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Dynamics of phase separation of sheared binary mixtures
after a nonisothermal quenching
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When a symmetric regular binary mixture, subjected to a constant shear, is quenched into
the unsteady region of its phase diagram under a temperature gradient, it phase separates
following very complicated patterns. The phase separation process is simulated using
a thermodynamics-based phase-field model where the fundamental balance equations
are coupled with the constitutive equations for the diffusive fluxes of chemical species,
momentum, and energy by applying the rules of nonequilibrium thermodynamics. The
evolution of phase separation shows distinct features, being more complex than a simple
superposition of patterns emerging in a shear flow and under a thermal gradient when
taken individually. The imposed temperature gradient causes a preferential nucleation at
the cooler wall, so that the emerging droplets drift towards the center of the domain while
following the imposed flow field, causing a change in droplet movement as they cross the
domain centerline and enhancing coalescence. The imposed temperature gradient breaks
the symmetry compared to instantaneous quenching, with stable droplets which remain
attached to the cooler wall and move coherently with it. The capillary number (NCa )
determines breakup and phase separation evolving as stripes for NCa � 1, while droplets
nucleate and grow for NCa � 1. The Lewis number (NLe) affects the pace and propagation
of phase separation: for NLe > 10 phase separation takes place rather uniformly, being
similar to instantaneous quenching, while for NLe < 0.1 the mixture cools slowly and a
phase separation front proceeds from the cooler wall. A similar behavior is induced by
a composition-dependent thermal conductivity. The mixture dimensionless heat capacity
(Nc ) has a significant effect on phase separation because, for Nc � 1, heat dissipation coun-
terbalances the effect of the applied temperature quench, thus retarding or even reversing
the process of phase separation. These results and the variety of patterns reproduced by the
model highlight the necessity of integrating a consistent thermodynamic description to the
hydrodynamics and heat transport in phase-field modeling.

DOI: 10.1103/PhysRevFluids.6.094302

I. INTRODUCTION

A mixture of two (or more) liquids is considered to be partially miscible when it exhibits a
miscibility gap, i.e., there is a range of compositions where, at equilibrium, it forms a two-phase
liquid system. In most cases, miscibility increases with temperature, so that there is an upper critical
temperature, above which the liquids are miscible in all compositions. Following a temperature drop
from the single-phase region of the phase diagram to its unstable part, the initially homogeneous
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mixture becomes unstable to arbitrarily small fluctuations and therefore it phase separates [1]. In the
absence of any externally imposed flow field, this process consists of the formation of small nuclei
that coalesce and grow, following a universal scaling L(t ) ∝ tβ of the domain mean size with time
[2,3]. For extremely viscous systems, like melted alloys, or for millikelvin temperature quenches,
diffusion is the dominant transport mechanism; in these cases, it is well known, both experimentally
[4,5] and theoretically [6], that the critical exponent is β = 1/3. In general, this exponent law is the
signature of coalescence driven by Brownian motion [7]. On the other hand, for larger temperature
quenches or in liquid mixtures, coalescence is driven by hydrodynamic, long-range interactions,
as convection dominates diffusion; in this case, it was shown dimensionally [3,8] that the growth
law L(t ) ≈ (σ/η)t is obtained for small Reynolds number (while for large Reynolds numbers, a
2/3 power law is obtained), with η and σ denoting viscosity and surface tension, respectively, thus
confirming experimental results [9–12].

As for the theoretical modeling, processes such as coalescence and breakup of bubbles and drops
occur at a length scale of the order of the interface thickness, and therefore they can hardly be
described by using the classical two-phase flow approach, where the different phases are assumed
as being at thermodynamic equilibrium, separated from each other by a sharp interface, i.e., a zero-
thickness region of space [13]. The fundamental drawback of the free-boundary approach is resolved
by the phase-field, or diffuse interface, model, dating back to a seminal work by van der Waals
[14], based on the assumption that all physical quantities are described by continuous functions,
i.e., they are “diffuse.” When the system is separated in two coexisting phases, even the quantities,
such as density and concentration, that in the free-boundary approach change discontinuously at the
interface, here change gradually within an interfacial volume, with a steep gradient in a direction
normal to the interface. Therefore, the phase-field approach assumes that the order parameters
change within a characteristic interface thickness, a, so that in the limit of vanishing a, the classical
free-boundary approach is recovered [15–17].

Conceptually, the starting point of the phase-field approach is that we can describe the system via
an energy functional which can be expanded in terms of gradients of the order parameter (see review
in Lamorgese et al. [18]), thus including nonlocal effects. Consequently, adopting the phase-field
approach means that all the balance equations must be modified, to include new nonlocal terms in
the constitutive equations of the fluxes of chemical species, momentum, and energy.

In the 1930s, van der Waals theory was generalized by Ginzburg and Landau to model all order-
disorder phase transition processes and thereby describing phenomena such as ferromagnetism,
superfluidity, and superconductivity [19]. The phase-field model was applied by Cahn and Hilliard
[20,21] to perform a linear stability analysis of the diffusion-driven spinodal decomposition of
alloys, following an instantaneous temperature quench. As this process is supposed to be isothermal
and convection free, it is governed by a single diffusion equation for the concentration field, that was
subsequently resolved numerically (see Vladimirova et al. [22] and references therein), leading to
results in agreement with the L ∝ t1/3 scaling predicted theoretically and measured experimentally.

Modeling convection proved to be more complicated. First, in 1901, Korteweg [23] proposed
an expression for the capillary stresses, which are generally referred to as Korteweg stresses.
Within the interfacial region, these stresses determine a body force, reducing to surface tension
when the interfacial region collapses into a sharp interface; on the other hand, the Korteweg
body force vanishes identically within a single-phase region at equilibrium. In low viscosity
liquids and/or following deep quenches (i.e., in conditions far from thermodynamic equilibrium),
the Korteweg force induces a strong convective motion, which enhances coalescence among
drops and accelerates heat transfer. When the resulting momentum equation is coupled with
the convection-diffusion equation for the composition field, we obtain the Cahn-Hilliard-Stokes-
Korteweg (CHSK) equations, otherwise called model H in Hohenberg and Halperin’s taxonomy
[24]. Applying this model, the convection-driven phase separation of viscous binary mixtures
was simulated numerically (see Vladimirova et al. [25] and Lamorgese et al. [26], and ref-
erences therein), leading to results that agree with the L ∝ t and L ∝ t2/3 scaling predicted
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theoretically and measured experimentally. In addition, the model was also applied to simulate
the deformation [27], breakup [28,29], and coalescence [30] of thermodynamically stable droplets.

In comparison with the effort devoted into finding efficient numerical schemes to solve the CHSK
equations, little attention was paid into adding an energy balance equation and to study the case of
nonisothermal fluid mixtures. In fact, most of the published works on the modeling and numerical
simulations of liquid-liquid phase separation assume an instantaneous quench to a final (uniform)
temperature within the unstable or metastable regions of the phase diagram, whereby an isothermal
separation process is assumed. Some attempts to simulate the heat transfer rates during spinodal
decomposition of a critical solution were reported [31]; however, the energy source term due to
internal frictions and phase separation was typically neglected [31,32]. Furthermore, the temperature
variation of a, i.e., the length scale representing the spatial inhomogeneity of the separating phases,
has not been appropriately modeled. This overlook, which might undermine the reliability of the
modeling works, can be arguably explained as follows: while a CHSK scheme could be devised
for a very simple model system, although having little resemblance to real mixtures, the energy
equation requires a proper thermodynamic setting. Excellent results were obtained for the phase
separation of van der Waals fluids [33,34]. However, in general, when proper thermodynamically
consistent models were proposed [35–39], the number of independent parameters was too large to
obtain easily understandable results. Then, Molin and Mauri [40] proposed a phase-field model for
regular binary mixtures, combining thermodynamic consistence with the simplicity of the model.
In this work it was shown that heat transfer can be enhanced by phase separation, in agreement
with experimental findings [41]. This model was subsequently generalized and applied to different
problems (see reviews in Lamorgese et al. [26] as well as Lamorgese et al. [18] and Segal [42]),
always with simplifying assumptions that will be removed in the present work.

Here, phase separation of a regular binary mixture following a nonuniform temperature quench
and under shear flow is considered. Previous studies have shown how the dynamics of phase separa-
tion evolves in a shear flow during an instantaneous quench, featuring droplet morphologies ranging
from elongated bands to round shapes [43], or in a quiescent fluid under a temperature gradient,
where a dynamic transition in the orientation of nuclei was observed [44]. Considering the strong
coupling between hydrodynamics, heat transport, and mixture thermodynamics, the combination of
shear flow and temperature gradient can give rise to specific features of system evolution during
phase separation, going beyond the simple superposition of the individual behaviors. Therefore, the
phase separation of sheared mixtures upon a temperature gradient is considered here as an example
to showcase how a thermodynamics-based phase-field model can capture the complex interplay
between hydrodynamics, mixture thermodynamics, and heat transport, thus further shedding light
on the underlying transport phenomena.

After a summary of the governing equations, whose detailed derivation is reported in the
Appendixes, the model is applied to investigate how the dynamics of phase separation is affected by
different fluid and thermal properties such as heat capacity, thermal conductivity, the ratio between
mass and heat diffusion, as well as the capillary number. While simpler behaviors in case of no
shear [32,44] or instantaneous quenching [43] are readily recovered, thus providing validation of
the numerical scheme, the set of numerical simulations here presented highlights the variety of
extremely different morphologies of phase separation evolution under temperature and velocity
gradients by varying the properties of the fluid. Finally, a few concluding remarks are presented
in the last section.

