 6. Time histories of the wetted length on the substrate for the droplet portion of fluid 1 at Ca=0.04.
Data are collected in case series 1.

diffusion, which is mathematically expressed as

σ
d

dt
Si ∼ −

∫
Si

n · T · udS. (27)

Note that Eq. (27) has a negative mark on the right-hand side to reflect the diffusive behavior.
Other than that, all terms can be scaled in the same way as for the above analyses of Eq. (25).
Through simple manipulations, we have

1

lw/H

d (lw/H )

d (γ̇ t )
∼ Ca. (28)

The above relation explains the exponential growth rate, which is also positively related to the
capillary number, in the expansion stage of the wetted line evolution.

At a fixed capillary number, the amplitude of the initial shrinking of the wetted line could be
enlarged by increasing the Reynolds number, as shown in Fig. 6. This can be explained by the
lower physical viscosity at larger Reynolds number, due to which less portion of energy input from
ambient fluid is diffused and thus more is converted into the surface energy.

After reaching the stage of quasisteady sliding, the compound droplet would maintain an
equilibrium shape and move in a constant speed. This is characterized by a roughly constant
contact-line speed Vc . Note that Vc is numerically calculated by the central difference scheme from
the recorded contact-line locations at different time. By ignoring the contact-angle hysteresis, the
sliding speed results from the balance between the viscous drag exerted from ambient fluid and
the wall stress when moving the droplet on the substrate [27]. As reported in Kang et al. [28], the
equilibrium contact-line speed would only be related to the capillary number Ca for a droplet sliding
in quasisteady state, given the same shear rate. This relation should also be valid here if we neglect
the interaction among different portions of the compound droplet and consider it as a whole droplet.
Numerical examples in Fig. 7 validate that, for a given capillary number, the contact-line speeds
would converge to roughly the same value in cases with different Reynolds numbers. The linear
relation between the dimensionless contact-line speed Cacl = μVc/σ and the capillary number,
which was initially proposed by Kang et al. [28], is also recovered in the present tests over the
moderate range of Reynolds numbers. A series of test results is presented in Fig. 8. The linearly
fitted line would intersect with the x coordinate in a positive value of capillary number, indicating
that this linear relation may not hold true in small capillary number scenario where the surface
tension effect dominates.
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FIG. 7. Evolution of the upstream contact-line velocity of the droplet portion of fluid 1 in quasisteady
sliding mode for some typical examples in case series 1.

Now we briefly illustrate the flow patterns for some typical quasisteady sliding cases. Figure 9
illustrates cases at the fixed Reynolds number of 50 and with different capillary numbers, while
Fig. 10 shows the results at the same capillary number of 0.03 but with different Reynolds numbers.
Note that the volume-averaged sliding velocity of the compound droplet has been deducted from the
velocity field, based on which the stream function and the vorticity are numerically calculated using
the central difference scheme. It is also noteworthy that the occasional penetration of streamlines
through the boundary of two droplet portions is due to the numerical errors in postprocessing.
From these two sets of figures, we can see that the droplet is more deformed in higher Reynolds or
capillary numbers. Larger Reynolds number suggests reduced viscous effects and therefore fewer
diffusivities. More energy input from the ambient fluid can be converted into the surface energy
of the droplet, which is characterized by the larger deformation of the droplet. Larger capillary
number means less obstruction exerted by the surface tension force, which also contributes to the
deformation of compound droplet. In the meantime, the steadily sliding droplet consists of four
major recirculation zones distributed along the streamwise direction: one locating in front of the
compound droplet, another attached to the rear of it, and each droplet portion includes a major
vortex rotating along the clockwise direction. The separated vortices in the two droplet portions
lead to more abrupt velocity changes near the interfacial regions. Larger vorticities are observed in

FIG. 8. Dimensionless contact-line speed Cacl as a function of the capillary number Ca for cases at Re=15.
Data are collected in test series 1.
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FIG. 9. Vorticity contours and streamlines at Re=50 and with different capillary numbers of Ca=0.03
(top), 0.04 (middle), and 0.05 (bottom). Results are from case series 1.

cases with higher Reynolds or capillary numbers, indicating stronger shear stress in these conditions.
Similar tendencies have also been witnessed in other case series with different density and viscosity
ratios, although the flow details could be different from the presented ones at the same Reynolds
and capillary numbers.

