
PHYSICAL REVIEW FLUIDS 6, 094202 (2021)
Editors’ Suggestion

Diffusive and capillary instabilities of viscous fluid threads in microchannels
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We experimentally examine the formation of viscous fluid threads in hydrodynamic
focusing sections using both miscible and immiscible fluid pairs at relatively low flow
rates. A systematic comparative study is conducted between diffusive and capillary regimes
using a viscous oil and a variety of polar organic solvents in a simple microflow geometry.
Silicone oil and various low molecular weight alcohols are used as model fluids to
investigate the dynamics of viscous multiphase flows at ultralow interfacial tension and
with partially miscible systems. An original methodology based on analysis of thread width
and detachment length in the viscous regime is developed to quantify various interfacial
destabilization processes over a wide range of injection flow rates. For miscible fluid
pairs, we investigate several regimes of thread swelling and, for immiscible fluid pairs,
we discuss diverse modes of droplet formation and wetting dynamics. This work provides
a comprehensive general classification of immiscible and miscible fluid dynamics with
large viscosity contrasts in microchannels together with a unifying phenomenological
description of thread behavior based on simple functional relationships to better delineate
the role of flow parameters and fluid properties on viscous microflow processes.
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I. INTRODUCTION

Flows of physical and industrial interest often result from the chemical nature of their compo-
nents. The term “oil” typically refers to a substance that does not mix with water due to lack of
chemical affinity and a simple classification consists in sorting fluids as polar, such as water, or
nonpolar, such as oils. In practice, many oils are made of long molecules and display complex
rheological and interfacial behaviors [1–3]. Their usually large viscosity coefficients make them
thick and sticky, and for ease of manipulation, it is often desirable to reduce their overall viscosity
through mixing with a miscible thinner or through emulsification with a low-viscosity immiscible
fluid phase [4]. Alcohols comprise a broad class of polar organic compounds that find use in a
myriad of situations, such as disinfectants and antiseptics, solvents and precursors, and as direct
fuel or fuel additive [5]. Primary alcohols also exhibit various degrees of solubility, i.e., partial
miscibility, with both water and oils depending on molecular weight and structure due to their
hydrophobic alkyl chain and hydrophilic hydroxyl group [6]. As a result, alcohols are sometimes
used as cosurfactant in the formulation of microemulsions [7] and their inclusion in oil and water
systems can lead to intriguing spontaneous emulsification phenomena [8–11]. Therefore, oil-alcohol
multiphase flows present important industrial and scientific potentials; however, systematic studies
of flow interactions between oil and alcohol fluid pairs are limited [12] and the phenomenology
associated with highly viscous multifluid microflows having ultralow interfacial tension or with
partial miscibility has remained relatively unexplored to date.

Microfluidic platforms offer significant advantages to examine the flow interplay between dis-
similar fluids at the small scale [13–16]. Precise control of microgeometries enables fabrication

*thomas.cubaud@stonybrook.edu

2469-990X/2021/6(9)/094202(18) 094202-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9296-0783
https://orcid.org/0000-0002-3608-9604
https://orcid.org/0000-0002-0041-4209
https://orcid.org/0000-0002-1943-8585
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.094202&domain=pdf&date_stamp=2021-09-07
https://doi.org/10.1103/PhysRevFluids.6.094202


CUBAUD, CONRY, HU, AND DINH

of miniature flow contactors that are ideal for studying the spatiotemporal evolution of fluid
interfacial regions using high-magnification and high-speed imaging systems [17–22]. In addition,
the reduced amount of fluids required for examining flows in microchannels permits systematic
studies of homologous fluid series with fast screening and high throughput over a broad range
of flow rates. As a result, microchannels have been employed to investigate the formation of a
variety of fluid elements, including droplets, bubbles, and threads [23–28] with applications ranging
from nanoparticle synthesis to microfiber fabrication [29–31]. Hydrodynamic instabilities can also
be finely manipulated to enhance micromixing and structure complex fluids in microgeometries
depending on fluid properties [32–35]. When fluids have a large difference in viscosity, transport
of thick fluids in pipes can also be facilitated through the formation of core-annular flows where a
thin fluid is essentially employed as a lubricant for a central viscous thread [36–40]. Our previous
work has shown the possibility to form locally stable microfluidic threads, which destabilize at low
flow rates in the form of swollen or buckled threads when fluids are miscible [41] or into droplets
when fluids are immiscible [42]. Hence, viscous threads can be employed to interrogate the role of
individual and mutual fluid properties on interfacial fluid dynamics and further investigate analogies
in the flow behavior of miscible and immiscible fluid pairs, which are sometimes compared in the
context of Korteweg theory [43–47]. Microfluidic control of fluids’ contact area using continuous
flows provides a practical mean to investigate the role of intermolecular forces on thread behavior;
however, a unifying phenomenological description based on simple functional relationships is
needed to quantitatively compare the behavior of immiscible and miscible fluid threads.