II. MODELING

The governing equations describe the evolution of the composition, momentum, and energy
fields of a binary mixture of two species, 1 and 2, using a thermodynamics-based diffuse interface
approach developed by Mauri and co-workers [18,26], which consistently links transport and
capillary phenomena to mixture thermodynamics. As the problem is complex, a few simplifying
assumptions are introduced to reduce model complexity to the relevant elementary phenomena [43]:
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(i) species 1 and 2 have the same molecular weight, M1 = M2 = Mw; (ii) mass density ρ is constant
and independent of temperature and composition; thus, the mixture is treated as incompressible;
and (iii) the mixture is regular and symmetric, representing a van der Waals fluid, so that the excess
free energy is described in terms of a single Margules parameter � (also denoted as the van Laar or
Flory-Huggins interaction parameter). In this section, first we describe the governing equations and
the mixture thermodynamics, then the problem is formulated in dimensionless form, showing how
the relevant dimensionless quantities are defined. A detailed derivation of the framework is reported
in the Appendixes while only the final equations strictly relevant for the simulations are reported in
the following.

A. Equations of motion

For a binary mixture, in the absence of chemical reactions and under the assumptions listed
above, the governing equations are the conservation of mass, momentum, chemical species, and
energy, which read as follows [see Eqs. (B11)–(B14) in Appendix B]:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

∂ (ρφ)

∂t
+ ∇ · (ρvφ + Jφ ) = 0, (2)

∂ (ρv)

∂t
+ ∇ · (ρvv + Jv ) = −∇p + Fφ, (3)

∂ (ρu)

∂t
+ ∇ · (ρvu + Ju) = −p∇ · v − Jv : ∇v − Jφ · ∇ψ12, (4)

where ρ is the mixture density (which here is assumed to be constant), v is the mass-averaged
fluid velocity, φ is the mass fraction of species 1, p is pressure, and u is the specific (i.e., per unit
mass) internal energy of the mixture. The terms Jφ , Jv , and Ju represent the irreversible diffusive
fluxes of species, momentum, and internal energy, respectively, while Fφ is the volumetric body
force exerted by any long-range conservative force acting on the two species (see Chap. 7.4 of
Mauri [45] or Chap. II.3 of De Groot and Mazur [46]). In this specific case, where gravity and other
conservative energy fields are neglected, Fφ reduces to the Korteweg force, which is captured by the
energy potential difference ψ12, described later on in this section. The terms on the right-hand side
(RHS) of Eq. (4) represent the volumetric heat source terms, which are strictly positive according to
nonequilibrium thermodynamics (see Chap. 7.5 of Mauri [45]). It is worth noting that the first term
on the RHS of Eq. (4), namely −p∇ · v, is identically zero as a consequence of the assumption of
constant density, which reduces the continuity equation [Eq. (1)] to ∇ · v = 0. In fact, in these condi-
tions, pressure ceases to be a thermodynamic variable for incompressible fluids and acquires instead
the ancillary status of mere gauge variable, enforcing the solenoidal nature of the velocity field.

In the balance of chemical species, Eq. (2), the diffusive mass flux of species 1, Jφ , obeys the
following constitutive relation [see Eqs. (B12) and (B16)]:

Jφ = − ρD

RwT
φ(1 − φ)([∇μ12]T + ∇ψ12), (5)

with Rw = R/Mw, where R is the gas constant, T is the absolute temperature, D is the molecular
diffusivity, and [∇μ]T = (∂μ/∂φ)T ∇φ, where we have denoted μ12 = μ1 − μ2 and ψ12 = ψ1 −
ψ2 as, respectively, the chemical potential difference and the potential energy difference of any
conservative force acting on the components of the mixture. Note that, in the dilute limit (i.e.,
φ → 0 or φ → 1) and for ideal mixtures (� = 0 and ψ12 = 0), Fick law is correctly recovered in
Eq. (5) (see discussion at the end of Appendix B).

In the momentum balance, Eq. (3), the viscous momentum flux Jv is symmetric, as we assume
that no body couples are applied to the system. The viscous momentum flux Jv is linked to the
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commonly used stress tensor T as T = Jv + pI [18], where I is the identity tensor; in addition,
Jv can be decomposed as the sum of an isotropic and a deviatoric part, i.e., Jv = p′I + J′

v , where
p′ is a dynamical (i.e., nonthermodynamic) pressure term, while J′

v is the traceless part of the
stress tensor (see Chap. 7.5 of Mauri [45]). Applying the rules of nonequilibrium thermodynamics
(see Appendix B), we obtain the constitutive relations for a Newtonian fluid, that is, p′ = −ζ∇ · v
[see Eq. (B7)] and J′

v = −η(∇v + ∇vT − 2
3 (∇ · v)I) [see Eq. (B10)], where η is the mixture

dynamic viscosity and ζ is the bulk viscosity. Thus, finally we obtain:

Jv = −η(∇v + ∇vT) − (
ζ − 2

3η
)
(∇ · v)I. (6)

Naturally, in Eq. (6) the isotropic term proportional to (∇ · v)I can be dropped because the
velocity field is solenoidal (i.e., ∇ · v = 0) for an incompressible mixture.

In Eq. (3) the body force Fφ , which captures the nonlocal effects induced by a long-range
conservative force, is denoted as Korteweg force and has the form [see Appendix C, in particular
Eq. (C8)]:

Fφ = −ρφ∇ψ12, (7)

where a pressure-like term has been dropped [18,43,47] and the potential energy difference is linked
to the mass fraction field as [see Eq. (C7)]:

ψ12 = −RwT a2∇2φ, (8)

with a denoting the characteristic length of the diffuse interface. As a common practice in phase-
field modeling [18], only the leading-order term ∇2φ in the gradient expansion is considered
because the higher-order terms (i.e., fourth and beyond) provide only a negligible contribution to
the dynamics of phase separation [48]; thus, the applicability of the model extends even far from
critical conditions.

The magnitude of the Korteweg force and, in turn, the characteristic length a are not arbitrary
quantities but, rather, are linked to mixture thermodynamics, in particular to the equilibrium surface
tension of the two phases. Consistently with the Cahn-Hilliard framework [20], ψ12 vanishes within
the bulk of each phase; in addition, imposing that the excess energy stored at equilibrium per unit
area of the interface is the surface tension σ , we find, near the critical point [14],

σ = κρRwTa, (9)

where κ is the dimensionless magnitude of the line integral of the thermodynamic excess free energy
across the interfacial region at equilibrium [49]. Based on the results of Lamorgese and Mauri [50],
we have

κ = f

2
(� − 2)3/2, (10)

where f = 1−0.6515(�−2) + 0.29879(�−2)2 − 0.07928(�−2)3 + 0.0087(�−2)4 interpolates
Fig. 2 of Lamorgese and Mauri [50] for 2 � � � 5, where � is the Margules parameter. It should
be noted that, in Lamorgese and Mauri [50] as well as in previous publications of the authors, a
factor 4 was erroneously used in Eq. (10) instead of the denominator 2. In general, far from the
critical point, we have κ = O(10−1); for example, when � = 3, we find κ ≈ 0.3 while, closer to
the critical point, κ gets smaller, for example being κ ≈ 0.015 when � = 2.1. Finally, for a van der
Waals fluid the characteristic length a scales with temperature as [18]

a = â

√
Tc

T
, (11)

where â is a temperature-independent characteristic length and Tc represents the critical temperature
of the mixture. Note that Eq. (11) implies that a2T is constant (see the end of Appendix C), thus,
according to Eq. (8), the conservative force is temperature independent (i.e., ∂ψ12/∂T = 0), which
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means that the gradient of the potential energy difference in both Eqs. (5) and (7) is actually
∇ψ12 = ∂ψ12

∂φ
∇φ = [∇ψ12]T .

In the energy balance, Eq. (4), the constitutive equation for the diffusive heat flux Ju takes into
account both the conductive contribution to heat flux according to Fourier law and the enthalpic
contribution associated to species flux [see Eqs. (B9) and (B14)]:

Ju = −k∇T + h̄12Jφ, (12)

where k is the thermal conductivity of the mixture and h̄12 is the partial mass enthalpy difference.
Throughout the section it is evident how the thermodynamic properties of the mixture are inter-

twined with the constitutive expressions of fluxes [for example, Eqs. (5) and (12)] and other physical
quantities (e.g., the diffuse interface length a in Eq. (11) and its implications on the Korteweg
force and surface tension in Eqs. (7)–(10)). Therefore, the whole diffuse interface approach would
have little physical ground without a consistent thermodynamic framework. The thermodynamics
of regular and symmetric binary mixtures is reported in Appendix A, from which key results are
reported in the following in order to provide closure expressions to the model. In particular, the
chemical potential difference, the partial enthalpy difference, and the internal energy (all of them
per unit mass) result as follows:

μ12 = RwT ln

(
φ

1 − φ

)
+ RwT �(1 − 2φ), (13)

h̄12 = RwT �(1 − 2φ), (14)

u = c(T − Tref ) + RwT �φ(1 − φ), (15)

where c is specific heat of the mixture and Tref is an arbitrary reference temperature (which can be
conveniently taken as Tref = Tc). The Margules parameter �, which captures the nonideal behavior
of the mixture and triggers phase separation for � > 2, is linked to T and Tc as follows:

� = 2Tc

T
. (16)

In general, the physical properties of the mixture, such as diffusivity, viscosity, thermal con-
ductivity, and heat capacity, depend on composition φ and temperature T (or, equivalently, on its
inverse, i.e., �, via Eq. (16)); therefore, we define

ρ(�,φ) = ρ̂ × 1; D(�) = D̂ × D̃(�); η(�,φ) = η̂ × η̃(�,φ)

k(�,φ) = k̂ × k̃(�,φ); c(�,φ) = ĉ × c̃(�,φ), (17a)–(17e)

where quantities with hats are dimensional and indicate typical values of that specific physical quan-
tity (for example, D̂ = 10−9 m2/s), while their counterparts with tildes are O(1) nondimensional
functions of temperature and composition.