3. Onset dynamics of tumbling motion

For a given Reynolds number, in cases with relatively lower capillary numbers, the compound
droplet adheres to the substrate and slides in a quasisteady mode. In such circumstances, a force
balance is achieved among the form drag, viscous force, and surface tension force [25]. A scaling
argument, which is similar to the argument made in Ref. [25], can thus be established here. The
form drag is approximated by α f ρ1H (γ̇ H − Vs)2, with Vs being the sliding velocity of the droplet;
the viscous force consists of the viscous component exerted by the fluid and the integrated wall
shear stress, which are, respectively, written as ανμ1H γ̇ and αwμ1Vs; and the net surface tension
force posed on the droplet of fluid 1 can be tentatively expressed as σ13 cos θ13 − σ12 cos θ12. Here,
α f , αν , and αw are unknown parameters. The force balance results in

σ13 cos θ13 − σ12 cos θ12 = ανμ1H γ̇ + αwμ1Vs + α f ρ1H (γ̇ H − Vs)2, (29)
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FIG. 10. Vorticity contours and streamlines at Ca=0.03 and with different Reynolds numbers of Re=10
(top), 40 (middle), and 100 (bottom). Results are from case series 1.

which derives

(σ13 cos θ13 − σ12 cos θ12)/σ12 = α f ReCa

(
1 − Cas

Ca

)2

+
(

αν + αw

Cas

Ca

)
Ca, (30)

where Cas = μ1Vs/σ . In quasisteady sliding cases, the sliding velocity Vs of the compound droplet
should be equal to the moving velocity Vc of the contact line. With the linear relationship between
the dimensionless contact-line velocity and the capillary number proposed by Kang et al. [28], we
tentatively write Cas/Ca = b, and the above Eq. (30) becomes

Ca = (σ13 cos θ13 − σ12 cos θ12)/σ12

(αν + αwb) + α f (1 − b)2Re
. (31)

The above formulation establishes the relationship between the capillary number and the
Reynolds number for quasisteady sliding motion. The numerator is a constant which is dependent
on the fluid properties of the compound droplet; the denominator consists of two unknowns, namely
(αν + αwb) and α f (1−b)2, which can be dependent on particular cases. The physical significance
of this formulation is that it is a set of curves on which the sliding motion dynamics should be
fulfilled. It also suggests that the violation of this relationship could imply the collapse of the
quasisteady sliding motion and the transition towards other kinematic modes. In this sense, the
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FIG. 11. Critical capillary number for the onset of tumbling mode as a function of Reynolds number.

critical capillary number, which identifies the transition from the quasisteady sliding to the tumbling
motion mode, should be represented by this formulation. With the surface tension coefficients and
contact angles used in our modelings, the numerator of Eq. (31) reads 0.5. The unknown coefficients
can be determined by curve fitting based on the critical capillary number Cac obtained at each
Reynolds number, which gives [αν + αwb, α f (1−b)2] = (4.1376, 0.0995), (3.1047, 0.1124), and
(4.6774, 0.1057) for the three case series considered, as shown in Fig. 11. Note that the accurate
value of Cac cannot be truly obtained due to the finite intervals selected in simulations. Therefore,
it is bounded by the error bar with the upper limit given by the lowest capillary number which gives
the kinematic mode B and the lower limit given by the highest capillary number which leads to the
kinematic model A.

Apart from the above analysis based on the force balance along the x direction, another approach
of dynamic analysis can be established by considering the magnitude of force balance. Similar to
the previous scaling analysis, the drag force, the viscous shear force, and the surface tension can be,
respectively, scaled as ρ1H3γ̇ 2, μ1H γ̇ , and σ12. The tumbling motion of the droplet portion of fluid
1 along the clockwise direction is stimulated by the coordinative effects of the viscous shear force
and the form drag, and is obstructed by the surface tension. Therefore, following the definition of
Ohnesorge number which describes the ratio of viscous force to the geometric mean magnitude of
the inertial and surface tension forces, we define the following dimensionless parameter, which is
tentatively called “tumbling number,” to quantify the balance of the magnitudes of forces:

Tu =
√

form drag · viscous force

surface tension
=

√
(ρ1γ̇ 2H3)(μ1γ̇ H )

σ12
= Ca

Re−0.5 . (32)

A slightly different parameter of G = Ca2/Re has been proposed in Seevaratnam et al.’s [44]
experiments to assist distinguishing different kinematic modes of a pure droplet on solid substrate
in a shear flow. Other than its difference from the proposed tumbling number in formulations, no
compact scaling laws were established in Seevaratnam et al.‘s [44] work to describe the mode
transition; neither was robust physical interpretation offered for the dimensionless parameter G.

