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Using fully-resolved simulations, we examine the torque experienced by a finite-length
circular cylinder rotating steadily perpendicularly to its symmetry axis. The aspect ratio
χ , i.e., the ratio of the length of the cylinder to its diameter, is varied from 1 to 15. In the
creeping-flow regime, we employ the slender-body theory to derive the expression of the
torque up to order 4 with respect to the small parameter 1/ ln(2χ ). Numerical results agree
well with the corresponding predictions for χ � 3. We introduce an ad hoc modification
in the theoretical prediction to fit the numerical results obtained with shorter cylinders,
and a second modification to account for the increase of the torque resulting from finite
inertial effects. In strongly inertial regimes, a prominent wake pattern made of two pairs of
counter-rotating vortices takes place. Nevertheless the flow remains stationary and exhibits
two distinct symmetries, one of which implies that the contributions to the torque arising
from the two cylinder ends are identical. We build separate empirical formulas for the
contributions of pressure and viscous stress to the torque provided by the lateral surface
and the cylinder ends. We show that, in each contribution, the dominant scaling law may be
inferred from simple physical arguments. This approach eventually results in an empirical
formula for the rotation-induced torque valid throughout the range of inertial regimes and
aspect ratios considered in the simulations.
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I. INTRODUCTION

Fibers and cylindrical rodlike particles are involved in numerous industrial processes such as
paper making and food processing. In the chemical engineering industry, cylindrical pellets are
used for instance for biomass extraction and oil refinement. Ice crystals growing and sedimenting
in clouds also exhibit slender shapes and may be considered, to a first approximation, as cylindrical
rods. Hydrodynamic forces and torques acting on slender cylindrical particles generally depend
critically on their orientation with respect to the relative incoming flow, which greatly complicates
their prediction. For instance, in the creeping-flow approximation, the hydrodynamic force acting
on a long isolated fiber moving broadside on is known to be twice as large as the force it experiences
when moving along its axis [1]. This anisotropic behavior may have critical consequences in
industrial processes in which pressure losses have to be reduced to a minimum. It is thus of primary
importance to predict accurately the instantaneous orientation of the particles, and consequently
the hydrodynamic torque acting on them. For an isolated particle sedimenting in a fluid at rest
in a regime in which inertial effects in the fluid are small, the time rate of change of the angular
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velocity is in most cases sufficiently weak for the rotation-induced torque to almost balance the
inertial torque due to the body inclination [2]. Similarly, the rotation rate of small neutrally buoyant
particles immersed in a linear flow is known to result from the approximate balance between
the rotation-induced and the shear-induced torques [3], with possible inertial corrections in the
latter [4,5]. This quasisteady approximation [6], together with the asymptotic expressions for the
various contributions to the torque valid in the creeping-flow or low-but-finite-inertia regimes,
have proven accurate for predicting the motion of small fibers settling in a vortical flow [7] or
in a fluid at rest at infinity [8]. Since the pioneering work of [9], the same framework has also
been used in simulations aimed at determining the statistical features of the orientation of fibers
in turbulence, still assuming that the Reynolds number based on their diameter is much smaller
than unity (see [10,11] for more recent references). However, under more general conditions, a
proper prediction of the angular velocity, hence of the instantaneous body orientation, requires the
influence of inertial effects on the rotation-induced torque to be accurately quantified for an arbitrary
Reynolds number. With the aim of contributing to the modeling of the hydrodynamic torque under
general flow conditions, the present paper focuses on the torque acting on an isolated finite-length
circular cylinder rotating perpendicularly to its symmetry axis, from creeping-flow conditions to
strongly inertial regimes. Indeed, the size of fibers encountered in applications covers a broad range
corresponding to widely different flow regimes. While those employed in paper making industry
have diameters typically in the range 15–30 μm and are a few millimeters long, typical rodlike
catalysts involved in fluidized beds have diameters of roughly 1 mm and are 5 to 10 mm long.
In the former case, the Reynolds number based on the particle diameter is usually small, but the
length-to-diameter aspect ratio is large. Conversely, flow conditions relevant to rod-like catalysts
usually correspond to moderate-to-large diameter-based Reynolds numbers and aspect ratios of a
few units. The problem addressed here is also directly relevant to the prediction of the flow structure
induced by a rotating cylindrical rod driven by an electric or a magnetic field. This mixing technique
is widely used in microfluidic devices [12] as well as in large stirred-tank reactors in which inertial
effects dominate the induced flow [13]. In such devices, the actual shape of the rotating stirrer is
usually more complicated than the one considered here, but results obtained with a cylindrical rod
are expected to provide a first approximation of the rotation-induced torque and the flow structure
far from the stirrer.

Although a large body of literature is available regarding the forces experienced by nonspherical
particles (see, for instance, [14] for a review), much less is known regarding the torque, especially
that resulting from the particle rotation. In the creeping-flow limit, Batchelor [1] made use of the
slender-body theory to evaluate the force and torque acting on long cylindrical bodies. To the best of
our knowledge, finite-Reynolds-number corrections to this prediction have not been derived so far.
In the high-Reynolds regime, Kry and List [15,16] considered the torque experienced by rotating
oblate spheroids. They employed a quasistatic approximation (different from the one mentioned
above for the low-Reynolds-number regime) in which the instantaneous aerodynamic force and
torque only depend on the flow Reynolds number and angular position of the particle with respect to
the upstream flow at the same instant of time, but not on the particle angular velocity. They showed
that this approximation is valid provided angular velocities are at least one order of magnitude
less than the velocity of the incoming flow divided by the body characteristic length. They also
pointed out that, under such conditions, a spinning motion about the spheroid minor axis modifies
the boundary layer but does not affect significantly the pressure distribution about the body.