B. Boundary and initial conditions

The governing equations, i.e., Eqs. (1)–(4), are strongly coupled. For example, the velocity field
determines the composition and the energy field, and, in turn, it is determined by the composition
field via the Korteweg body force (see discussion in Chueh et al. [43]). The system of Eqs. (1)–(4)
is solved here in 2D within a rectangular box with x ∈ [0,W ] and y ∈ [−H, H ], where W and H
denote the domain length and semiheight, respectively. Periodic conditions of v, φ, p, and T are
applied at x = 0 and x = W , while at the horizontal boundaries (y = ±H) we impose: (i) a constant
shear rate with v(y = ±H ) = ±γ Hex = ±vH ex, where ex is the unit vector in the x direction, γ is
the unperturbed shear rate, and vH = γ H is the corresponding velocity magnitude; physically, this
means having two plates at a distance 2H moving in opposite directions, with no fluid slip at the
wall; (ii) no species mass flux condition [i.e., ey · (ρvφ+Jφ ) = ey · Jφ = 0] and same wettability for
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the two phases, corresponding to a 90◦ contact angle (i.e., ey · ∇φ = 0) [15,44]; consequently, we
obtain the following boundary conditions: ∂φ/∂y(y = ±H ) = 0 and ∂3φ/∂y3(y = ±H ) = 0; and
(iii) imposed temperature T (y = ±H ) = T ±, with T ± < Tc.

As initial condition, we impose uniform velocity v = 0 (i.e., the fluid is still), pressure p = p0,
and temperature T = T0, with T0 > Tc, and a uniform mass fraction φ0 ∈ (0, 1) is considered
throughout the domain along with a superimposed small random white noise, ε = δφ, with 〈ε〉 = 0
and 〈ε2〉1/2 = 10−2 at t = 0. According to these conditions, mass and chemical species are con-
served while energy is not conserved, tending to decrease and flowing out of the simulation domain
(at least, until a statistically stationary configuration is reached).

C. Governing equations in dimensionless form

The governing equations (1)–(4) are recast in dimensionless form using the following scaling:

x̃ = x
â
, t̃ = D̂

â2
t, ṽ = â

D̂
v, T̃ = T

Tc
= 2

�
, (18a)–(18d)

where the characteristic interface thickness â is used as length scale, the diffusion characteristic time
â2/D̂ as timescale, the diffusion velocity D̂/â as a characteristic speed, and temperature is scaled in
terms of its critical value, using the Margules parameter �. In particular, the Margules parameter
� is considered as a dependent variable in place of temperature. Consequently, the pressure and
the internal energy scale as p = (η̂D̂/â2) p̃ and u = 2ĉTcũ, while the fluxes of momentum, chemical
species, and heat scale as Jv = (η̂D̂/â2)J̃v , Jφ = (ρ̂D̂/â)J̃φ , and Ju = (2k̂Tc/â)J̃u.

Following this scaling, we obtain the following dimensionless equations:

∇̃ · ṽ = 0, (19)

N−1
Sc

(
∂ ṽ
∂ t̃

+ ṽ · ∇̃ṽ
)

+ ∇̃ · J̃v = −∇̃ p̃ + Nαφ∇̃(∇̃2φ), (20)(
∂φ

∂ t̃
+ ṽ · ∇̃φ

)
+ ∇̃ · J̃φ = 0, (21)

N−1
Le

(
∂ ũ

∂ t̃
+ ṽ · ∇̃ũ

)
+ ∇̃ · J̃u = −1

2
N−1

α N−1
Le N−1

c J̃v : ∇̃ṽ + 1

2
N−1

Le N−1
c J̃φ · ∇̃(∇̃2φ), (22)

where ũ = c̃(�−1 − 1/2) + N−1
c φ(1−φ), with the following constitutive relations:

J̃v = −η̃(∇̃ṽ + ∇̃ṽT), (23)

J̃φ = −D̃

(
(1 − 2�φ(1 − φ))∇̃φ − �

2
φ(1 − φ)∇̃(∇̃2φ)

)
, (24)

J̃u = k̃

�2
∇̃� + N−1

Le N−1
c (1 − 2φ)J̃φ. (25)

Note that the continuity equation [i.e., ∇̃ · ṽ = 0, Eq. (19)] has been enforced to simplify
the dimensionless expressions in Eqs. (22) and (23) compared to their dimensional counterparts,
Eqs. (4) and (6), respectively.

The governing equations are expressed in terms of the following independent nondimensional
numbers which characterize the system:

NSc = η̂

ρ̂D̂
, NLe = k̂

ρ̂ĉD̂
, Nc = ĉ

Rw

, Nα = ρ̂RwTc
â2

η̂D̂
, (26a)–(26d)

which are the Schmidt number, NSc, expressing the ratio between momentum diffusivity (η̂/ρ̂)
and molecular diffusion (D̂); the Lewis number, NLe, indicating the ratio between heat diffusivity
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(k̂/(ρ̂ĉ)) and molecular diffusion (D̂); the dimensionless heat capacity, Nc, and the fluidity parame-
ter, Nα , where the latter can be regarded as an intrinsic Péclet number or as the inverse of an intrinsic
capillary number [43,51–53]. The fluidity parameter indicates whether the phase separation process
is driven by mass diffusion (Nα � 1) or by convection (Nα � 1) [43,52]. For convenience, in the
following we assume that mixtures having different values of Nα differ by the viscosity only (i.e.,
the smaller Nα , the larger η̂).

Boundary and initial conditions are recast in dimensionless form as well. The 2D compu-
tational domain lies within x̃ ∈ [0,W̃ ] and ỹ ∈ [−H̃ , H̃ ], with periodic boundary conditions at
x̃ = 0 and x̃ = W̃ , while at ỹ = ±H̃ : (i) walls move in opposite directions, i.e., ṽx = ±γ̃ H̃ , where
γ̃ = (â2/D̂)γ represents the dimensionless shear rate; (ii) no species mass flux, ey · (ṽφ+J̃φ ) =
ey · J̃φ = 0 and 90◦ contact angle, i.e., ey · ∇̃φ = 0; and (iii) fixed temperature, �(±H̃ ) = �±, with
�± > 2. As initial conditions, we have ṽ = 0, p̃ = 0, φ = φ0 + ε, and � = �0 < 2, representing a
nonseparated homogeneous mixture at rest with small superimposed random noise on composition.

Finally, from the set of six independent nondimensional numbers (i.e., NSc, NLe, Nc, Nα , γ̃ , and
H̃ ) characterizing the system, it is possible to define other important parameters, such as

NRe = ρ̂vH H

η̂
= γ̃ H̃2

NSc
, NPe = vH H

D̂
= γ̃ H̃2, NCa = η̂vH

σ̂
= γ̃ H̃

Nα

, (27a)–(27c)

expressing the Reynolds number, the Péclet number, and the capillary number, respectively, where
vH is taken as characteristic fluid velocity and σ̂ = ρ̂RwTcâ is a representative surface tension.

In order to get a feeling of typical values characterizing the system, consider a low-viscosity
liquid binary mixture as acetone-hexadecane; at T = 293 K we have η̂ ≈ 1.2×10−3 kg/(m s),
ρ̂ ≈ 0.8×103 kg/m3, D̂ ≈ 1.2×10−9 m2/s, k̂ ≈ 0.18 W/(m K), ĉ ≈ 2.2×103 J/(kg K), Mw ≈
60 g/mol, Rw ≈ 1.3×102 J/(kg K), Tc = 305 K and thus � = 2.08. Consequently, we find NSc ≈
103, NLe ≈ 102, Nc ≈ 15. Then, from Eq. (10) we get κ ≈ 10−2 and, with σ ≈ 3×10−2 N/m, by
combining Eqs. (9) and (11) we estimate the characteristic interface thickness as â ≈ 10−7 m,
thus resulting in Nα ≈ 105. More viscous mixtures will have smaller fluidity numbers. It is very
important to observe that the characteristic thickness â is a mesoscale length, quite larger than
the molecule-size. This is coherent with the fact that the basis of the phase-field approach is a
coarse-grained energy functional [see Eq. (A1)], where local equilibrium is assumed. We conclude
that, in practical applications of the phase-field scheme, the square-gradient coefficient a2 of the
capillary force in Eq. (8) should be determined from experimental surface tension data by applying
Eqs. (9) and (10), as also discussed by Llovell et al. [54]; therefore, it would be quite wrong to treat
â as a free parameter, as that would determine a physically inconsistent value of the surface tension.