To test the effectiveness of the parameter Tu in justifying the tumbling dynamics of droplet
portion of fluid 1, we plot the phase diagrams of the kinematic modes of cases at different capillary
and Reynolds numbers in Figs. 12–14. Being presented in log scale, the quasisteady sliding cases
in kinematic mode A can roughly be separated from other tumbling cases in kinematic modes B-1
or B-2 by a straight line with the slope of k = −0.5, which fulfills the relationship established in
Eq. (32).

To enrich the physical rational of the proposed dimensionless parameter Tu, we now consider
another interpretation from the perspective of timescales. This approach has been utilized to analyze
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FIG. 12. Phase diagram of kinematic modes for case series 1. The coordinates are capillary and Reynolds
numbers in log scale.

FIG. 13. Phase diagram of kinematic modes for case series 2. The coordinates are capillary and Reynolds
numbers in log scale.

FIG. 14. Phase diagram of kinematic modes for case series 3. The coordinates are capillary and Reynolds
numbers in log scale.
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FIG. 15. Critical tumbling numbers at each Reynolds number for all case series. The values of averaged
critical tumbling numbers are attached at the end of fitted lines. The upper limit of the error bar is the lowest
tumbling number for the tumbling mode, while the lower limit of the error bar represents the highest tumbling
number for the quasisliding mode.

the pinch-off of liquid threads [45] as well as to physically interpret the Ohnesorge number [46].
For the present configuration, the driving forces of the tumbling motion of the droplet portion of
fluid 1 include the form drag and the net viscous force which is the shear force from ambient fluid
subtracted by the shear stress force on the substrate, while the resistance comes from the surface
tension. Therefore, the threshold of the tumbling motion can be considered as an outcome of two
competing timescales: the visco-capillary timescale and the capillary-drag timescale, which can be,
respectively, written as μ1H/σ12 and σ12/ρ1γ̇

3H3. The ratio of the visco-capillary timescale and the
capillary-drag timescale turns out to be the square of the tumbling number Tu defined in Eq. (32).
Two physical implications can be obtained from this interpretation. First, when the visco-capillary
timescale grows, which corresponds to increasing the dimensionless parameter Tu, the restoring
process would become slower and the tumbling motion is more likely to happen. Secondly, the onset
of the tumbling of the droplet portion of fluid 1 identifies the breakup of the balance between the two
timescales. The threshold value of Tu could be dependent on the density ratios and viscosity ratios
of the ternary fluid system. For the present cases in which the density ratios and viscosity ratios are
not very large, this threshold is expected to be on the order of O(1). We define the threshold value as
the critical tumbling number Tuc and depict it as a function of the Reynolds number in Fig. 15. In all
case series, the critical tumbling number stably lies between 0.3 and 0.4, which validates the above
implications of comparable timescales in small density–viscosity ratio scenarios. It should be noted
that the droplet motion could also be influenced by the equilibrium shape of the droplet (which is
associated with the contact angles), as indicated in Refs. [2,26]. However, delicately quantifying
this effect would be difficult in both mathematics and physics.

4. Tumbling process

Upon the onset of tumbling motion, two consequent scenarios may arise: the tumbling-sliding
(mode B-1) and the tumbling-detachment (mode B-2). In this subsection, we focus on the kinematics
and dynamics of the tumbling-sliding cases, and leave the discussion of the other scenario to the next
subsection. For illustration, we present the snapshots of a tumbling-sliding case at some typical time
in Fig. 16. The form drag and the viscous shear stress imposed by the ambient fluid overcome the
restrictions from the wall shear force and the surface tension force, which is characterized by the
criticality of droplet portion of fluid 1 leaving the substrate and starting tumbling around the droplet
portion of fluid 2. At this initial stage of tumbling (see the top subfigure in Fig. 16), the flow patterns
remain isolated as for the sliding cases. Each portion of the compound droplet contains one major
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FIG. 16. Snapshots of interface locations and zoom-in views of vorticity contours and streamlines at
Re=50 and Ca=0.06 in case series 1. The top subfigure snapshots the detachment of droplet portion of fluid 1
from the substrate; the middle subfigure shows the re-adhesion of the droplet portion of fluid 1 to the substrate;
and the bottom subfigure illustrates the equilibrium state of quasisteady sliding. Note that the volume-averaged
sliding velocity of the compound droplet has been deducted from the initial velocity field, based on which the
vorticity and stream functions are calculated. Note that the left and the right boundaries of the computational
domain are periodic.