Here, we experimentally probe the flow behavior of viscous oil threads in a variety of primary
and secondary alcohols in hydrodynamic focusing sections. Through broad variations of injection
flow rates, we delineate vast flow maps and identify a variety of flow regimes for both miscible and
immiscible fluid pairs. We show that functional relationships for thread characteristics, including
diameter and detachment length, are similar for both miscible and immiscible fluid pairs in the
viscous regime at moderate flow rates. In turn, information gained about the viscous regime is
employed as a reference to quantify thread behavior in the diffusive and in the capillary regimes at
low flow rates. While our analysis eventually involves dimensionless numbers, including capillary
and Péclet numbers, we adopt an original methodology with mathematical formulations of flow
characteristics based on absolute and relative flow rates to directly compare dynamics of immiscible
and miscible fluid pairs in confined microsystems using a homologous series of alcohol and
a silicone oil as model fluid pairs. This unifying approach facilitates interpretation of physical
phenomena with clarification of the role of flow parameters and the influence of fluid properties
on interfacial fluid dynamics and destabilization processes.

II. EXPERIMENTAL METHODS

In this work, we probe the stability of viscous fluid threads formed through injection of a thick
oil L1 in a sheath of various polar organic solvents L2 using hydrodynamic focusing sections with
square microchannels of width h = 250 μm. Fluid pairs are composed of diverse low molecular
weight alcohols for the external phase and a silicone oil having fixed viscosity η1 = 96.6 cP (i.e.,
100-cSt oil) for the thread. Such fluid pairs present intriguing properties with a relatively low value
of interfacial tension γ12 at moderate solvent viscosity η2 with various degrees of miscibility based
on alcohol molecular weight and structure [Fig. 1(a)]. Here, we examine the role of the carbon
number n of primary alcohols, ranging from propanol to octanol—together with a few secondary
alcohols for low n—on microflow regimes (Table I).

Fluid pairs are labeled based on carbon number and isomer, such as C3-1 when L2 corresponds to
1-propanol or C4-2 when the solvent is 2-butanol. Overall, experiments showed that the four liquid
pairs C3-1, C6-1, C7-1, and C8-1 are immiscible fluids, while the four liquid pairs C3-2, C4-1,
C4-2, and C5-1 are miscible fluids. The value of interfacial tension γ12 for immiscible fluid pairs
is determined using a Du Nouy ring tensiometer, expected for the case of 1-Propanol, where the
very low value of γ12 is directly estimated in this work through examination of the dripping regime.

094202-2



DIFFUSIVE AND CAPILLARY INSTABILITIES …

TABLE I. Properties of inner fluid L1 and outer fluid L2 with corresponding dynamic viscosities η1 and η2,
viscosity contrast χ = η1/η2, interfacial tension γ12, and diffusion coefficient D12.

Fluid pair L1 η1 (cP) L2 η2 (cP) χ γ12 (mN/m) D12 (m2/s)

C3-1 Silicone oil 96.6 1-Propanol 2.1 47 0.1 –
C3-2 2-Propanol 2.3 43 – 3.5 × 10–10

C4-1 1-Butanol 2.8 34 – 2.5 × 10–10

C4-2 2-Butanol 3.6 27 – 1.6 × 10–10

C5-1 1-Pentanol 3.6 27 – 1.5 × 10–10

C6-1 1-Hexanol 4.8 20 0.18 –
C7-1 1-Heptanol 6.3 15 0.31 –
C8-1 1-Octanol 8.3 12 0.76 –

For miscible fluid pairs, the coefficient of diffusion D12 is determined based on analysis of diffusive
thread behavior [12] and interfacial tension γ12 is considered negligible. Indeed, while the solvent
viscosity η2 displays monotonic behavior with the carbon number n of primary alcohols [Fig. 1(b),
inset], interfacial tension γ12 vanishes for miscible fluid pairs at moderate n. A particularity of the
immiscible fluid pairs investigated in this work is their relatively constant characteristic capillary
velocity V ∗ = γ12/η2 ∼ 5 × 10–2 m/s [Fig. 1(b)]. This characteristic velocity V ∗ represents the role
of fluid properties in the definition of the capillary number Ca = V/V ∗ [48], where V corresponds
to the convective velocity. Hence, beside the difference in γ12 and η2, fluid pairs flowing at similar
velocity V display comparable capillary numbers Ca. By contrast, using our simplified analytical
framework where γ12 ∼ 0 for miscible fluids yields a negligible V ∗ ∼ 0 for diffusive fluid pairs.
In this case, the Péclet number Pe = V h/D12, where h is the channel width, is employed to
characterize flow regimes and consists in the ratio of convective velocity V to characteristic diffusive
velocity D12/h. The convective velocity V is typically defined as the total superficial velocity
JT = (Q1 + Q2)/h2, where Q1 is the volume flow rate of fluid L1 injected from the central channel
and Q2 is the total flow rate of fluid L2 introduced in the side channels. In general, however, as wide
differences in stream velocities can arise due to viscosity contrasts in stratified microflows [15],
flow maps are based on flow rates Q1 and Q2 instead of superficial velocities. To compare various
regimes across multiple fluid pairs, we employ orthogonal hydrodynamic focusing sections where
the oil L1 is injected in the central channel and the solvent L2 is symmetrically injected from
the side channels [Fig. 1(c)]. Chemically resistant microdevices are fabricated in silicon and glass
using standard microfabrication techniques [49] and microfluidic platforms are placed on top of an