D. Numerical implementation and parameters

As in previous works [43,44], we implemented the phase-field model in the commercial finite-
element method code COMSOL MULTIPHYSICS v. 5.5 [55], so that using this model is not restricted
to a small number of specialists but it is now readily available to a much wider audience. The
mass and momentum balance [Eqs. (19) and (20)] are solved with the laminar flow interface, which
basically solves the Navier-Stokes equation, where the Korteweg force [last term on the RHS of
Eq. (20)] is implemented as a volumetric force. The conservation of species and energy [Eqs. (21)
and (22)] are implemented by using the general form partial differential equation (PDE) interface,
which requires an auxiliary field variable (w̃) and a corresponding auxiliary equation (w̃ = ∇̃2φ) to
solve the resulting fourth-order differential equation [43,44].

The governing equations were simulated in a rectangular box with W̃ = 400 and H̃ = 50 if not
otherwise specified, with a spatial discretization of one â unit, resulting in a uniform 100 × 400
computational mesh. Time is integrated with the default COMSOL MULTIPHYSICS settings, with a fully
coupled approach with MUMPS direct solver, with a maximum time step of 20 dimensionless time
units. Numerical tests have shown that, using these settings, results are stable and grid independent
[44].
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TABLE I. List of parameters used in each section in this study.

Value

Parameter Sec. III A Sec. III B Sec. III C Sec. III D

W̃ 150 400 400 400
H̃ 75 50 50 50
NSc 102 102 102 102

Nα 10−2 10−2–102 102 102

NLe 10−1–101 10−1–101 101 101

Nc � � 10−3–∞ �
D̃ = η̃ = c̃ 1 1 1 1
k̃ 1 1 1 0.1×10φ/0.4

γ̃ 0 10–2 10–2 10–2

�+ 2.6 2.6 2.6 2.6
�− 2.1 2.1 2.1 2.1
�0 1.9 1.9 1.9 1.9
φ0 0.4 0.4 0.4 0.4

Table I summarizes the values of the parameters used in this study. In all the simulations
the initial mass fraction is set to φ0 = 0.4, which means that the phase rich in component 1
represents the minority phase; the initial Margules coefficient is set to �0 = 1.9, thus representing
a homogeneous mixture at a temperature slightly above the critical temperature. The opposite walls
at ỹ = ±H̃ are cooler than the critical temperature, thus triggering phase separation; a temperature
gradient is imposed with �+ = 2.6 and �− = 2.1. The dimensionless shear rate is set to γ̃ = 10−2,
representing a case of intermediate shear as for our previous study [43]. The Schmidt number is
set to NSc = 102; thus, according to Eq. (27a), the Reynolds number is NRe = 0.25, indicating that
the flow regime is laminar. The Lewis and fluidity numbers are varied between NLe = 10−1–101

and Nα = 10−2–102 in order to account for opposite behaviors of the system upon changes in
thermal conductivity and viscosity, respectively. The effect of the dimensionless heat capacity Nc

is investigated as well, letting it range between 10−3 and infinity. With these settings, simulations
span a wide range of capillary numbers (NCa = 5×10−3 − 5×101), being it below or above the
critical capillary number Ncr

Ca ≈ O(10−1) [13]. The dimensionless physical properties of the fluid,
which are functions of temperature and composition, are set to D̃ = η̃ = k̃ = c̃ = 1 if not explicitly
mentioned. At least two simulations with different initial distribution of the random noise ε are
performed for each parametric setting.

III. RESULTS AND DISCUSSION

A. Case of no shear: Model verification

Before addressing the dynamics of phase separation under shear flow of a nonisothermal binary
mixture, the model is validated in the limit case of no imposed shear and in the limit of infinite
heat capacity (i.e., N−1

c = 0) and low fluidity number (namely, Nα = 10−2). In this condition,
convection and momentum transport play no role as phase separation is ruled by mass diffusion
and proceeds according to thermal conduction under a temperature gradient, thus replicating the
scenario simulated by Bertei et al. [44]. Figure 1 shows representative snapshots of the evolution of
phase separation for two different values of the Lewis number, NLe = 0.1 and NLe = 10; as such,
results in Fig. 1 replicate the snapshots reported in Fig. 8 of Bertei et al. [44], the only exception
being that in the present study the temperature gradient is applied in the vertical direction (with �+
at the top) while in Bertei et al. [44] the temperature gradient is oriented horizontally (with �+ on
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FIG. 1. Phase separation of a binary mixture at different dimensionless times under a thermal gradient in
the limit case of no imposed shear (i.e., γ̃ = 0) at Nα = 10−2 and N−1

c = 0 for two values of the Lewis number.
In these simulations a square domain with W̃ = 150 is used. The other parameters, kept constant throughout
this study if not otherwise specified (see Table I), are NSc = 102, �+ = 2.6, �– = 2.1, �0 = 1.9, φ0 = 0.4,
D̃ = η̃ = c̃ = k̃ = 1.

the right). For a detailed description of phase separation under a temperature gradient in the absence
of convection, the reader is referred to our previous study [44].

Figure 1 shows that at t̃ = 0 the mixture is homogeneous, with a uniform composition φ = 0.4
(light blue color; see the scale bar of mass fraction on the right side of Fig. 1). For NLe = 0.1
heat conduction is comparatively slower than mass diffusion; thus, phase separation starts from the
cooler wall at the top, where the first droplets of the minority phase (i.e., rich in component 1, in
red) emerge for t̃ ≈ 1000, separated by regions rich in component 2 (in blue). Phase separation
proceeds at the same pace of the (slower) temperature progression front, forming elongated stripes
of the component 1-rich phase which grow with time and coalesce laterally as the tips merge into one
another at t̃ ≈ 50 000. On the other hand, for NLe = 10 heat conduction is faster than mass diffusion,
so that the temperature field is rapidly established; then, droplets of the minority phase nucleate first
close to the cooler wall at the top, being such a nucleation initially independent from the evolution
of the nearby droplets. A propagation front of nucleating droplets proceeds from top to bottom,
with patches of the red phase (which is rich in component 1) merging into each other according
to Ostwald ripening for t̃ > 1000, finally approaching a steady-state configuration consisting of
stripes oriented along the temperature gradient (see the elongated droplets attached to the upper
wall at t̃ = 50 000 for NLe = 10 in Fig. 1). In both cases, since the capillary number is zero, there
are no breakups and droplets keep growing with time until steady state is reached.

Both these evolutions, which show remarkable differences in phase separation dynamics, are
in excellent quantitative agreement with Fig. 8 of Bertei et al. [44], thus providing a consistent
verification of the numerical model herein presented.

B. The role of capillary number and Lewis number

After its numerical validation shown in the previous section, the model is used to simulate non-
isothermal phase separation under an imposed shear. From now on the dimensionless shear rate is set
to γ̃ = 10−2, which represents a case of intermediate shear according to our previous investigation
[43]. In these simulations, the upper wall moves to the right while the lower wall moves to the left;
the imposed, unperturbed velocity profile (i.e., before the start of phase separation) is reported in
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FIG. 2. Phase separation of a binary mixture having a high capillary number (NCa = 50 > Ncr
Ca) under

a thermal gradient for an imposed dimensionless shear rate γ̃ = 10−2 for two values of the Lewis number
(left and right panels). The fluidity number is set to Nα = 10−2 while N−1

c = 0. The first snapshot reports the
imposed velocity profile with gray arrows. In all the other snapshots, the black arrows are used to guide the eye
to schematically indicate the direction of the red phase while it moves.

the left panel of Fig. 2 at t̃ = 400 with gray arrows. Different values of the fluidity number (i.e.,
Nα = 10−2 or Nα = 102) and Lewis number (i.e., NLe = 0.1 or NLe = 10) are investigated in this
section to showcase the characteristic patterns of phase separation for different capillary numbers
and different ratios between the rate of heat and mass diffusion. In all these simulations, an infinite
value of the dimensionless heat capacity is considered (i.e., N−1

c = 0).
The dynamics of phase separation for capillary number well beyond the critical value (namely,

NCa = 50) is shown in Fig. 2 for two characteristic values of the Lewis number by setting Nα =
10−2. In these conditions, equilibrated round droplets would be unstable as the shear would stretch
them, finally leading to breakup [13,43]. Figure 2 (left panel) shows that, for NLe = 0.1, phase
separation starts from the cooler upper wall at t̃ = 1200. Elongated stripes of the red phase, rich in
component 1, nucleate close to the upper wall and stretch moving to the right, that is, in the same
direction of the imposed flow field as indicated by the black arrows, which are used throughout
the study to guide the eye to schematically represent the movement of the red phase. As already
described in the previous section, thermal conduction is slower than mass diffusion for NLe = 0.1,
thus phase separation is triggered as soon as the temperature falls below the critical temperature
(or, equivalently, as soon as � > 2) along the height of the domain. As the cold temperature front
moves downward with time, the width of the elongated stripes widens while the stripes keep their
orientation, aligned with the flow field.