vortex, while recirculation zones pertain before and after the compound droplet. The variation of the
direction of surface tension force between different portions of the compound droplet contributes to
the deformation of the droplet portion of fluid 2, which is shown in Fig. 17 as the stretched wetted
length in this evolution stage.

A key stage of the tumbling-sliding mode discussed here is the re-adhesion of the tumbling
droplet portion to the substrate, as illustrated in the middle subfigure in Fig. 16. Apart from the
major vortices in each portion of the compound droplet, some minor vortices are newly generated
in the vicinity of the re-adhesion point. In the meantime, the magnitude of the local vorticity is also
enlarged, indicating the amplified diffusive behavior accompanied by the re-adhesion process. The
re-adhesion of droplet portion of fluid 1 also imposes instant effects on the evolution of the other
portion of the droplet, which is intuitively known as the removal of the surface tension force in the
upstream conjunction point between these two portions. As shown in Fig. 17, the instant removal of
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FIG. 17. Evolutions of the relative locations of the contact lines and the wetted length at Re=50 and
Ca=0.06. Note that the contact-line location refers to the relative location to its initial position. Data are
collected from case series 1.

this force significantly delays the propagation of the upstream contact line of the droplet portion of
fluid 2 along the streamwise direction. Correspondingly, the wetted length of the droplet portion of
fluid 2 continues shrinking after the re-adhesion of the droplet portion of fluid 1, until a quasisteady
sliding motion is finally reached.

The quasisteady sliding motion is characterized by the steady moving velocities of the contact
lines and the constant wetted length of the droplet, as shown in Fig. 17. The dynamics in such
circumstances would be similar to the discussions made in Sec. III C 2.

5. Detachment dynamics

At larger capillary or Reynolds numbers, one could expect more severe deformations of the
compound droplet. A typical example is the topological change of the compound droplet, which
is characterized by the detachment of the droplet portion of fluid 1. The pinch-off of the droplet
portion belonging to the same liquid phase, which was reported in previous work in high shear-rate
scenario [31], has not been observed in the ranges of Reynolds and capillary numbers considered in
this study. It should also be noted that, due to the existence of numerical diffusion, it is quite difficult
to distinguish the true physical pinch-off and the numerical cutoff in simulations [40]. Therefore, we
circumvent discussing the breakup of minor droplets and focus on the detachment between different
fluid phases at moderate range of Reynolds numbers, although the pinch-off could exist at even
higher Reynolds numbers.

Figure 18 illustrates the critical moments of two cases of detachment. The recirculation zones
of the flow field roughly intersect at the detachment neck, providing necessary shear stress for
the detachment. By increasing either the Reynolds or the capillary numbers, the occurrence of
the detachment becomes earlier, and both portions of the compound droplet are more stretched
at detachment criticality. The larger deformation can be explained by the reduced viscosity in larger
Reynolds numbers and the lower restrictions of surface tension at higher capillary numbers. As
shown in Fig. 19, the increased Reynolds number leads to higher vorticity values near the interfaces
as well as in the near-wall region, indicating the stronger shear stress which contributes to both the
spreading of the sliding droplet portion and the stretching of the tumbling droplet portion. In the
meantime, the larger shear effect around the neck connecting the two portions of the compound
droplet implies the quicker cutoff at higher Reynolds numbers.