FIG. 1. Fluid properties. (a) Evolution of interfacial tension γ12 between silicone oil and alcohol as a
function of alcohol viscosity η2. (b) Characteristic capillary velocity V ∗ = γ12/η2 of fluid pairs. Inset: solvent
viscosity η2 as a function of carbon number. (c) Schematics of square hydrodynamic focusing section where
a viscous fluid L1 is centrally injected at Q1 and a solvent L2 is symmetrically introduced at Q2 resulting in
various regimes, including (i) dripping droplet, and (ii) viscous thread.

094202-3



CUBAUD, CONRY, HU, AND DINH

FIG. 2. Maps of flow regimes for miscible and immiscible fluid pairs with characteristic micrographs.
Flow rates (Q1, Q2) in μl/min. (a) Miscible fluid pair C3-2 (L2: 2-propanol). Structural flow regimes: bulging
(5, 2), tubing (10, 10), threading (20, 40), and engulfment (1, 90). Unstable flow regimes: winged (0.5, 1.2),
diffusive (0.5, 5), diffusive buckling (0.5, 20), and fragmentation (0.5, 200). (b) Immiscible fluid pair C7-1 (L2:
1-heptanol). Structural flow regimes: bulging (5, 1), tubing (5, 3), threading (5, 40), and engulfment (0.5, 45).
Destabilizing flow regimes: dripping (0.2, 0.5), dripping tail (0.2, 9), jetting (0.3, 7), and jetting beads (0.3, 9).
Base flow regime transitions at constant ϕ: (i) bulging-tubing, (ii) tubing-threading, (iii) threading-engulfment.

inverted microscope equipped with a high-speed camera for flow diagnostics. We use high-pressure
syringe pumps to drive fluids into microchannels that are square in cross section with constant
width h = 250 μm. Using this method, one would expect the continuous formation of droplets of
size d when the fluids are immiscible and core-annular flows of diameter ε when the fluids are
miscible fluids. In the following, however, we reveal a variety of flow regimes as well as refine
flow classification and quantitatively compare the role of fluid properties on viscous microflow
phenomena.

III. GENERAL FLOW CLASSIFICATION

Microfluidic multiphase flows display a wide variety of flow patterns depending on fluid proper-
ties, flow parameters, and local geometries. Here, the systematic use of an orthogonal hydrodynamic
focusing section with square microchannels provides a basis for the comparative study of the role
of individual and mutual fluid properties on flow morphologies using both miscible and immiscible
fluids. For a given fluid pair, injection flow rates are varied over multiple orders of magnitude to
cover large maps in the (Q1, Q2)-parameter space where flow regimes are sorted using various
symbols and colors to facilitate broad overview and analysis (Fig. 2). While regime classification
is based on specific features of flow morphologies, many flow transitions are progressive with
a smooth evolution of multiphase flow properties. Therefore, criteria for regime definition are
developed based on quantities that are measurable across flow regimes to provide a useful reference
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FIG. 3. Flow maps of miscible fluid pairs, C3-2 (2-propanol), C4-1 (1-butanol), C4-2 (2-butanol), and C5-1
(1-pentanol), including structural regimes, such as threading ( ), tubing ( ), engulfment ( ), and bulging ( ),
and unstable regimes, such as diffusive ( ), diffusive buckling ( ), winged ( ), fragmentation ( ), and limiting
( ). See main text for subregime transition lines (i)–(iv).

and comparison in the elaboration of a universal flow classification of viscous fluid threads in
symmetrical hydrodynamic focusing sections. In particular, it is instructive to define a viscous
regime when the fluid L1 forms a straight, central stream of width ε near the junction in the square
channel. In our case of large viscosity ratios χ = η1/η2 � 1, the viscous fluid L1 progressively
detaches from the top and bottom walls to form a lubricated thread. The various degrees of thread
ensheathing with fluid L2 lead to the definition of base flow regimes, including fully lubricated
threads with the engulfment and threading regimes at low ϕ = Q1/Q2, partial side lubrication and
contact with top and bottom walls in the tubing regime at moderate ϕ, and L1 contact with four
walls with gutter flow of L2 in the bulging regime at large ϕ. In practice, viscous regimes are
found at moderate QT = Q1 + Q2, i.e., in the upper right region of flow maps, for both miscible
and immiscible fluid pairs (Fig. 2). Basic thread lubrication transitions occur at fixed ϕ for a given
χ and are labeled with (i) for the bulging-tubing transition, (ii) for the tubing-treading transition,
and (iii) for the threading-engulfment transition in Fig. 2. By contrast, interfacial properties play an
important role at low QT, i.e., in the bottom left region of flow maps, with the presence of diffusive
regimes for miscible fluids [Fig. 2(a)] and capillary regimes for immiscible fluids [Fig. 2(b)]. Other
flow patterns, including inertial and gravitational regimes [41], are typically found at high QT