In this work, we determine numerically the torque experienced by a steadily rotating circular
cylinder of finite length, from creeping-flow conditions to strongly inertial regimes. We briefly
present the problem and the computational strategy in Sec. II. In Sec. III we first compute the
torque in the low-Reynolds regime and compare the numerical results with the prediction of the
slender-body approximation, which we extend to fourth order in Appendix A. Then we examine
the influence of finite inertial effects and incorporate an empirical correction in the creeping-flow
formula to take this influence into account. Moderate-to-large Reynolds number flow conditions
are examined in Sec. IV. In the spirit of a recent investigation on the loads acting on an inclined
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FIG. 1. Sketch of the computational domain (not to scale). The cyan area represents the region over which
the grid is uniform.

translating cylinder [17], practical estimates for the torque acting on the body are derived from the
simulations by considering separately the contribution of viscous stresses and pressure on each part
of the body, i.e., the lateral surface and the two flat ends. We summarize our results in Sec. V and
discuss qualitatively their implications with respect to the variations of the body rotation rate with
the aspect ratio and the Reynolds number.

II. PROBLEM DEFINITION AND NUMERICAL APPROACH

We consider the flow induced by a circular cylinder of length L and diameter D rotating about
an axis perpendicular to its symmetry axis and passing through its center of inertia. The fluid is
Newtonian, with density ρ and dynamic viscosity μ, and is at rest at infinity. The problem depends
on two dimensionless parameters, the aspect ratio χ = L/D and the Reynolds number which we
define as Re = ρ�LD/(2μ). This definition assumes that D is the relevant length scale of the flow,
while the characteristic velocity U is assumed to be �L/2. In what follows, we investigate the
flow and torque induced by the cylinder rotation in the range 0.05 � Re � 240 and 1 � χ � 15.
In inertia-dominated regimes, we consider only aspect ratios in the range 2 � χ � 8 to reduce the
computational cost.

The computational strategy is based on the formulation introduced by Mougin and Magnaudet
[18], and we refer to the original article for details. In short, the Navier-Stokes equations are solved
for the absolute velocity field u (the one measured by a fixed observer) using a coordinate system
rotating and possibly translating with the body. Hence, the body and the grid rotate together (which
avoids the need to regenerate the grid at each time step), while the fluid is at rest far away from the
body. Note that this formulation differs from the classical one involving the Coriolis pseudoforce,
since the latter makes use of the same coordinate system but considers the relative velocity field.
In the present approach, the fluid obeys the no-slip condition u = � × x at the cylinder surface,
x denoting the local position from the body centroid, and is at rest at infinity (||u|| → 0 for
||x|| → ∞).

The computational domain is a large cylinder with the same axis as the body (Fig. 1). Its
diameter is equal to its length. The discretization of the fluid domain is mostly similar to that used
by Kharrouba et al. [17] but the configuration of interest here introduces some specificities. For
low-to-moderate Reynolds numbers, the grid is uniform throughout the fluid region extending up
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FIG. 2. Low-Reynolds-number torque on a rotating finite-length cylinder (T ), normalized by the torque on
a rotating sphere with the same volume (Ts), as a function of the aspect ratio χ . Dotted, dash-dotted-dotted,
dash-dotted, and dashed lines: predictions of first-, second-, third-, and fourth-order slender-body approxima-
tions, respectively; solid line: semiempirical formula (1), •: numerical results for Re = 0.05. The region χ � 3
is magnified in the inset to clarify the behavior of the various approximations for short cylinders.

to 0.5D from the body surface (blue region in Fig. 1), with cell sizes ranging from D/16 to D/20
depending on Re. Beyond this region, the cell size increases with the distance to the body following a
geometric law with a common ratio close to 1.07. 32 cells are uniformly distributed in the azimuthal
direction. The length and diameter of the domain range from 60D for χ = 1 and 2 to 215D for
χ = 10 and 15. Such large dimensions are required due to to the slow decrease of the disturbance
induced by the body rotation. On the outer surface of the domain, the normal component of u is
assumed to be zero, together with the normal derivative of the tangential components. We select
this “free-slip” condition rather than a nonreflecting outlet condition because the actual remaining
velocity disturbance has an inward component on some parts of the outer surface, which could create
numerical instabilities. In the inertia-dominated regime, detailed tests showed that the boundary
layer, whose thickness is estimated to be δ ∼ D/Re1/2 on the body ends and on the part of the lateral
surface close to them, is accurately captured with 6 cells. Hence, the cell size in the fluid region
extending up to 0.5D from the body surface is set to δ/6. Here 64 cells are uniformly distributed in
the azimuthal direction. The domain size is set to L + 30D, i.e., the outer boundary is located 15D
apart from the cylinder ends. Since the velocity disturbance decays faster with the distance to the
body than in the low-to-moderate Re regime, a nonreflecting boundary condition [19] is used on the
outer boundary.

III. FROM THE CREEPING-FLOW REGIME TO MODERATE REYNOLDS NUMBERS

For Re = 0, the slender-body theory provides a convenient framework to estimate the torque on
a rotating finite-length cylinder as long as the aspect ratio is much larger than unity. Batchelor [1]
carried out the third-order expansion with respect to the small parameter ε = 1/ ln(2χ ) for this case,
computing the corresponding coefficients numerically. In Appendix A we derive these coefficients
analytically up to order 4, based on the iterative technique developed by Keller and Rubinow [20].