Although the droplet portion of fluid 1 may detach from the compound droplet and drift in
the current, the remaining droplet portion of fluid 2 remains adhered to the substrate and finally
reaches a quasisliding state in all test cases considered in this work. This sliding state is due
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FIG. 18. Snapshots of detachment criticality for two typical cases. Zoom-in views are the local vorticity
fields and streamlines near the detachment area. The volume-averaged horizontal velocity of the compound
droplet has been deducted from the velocity field. The solid lines are interface of the droplet portion of fluid 1,
and the dashed lines depict the interface location of the droplet portion of fluid 2. Results are from case series
1. Note that the left and the right boundaries of the computational domain are periodic.

FIG. 19. Vorticity contours of the snapshots before detachment for two typical cases. The solid lines are
interface of the droplet portion of fluid 1, and the dashed lines depict the interface location of the droplet portion
of fluid 2. Results are from case series 1. Note that the left and the right boundaries of the computational domain
are periodic.
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FIG. 20. Evolutions of the relative locations of the contact lines and the wetted length of the droplet portion
of fluid 2 for cases of: (a) Re=10, Ca=0.12; (b) Re=100, Ca=0.12. Note that the contact-line location refers
to the relative location to its initial position. Data are collected from case series 1.

to its acute contact angle with the ambient fluid, which has also been reported in the previous
work of a pure droplet in shear flow [27]. To shed light on the dynamic process of detachment,
the time histories of the contact-line locations and wetted length of droplet portion of fluid 2 are
presented in Fig. 20. The upstream contact line, which is relatively further from the location of
detachment, retains quite stable moving velocity throughout the process. Only a slight increase
of propagation rate is observed upon the detachment. And, following the previous analysis of the
quasisteady sliding droplet in Sec. III C 2, the converged contact-line velocities in different cases
with the same capillary number would be close. This point has been demonstrated by Kang et al.
[28] and validated in Fig. 7. The evolutions of the downstream contact line as well as the associated
wetted length of the droplet portion of fluid 2, however, exhibit more complicated trends. Its initial
movement could be tentatively explained as the combined effect of viscous shear stress and capillary
forces. By increasing the Reynolds number, the establishment of viscous shear is delayed due to
the reduced viscosity, which explains the later response of initial motion in the higher Reynolds
number scenario. Upon the occurrence of detachment, the surface tension between droplet portions
of fluid 1 and fluid 2 are instantly removed. Since this surface tension contributes to the stretching
of the droplet portion of fluid 2 before the detachment, its vanishment leads to the retraction of the
downstream contact line of this droplet portion. Accompanied with the retraction of contact line is
the reduced wetted length after the detachment. An equilibrium wetted length could be achieved
after sufficient time for digesting the impulse induced by detachment. Larger equilibrium wetted
length can be expected at higher Reynolds number due to the reduced viscous dissipation, which
has been elaborated in Sec. III C 2.
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FIG. 21. Critical capillary numbers of detachment as the function of Reynolds number in log scale. The
fitted lines are with the slope of k = −0.3.

We conclude this subsection with an overall assessment of the detachment cases recovered in
the case series. Figure 21 illustrates the critical capillary number of detachments for each Reynolds
number considered in our simulations. The lower limit of the error bar is the highest capillary
number of the tumbling-sliding case, while the higher limit represents the smallest capillary number
at which the detachment is observed. Being presented in log scale, the discrete points can be roughly
fitted by a straight line with the slope of −0.3, which seemingly leads to a dimensionless number
of Ca/Re−0.3. Establishing a thorough physical interpretation of this relationship would be very
difficult due to the many factors involved. By comparing with the tumbling number Tu = Ca/Re−0.5

proposed in Sec. III C 3, this fitted slope can be regarded as a transition from the tumbling number
to the capillary number. It implies that the viscous shear stress and surface tension force play a more
dominant role in the detachment process, whereas the importance of form drag to this process is not
as significant as for the onset of tumbling.

IV. CONCLUDING REMARKS

In this work, the TPF-SMLBM is developed for simulating flows with three phases. The SMLBM
is used as the flow solver that copes with the density contrast, and the ternary phase-field model is
resolved by the SMLBM to evolve the interfaces. Compared with the conventional LBM for resolv-
ing this category of problems, the TPF-SMLBM directly evolves the macroscopic variables instead
of the distribution functions. The number of variables at each mesh point is thus largely reduced, and
both the physical boundary condition and the wetting condition on solid substrate can be directly
implemented without transformation into equivalent conditions for distribution functions. Through
numerical tests in two benchmark examples, the robustness of the TPF-SMLBM is established.