and large h and are beyond the scope of this current work, albeit observation of small miscible
thread fragmentation at large Q2 suggests the presence of inertial instabilities as discussed in the
next section. Overall, focus here is on the influence of fluid properties on thread dynamics at
relatively low flow rates with examination of outer regions of flow maps at very low flow rates.
Data show that the viscous regime constitutes a basic structural regime and provides a useful
basis for refining analysis of diffusive and capillary regimes. Hence, we adopt the terminology
of capillary and diffusive instabilities to describe significant deviations from the viscous regimes at
low flow rates near the fluid junction. While such classification is useful to describe flow behavior
in short microfluidic systems, further destabilization of “stable” flow regimes is assumed further
downstream as one would expect viscous threads to be always unstable to either capillary or
diffusion phenomena in very long microchannels. Here, Fig. 2 enables comparison of initial flow
regimes between miscible and immiscible fluid pairs at large viscosity contrasts. In the following,
we examine flow maps and subregimes in greater detail and provide quantitative analysis of the
evolution of multiphase flow properties across flow patterns.

IV. DIFFUSIVE THREADS

A. Flow maps

We commence our study with flow map analysis of miscible fluid threads (Fig. 3). Structural
flow regimes primarily depend on the flow rate ratio ϕ = Q1/Q2 and viscosity ratio χ = η1/η2.
Overall, the use of 100-cSt oil with low molecular alcohols enables modest variations of χ between
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12 and 47 with strong disparities of fluid affinity since some fluid pairs are found partially miscible
and others are found immiscible. Over wide variations of χ between 10 and 104, previous work
with fully miscible silicone oils [41] identified the critical flow rate ratio for the tubing-threading
transition in the viscous regime according to ϕTub = 2χ–0.3 and the transition between engulfment
and threading regimes according to ϕEng = 0.27χ–0.6. Here, good agreement is found with these
correlations for full and partial lubrication transitions of miscible fluid threads as shown in Fig. 3
where lines of constant ϕ appear oblique on flow maps. The bulging regime consists of a central
stream in contact with the four walls of the channels with small streams of L2 in the four gutters
of the square channel. As a result, the apparent thread size ε/h = 1 and the critical flow rate for
the transition remain relatively constant across fluid pairs with ϕBulg = 3 given our viscosity ratios.
In the focusing section, the central stream appears to bulge in the side channels. We previously
labeled this regime as displacement in the context of immiscible fluids [42]. This pattern defines
the upper bound of base flow regimes for large ϕ and corresponds to the more viscous fluid L1
entering the inlet channels of fluid L2. The other limiting flow regime is found for extremely low
ϕLim = 10–3, where the low-viscosity fluid L2 fully invades the central channel and threads are not
readily distinguishable from the sheath flow. This limiting regime is directly observed with fluid
pair C3-2 with isopropanol, where the transition ϕLim is indicated with the dashed line (i) in Fig. 3.
Flows of similar liquids in focusing sections at low ϕ can develop complex filamentous structures
with the formation of vortices [20,21]. In the case of large χ , experiments with fully miscible
silicone oils [41] showed the onset of inertial destabilization of small threads at low ϕ according
to ϕIne = aRe where a = bχ–1/2 with b = 3.5 × 10–3 and the Reynolds number Re = ρ2QT/(η2h)
where ρ2 is the density of the external phase. Here, over the range of parameters investigated, the
largest obtained Re ∼ 6 remains relatively modest and the equivalent inertial regime corresponds
to the fragmentation pattern as indicated in Fig. 3 for isopropanol with the transition dashed line
(ii). Incidentally, the inertial transition yields a scaling of the form Q1 ∼ Q2

2 on flow maps since
QT ∼ Q2 for ϕ � 1 in the engulfment regime. The fragmentation of small miscible threads is
interpreted as resulting from the coupling between inertial disturbances causing local variations
in thread diameter and diffusion blending thin thread edges. Furthermore, viscous threads can
also experience diffusion-induced buckling instabilities as shown with transition line (iii) in the
subregime diffusive buckling. In this case, progressively diverging threads experience compact
coiling deformation during diffusive swelling [12].