The case with NLe = 10 shows some similarities as well as some differences. Figure 2 (right
panel) shows that phase separation starts from the cooler upper wall by forming stripes aligned
with the velocity field, exactly as for the case of NLe = 0.1. However, since NLe > 1, heat diffuses
faster than species, so that � gets larger than 2 throughout the whole domain height for t̃ ≈ 1200.
Notably, since the stripes are horizontal and aligned with the velocity field, heat is transported
only by conduction along the vertical direction. The stripes formed at the top move rightward and
widen vertically with time (compare t̃ = 400 with t̃ = 1200); as soon as they reach the center of
the domain, where the velocity field swaps its orientation, the movement of the red stripes changes
orientation too, as shown by the curved arrow at t̃ = 1200. Therefore, the system is characterized by
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FIG. 3. Phase separation of a binary mixture having a small capillary number (NCa = 5×10−3 < Ncr
Ca) under

a thermal gradient for an imposed dimensionless shear rate γ̃ = 10−2 for NLe = 0.1. The fluidity number is
set to Nα = 102 while N−1

c = 0. The two panels report two different evolutions depending on whether phase
separation starts with nucleation at the top of the minority phase (a) or of the majority phase (b).

two series of horizontal stripes, with the upper ones moving to the right and the lower ones moving
to the left (see the snapshot at t̃ = 2000). Since the stripes widen vertically according to Ostwald
ripening, they may temporarily coalesce into blobs (see the snapshot at t̃ = 3000) which, however,
are stretched and break up again into horizontal stripes because NCa is larger than the critical
capillary number. The final configuration (Fig. 2, t̃ = 8000, right panel) is thus made of horizontal
stripes, moving in opposite directions, whose average width is determined by the balance between
the vertical Ostwald ripening and the horizontal shear-induced breakup. Notably, such a system
evolution for NLe > 1 under a temperature gradient is similar to that obtained in an instantaneous
quench, as shown in Fig. 3 of our previous study [43].

Setting the fluidity parameter Nα equal to 102 produces two effects: (i) phase separation becomes
dominated by convection instead of diffusion [43,52] and, more importantly, (ii) the capillary
number falls to 5×10−3 according to Eq. (27c). Since NCa is smaller than the critical capillary
number, which is Ncr

Ca ≈ O(10−1) [13,43,56], an equilibrated droplet would remain stable under the
shear, without breaking up. Figure 3 illustrates the dynamics of phase separation in this condition
when NLe = 0.1; in particular, the two cases of system evolution are reported in panels 3(a) and
3(b), respectively.

Since NLe < 1, heat diffuses vertically slower than mass, so the system cools down slowly from
the upper wall, triggering spinodal decomposition. Since the wettability of the two components
with the wall is the same (see Sec. II B) and considering that patches of the two phases nucleate
at the wall and align horizontally by following the velocity field, it may happen that either the
first layer is mainly composed by the minority phase (i.e., component 1, in red) as in Fig. 3(a)
for t̃ = 1000 or that the first layer is made of the other phase (i.e., component 2, in blue) as in
Fig. 3(b) for t̃ = 2000. Considering that the mass fraction is φ0 = 0.4, we may argue that such
starting configurations happen with a probability equal to 40% for the first case and 60% for the
second one. Depending on such a starting configuration and recalling that NCa < Ncr

Ca, the following
evolution of the system is determined. In the first case [Fig. 3(a)], the elongated red stripe at the
upper wall evolves into a collection of droplets attached at the upper wall [Fig. 3(a), t̃ = 2000].
In fact, for NCa < Ncr

Ca capillary forces are strong enough to keep the droplets as round as possible
to minimize the interfacial energy [43,57]. Thus, the red droplets move coherently with the wall
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(t̃ = 3000) and simultaneously grow as the system progressively cools down (t̃ = 4000), eventually
even merging together when they touch each other. Notably, drops of the blue phase can nucleate
inside the red droplets and slowly grow with time according to Ostwald ripening as the system
equilibrates (see the evolution of the blue drop identified by the dashed gray line between t̃ = 4000
and t̃ = 12 000). Therefore, the final configuration of the system is represented by large droplets
attached to the upper wall and moving coherently with it (t̃ = 12 000).

In the second case [Fig. 3(b)], the first layer nucleating from spinodal decomposition is mainly
composed of component 2, thus pushing component 1 far from the upper wall [Fig. 3(b), t̃ = 2000].
These two stripes widen according to Ostwald ripening as the system cools down from the top until
capillary forces minimize the interfacial energy of the red stripe by forming a droplet of the minority
phase (t̃ = 3000), which drifts downward as the system cools down (t̃ = 4000) similarly to what
shown in Fig. 1 for NLe = 0.1. At t̃ = 4000 the red droplet is placed at about the center of the
domain and continues to drift downward, thus eventually changing orientation and moving to the
left as soon as its center of mass falls below the centerline of the domain. Notably, the red droplet at
t̃ = 4000 is surrounded by a region of unseparated mixture (see the light blue color representative
of φ = φ0 = 0.4). As the system cools down from the top with time, spinodal decomposition is
triggered from the upper regions of the domain and new droplets nucleate (t̃ = 9000). These new
droplets move to the right as they are placed in the upper part of the domain, eventually coalescing
with the previously formed larger and stretched droplet (t̃ = 9000), giving rise to bigger, rounder,
and equilibrated droplets placed slightly off the centerline (t̃ = 12 000). Such a final configuration,
featuring equilibrated droplets at about the center of the domain as in Fig. 3(b) at t̃ = 12 000, is
different from the collection of droplets attached to the upper wall shown in Fig. 3(a) at t̃ = 12 000;
these final configurations are basically the consequence of whether phase separation starts with the
first layer composed by the minority phase [Fig. 3(a)] or not [Fig. 3(b)].

A remarkably different evolution of the system is obtained when NLe = 10, while still keeping
Nα = 102 and thus NCa = 5×10−3 < Ncr

Ca, as shown in Fig. 4. Since NLe > 1, the system cools
down rapidly via conduction from the upper wall, thus triggering phase separation which gen-
erates the first patches of the minority and majority phases at the upper wall (t̃ = 200). Since
NCa < Ncr

Ca, capillary forces quickly form round droplets (t̃ = 300), which keep nucleating while
moving to the right by following the flow field (t̃ = 400). As the system keeps cooling down,
the droplets drift downward towards the unseparated region (t̃ = 500); however, as the red drops
approach the centerline, the velocity field changes orientation, thus the drops change direction
as well, moving to the left (t̃ = 600 and t̃ = 700). At t̃ = 800 most of the red drops are below
the domain centerline, thus moving to the left, the faster as the center of mass is closer to
the lower wall. The collision among drops moving at different speed (t̃ = 900), as well as the
progressive cooling of the system, favors drop coalescence, which is evident by comparing the
number and size of the drops at t̃ = 900, 1000, and 1100. The final configuration (not shown)
features large equilibrated droplets attached at the upper and lower walls moving in opposite
directions.

Therefore, simulations results show that different values of the fluidity number (which in turn
determines the capillary number) and Lewis number lead to completely different patterns of phase
separation under a shear and a temperature gradient, spanning from elongated stripes moving with
flow and potentially coalescing with each other, up to droplets moving and changing orientation
within the bulk of the domain, with droplets that may even remain attached to the walls. All these
different configurations are a consequence of the combination of a shear flow and an orthogonal
temperature gradient.

C. The role of the dimensionless heat capacity

In all the previous sections the phase separation dynamics was simulated by considering an
infinite dimensionless heat capacity, which was taken into account by setting N−1

c = 0. According
to the definition of Nc [Eq. (26c)], this situation applies to liquid mixtures of polymer melts or,
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FIG. 4. Phase separation of a binary mixture having a small capillary number (NCa = 5×10−3 < N cr
Ca) under

a thermal gradient for an imposed dimensionless shear rate γ̃ = 10−2 for NLe = 10. The fluidity number is set
to Nα = 102 while N−1

c = 0.

more generally, made by components with high molecular weight [32,44]. Such a simplification is
removed in this section, where phase separation is simulated under a shear and a thermal gradient
for different values of Nc (from 0.001 up to 100). The reference conditions replicate those used
in Fig. 4, that is, Nα = 102 and NLe = 10, corresponding to a system characterized by NCa < Ncr

Ca
where heat conduction is faster than mass diffusion.

Figure 5 compares two representative snapshots of the system evolution, at t̃ = 600 (left panel)
and t̃ = 1500 (right panel) for different values of the dimensionless heat capacity. The figure shows
that as Nc decreases there is a delay in phase separation dynamics. In fact, for high values of Nc

approaching the limit condition N−1
c → 0 (e.g., Nc = 100 down to Nc = 1), at t̃ = 600 droplets

of the minority phase have already nucleated in the upper part of the domain, drifting downward
and then changing their orientation following the flow field, exactly as described in the previous
section for Fig. 4. On the other hand, for smaller values of Nc, such as Nc = 0.1 or Nc = 0.01, phase
separation lags behind at t̃ = 600, with fewer and smaller droplets moving rightward in the top part
of the domain (i.e., close to the cooler boundary). As Nc decreases further to Nc = 0.001, there is
no distinct evidence of phase separation. The delay in phase separation dynamics as Nc decreases is
even more evident at t̃ = 1500 (right panel): the droplets are much larger and located in the lower
part of the domain for Nc = 100 compared to Nc = 0.1, while for Nc = 0.001 there are no droplets
at all.