The compound droplet on substrate in shear is then numerically investigated using the TPF-
SMLBM. The explorations were confined within the laminar regime by only studying moderate
Reynolds numbers, and ignored the contact-angle hysteresis by assuming constant contact angles.
Discussions of pinch-off have been circumvented to avoid possible confusions in distinguishing nu-
merical cutoff and true physical pinch-off. Analyzing strategies utilized in previous work regarding
a pure droplet have been partially referred in the present work of a compound droplet.

The kinematics of the present configuration can be categorized into three major modes:
the quasisliding mode, the tumbling-sliding mode, and the tumbling-detachment mode. Flow
patterns are comprehensively studied. Major vortices present in droplet portion of each fluid
phase and in adjacent locations before and after the compound droplet. In the tumbling-sliding
cases, upon the re-adhesion of the tumbling droplet portion to the substrate, minor vortices are
generated in the interfacial region, importing extra diffusive behaviors into the flow system. In the

094304-23



Z. CHEN, C. SHU, Y. Y. LIU, AND L. Q. ZHANG

tumbling-detachment mode, the vicinity of the detachment point observes strong vorticity field in
cases with higher Reynolds numbers, indicating that the viscous shear plays important roles in the
detachment dynamics.

Dynamics of the quasisliding mode has been established through analyzing the energy absorbed
by the droplet, which explains the exponential shrinking rate of the wetted length in early evolution
stage. The force balance perspective paves the way of understanding the transition from the
quasisliding mode to the tumbling motion, based on which a dimensionless parameter named
tumbling number is defined as Tu = Ca/Re−0.5, where Ca and Re are the capillary number and
the Reynolds number, respectively. This parameter quantifies the ratio of the promoting and the
obstructing timescales of the tumbling motion, and expects a criticality on the order of O(1) for the
low density–viscosity ratio scenarios considered here. In addition, through abundant tests, it is found
that the criticality of detachment can be scaled as Cac,detach ∼ Re−0.3, where Cac,detach is the critical
capillary number in the occurrence of detachment. This scaling law lies between the tumbling
number and the capillary number, which implies that the viscous and surface tension forces play
more dominant roles in the detachment process as compared with the onset of tumbling motions.

In future studies, we expect more thorough analyses based on three-dimensional simulations and
other combinations of contact angles. The difference that the contact-angle hysteresis can make
in this configuration is another interesting direction. Considering scenarios with larger density or
viscosity ratios and other equilibrium shapes of the compound droplet can also enrich understanding
of this problem.

APPENDIX A: CHAPMAN-ENSKOG EXPANSION ANALYSIS OF LATTICE BOLTZMANN
EQUATION FOR TERNARY INTERFACE TRACKING

To shed light on the equivalent macroscopic equations recovered from the lattice Boltzmann
equation (15), the following expansion forms are firstly introduced:

hi
α = hi,(0)

α + εhi,(1)
α + ε2hi,(2)

α

∂t = ε∂t0 + ε2∂t1

∇ = ε∇0, (A1)

where ε is a parameter proportional to the Knudsen number. Substituting the above expansions into
Eq. (15), one could reveal the following formulations at different scales:

ε0 : hi,(0)
α = hi,eq

α , (A2)

ε1 :
∂

∂t0
hi,(0)

α + eα · ∇0hi,(0)
α = − 1

τiδt
hi,(1)

α , (A3)

ε2 :
∂

∂t1
hi,(0)

α + ∂

∂t0

(
1 − 1

2τi

)
hi,(1)

α + eα · ∇0

(
1 − 1

2τi

)
hi,(1)

α = − 1

τiδt
hi,(2)

α . (A4)

Equations (A2) and (A3) establish the connection between the nonequilibrium and the equilib-
rium parts of the distribution function as

εhi,(1)
α = −τiδt

(
∂

∂t
+ eα · ∇

)
hi,eq

α = −τiδt Dhi,eq
α , (A5)

where D = ∂t + eα · ∇ is a derivative operator. Equation (A2) also indicates that the nonequilibrium
parts take no net effect on the macroscopic variables when being summed up, meaning that∑

α

hi,(0)
α =

∑
α

hi,eq
α =

∑
α

hi
α = ϕi, (A6)