To better delineate diffusive flows, we systematically explore very low flow velocities with fine
variations of flow rates for fluid pair C3-2, i.e., for isopropanol. Two main diffusive regimes are
observed, including an “ultradiffusive” regime, where the thread diameter is found to significantly
swell due to molecular diffusion in the outlet channel at low Q1, and a “winged” regime that
corresponds to a diffusive bulging where the fluid L1 diffuses in the upstream channels of L2 at
low Q2. In the case of partially miscible fluids between our silicone oil and polar organic solvents,
intriguing discrete structures are observed in the upstream channels at large Q1 due to fluid saturation
while continuous diffusive pools are observed at low Q1. Hence, the winged regime is divided in
two subregimes with a transition line found at constant Q1 as indicated with line (iv) in Fig. 3. Next,
we examine in detail the diffusive and winged regimes and investigate the evolution of the thread
detachment length. We show that the diffusive boundaries of the flow map are better understood by
examination of individual flow characteristics.

B. Thread diameter

We first examine the evolution of the normalized thread diameter ε0/h in the base flow regimes.
Solving Stokes equations for a core-annular configuration in a circular duct of diameter h yields a
simple relation between core diameter ε0, flow rate ratio ϕ, and viscosity contrast χ , such as

ε0

h
=

√
1 + ϕ −

√
1 + ϕχ−1

2 + ϕ − χ−1
. (1)
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FIG. 4. Diameter of miscible fluid threads. (a) Evolution of stable diameter ε0/h as a function of flow
rate ratio ϕ across structural flow regimes. Lower solid line: Eq. (2), upper solid line: Eq. (3). (b) Variation
of minimum diameter εM/h as a function of ϕ showing the role of QT on iso-ϕ curves for fluid pair C3-2. (c)
Evolution of εM/h with QT along iso-ϕ curves for miscible fluid pairs, fitting parameter QC = 4.5 (2-propanol),
3.2 (1-butanol), 2.1 (2-butanol), and 1.6 μl/min (1-pentanol). (d) Comparison of measured εM/h with Eq. (4).
(e) Evolution of QC with solvent viscosity η2.

The case of large viscosity contrasts, χ � 1, corresponds to an asymptotic regime where the
normalized thread diameter ε0/h only depends on flow rate ratio ϕ and is approximated according
to

ε0

h
=

(
ϕ

2 + ϕ

)1/2

. (2)

This expression can be further simplified for low flow rate ratio ϕ � 1, with the scaling

ε0

h
=

(ϕ

2

)1/2
. (3)

While scaling analysis is useful to study the behavior of small threads, Eq. (2) represents a
bounded function and provides a practical approximation of the confined nature of microfluidic
threads having a size ε0/h that tends to unity for very large ϕ. Here, we measure the size of
miscible fluid threads as a function of ϕ in the nondiffusive primary regimes, including engulfment,
threading, tubing, and bulging, and find good agreement with Eq. (2), which represents the lower
bounding curve on Fig. 4(a), while the upper bounding curve is set with scaling defined in Eq. (3).
Thread sizes in the tubing regime are expected to deviate from the analytical solution of a circular
tube since this case corresponds to a partial thread lubrication, with a thread contact with top and
bottom walls and a stratified flow near the side walls. As a result, thread size appears to follow
Eq. (3) in the tubing regime before saturating at ε0/h = 1 in the bulging regime for ϕ > 3. Over
the range of parameters investigated, however, Eq. (2) provides a more realistic estimate of basic
confined thread sizes at large QT and can be used as a reference in the study of diffusive effects at low
QT. The fact that ε0/h solely depends on ϕ at large viscosity contrast χ � 1 hints at the development
of a method that consists in examining the evolution of thread size at fixed ϕ and various QT. An
example of this approach is shown in Fig. 4(b), top, where the minimal thread size εM/h observed
in the central channel near the junction is seen to decrease with QT for ϕ = 0.5. Generalizing this
technique to various ϕ shows that the minimum value of the diffusive thread size εM along an iso-ϕ
curve tends to the stable thread size ε0 at large QT [Fig. 4(b), top]. By contrast, the normalized
diffusive thread size εM/h tends to unity at low QT. Considering the boundary conditions of εM/h,
we recently discuss [12] the use of simple bounded functions, which—similarly to Eq. (2) with ε0/h
and ϕ—provide a good approximation of the evolution of εM/h as a function of QT according to

ε∗
M

h
= 1 − 1

1

1 − ε0/h
+

(
QT

QC

)−1.5 . (4)
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The exponent −1.5 corresponds to the steepness of iso-ϕ curves and is considered as a phe-
nomenological constant for all fluid pairs. By contrast, the critical flow rate QC depends on each
fluid pair and is determined experimentally as the sole fitting coefficient of the iso-ϕ curves of εM/h
as a function of QT as shown in Fig. 4(c). To verify the accuracy of the method of determining QC,
all measured εM/h are plotted against Eq. (4) with their corresponding QC in Fig. 4(d). Overall,
examining diffusive swelling of threads enables the fine determination of QC, which permits an
estimation of diffusion coefficient D12 based on similitude analysis [12] with a critical Péclet
number,

PeC = QC/(D12h) = 850. (5)