The explanation for the delay in phase separation dynamics as Nc decreases stems from the
role of the heat capacity in the energy equation, in particular in the source term on the RHS of
Eq. (22). The source term is positive because, according to Eqs. (23) and (24), both −J̃v : ∇̃ṽ � 0
and J̃φ · ∇̃(∇̃2φ) � 0. From a physical perspective, such a source term represents the dissipation
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FIG. 5. Phase separation of a binary mixture under a thermal gradient for different values of the dimen-
sionless heat capacity Nc at two representative times. The imposed dimensionless shear rate is γ̃ = 10−2 while
NLe = 10 and Nα = 102, corresponding to NCa = 5×10−3 < N cr

Ca.

of energy into heat, which is indeed strictly positive according to nonequilibrium thermodynamics
(see Chap. 7.5 of Mauri [45]). The source term depends linearly on N−1

c , therefore, as Nc decreases,
the magnitude of the source term increases, meaning that energy dissipation into heat causes an
increase in the system internal energy and so of the system temperature as well. In this condition,
despite the cooling of the system via the upper and lower boundaries, the internal heat production
increases the system temperature, so � may remain smaller than 2, without triggering spinodal
decomposition. This is represented in Fig. 6(a), which compares the distribution of the Margules
parameter � at two representative times (t̃ = 600 in the left panel and t̃ = 1500 in the right panel)

FIG. 6. (a) Distribution of the Margules parameter � for two different values of the dimensionless heat
capacity Nc at two representative times for γ̃ = 10−2, NLe = 10 and Nα = 102, which are the same conditions
as in Fig. 5; (b) dimensionless entropy production term and chemical potential difference, with superimposed
velocity streamlines, for the case Nc = 1 at t̃ = 600.
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for two values of the dimensionless heat capacity. Figure 6(a) shows that for Nc = 1 the source
term in the heat equation is relatively small so that � is larger than 2 across the whole domain;
thus, phase separation can start following the evolution described in Fig. 5. On the other hand,
for Nc = 0.001 a large central portion of the domain is characterized by ��2, meaning that due
to the internal heat production a large fraction of the domain cannot be cooled below the critical
temperature. Accordingly, no phase separation is observed in Fig. 5 for Nc = 0.001. It is worth
nothing that, in both cases, since the flux expressions follow nonequilibrium thermodynamics,
the entropy production term [see Eq. (B6) in Appendix B] is strictly positive, meaning that the
system evolves following the second law of thermodynamics. In particular, for the case undergoing
phase separation, i.e., Nc = 1, the first panel in Fig. 6(b) shows that the dimensionless entropy
production term T σs/(k̂Tc/â2) is positive everywhere, being larger at the droplet interfaces where
the dimensionless chemical potential difference μ12/(RwTc) experiences steep gradients [Fig. 6(b),
second panel]. In fact, the main source of irreversibility arises from the entropy production at the
interfaces, while the entropy production due to temperature gradients [which are mild according to
Fig. 6(a)] and viscous dissipations [which are mild too according to the smooth velocity streamlines
in Fig. 6(b), second panel] are negligible.

Therefore, the model is able to capture the effect of different values of the dimensionless
heat capacity. In particular, the smaller the heat capacity (i.e., the smaller the thermal inertia of
the fluid upon a heat source), the higher the internal temperature as a consequence of the heat
production caused by internal frictions. In such a case phase separation can be delayed in time
or even completely prevented, so that miscibility appears to be extended by the shear even for
temperatures which look to be macroscopically below the critical temperature, although actually
such an extension of miscibility is due to the internal frictions, which raise the temperature locally
above the critical temperature. The possibility to simulate such an interplay between hydrodynamics
and thermodynamics is made possible by the use of the proposed thermodynamic-based diffuse
interface model, which coherently integrates species, momentum, and energy balance.

D. The role of thermal conductivity

In all the previous simulations in this study, the physical properties of the mixture were consid-
ered independent of temperature and composition, that is, D̃ = η̃ = k̃ = c̃ = 1 in Eqs. (17a)–(17e).
As a representative case of composition-dependent properties, let us assume here that the thermal
conductivity of the mixture depends on mass fraction. In some previous works a linear dependence
of k̃ from the mass fraction was assumed [32,44], while here a nonlinear dependence is considered,
as follows:

k̃ = b1 · b2
φ/φr , (28)

with b1 = 0.1, b2 = 10, and φr = φ0 = 0.4 in the specific case under consideration. Such an
expression is not intended to replicate the thermal conductivity of any real physical system; it
only allows for capturing a strong nonlinear dependence of thermal conductivity. In particular, k̃
is unitary for the unseparated mixture at t = 0 when φ0 = 0.4 while, upon phase separation, the
drops of the minority phase with φ > 0.5 (i.e., the red ones) become significantly more conductive
than the patches of the other phase (i.e., the blue one) by roughly a factor 40 for equilibrated phases
at an average Margules coefficient of (�+ + �−)/2 = 2.35.

Figures 7 and 8 show two possible evolutions of the phase separation under a shear and a
thermal gradient for such a composition-dependent thermal conductivity by considering Nα = 102,
NLe = 10, and N−1

c = 0 as in Fig. 4. By using this parametric set, the capillary number is smaller
than its critical value, thus resulting in the nucleation of stable droplets, and heat conduction is ten
times faster than mass diffusion, at least for the initial unseparated mixture.

Figure 7 shows that phase separation starts from the upper cooler boundary by forming droplets
moving rightward with flow (t̃ = 300), further nucleating within the bulk of the domain as time
progresses (t̃ = 600) and then shifting their orientation as they move past the centerline of the
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FIG. 7. Phase separation of a binary mixture having the composition-dependent thermal conductivity
reported in Eq. (28), under a thermal gradient and for an imposed dimensionless shear rate of γ̃ = 10−2 with
NLe = 10, Nα = 102, and N−1

c = 0. In this simulation round droplets nucleate at the top boundary.

FIG. 8. Phase separation of a binary mixture having the composition-dependent thermal conductivity
reported in Eq. (28), under a thermal gradient and for an imposed dimensionless shear rate of γ̃ = 10−2 with
NLe = 10, Nα = 102, and N−1

c = 0. In this simulation an elongated stripe nucleates at the top boundary.
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domain (t̃ = 900). A careful comparison with the companion simulation in Fig. 4, which shares the
same simulation parameters except for k̃ = 1, shows that phase separation in Fig. 7 is comparatively
slower than in Fig. 4. In particular, by comparing the snapshots at t̃ = 600 and t̃ = 900, we see
that in Fig. 4 the droplets of the minority phase are characterized by a larger mass fraction (i.e.,
they are more red) and are closer to the bottom boundary than in Fig. 7. This is due to the
thermal conductivity function [Eq. (28)], which makes the majority phase (i.e., in blue regions)
less conductive, so that heat transport is hindered and the system cools down less rapidly than in
Fig. 4. In turn, the Margules coefficient � is smaller in Fig. 7, resulting in equilibrated phases
with mass fractions closer to φ = 0.5 (i.e., less red and less blue). Nevertheless, although the phase
separation process proceeds slower, the core of the domain gets progressively cooler, so that droplets
move downward (t̃ = 1200) and move to the left by following the flow field (t̃ = 1500). Over
time, droplets coalesce (t̃ = 1800), resulting in bigger droplets (t̃ = 3000 and t̃ = 4000), eventually
merging with the droplets moving coherently with the top boundary (t̃ = 6000) to produce a big
droplet of the minority phase (t̃ = 8000).

Figure 8 shows a different evolution of the system by using the same parameters but a different
distribution of the random initial noise. Again phase separation starts from the top cooler boundary
(t̃ = 300); however, as clearer at t̃ = 600, the initial nucleation produces a stripe of the minority
phase at the top boundary, which moves rightward. Being it more thermally conductive than the
unmixed blend, the system cools down and nucleation takes place even in the center of the domain
(t̃ = 900), with droplets following the flow field (t̃ = 1200) and progressively coalescing with time
(t̃ = 1800 and t̃ = 3000). In the meantime, the upper stripe becomes thicker at the expenses of the
remaining droplets, which shrink according to mass diffusion (t̃ = 8000 and t̃ = 12 000). Thus,
although the final system configuration is characterized by a stripe (Fig. 8) instead of a large
droplet (Fig. 7), the main features of the evolution dynamics remain the same of those described
in Figs. 4 and 7, indicating that a composition-dependent thermal conductivity may affect the pace
of phase separation, but it does not significantly change the characteristic fingerprint of spinodal
decomposition under a thermal gradient, in fair agreement with previous investigations [44].

IV. CONCLUSIONS

In this work we present a thermodynamically consistent phase-field model which coherently
comprises mass, species, momentum, and energy balance to simulate the phase separation of
regular binary mixtures. Integrating the energy balance in the Cahn-Hilliard-Stokes-Korteweg
equations requires a coherent description of the mixture thermodynamics, which provides a con-
sistent framework to link together the Korteweg force, the surface tension, the driving force for
spinodal decomposition, and the characteristic thickness of the diffuse interface, which otherwise
would be erroneously treated as independent quantities. The proposed model was applied to the
simulation of phase separation in a shear flow under a temperature gradient in order to showcase the
complex interplay between fluid dynamics, heat transport, and mixture thermodynamics, which are
summarized in a schematic diagram reported in Fig. 9.