The corresponding results are displayed in Fig. 2. The torque is made dimensionless by dividing
it by its counterpart on a rotating sphere with the same volume, namely, Ts = −πμ�D3, with
D = ( 3

2χ )1/3D. The torque on a rotating cylinder is larger than that on the equivalent sphere for
all aspect ratios χ � 1. Indeed, at leading order, the ratio of the two torques varies as χ2/ log(2χ ).
Not surprisingly, the first- and second-order approximations do not match the numerical results
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FIG. 3. Ratio of the pressure (Tp) to the shear stress (Tμ) contributions to the torque for Re = 0.05. Solid
line: empirical formula (2), •: numerical results.

well, even for large aspect ratios. The third-order approximation provides a better estimate but still
underpredicts the actual torque. A significantly better agreement is obtained with the fourth-order
approximation for χ � 3. All approximations diverge as χ → 1/2, making the agreement deterio-
rate for χ � 3. However, the third-order approximation is still accurate in the range 1.5 � χ � 3.
Making use of these observations, we introduce an ad hoc modification of the original expansion.
That is, we multiply the fourth-order term by a function of χ that quickly tends towards unity as
χ increases and towards zero when χ → 1/2, and varies in such a way that the behavior of the
third-order expansion is recovered in the range 2 � χ � 3. The full expression reads

T = −πμ�L3
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where the (2χ )−1.2-alteration of the prefactor of the O(ε4)-term is empirical. The formula (1) agrees
well with the numerical results for χ � 2. It slightly deviates from the numerical result for χ �
10. This is not unlikely since the Reynolds number based on L instead of D is of O(1) in this
case, suggesting that inertial effects are already significant. The inset in Fig. 2 indicates that the
normalized torque on a cylinder with χ = 1 is approximately 1.25, i.e., the torque is larger than that
on the equivalent sphere, |Ts| ≈ 1.145πμD3�. In Appendix B, we show how bounds for the torque
may be derived from the minimum dissipation theorem. For χ = 1, these predictions indicate that
the torque is such that πμD3� � |T | � 23/2πμD3�. The numerical result obviously stands in the
allowed interval.

Figure 3 shows how the ratio Tp/Tμ between the pressure and shear stress contributions to the
torque vary with the aspect ratio. The former contribution is observed to be smaller than the latter
whatever χ . Keeping in mind that Tp would be zero for a sphere, it is no surprise that Tp/Tμ increases
with χ . This ratio is slightly larger than 0.8 for χ = 15, and the observed variation suggests that it
becomes independent of χ and is of O(1) for long enough cylinders. Whatever the aspect ratio, the
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FIG. 4. Torque on a rotating finite-length cylinder (T ), normalized by the torque on a rotating sphere with
the same volume (Ts), as a function of the Reynolds number in the range 0.1 � Re � 10. •: numerical results;
dashed line: creeping-flow prediction (1); solid line: semiempirical formula (3). The slight difference between
numerical results and predictions of (1) for Re � 1 is already present in Fig. 1 but is magnified here, owing to
the chosen origin of the vertical axis.

numerical results are well fitted by the empirical formula

Tp

Tμ

(Re ≈ 0) = 0.95 − 2.7

4 + 0.9χ1.1
. (2)

Figure 4 displays the increase of the normalized torque as function of Re for three aspect ratios
and Reynolds numbers up to 10. In the range 0.05 � Re � 1, the torque is seen to vary by less
than 5% for χ = 3, while it varies by more than 10% for χ = 10. For Re = 10, the torque on the
longest cylinder has doubled with respect to its value in the creeping-flow regime, while it has only
increased by nearly 40% for χ = 3. That the relative contribution of inertial effects to the torque
increases with the aspect ratio is no surprise. Indeed, the relevant characteristic length scale of the
flow is the lever arm L/2 = χD/2 rather than D, so that the relevant ratio of inertial to viscous effects
is χ

2 Re. Finite inertial effects acting on a slender body inclined with respect to a uniform incoming
flow were considered by Khayat and Cox [2], using the method of matched asymptotic expansions.
Their predictions, in which inertial corrections affect the O(ε2)-terms of the expansion, quantify
the inertia-induced increase of the drag and lift forces. In the case of a cylinder (more generally a
body with a straight centerline), these predictions also reveal the existence of a a nonzero inertial
torque which tends to rotate the body broadside on with respect to the incoming flow. To the best
of our knowledge, finite-inertia effects have not been considered for a slender body rotating in a
fluid at rest at infinity. Adapting the approach of [2] to this configuration is beyond the scope of
the present work. Instead, we only attempted to use the numerical results to extend the formula (1)
empirically to O(1)-Reynolds numbers by suitably altering the prefactor of the O(ε2)-term. Based
on the numerical findings and the above remarks, we modified (1) in the form
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with f (χ, Re) = 0.0337χ1.3Re0.9. We left the pre-factors of the O(ε3) and O(ε4) contributions
unaltered since, according to Fig. 4, the above change appears to be sufficient to capture most of
the finite-Re variations of the torque up to Re = 10. Note that given the definition of Re, the inertial
correction to the torque provided by (3) behaves as �1.9, close to the theoretical �2-scaling expected
on the basis of an Oseen-like asymptotic expansion [6].
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FIG. 5. Wake past a rotating cylinder with χ = 3 for Re = 220. (a) Side view from a fixed z-plane (see
Fig. 6 for the exact definition of the coordinate system); (b) front view from a fixed x-plane. The wake is
visualized using the Q-criterion [21]. The 0.001 isosurface of Q is colored with the magnitude of the normalized
transverse vorticity ωz/�.