Here, we find that QC decreases with the viscosity of the alcohol phase as shown in Fig. 4(e). The
experimental identification of a critical flow rate QC associated with each fluid pair is advantageous
in characterizing the role of diffusion on thread swelling across fluid pairs. Indeed, Eq. (5) shows
that the kinematic quantity QC, which is the sole fitting parameter in Eq. (4), depends on fluid
properties and geometry according to QC = PeCD12h and the Péclet number scales as Pe ∼ QT/QC,
a formulation reminiscent of the capillary number Ca ∼ V/V ∗, where the characteristic velocity
V ∗ = γ12/η. Therefore, a similar approach, which consists in determining a characteristic flow rate,
is employed to discuss other aspects of diffusive fluid threads, including the detachment length and
the winged regime.

C. Detachment length

A remarkable property of liquid-liquid flows resides in the possibility to sheath viscous material
in a low-viscosity continuous phase using hydrodynamic focusing junctions. As the thick fluid is
injected from the central channel, the thin liquid injected from the side channels progressively
encapsulates the thread, which detaches from the top and bottom walls along oblique, apparent
miscible contact lines [Fig. 5(a)]. Contact lines typically adopt the shape of slanted straight lines
initially drawn from the side walls at x0 and joining in the center of the channel further downstream
at x1 to form the shape of a triangle, as indicated in the schematics in the inset of Fig. 5(b). As
the flow rate ratio ϕ increases, separation lines move downstream and the triangle longitudinally
deforms and forms curved contact lines. In previous work [41], the distance from the channel
junction at x = 0 to the contact point of miscible contact lines, i.e., the position of the separation
point located at coordinate x1, is referred to as the formation length LS. In the threading regime,
LS follows a scaling of the form LS/h ∼ χϕ at large χ and remains independent of viscosity
with LS/h ∼ ϕ below a moderate ratio χ < 102. This quantity is important to define the transition
to the engulfment regime, which corresponds to LS/h ∼ 0 for low ϕ ∼ ϕEng. Comparatively, the
transition to the tubing regime is defined when LS/h � 1 for large ϕ > ϕTub. Detailed examination
of engulfment and threading regimes, however, reveals the smooth evolution of the width, x1–x0, of
the contact line triangle over a wide range of flow rate ratios ϕ [Fig. 5(a)]. Hence, we generalize
and extend the criterion for predicting high-viscosity fluid encapsulation in square focusing sections
and measure the intrinsic thread detachment length as LD = x1–x0 as a function ϕ across base flow
regimes, i.e., engulfment, threading, and tubing regimes. As can be seen in Fig. 5(b), measurements
of LD in the viscous regimes yield a robust scaling, which is referred to as the stable detachment
length LD0 according to

LD0

h
= 1.9ϕ1/2, (6)

for miscible fluid pairs at large QT. Incidentally, while entry length scales are typically measured
starting from the fluid junction at x/h = 0, the occurrence of the engulfment regime with the
intrusion of the outer fluid L2 in the upstream central channel challenges the definition of a physical
length scale based on the evolution of a single coordinate, such as LS = x1. An example of the
evolution of coordinates x0 and x1 is shown in Fig. 5(c) where regime transitions are closely related
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FIG. 5. Viscous detachment length LD of miscible fluid threads. (a) Micrographs of fluid contactor in
primary flow regimes, fluid pair C3-2, from top to bottom: (i) ϕ = 2.5 × 10–3, 1 × 10–2, 2.5 × 10–2, (ii) ϕ =
5 × 10–2, 1 × 10–1, 2.5 × 10–1, and (iii) ϕ = 3.3 × 10–1, 5 × 10–1, 1 × 100. (b) Evolution of stable detachment
length LD0/h as a function of ϕ. Solid line: Eq. (6). Inset: schematics of measurement of LD. (c) Variation of
initial and final viscous detachment locations, x0 and x1, as a function of ϕ for fluid pair C4-1. Solid line (i):
x/h = 3.84ϕ. (d) Chart of micrographs showing a reduction of LD for diffusive regimes at low QT. Fluid pair
C3-2, flow rates (Q1, Q2) in μl/min, from top to bottom, ϕ = 0.25 (5, 20), (1, 4), (0.5, 2), and ϕ = 0.5 (5,
10), (1, 2), and (0.5, 1). (e) Evolution of LD/h as a function of QT along iso-ϕ curves for fluid pair C3-2. (f)
Evolution of LD/h as a function of ϕ along iso-ϕ curves for fluid pair C3-2. Solid line: Eq. (6). (g) Evolution of
LD/LD0 as a function of QT with fluid pair C3-2. Solid line: LD/LD0 = (1 + QD/QT)–1 with QD = 1.7 μl/min.
(h) Comparison of LD/h and L∗

D,M/h calculated based on Eq. (7). Inset: evolution of QD/QC for miscible fluid
pairs. Solid line: QD/QC = 0.5.

to the values of x1. A subtransition in the threading regime can be defined when x0 = 0, which
occurs for ϕThread ∼ 5 × 10–1. For flow rates below ϕThread, the partial engulfment of L2 is observed
as x0 < 0, while above ϕThread, viscous ensheathing entirely takes place at the junction.