∑
α

hi,(1)
α =

∑
α

hi,(2)
α =0. (A7)
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With these relationships, summations of the zeroth orders of Eqs. (A3) and (A4) over all lattice
velocity directions, respectively, give

∂

∂t0

∑
α

hi,(0)
α + ∇0 ·

∑
α

eαhi,(0)
α = 0, (A8)

∂

∂t1

∑
α

hi,(0)
α + ∇0 ·

(
1 − 1

2τi

)∑
α

eαhi,(1)
α = 0. (A9)

Consolidating the above two equations into the macroscopic scale leads to

∂

∂t

∑
α

hi
α + ∇ ·

∑
α

eαhi,eq
α − ∇ ·

(
τi − 1

2

)
δt

∑
α

eαDhi,eq
α = 0. (A10)

From the conservation relations, the first and the second terms in Eq. (A10) reveal the time
derivative term and the convection term in Eq. (15), respectively. Using the moment relations
of the equilibrium distribution function (17), the third term in Eq. (A10) can be reduced into
∇ · (τi − 0.5)ηδt∇μi, and thus is equivalent to the diffusion term in Eq. (15) if the following relation
between the relaxation parameter and the mobility holds:

M0

λi
= (τi − 0.5)ηδt . (A11)

APPENDIX B: DERIVATION OF SLBM EVOLUTION OF ORDER PARAMETERS

Recall the macroscopic Eq. (A10) recovered from the lattice Boltzmann equation of the order
parameter:

∂ϕi

∂t
+ ∇ ·

∑
α

eαhi,eq
α − ∇ ·

(
τi − 1

2

)
δt

∑
α

eαDhi,eq
α = 0. (B1)

The SLBM reconstruction of the solution to the above equation consists of two steps. In the
predictor step, the intermediate order parameter is proposed as

ϕ∗
i =

∑
α

heq
α (r − eαδt , t − δt ). (B2)

To reveal the equivalent macroscopic equation, we implement Taylor-series expansion on the
equilibrium distribution function with respect to the space and time levels of (r, t) and then substitute
the conservation relation (A6), which yields

ϕ∗
i = ϕi(r, t ) − δt

[
∂ϕi

∂t
+ ∇ ·

∑
α

eαhi,eq
α − δt

2
∇ ·

∑
α

eαDhi,eq
α + O

(
δ2

t

)]
. (B3)

The formula within the square bracket of Eq. (B3) represents a second-order accurate equation
recovered from Eq. (B2). To finally reach the desired phase-field equation (B1), the following
macroscopic equation is tailored in the corrector step:

∂ϕi

∂t
− ∇ · (τi − 1)δt

∑
α

eαDhi,eq
α = 0. (B4)

Using the central difference scheme to discretize the above equation, one can construct the
following evolution equation for the corrector step:

ϕi(r, t ) = ϕ∗
i +

∑
α

(τi − 1)

[
δt Dhi,eq

α

(
r + 1

2
eαδt , t − 1

2
δt

)
− δt Dhi,eq

α

(
r − 1

2
eαδt , t − 1

2
δt

)]
.

(B5)
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FIG. 22. Schematic diagram of the spreading liquid lens. The solid lines and the dashed lines represent the
interfaces of fluid 1 and fluid 2, respectively.

Equations (B2) and (B5) are essentially the evolution formulas (18) and (19) presented in Sec.
II B 2.

APPENDIX C: VALIDATIONS

1. Validation case 1: Spreading of liquid lens

The spreading of a liquid lens examines the contact angles among three phases, which is a
common benchmark test for ternary fluid model. The initial setup of the problem, as shown in
Fig. 22, is a fluid lens placed on the interface between two layers of other fluids. The Young relation
establishes the following equilibrium state at the junction point of three phases:

sin ϑ1

σ23
= sin ϑ2

σ13
= sin ϑ3

σ12
, (C1)

where ϑi is the angle occupied by phase i at the junction point (also named as the interfacial angle).
The analytical formula for the distance between two triple junctions is given by

d =
(

2(π − ϑ1) − sin (2(π − ϑ1))

8Asin2(π − ϑ1)
+ 2(π − ϑ3) − sin (2(π − ϑ3))

8Asin2(π − ϑ3)