IV. FLOW STRUCTURE AND TORQUE IN INERTIA-DOMINATED REGIMES

Inertia-dominated regimes with Reynolds numbers beyond those considered before are charac-
terized by the presence of a prominent wake. The wake is visualized using the Q-criterion [21],
where Q is the second invariant of the velocity gradient tensor, i.e., Q = 1

2 (ei jei j − ωi jωi j ), with
ei j = 1/2(∂ui/∂x j + ∂u j/∂xi ) and ωi j = 1/2(∂ui/∂x j − ∂u j/∂xi ) the components of the strain-rate
and rotation-rate tensors, respectively. As Fig. 5 shows, two pairs of counter-rotating vortices
take place. Each pair emanates from one end of the cylinder and roughly follows a circular path
corresponding to the primary motion of fluid elements imposed by the body rotation. However, these
fluid elements are also seen to move radially outward as they are advected downstream within each
vortex (otherwise, each pair would hit the cylinder end opposite to the one it emanates from). This
radial motion is due to the centrifugal force, Fc. In the reference frame rotating with the cylinder,
this force reads Fc = −� × (� × x) = �2r⊥e⊥, with e⊥ the unit vector collinear to the projection
of x onto the plane perpendicular to �, and r⊥ = ||x × �||/� = (x2 + y2)1/2 the radial position
of a fluid element in that plane, measured from the rotation axis. This centrifugal force makes
the radial velocity component u⊥ = u · e⊥ increase along the path of a fluid element, yielding the
observed increase in the radial position of a vortex thread as the downstream distance to its origin
increases. Since the magnitude of the vorticity generated at the cylinder surface increases with
Re, so does the strength of the vortices. No unsteadiness, i.e., no vortex shedding, was observed
throughout the whole range of Reynolds number considered here (Re � 240). In this respect, the
present wake structure is similar to that observed past a fixed sphere in between the first and
second bifurcations [22], an intermediate stationary but nonaxisymmetric regime in which the wake
is made of two counter-rotating vortex threads where streamwise vorticity is concentrated. The
present wake exhibits two distinct symmetries. As Fig. 5(b) reveals, the plane perpendicular to the
rotation axis and passing through the cylinder centroid is a symmetry plane. This planar symmetry,
combined with the flow steadiness, implies that all force components are zero at any instant of time
and that the torque is collinear with the rotation axis.

Figure 5(a) reveals a second symmetry resulting from the combination of two mirror symmetries.
One is with respect to the plane containing both the rotation axis and the cylinder symmetry axis
(defined as the z- and x-axes in Fig. 6, respectively). The other is with respect to the plane orthogonal
to the previous plane and containing again the rotation axis [(y, z)-plane in Fig. 6]. This symmetry
is illustrated with colored areas in Fig. 6. For instance, the pressure at a given point in the upper half
of the right end (blue area) is identical to the pressure at the mirror point of the left end (blue area
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FIG. 6. Sketch of the flow configuration near the rotating cylinder, especially the distribution of uy (the
y-component of the fluid velocity) close to the ends. Colors help identify the flow symmetries.

again). Since the cross product x × n (with n the unit normal to the cylinder pointing into the fluid)
is also the same at both locations, it turns out that the pressure contributions to the torque provided
by the two ends are identical. The x-variation of the tangential velocity uy in the vicinity of both
ends is schematized in Fig. 6. As this sketch suggests, the same property holds true for the shear
stress contribution provided by both ends.

Figure 7 displays the contributions to the torque arising from the lateral surface. For χ = 8,
computations were carried out only up to Re = 60, owing to the cost associated with the large
grids required to capture the flow details at higher Re. From now on, we characterize the torque
through the coefficient CT obtained by normalizing T with the reference torque 1

8ρ�2L4D, since the
characteristic velocity is �L/2 and the characteristic area is LD. For each aspect ratio, the viscous
contribution [Fig. 7(a)] decreases approximatively as Re−1/2, indicating that the magnitude of the
shear stress is dictated by the boundary layer thickness. This contribution is also seen to depend only
weakly on χ as soon as χ � 5. Hence, the corresponding coefficient can be fitted with the simple
expression

CT μl = (1.32χ−2 + 0.55)Re−1/2. (4)

The pressure contribution [Fig. 7(b)] decreases as χ or Re increases, gradually tending toward a
constant value for large Reynolds numbers whatever χ . Numerical data are properly fitted with the
three-term correlation

CT pl = 1.21χ−0.23Re−0.75 + 0.12χ−2 + 0.1. (5)

This fit suggests that the pressure contribution to the torque tends toward 0.1 for large enough
Reynolds numbers and infinitely long cylinders. Although a torque coefficient independent of both
χ and Re is to be expected in this limit, it must be kept in mind that only the steady regime is
considered here, so that (5) may not be valid in the unsteady regimes that take place for sufficiently

FIG. 7. Contributions to the torque coefficient arising from the lateral surface as a function of Re. (a) Shear-
induced viscous contribution (CT μl ); (b) pressure contribution (CT pl ). �: χ = 2, �: χ = 3, •: χ = 5, �: χ = 8.
Solid line: empirical fits (4) and (5).
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FIG. 8. Contributions to the torque coefficient arising from each of the cylinder ends as a function of Re.
(a) Shear-induced viscous contribution (CT μe); (b) pressure contribution (CT pe). �: χ = 2, �: χ = 3, •: χ = 5,
�: χ = 8. Solid line: empirical fits (6) and (7).