The stable detachment length LD0/h of base regimes at large QT provides a useful reference
in the study of diffusive flows at low QT. In the diffusive regime, we examine the evolution of
the detachment length LD along iso-ϕ curves and LD is found to initially grow with flow rate QT

before flattening toward LD0 at larger flow velocity in the viscous regime. Examples of diffusive
thread-forming flow morphologies at various QT are shown in Fig. 5(d) for two cases with fixed
ϕ. In Figs. 5(d) and 5(f), we use the iso-ϕ approach to characterize the evolution of LD based on
absolute and relative flow rates, QT and ϕ, for fluid pair C3-2. The asymptotic behavior of LD at
large QT indicates the bounded nature of the function LD/LD0, which tends to 0 at low QT and
1 at large QT. Hence, the scaled detachment length is modeled with a simple bounded function
LD/LD0 = (1 + QD/QT)–1, which shows good agreement with data when the characteristic flow
rate is set at QD = 1.7 μl/min for fluid pair C3-2 [Fig. 5(g)]. Overall, our data support the definition
of the function

L∗
D.M

h
= 1.9

ϕ1/2

1 + (QT/QD)−1 (7)

to model the viscous detachment length LD with miscible fluid pairs [Fig. 5(h)]. The characteristic
flow rate QD is measured for each miscible fluid pair and the nearly constant ratio QD/QC ∼ 0.5
[Fig. 5(h), inset] suggests proportionality between QD and intermolecular diffusion coefficient
D12. Hence, the term QT/QD is expected to be proportional to the Péclet number Pe. In the

094202-9



CUBAUD, CONRY, HU, AND DINH

FIG. 6. Winged thread regime. (a) Micrographs showing lateral span S of diffusive pools for fluid pair
C3-2, flow rates in μl/min, Q1 = 0.5 and Q2 = (i) 0.5, (ii) 0.7, (iii) 0.9, (iv) 1.1, and (v) 1.3. (b) Evolution of
normalized span S/h as a function of ϕ for various iso-Q1 curves for fluid pair C3-2. Solid lines: S/h = 1 +
1.5ϕ/Q1. (c) Span S/h versus Q2 for data corresponding to (b). Solid line: S/h = 1 + 1.5/Q2. (d) Variation of
normalized pool width w/h versus reciprocal flow rate 2/Q2 for Q1 � 1 μl/min. Solid lines: w/h = 2QW/Q2.
(e) Evolution of QW with solvent viscosity η2; solid line: QW = 4η2

–1/3. (f) Ratio QW/QC; solid line: QW/QC =
5 × 10–2. (g) Micrographs showing saturated circulating regions with fluid pair C5-1 at large Q1 = 5 and Q2 =
(i) 0.2, (ii) 0.3, (iii) 0.4, (iv) 0.5, and (v) 0.6. (h) Evolution of normalized island size D/h versus Q2/2 for
Q1 � 2 μl/min. Solid line: D/h = 2.5 × 10–1(Q2/2)–1/2. (i) Evolution of D/h with Q1 for fixed Q2 = 0.5. (j)
Measurement of normalized subdroplet size dD/h with Q2/2. Solid line: dD/h = 0.1.

context of facilitating direct comparison between miscible and immiscible fluid pairs, however,
we elect mathematical formulations based on relative and absolute flow rates, ϕ and QT, instead of
dimensionless numbers such as Pe and Ca.

D. Winged thread regime

We now turn our attention to an intriguing flow pattern of miscible fluid threads, which occurs at
very low flow rates and is referred to as a “winged thread” regime. This regime is characterized by
the appearance of diffusion layers extending upstream of the focusing section in the side channels of
fluid L2. Hence, in the focusing section, the thread develops lateral diffusive pools, which vaguely
resemble wings that are used as a reference to label this highly diffusive flow structure. This pattern
is distinct from the bulging regime, which occurs at large ϕ > 3 and where lateral protrusions are
made of pure liquid L1. By contrast, the winged regime is also found at low ϕ and protrusions are
made of a mixture of L1 and L2 as can be seen in Fig. 6(a). Diffusive pools of variable indices
of refraction appear to extend on either side of the thread over a span S, which is measured for
fixed Q1 as a function of ϕ on Fig. 6(b) and as a function of Q2 in Fig. 6(c) for fluid pair C3-2.
Experimental measurements of S/h are well fit with an expression of the form S/h = 1 + QWS/Q2

where the constant QWS = 1.5 μl/min is associated with fluid pair C3-2. The presence of diffusive
pools evolving at counterflow of the side fluid L2 offers the opportunity to probe the influence of
fluid properties on flow morphology. To simplify the analysis, we focus on scaling behaviors and
investigate the evolution of the lateral extent of a single diffusive pool w = (S–h)/2 in a single
channel as a function of incoming side channel flow rate Q2/2 for various fluid pairs [Fig. 6(d)].
Over the range of parameters investigated with Q1 � 1 μl/min, we find a relation of the form
w/h = 2QW/Q2 where the constant QW = 4QWS decreases with side fluid viscosity η2 [Fig. 6(e)]
and linearly scales with the critical flow rate of diffusive threads QC, such as QW/QC ≈ 5 × 10–2