Compared to previous investigations, numerical results evidenced that the dynamics of phase sep-
aration of a sheared mixture under a temperature gradient shows distinct characteristics compared to
the instantaneous quench, whose behavior is approached when heat conduction is faster than mass
diffusion, that is, for Lewis number (NLe) larger than 10. However, in general, and especially for
NLe � 0.1, the imposed temperature gradient causes a drift of emerging nuclei and droplets from
low-temperature zones to high-temperature zones; when droplets cross the centerline, they change
direction according to the different velocity field imposed by the shear flow. The capillary number
(NCa ) and the fluidity number (Nα ) affect the dynamics of phase separation in the same way as
in an instantaneous quench, leading to either droplet breakup and the formation of stripes when
NCa > Ncr

Ca or stable, round droplets for NCa < Ncr
Ca, with Ncr

Ca denoting a critical capillary number.
Nevertheless, compared to instantaneous quench, the symmetry of phase separation with respect to
the domain centerline is broken, as the nucleation of stripes and droplets takes place preferentially
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FIG. 9. Main results of the study summarized in a diagram which highlights the principal effects of
capillary number, Lewis number, and dimensionless heat capacity on the regimes of nonisothermal phase
separation of a sheared binary mixture.

at the cooler wall, where stable droplets may remain attached and move coherently with it. In the
conditions of intermediate shear rate here simulated, fluid dynamics prevails and is only barely
affected at the macroscale by phase separation and heat transport. As for the effect of the mixture
thermal properties, simulations show that a decrease in the dimensionless heat capacity (Nc) causes
a delay in the dynamics of phase separation, which can even be prevented for Nc � 0.001. Such an
effect, which resembles a shear-induced extension of the mixture miscibility, is caused by the heat
generated by the internal frictions, which raise the internal temperature above its critical value. A
nonlinear dependence from the mass composition of the thermal conductivity showed that the pace
of phase separation slows down when the conductivity of the majority phase is smaller than that
of the minority phase; however, this effect does not change the characteristic behavior of spinodal
decomposition under a temperature gradient.

The results here reported highlight that the phase-field model requires a thermodynamically
consistent framework to coherently integrate mass, species, momentum, and energy balances,
thus reducing the number of independent quantities without requiring any ad hoc assumptions.
The implementation of the model in the finite-element software COMSOL MULTIPHYSICS makes it
available to a wider audience, arguably extending the applicability, reproducibility, and accuracy
compared to in-house codes. Future investigations will focus on the application of the numerical
model to exploring the dynamics of phase separation in different hydrodynamic regimes and flow
fields, in addition to applying model predictions for exploiting the diverse nucleation morphologies
for innovative manufacturing routes of granular and soft materials.
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APPENDIX A: THERMODYNAMICS OF REGULAR BINARY MIXTURES

The state of a binary mixture at equilibrium is determined through a “coarse-grained” Gibbs free
energy. Most mixtures, such as the acetone-hexadecane and benzene-cyclohexane mixtures that
have been used by Mauri and co-workers in previous experimental work [58], are well described as
regular mixtures, which means that their components and the mixtures themselves are both van der
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Waals fluids (see the review by Levelt Sengers and Levelt [59]). As a consequence, it can be shown
(see Chap. 7 of Sandler [60]) that regular mixtures have zero nonideal, or excess, volume and zero
excess entropy [61], so that the only nonideality is in the excess enthalpy of mixing. In particular,
for incompressible symmetric binary mixtures, as in our case, the excess enthalpy can be described
in terms of a single, so-called Margules parameter, �, so that the Gibbs free energy per unit mass g
is

g(T, φ) = g0(T ) + �gid (T, φ) + gE (T, φ), (A1)

which is independent of pressure as the mixture is regarded as incompressible.
Here, the first term on the RHS corresponds to the free energy of the two components before

mixing, i.e., g0 = φg1(T ) + (1−φ)g2(T ) = g0(T ), where we have considered that for symmetric
mixtures g1 = g2 = g0. The second term on the RHS of Eq. (A1) is the free energy of mixing of an
ideal mixture, i.e., a mixture whose two components have identical properties, which, for species
having the same molecular weight M1 = M2 = Mw, reads as

�gid (T, φ) = RwT [φ ln φ + (1 − φ) ln (1 − φ)], (A2)

where Rw = R/Mw, with R denoting the ideal gas constant. Finally, the last term is the excess Gibbs
free energy, accounting for the nonideality of the mixture. As mentioned above, assuming that the
mixture is symmetric, gE can be expressed as a function of a single Margules coefficient � as

gE = RwT �φ(1 − φ), (A3)

where �(T) is a function of the temperature T. We recall that the assumption of incompressibility
(i.e., constant density) implies that pressure alone does not have any effect [47].

Consequently, the Gibbs free energy per unit mass is

g = g0(T, φ) + RwT [φ ln φ + (1 − φ) ln (1 − φ)] + RwT �φ(1 − φ). (A4)

From the stability condition, which states that the mixture is stable as long as ∂2g/∂φ2 > 0, we see
that when � > 2 the Gibbs free energy presents an instability region, i.e., a miscibility gap: when
the overall composition of the mixture lies outside this region the mixture is stable, while when
it lies inside this region the mixture separates into two coexisting phases [60]. On the contrary,
when � < 2, the mixture is stable at all compositions, so that � = 2 defines a critical condition,
at a critical temperature T = Tc. In addition, for regular binary mixtures, we must impose that the
excess volume vE and the excess entropy sE are both equal to zero. The first condition, requiring
that vE = ∂gE/∂ p = 0, is identically satisfied, considering that the mixture is incompressible. The
latter condition, imposing that sE = −(∂gE/∂T )φ = 0, shows that RT � must be independent of T,
that is � ∝ T −1, and since �(Tc) = 2 we find

� = 2Tc/T . (A5)

By using Eqs. (A3) and (A4) we also obtain the chemical potential difference μ12:

μ12 = μ1 − μ2 =
(

∂g

∂φ

)
T

= RwT ln
φ

1 − φ
+ μE

12; μE
12 = RwT �(1 − 2φ), (A6)

and, by exploiting the thermodynamic equality (∂ (g/RwT )/∂T )φ = −h/(RwT 2), we obtain the
partial enthalpy difference h̄12:

h̄12 = −RwT 2

(
∂ (μ12/RwT )

∂T

)
φ

= −RwT 2 d�

dT
(1 − 2φ) = RwT �(1 − 2φ) = h̄E

12. (A7)

Therefore, for regular symmetric mixtures, substituting Eq. (A5) these expressions become

μE
12 = 2RwTc(1 − 2φ) = h̄12, (A8)
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and

μ12 = RwT ln
φ

1 − φ
+ 2RwTc(1 − 2φ). (A9)

Finally, considering that for regular mixtures uE = hE = gE since sE = vE = 0, we find that the
internal energy u is

u = uid + uE = c(T − Tref ) + RwT �φ(1 − φ), (A10)

where Tref is a reference temperature and c = c(T ) is the specific heat of the ideal mixture, which
does not depend on the composition [47].

APPENDIX B: THE GOVERNING EQUATIONS

The evolution of a multicomponent nonreactive mixture with n species subject to an external
force field is described using the equations of conservation of mass, species, momentum, and energy
reported in the following. For a comprehensive derivation of the conservation equations, the reader
can refer to Chap. II in De Groot and Mazur [46] or to Tables 19.2-3 and 19.2-4 in Bird et al. [62].

Dρ

Dt
+ ρ∇ · v = 0, (B1)

ρ
Dφi

Dt
+ ∇ · Ji = 0, (B2)

ρ
Dv
Dt

+ ∇ · T = F = ρf = −ρ

n∑
i=1

φi∇ψi with T = Jv + pI and Jv = J′
v + p′I, (B3)

ρ
Du

Dt
+ ∇ · Ju = q̇ = −T : ∇v −

n∑
i=1

Ji · ∇ψi, (B4)

where D/Dt = ∂/∂t + v · ∇ indicates the material derivative, v is the mass average velocity, φi is
the mass fraction of species i, u is the internal energy per unit mass, and ρ is the density. In addition,
f = ∑n

i=1 φifi, where fi = −∇ψi is a conservative force per unit mass, with ψi denoting the potential
of the force acting on the i th species. The last term in the RHS of Eq. (B4) represents the net energy
entering a material volume due to conservative energy potentials. When the potential ψi is the same
for all species (e.g., in the case of gravity, when ψi = −gz, with g being the gravity field acting
along the direction z), such a net energy vanishes identically since the sum of all diffusive mass
fluxes is zero. Conversely, when the potential ψi is different for each species (e.g., in the case of
an electric field imposed to a mixture of species with different charges), the net energy entering
the material volume can differ from zero (e.g., it represents the Joule dissipation heat in a charged
system). In Eqs. (B3) and (B4) T is the stress tensor, I is the unitary identity tensor, while p and
p′ refer to the thermodynamic (i.e., hydrostatic) pressure and the nonthermodynamic pressure-like
term (see Chap. 7.5 of Mauri [45]), defined so that J′

v is the deviatoric part of T (and of Jv as
well). It is assumed that no body couples are applied to the system, so that the momentum flux
tensor is considered symmetric. Finally, Ji, Ju, and Jv are the diffusive material, internal energy,
and momentum fluxes, while q̇ is the internal energy source, i.e., the increase of internal energy per
unit time and per unit volume. For a detailed derivation of q̇, the reader is referred to Chap. 7.4 and
7.5 of Mauri [45] or equivalently to Chap. II in De Groot and Mazur [46] [in particular Eq. (II-34)].
The same form of the energy equation appears also in Bird et al. [62] [Eq. (D) in Table 19.2-4, along
with footnote b] and Slattery [63] (third equation in Table 8.5.2-1).