large Re. Figure 8 displays the contribution of each cylinder end to the torque. The viscous
contribution [Fig. 8(a)] decreases strongly as χ or Re increases. It is adequately fitted with the
simple formula

CT μe = 7.5χ−1.2Re−1.2. (6)

It is worth noting that the negative Re exponent is significantly higher than the −1/2 exponent
provided by the boundary layer scaling [23]. The reason is that the flow is massively separated
in the end regions, and the typical length scale of the corresponding recirculation is D. For this
reason, the magnitude of the shear stress on the cylinder ends is governed by the cylinder diameter,
not by the boundary layer thickness. This scaling yields viscous stresses of O(μU/D), hence
contributions to the torque of O(μULD), which results in CT μe ∼ Re−1χ−1, close to the behavior
synthesized by (6).

As Fig. 8(b) reveals, the pressure contribution to the torque arising from the cylinder ends does
not vary significantly with the Reynolds number in the range of interest here, except for the shortest
cylinder for which some decrease is observed for Re � 80. Compared to the pressure contribution
provided by the lateral surface, CT pe is one order of magnitude smaller for χ = 2 and approximately
50 times smaller for χ = 5. This small contribution is seen to decrease strongly with the aspect
ratio. This decrease may readily be predicted, assuming that the pressure on the ends scales as
ρU 2 ∼ ρ�2L2. Since the end area is of O(D2) and the magnitude of x × n is of O(D) there,
the pressure contribution to the torque scales as ρ�2L2D3, which yields CT pe ∼ χ−2. Indeed, the
behaviors reported in Fig. 8(b) are adequately fitted by the simple expression

CT pe = 0.05χ−2. (7)

The total torque coefficient CT is eventually obtained by summing all the contributions fitted in
(4)–(7), keeping in mind that those of (6) and (7) have to be counted twice. This yields

CT (χ, Re) = 15χ−1.2Re−1.2 + 1.21χ−0.23Re−0.75 + (1.32χ−2 + 0.55)Re−1/2 + 0.22χ−2 + 0.1.

(8)

As Fig. 9 shows, this empirical fit matches all numerical results well.
The ratio of the pressure contribution (Tp) to the viscous contribution (Tμ) to the torque may also

be computed from (4)–(7). Using these estimates, one finds

Tp

Tμ

= 1.21χ−0.23Re−0.75 + 0.1 + 0.22χ−2

(1.32χ−2 + 15χ−1.2 + 0.55)Re−1/2 . (9)
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FIG. 9. Torque coefficient (CT ) as a function of Re for cylinders with various aspect ratios. �: χ = 2, �:
χ = 3, •: χ = 5, �: χ = 8. Solid line: empirical fit (8).

For sufficiently large aspect ratios and Reynolds numbers, this ratio tends toward 0.18Re1/2. Thus
it becomes independent of χ and increases as the square root of the Reynolds number, boundary
layer effects making the viscous contribution decrease as Re−1/2. These features are confirmed in
Fig. 10, which displays Tp/Tμ as a function of χ for various Re. Remarkably, variations of this ratio
with respect to χ are qualitatively similar to those observed in the low-Reynolds-number regime
(see Fig. 3). The slight deviation of (9) from the numerical data for Re = 240 results from the fact
that (4) somewhat overestimates the shear stress contribution at large Reynolds number, as may be
discerned in Fig. 7.

V. DISCUSSION

In this work, we used fully resolved simulations to obtain approximate laws for the torque
acting on a slender circular cylinder rotating about an axis passing through its centroid and
perpendicular to its symmetry axis. For cylinders with an aspect ratio larger than 3, we found

FIG. 10. Ratio of the pressure (Tp) to shear stress (Tμ) contributions to the torque as a function of the
cylinder aspect ratio for different Reynolds numbers. �: Re = 20, �: Re = 60, •: Re = 140, �: Re = 240;
solid line: empirical formula (9).
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FIG. 11. Torque coefficient (CT ) as a function of Re for cylinders with various aspect ratios. Numerical
results for: χ = 3 (�) and χ = 10 (•). Dashed line: creeping-flow prediction (1); dash-dotted line: finite-Re
semiempirical formula (3); solid line: empirical inertial fit (8); red and orange lines refer to χ = 3 and χ = 10,
respectively.

the creeping-flow prediction based on the slender-body theory to agree well with numerical data,
provided the expansion with respect to the small parameter 1/ ln(2χ ) is carried out up to fourth
order. We empirically modified the fourth-order term which we derived analytically, in such a way
that the modified formula is valid down to χ ≈ 2. We carried out a series of runs in the range
0.1 � Re � 10 to quantify finite-inertia effects. As is customary with slender bodies, numerical
results revealed that the larger the aspect ratio the stronger the inertial increase of the torque for
a given Re. Since no theoretical prediction is available for low-but-finite inertial effects in the
configuration considered here, we merely introduced an empirical modification in the second-order
term of the low-Re prediction to account for these effects. The modified formula was found to fit the
numerical data well up to Re ≈ 10 whatever the aspect ratio. Then we considered higher Reynolds
numbers, up to Re = 240. Numerical results revealed that the flow remains stationary throughout
this range and preserves a planar symmetry with respect to the plane perpendicular to the rotation
axis and passing through the body centroid. The flow exhibits a second symmetry, resulting from
the combination of two mirror symmetries with respect to two mutually orthogonal planes. Because
of this symmetry, the two cylinder ends provide identical contributions to the torque. We used
numerical data to establish separate approximate fits for the contributions resulting from pressure
and viscous effects on each part of the body surface, and provided simple physical arguments in
support of the corresponding scaling laws. From a practical standpoint, the main outcomes of this
investigation are formulas (1), (3), and (8), which accurately approach the rotation-induced torque
from creeping-flow conditions up to Re ≈ 250 for all aspect ratios larger than 2.