)−1/2

, (C2)

where A is the area of the liquid lens.
Following the setups in Ref. [47], physical viscosities of all fluids are assumed to be equal;

two cases with surface tension ratios of (σ12 : σ13 : σ23) = (1 : 1 : 1) and (σ12 : σ13 : σ23) =
(1 : 0.8 : 1.4) are considered in the validation tests. Since the results should be irrelevant to the
density ratios, we set high-density contrast of (ρ1 : ρ2 : ρ3) = (1 : 1.4 : 0.0014) to shed light on
the stability of the solver. Note that the ratio of the largest density to the smallest one is 1000. The
computational domain is discretized by uniform mesh size of 301 × 301. The initial diameter of the
lens spans over 64 mesh spacing, and the interface thickness is set as 4 mesh spacing. The mobility
parameter used in simulation is M0 = 0.005. The converged results presented in Fig. 23 maintain

FIG. 23. Density contours and interface locations for the spreading of a liquid lens. The solid lines and the
dashed lines represent the interfaces of fluid 1 and fluid 2, respectively.
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FIG. 24. Schematic diagrams of the simulation of a compound droplet on substrate.

smoothness, indicating the good stability of the solver. The computed distances between two triple
junctions read 87.2 and 71.2 for the two cases, which are in good agreement with the analytical
results 88.6 and 72.4, respectively.

2. Validation case 2: Compound droplet on substrate

In the second validation example, the compound droplet deposited on the solid substrate with
distinct surface properties is simulated to evaluate the implementation of wetting condition in the
present method. The initial setup of the problem is shown in Fig. 24. The compound droplet with
equal volumes of two fluids is put on a substrate and the ambient fluid belongs to the third phase. The
equilibrium shapes will be determined by the contact angles θi j which denote the angle occupied by
phase i in its contact with phase j on the substrate, and the surface tensions σi j which will determine
the interfacial angles at the three-phase junction point from the Young relation in Eq. (C1). The
variations of density and viscosity ratios will not affect the equilibrium shapes. In the present
validations, we choose (ρ1 : ρ2 : ρ3) = (1 : 0.8 : 0.1) and (ν1 : ν2 : ν3) = (1 : 1 : 1). Following the
previous setups [31], we consider equal surface tensions and six cases with the contact angles listed
in Table II. The initial diameter of the compound droplet spans over 100 mesh spacing, the interface
thickness is 3 mesh spacing, and the whole computational domain is discretized by 301 × 301 mesh
points. The wetting condition in Eq. (13) is implemented on the top and bottom walls, while the left
and right boundaries are periodic. The mobility in the simulations is M0 = 0.002.

Figure 25 presents the converged results in all simulation cases, and detailed qualitative com-
parisons of the contact angles are shown in Table II. Note that the numerical contact angles are
computed by θi j = (r12 · r13)/(|r12| · |r13|), where rmn = rm − rn. r1 and r2 are the intersecting
points of the phase interface ϕi = 0.5 with the first and the second layers of mesh lines from the
bottom wall; r3 is an arbitrary location on the bottom wall within phase i. The phase interfaces
are sharp and smooth, suggesting that the method is numerically stable. The computed equilibrium
contact angles are in good agreement with the analytical values, with the maximum difference within
1◦ , which demonstrates the accuracy of the present method in modeling ternary system with wetting

TABLE II. Comparisons of the contact angles of the compound droplet on substrate.

θ12 θ13 θ23

Analytical Ref. [31] Present Analytical Ref. [31] Present Analytical Ref. [31] Present
Case no. (°) (°) (°) (°) (°) (°) (°) (°) (°)

(1) 120 120.6 119.6 90 89.1 90.1 60 59.7 59.5
(2) 90 90.0 90.1 60 59.1 60.3 60 59.1 60.8
(3) 120 120.5 120.9 120 118.4 121.0 90 89.1 89.4
(4) 60 60.7 60.3 60 60.0 60.7 90 89.1 89.4
(5) 90 90.0 89.5 90 89.1 90.2 90 89.1 90.5
(6) 60 59.7 60.8 90 89.0 89.3 120 119.4 119.2
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FIG. 25. Computed equilibrium shapes of compound droplet deposited on substrate.

conditions. Comparisons with previous numerical results obtained by the conventional phase-field
based LBM [31] are also included in Table II, which indicates that the present method is comparably
accurate as the conventional model.
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