The diffusive fluxes are proportional to the thermodynamic forces through constitutive equations
that can be determined applying nonequilibrium thermodynamics. To do that, consider the entropy
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conservation equation [see Eq. (III-25) in De Groot and Mazur [46] or Eq. (7.64) in Mauri [45]]:

ρ
Ds

Dt
+ ∇ · Js = σs, (B5)

where s is the mixture entropy per unit mass, Js is the diffusive entropy flux, while σs is the entropy
production term (see Eq. (7.70) in Mauri [45]):

σs = − 1

T 2
J′

u · ∇T − 1

T

n∑
i=1

Ji.([∇μi]T + ∇ψi ) − 1

T
(T − pI) : ∇v. (B6)

Here, T is the temperature, [∇μ]T indicates the gradient of any quantity μ(T, φ), taken at
constant T (note that the thermodynamic properties of the incompressible mixture are independent
of the pressure), J′

u = Ju − ∑n
i=1 Jih̄i is an energy flux (see Eq. (7.69) in Mauri [45]), where h̄i is the

partial enthalpy of species i, μi is the chemical potential per unit mass (i.e., the partial Gibbs energy)
of species i, and T − pI = Jv = J′

v + p′I [see Eq. (B3)]. Now, applying the rules of nonequilibrium
thermodynamics, i.e., assuming linear relations between forces and fluxes, and considering that the
system is isotropic (i.e., applying the Curie symmetry principle), neglecting all coupling terms (i.e.,
no Soret and Dufour effects), and imposing that the sum of the diffusive species fluxes is nil (i.e.,
Jn = −∑n−1

i=1 Ji), we obtain the following constitutive equations (see Chap. 8 in Mauri [45]):

p′ = −ζ∇ · v, (B7)

Ji = −
n−1∑
j=1

Mjρ

RT
Di j ([∇μ jn]T + ∇ψ jn), (B8)

J′
u = Ju −

n−1∑
i=1

Jih̄in = −k∇T, (B9)

J′
v = −η

(
∇v + ∇vT − 2

3
(∇ · v)I

)
, (B10)

where ζ is the bulk viscosity, Di j are the diffusion coefficients, k is the thermal conductivity, and
η is the viscosity, with μ jn = μ j − μn, ψ jn = ψ j − ψn, and h̄ jn = h̄ j − h̄n denoting the differences
of chemical potential, conservative energy potential, and partial enthalpy between species j and n.
In Eq. (B10), it is worth noting that J′

v is directly proportional to the deviatoric symmetric part of
the velocity gradient tensor. Note also that the use of constitutive equations (B7)–(B10) makes the
entropy production term σs in Eq. (B6) strictly positive, so that the system evolution satisfies the
second law of thermodynamics.

In our case, we are considering binary mixtures, with φ1 = φ, J1 = Jφ , and φ2 = 1−φ, J2 =
−Jφ . In addition, our model relies on the following simplifying assumptions: (i) the two species in
the mixture have the same molecular weight M1 = M2 = Mw, so that molar and mass fractions
coincide, and (ii) ρ is constant (i.e., the mixture is incompressible). Therefore, the governing
equations become

Dρ

Dt
+ ρ∇ · v = 0, (B11)

ρ
Dφ

Dt
+ ∇ · Jφ = 0 with Jφ = −ρD12

RwT
([∇μ12]T + ∇ψ12), (B12)

ρ
Dv
Dt

+ ∇ · Jv = −∇p − ρφ∇ψ12 with Jv = −η(∇v + ∇vT), (B13)

ρ
Du

Dt
+ ∇ · Ju = −Jv : ∇v − Jφ · ∇ψ12 with Ju = −k∇T + h̄12Jφ, (B14)
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where we have denoted μ12 = μ1 − μ2 and ψ12 = ψ1 − ψ2. It should be stressed that for a mixture
with constant density Eq. (B11) gives ∇ · v = 0, thus p′ = 0 [see Eq. (B7)], Jv = J′

v [see Eq. (B3)],
with Jv that reduces to Eq. (B13) [compare it with Eq. (B10)], and so T : ∇v = Jv : ∇v [compare
Eq. (B4) with Eq. (B14)]. Finally, as shown in our previous study [43], the term −ρ∇ψ2 on the
RHS of Eq. (B3) can be adsorbed into the pressure p in Eq. (B13).

Equations (B12) and (B14) must be coupled with Eqs. (A7), (A9), and (A10), indicating partial
enthalpies, chemical potentials, and internal energy as functions of T and φ. The expression of the
potential difference ψ12 of the conservative body force entering Eqs. (B12)–(B14) is reported in
Appendix C. Mixture properties such as thermal conductivity, k, viscosity, η, and the diffusivity,
D12, are known functions of T and φ. While the thermal conductivity and the viscosity can even
be regarded as constant as a first approximation, a dependence of the diffusion coefficient D12 on
the composition should be considered. In fact, in ideal mixtures (i.e., when � = 0, which also
implies ψ12 = 0 as shown in Appendix C), substituting Eq. (A6) into the constitutive equation for
the diffusive mass flux [Eq. (B12)] results in

Jφ = −ρD12

RwT
[∇μ12]T = −D12[φ(1 − φ)]−1∇φ, (B15)

predicting diverging fluxes in the dilute limit. Therefore, imposing that as φ → 0(or φ → 1) Fick’s
law must be recovered, i.e., Jφ = −ρD∇φ, the following expression for the diffusion coefficient is
considered [47,64]:

D12(φ, T ) = D(T )φ(1 − φ), (B16)

where D is a concentration-independent diffusion coefficient.

APPENDIX C: THE NONLOCAL KORTEWEG FORCES

In both Sec. II and Appendix B we referred to ψ12 as the difference between the potentials of
all conservative force fields applied to the two components of the incompressible binary mixture.
A particularly important example is the Korteweg force, which is a nonequilibrium and reversible
body force which captures the capillary stresses at the interfaces of a two-phase system [18,43]. The
Korteweg force can be derived by extending the free-energy functional,

�

g, in order to account also
for the gradients of the mass fraction, φ, arising from spatial inhomogeneities, that is [20]

�

g(φ,∇φ, T ) = g(φ, T ) + gnl (∇φ, T ), (C1)

where
�

g is the generalized free energy per unit mass, g is the thermodynamic free energy [Eq. (A4)],
which refers to the local bulk-state variables, while gnl is its, so-called, nonlocal component,
indicating the extra energy stored within the interfacial region [26]. Expressing gnl in terms of a
power series of �φ, assuming that the mixture is locally isotropic and with M1 = M2 = Mw, we
find at leading order [20,26]

gnl = 1
2 RwT a2(∇φ)2, (C2)

where a is a characteristic length. It must be clear that this nonlocal term is relevant only in regions
where ∇φ is very large, that is when the mixture is separated in two phases, so that there is an
interphase region, where the mass fraction φ changes rapidly.

Macroscopically, the two coexisting phases are separated by a sharp interfacial surface which, at
equilibrium, is characterized by a surface tension, expressing the energy stored per unit interfacial
area. Therefore, imposing that at equilibrium the line integral of the Gibbs free energy across the
interfacial region at equilibrium equals the surface tension [49], the characteristic length a appears
to be proportional to the surface tension σ , i.e.,

a = σ/(κρRwT ), (C3)

where κ is the dimensionless magnitude of the line integral [see Eq. (10)].
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Using the generalized free energy,
�

G = �

g · ∑2
i=1 mi, where mi is the species mass, the generalized

chemical potential of the species
�

μi in the binary mixture can be obtained as

�

μi =
(

δ
�

G

δmi

)
T,p,mj �=i

= �

g + (1 − φi )
δ

�

g

δφi
, (C4)

where the variational derivative is [65]

δ
�

g

δφi
= ∂

�

g

∂φi
− ∇ · ∂

�

g

∂ (∇φi )
. (C5)

Hence, decoupling the generalized chemical potential
�

μi into the thermodynamic potential μi

and the nonlocal potential ψi, that is,
�

μi = μi + ψi, we get that the latter is

ψi = gnl + (1 − φi )
∂gnl

∂φi
− (1 − φi ) ∇ · ∂gnl

∂∇φi
= gnl + (1 − φi )

∂gnl

∂φi
− (1 − φi ) RwT a2∇2φi.

(C6)
Thus, by expressing the potential energy differences, we get

�

μ12 = δ
�

g

δφ
= ∂

�

g

∂φ
− ∇ · ∂gnl

∂∇φ
= μ12 + ψ12 and ψ12 = −RwT a2∇2φ, (C7)

where μ12 is the thermodynamic chemical potential difference, Eq. (A9), while ψ12 is its nonlocal
counterpart, which is used in Eqs. (B12)–(B14) and reported in Eq. (8).

The so-called Korteweg force, i.e., a reversible generalized body force (per unit volume) is then
given by

F = −ρ

2∑
i=1

φi∇ψi = −ρφ∇ψ12︸ ︷︷ ︸
Fφ

− ρ∇ψ2︸ ︷︷ ︸
absorbed in p

; Fφ = ρRwφ∇(a2T ∇2φ), (C8)

where we denoted the gradient of a scalar that can be adsorbed in the pressure term [43] and the
resulting force Fφ , used in Eqs. (3) and (7). Equation (C8) is in the form obtained by Lamorgese
et al. [26] by generalizing a variational scheme by Serrin [66]; the same result, where however
the reversibility of the resulting force is assumed a priori, can be obtained by applying Noether’s
theorem, as shown by Anderson et al. [49], or by the least action principle, as shown by Lowengrub
and Truskinovsky [67].

As shown by Van Laar, regular mixtures are composed of two van der Waals fluids and also
behave themselves as van der Waals fluids. In that case, it was shown [18] that in Eq. (C7) ψ12

does not depend on T, so that T a2 is a constant that we can set equal to Tcâ2, where â is a constant
characteristic length; therefore, we get

ψ12 = −RwTcâ2∇2φ and a = â
√

Tc/T . (C9)

We assume that this relation is satisfied in all binary mixtures of interest.
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