These various predictions are displayed throughout the Re-range explored numerically in Fig. 11,
together with the numerical results obtained for χ = 3 and 10. Remarkably, the empirical fit (8)
derived in the inertia-dominated regime turns out to predict the torque well even for low-to-moderate
Reynolds numbers, down to Re ≈ 1. For lower Re, it overpredicts the torque for χ = 3 but under-
predicts it for χ = 10. It may also be noticed that the applicability of the semiempirical formula
(3) remains limited to Re ≈ 10 for both aspect ratios. The semiempirical law (3) is potentially
useful to estimate the rotation rate of sedimenting cylindrical rodlike particles and fibers in the
low-but-finite Reynolds number regime. In that regime, the orientation-induced inertial torque To

acting on a long nonrotating cylinder translating with velocity U in a fluid at rest is known to
be of O(μUL2χReu/[ln χ ]2) [2], with Reu the Reynolds number based on the body diameter and
velocity U assumed to be small. In contrast, according to (3), the rotation-induced torque on a long
nontranslating cylinder scales as T ∼ μ�L3/ ln χ , provided the inertial correction remains small. A
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rodlike particle settling under the effect of gravity experiences both translation and rotation. In this
case, the nonlinear coupling between the translation- and rotation-induced flows yields an additional
inertial correction to the loads proportional to �U , so that the total inertial contribution to the
hydrodynamic force and torque is generally the sum of three terms proportional to U 2, �2, and
�U , respectively, with distinct prefactors that depend on the body geometry [6]. The �U -term is
at the origin of the Magnus lift force acting on a spinning sphere translating perpendicularly to its
rotation axis [24]; no inertial correction to the torque takes place at this order of approximation in
this specific case. To the best of our knowledge, this correction has not been explicitly computed
in the configuration considered here, i.e., a cylinder that settles in a vertical plane containing its
symmetry axis and rotates about an axis perpendicular to this plane. However this inertial correction
is presumably significantly smaller than To as far as L�U remains small compared to U 2, i.e.,
�L/U � 1. Assuming that this is the case and the time rate-of-change of the particle angular
momentum is also small compared to To (see [6] for a discussion on this aspect), the angular velocity
of a long cylinder with uniform density settling under conditions Reu � 1 and Re � 1 must be such
that T and To almost balance each other. This quasisteady balance implies

�L

U
∼ Reu

χ

ln χ
. (10)

The settling velocity is readily estimated by requesting that the drag force, which in this regime
scales as Fd ∼ μUL/(ln χ ) irrespective of the cylinder orientation [1], balances the net weight of the
body, Fg. This constraint yields Reu ∼ (ρFg/μ

2)χ−1 ln χ ≡ Ar2χ−1 ln χ , where Ar = (ρFg)1/2/μ is
the Archimedes number characterizing the relative strength of gravitational (hence inertial) effects
and viscous effects during the body settling. Injecting the above estimate for Reu into (10) results in

�L

U
∼ Ar2. (11)

Hence, the magnitude of �L/U is found to be small provided Ar is small, in line with the above
assumption. The same qualitative reasoning may be applied to moderately inertial regimes (i.e.,
typically Re and Reu in the range 1–10), assuming that although cross-effects between rotation
and translation certainly contribute quantitatively to the hydrodynamic torque, they remain small
enough to leave the scaling of the leading-order contributions unchanged. Numerical predictions
for the force and torque acting on an inclined translating (but nonrotating) cylinder were recently
obtained over a wide range of Reu in [17]. In this reference, similar to the approach followed in the
previous section, the results for To in inertia-dominated regimes were synthesized in the form of an
empirical fit. Considering that the cylinder axis makes an angle θ with the translation velocity, and
writing To in the form To(χ, θ, Reu) = CTo (χ, Reu)ρU 2L2D sin 2θ , these results show that CTo ≈
0.7χ−0.47Re−0.35

u in the limit of large aspect ratios. For χ = 10 and Re = O(1), Fig. 11 indicates
that CT follows the approximate law CT ≈ 2.8 Re−0.83.

Therefore, when Re is of O(1), still assuming that cross-effects of � and U are small enough for
the zero-net torque condition to require the leading-order contributions to T and To to approximately
balance each other, �L/U obeys

�L

U
≈ 1.1

(
Reu

χ

)0.4

. (12)

When the cylinder settles broadside on (θ = 90◦) and 5 � Reu � 10, the results of [17] indicate
that the drag force is approximately Fd ≈ 5.15 Re−0.55

u LDρU 2. Hence, balancing Fd and Fg implies
Reu ≈ 0.32(Ar2/χ )0.7 which, once injected into (12), yields

�L

U
≈ 0.7 Ar0.55χ−0.7. (13)
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Similarly, when the cylinder settles along its axis (θ = 0◦), the drag force was found to scale
approximately as Fd ≈ 12.9 Re−0.8

u χ−0.3LDρU 2, which changes (13) into

�L

U
≈ 0.5 (Ar/χ )0.65. (14)

According to (13) and (14), �L/U is small (i.e., the above approximate torque balance may be
expected to be valid) provided χ is somewhat larger than Ar. For instance, with Ar = 50 and
χ = 50, which corresponds to Reu ≈ 5, these predictions suggest �L/U ≈ 0.4 (hence Re ≡
Reu

�L
2U ≈ 1) and �L/U ≈ 0.5 (Re ≈ 1.25), respectively, so that Re is close to unity whatever the

cylinder orientation. Doubling χ while maintaining Ar unchanged reduces the relative rotation
velocity to 0.25 and 0.30, respectively. Comparing (11) with (13) or (14) provides some qualitative
insight into the way the relative rotation rate �L/U varies with the Archimedes number and the
body aspect ratio in the limit χ 
 1. Starting from the quadratic behavior indicated by (11) for
low-but-finite Archimedes numbers, (13) and (14) predict that the growth of �L/U with Ar strongly
slows down for moderately inertial conditions. Also, while the aspect ratio is found to have no effect
at leading order on the relative rotation rate when Ar is small, the larger χ the slower �L/U in the
moderately inertial regime.

Throughout this work, we deliberately disregarded unsteady effects. Such effects are obviously
significant, if not dominant, during collision processes [25]. Similarly, they can hardly be ignored in
a turbulent flow during the stage a particle enters or leaves a vortical structure with significant size
and energy. In such situations, the rotation-induced torque may be transiently significantly larger
than the translation- or shear-induced components of the hydrodynamic torque, the torque balance
then being satisfied thanks to the time rate of change of the particle angular momentum. In a suspen-
sion, the collision frequency increases with the particle concentration, making these transient effects
become increasingly important as denser suspensions are concerned. In a turbulent flow, the paths
of fluid and rigid particles become increasingly different as the particle size and the particle-to-fluid
relative density difference increase, making the occurrence of strongly time-dependent events along
the particle path more frequent. In such situations, accounting for the influence of time-dependent
effects on the hydrodynamic torque and estimating the relaxation time beyond which quasisteady
approximate formulas such as those established here become valid again is of primary importance.
However, the history force on a rotating slender body (i.e., the counterpart of the Basset-Boussinesq
force for a sphere) is not known in closed form, even in the Stokes regime. Similarly, in the inviscid
limit, the inertia-induced (or added-mass) torque is not known in closed form, although approximate
formulas have been proposed [26]. This lack of theoretical guides in the asymptotic regimes makes
the development of approximate predictions for such unsteady situations challenging. However,
given their practical relevance, there is a definite need to examine these transient effects in future
studies.
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APPENDIX A: SLENDER-BODY APPROXIMATION FOR THE ROTATION-INDUCED TORQUE

The torque on a long rotating body may be obtained through the slender-body theory [1,20]. By
expanding the solution in powers of the small parameter ε = 1/ ln(2χ ), Batchelor [1] determined
the rotation-induced torque up to O(ε3). The coefficients of the corresponding expansion were
obtained numerically. However, the logarithmic dependence of the loads with respect to χ makes the
expansion converge slowly, limiting the accuracy of the predictions for moderate aspect ratios. This
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is why including higher-order contributions is desirable. In this Appendix, we derive the coefficients
of the εn-expansion up to n = 4. The total torque on a cylindrical body of length L may be
written as

T = −8πμL2
∫ 1

0
x × f (x) dx, (A1)

where f (x) is the density of the Stokeslet distribution along the body, x is the local position (with
x = 1/2 at the body centroid) and x denotes the arc length. For a body rotating along an axis
perpendicular to its symmetry axis (here along z as in the main body of the paper), the previous
expression reduces to

T = −8πμL2
∫ 1

0
x fy(x) dx. (A2)

The Stokeslet density fy was obtained by Keller and Rubinow [20], using a matched asymptotic
expansion technique. It may be expressed as

fy(x) = −ε

2

(
Uy(x) + fy(x){ln[4x(1 − x)] + 1} +

∫ 1−x

−x

fy(x + t ) − fy(x)

|t | dt

)
, (A3)

with Uy the rotation-induced velocity of the cylinder in the y-direction. For χ 
 1, Uy = �

L(x − 1/2), which indicates that the rotation-induced flow is equivalent to a uniform shear flow of
strength � centered at the body centroid. As detailed in [20], fy(x) may be obtained in an iterative
way. Setting first fy(x) = 0 on the right-hand side of (A3), the first-order approximation is obtained
as f (1)

y (x) = −�L(x − 1/2)ε/2. Inserting the first-order solution in the right-hand side of (A3), the
second-order correction is readily obtained as

f (2)
y (x) = −�L(x − 1/2)

2

(
ε − ε2

2
{ln[4x(1 − x)] − 1}

)
, (A4)

since the integral term in (A3) reduces to
∫ 1−x
−x

t
|t | dt = 1 − 2x. Following the same procedure, one

obtains the third-order correction in the form

f (3)
y (x) = −�L(x − 1/2)

2

[
ε − ε2

2
{ln[4x(1 − x)] − 1}

+ ε3

4

(
{ln[4x(1 − x)] − 1}{ln[4x(1 − x)] + 1} + g(3)

y (x)

x − 1/2

)]
, (A5)

where g(3)
y (x) = ∫ 1−x

−x [h(3)
y (x + t ) − h(3)

y (t )]/|t | dt , with h(3)
y (x) = (x − 1/2){ln[4x(1 − x)] − 1}.

The latter integral may be evaluated analytically, yielding

g(3)
y (x) = − 3 + π2

6
+ 6x − π2

3
x + 6 ln 2 − 12x ln 2 + 2 ln(1 − x) − 2x ln(1 − x) − 2x ln(x)

+
(

1

2
− x

)[
Li2

(
x − 1

x

)
+ Li2

( x

x − 1

)]
, (A6)

where Li2 is the polylogarithm function with argument 2. At this stage, the present prediction may
be compared with the coefficients computed numerically by Batchelor [1]. For this purpose one
needs the results∫ 1

0
x(x − 1/2){ln[4x(1 − x)] − 1} dx = −11/36 + ln 2/6,

∫ 1

0
x(x − 1/2){ln(4x[1 − x)] − 1}{ln(4x[1 − x)] + 1} dx = [95 − 3π2
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+ 12 ln 2(−8 + ln 8)]/108,∫ 1

0
xg(3)

y (x) dx = 11/18 − ln 2/3.

The third-order approximation for the torque is then found to be

T (3) = −πμ�L3

3

[
ε + ε2

(
11

6
− ln 2

)
+ ε3

(
161

36
− π2

12
− 11

3
ln 2 + (ln 2)2

)]
. (A7)

The numerical evaluation of the second- and third-order terms in (A7) agrees with the results
provided in [1]. At next order, the Stokeslet density may be expressed as

f 4
y (x) = f (3)

y (x) + �L(x − 1/2)

16
ε4

[
{ln[4x(1 − x)] + 1}

(
{ln[4x(1 − x)] − 1}{ln[4x(1 − x)] + 1}

+ g(3)
y (x)

x − 1/2

)
+ g(4)

y (x)

x − 1/2

]
, (A8)

where g(4)
y (x) = ∫ 1−x

−x [h(4)
y (x + t ) − h(4)

y (t )]/|t | dt with h(4)
y (x) = (x − 1/2){ln[4x(1 − x)] −

1}{ln[4x(1 − x)] + 1} + g(3)
y (x). Integrating separately each contribution, one obtains

∫ 1
0 x(x − 1/2){ln[4x(1 − x)] − 1}{ln[4x(1 − x)] + 1}2dx

= 1
216 {216ζ (3) − 1042 + 6 ln 4[85 + 3 ln 4(ln 4 − 7)] + π2(42 − 9 ln 16)},∫ 1

0 xg(3)
y {ln[4x(1 − x)] + 1} dx = 1

54

[−9ζ (3) − 95 + 3π2 − 36 ln2(2) + 96 ln 2
]
,

∫ 1
0 xg(4)

y dx = 1
54

[−161 + 3π2 − 9 ln2(4) + 54
(
ln 4 + 4

9 ln 2
)]

.

Summing all contributions, the fourth-order approximation is eventually obtained as

T (4) = T (3) − πμ�L3ε4

3

[
− 5

4
ζ (3) + 1033

72
− ln3(2) + 11

2
ln2(2) − 161

12
ln 2

−π2

(
11

24
− 1

4
ln 2

)]
, (A9)

where ζ denotes the Riemann zeta function. Interestingly, at each order of the expansion one may
remark that

∫ 1
0 x

∫ 1−x
−x [ fy(x + t ) − fy(x)]/|t | dt dx = −2

∫ 1
0 x fy(x) dx. This statement may presum-

ably be proved by mathematical induction, even though we did not attempt to do so.
The Stokeslet distribution fy(x) may be thought of as the transverse force per unit length acting

on the cylinder at position x. Figure 12 shows how the first three orders of this force distribution
vary along the cylinder axis [we did not obtain the function g(4)

y (x) involved in (A8) in closed form
and thus could not compute the distribution of f 4

y (x)]. This figure makes it clear that, while the
first-order distribution is linear, higher-order corrections peak more and more near the cylinder
ends as the order increases, which was to be expected since these higher-order terms account for
finite-length effects.

APPENDIX B: MINIMUM DISSIPATION THEOREM FOR A ROTATING CYLINDER

The minimum dissipation theorem states that in any geometrical configuration, the Stokes
solution dissipates less energy than any other solenoidal solution satisfying the same boundary
conditions. For a translating and rotating rigid body, the dissipation rate may be related to the rate
of work of the force and torque. Therefore [27,28]

F · U + T · � � �∗, (B1)
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FIG. 12. Successive orders of the Stokeslet density distribution fy(x) along the cylinder. The blue, red, and
green lines correspond to f 1

y , f 2
y , and f 3

y , respectively.

where F and T are the force and torque acting on the body moving at velocity U and rotating with
angular velocity �, and �∗ is the dissipation rate of any other solenoidal velocity field u∗ obeying
the same boundary conditions. This theorem has been used successfully to estimate bounds for
the drag acting on translating bodies [27]. The corollary for rotating bodies directly follows from
(B1). Assuming that a rigid body bounded by a surface Si is immersed in a body of fluid bounded
externally by a surface So, (B1) implies that the torque on Si is smaller than that on So. The proof of
this statement is similar to the one provided in [27] for the drag force. The actual velocity field, say
ui, is the one induced by the rotation of Si, whereas uo, the velocity field induced by the rotation
of So, may be used for u∗. Assuming that the fluid located in between the two surfaces rotates
as a solid with the velocity field � × x implies that the associated dissipation rate is zero. This
immediately yields Ti � To, where Ti and To denote the torques associated with the rotation of Si

and So, respectively. Consider now a circular cylinder with χ = 1. A sphere of diameter D may be
entirely enclosed within the cylinder, while a sphere of diameter 21/2D completely encloses it. It
follows that the torque T on the cylinder is such that πμD3� � |T | � 23/2πμD3�.
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