[Fig. 6(f)]. Therefore, using Eq. (5), the width of a diffusive wing in the focusing section can be
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FIG. 7. Flow maps of immiscible fluid pairs, C3-1 (1-propanol), C6-1 (1-hexanol), C7-1 (1-heptanol), and
C8-1(1-octanol), including threading ( ), tubing ( ), engulfment ( ), bulging ( ), jetting (�), dripping ( ),
and wetting ( ) regimes. Dashed lines represent regime extrapolations drawn from analogy between maps. See
main text for solid transition lines.

estimated according to w/h ∼ 85/Pe2, where the Péclet number Pe2 = Q2/(D12h) is associated
with incoming flow of a single side square microchannel.

Another region of the winged thread regime is found at larger central stream flow rate Q1 �
2 μl/min, where discrete structures typically appear instead of continuous pools [Fig. 6(g)]. The
formation of such structures results from the complex interplay between the enhanced flux of L1
through the section as well as potentially from the saturation concentration of partially miscible
fluid pairs made of oils and polar organic solvents. In the case of pentanol with fluid pair C5-1,
we measure the size D of such circular “islands,” which remain constant over time, and find a
simple correlation D/h ∼ (Q2/2)–1/2 [Fig. 6(h)]. Our data also suggest that D remains relatively
independent of Q1 at large flow rates [Fig. 6(i)]. Detailed examination of the internal structure
of these islands also reveals the presence of embedded droplets of very small size dD/h ∼ 10–1

[Fig. 6(j)], indicating complex coupling between physicochemical and hydrodynamic processes.
Indeed, islands appear located in the low-pressure region of the hydrodynamic focusing section and
are observed to undergo stationary rotation.

V. CAPILLARY THREADS

A. Flow maps

We now examine the flow maps of immiscible fluid threads (Fig. 7). Similar to their miscible
fluid counterparts, base flow regimes of capillary threads are found at relatively large flow rates QT,
in the upper right region of the flow maps while droplet regimes are located in the lower part of
the diagrams. The overall form of flow maps of immiscible fluid pairs with χ � 1 in orthogonal
focusing sections with square microchannels is similar to previous work [42] conducted at larger
interfacial tension γ12. Here, we merge notation between “displacement” and “bulging” regimes,
which are found at large ϕ > 3 from moderate QT. Critical curves for the tubing-threading and
the threading-engulfment regime transitions for each fluid pair show good agreement with previous
correlations of base flow regimes [41] and are defined with oblique lines of fixed ϕ, which solely
depend on χ . At low flow rates QT, interfacial properties considerably alter flow regimes with
the presence of dispersed flows and a shift toward larger ϕ is observed for bulging and tubing
transition at higher values of γ12 with fluid pairs C7-1 and C8-1. The most significant outcome of
interfacial tension consists in the formation of droplet flow regimes, namely, the dripping regime,
where droplets are formed at the fluid junction, and the jetting regime, where droplets are emitted
from the tip of the capillary threads. Over the range of fluids investigated, we also found a strong
influence of wetting properties at low flow rates due to the partial wetting condition of silicone
oil–alcohol fluid pair on borosilicate glass. We find that wetting properties can modify droplet
formation in the dripping regime and central thread encapsulation in the jetting regime. Indeed,
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FIG. 8. Diameter of immiscible fluid threads. (a) Evolution of stable diameter ε0/h as a function of flow
rate ratio ϕ in the viscous regime. Lower solid line: Eq. (2); upper solid line: Eq. (3). Inset: micrographs of
stable regimes with fluid pair C8-1. (b) Evolution of width ε/h in the capillary regime with partial lubrication
due to thread wetting. Solid line: Eq. (2); dashed line: Eq. (8). (c) Micrographs of wetting threads, flow rates
(Q1, Q2) in μl/min, (i) fluid pair C6-1 (0.2, 0.2), (ii) (0.2, 0.8), (iii) fluid pair C7-1 (2, 2), fluid pair C8-1 (0.8,
15), (v) fluid pair C6-1 (2,10), and (vi) (0.5, 30).

a thread can experience an asymmetrical detachment from top and bottom walls due to wetting in
the jetting regime. However, the presence of strong capillary waves developing along the core is a
clear indication of jetting flows and, as a result, such flow patterns are reported as jetting flows. In
the case of dripping flows, strong dynamic wetting can suppress the formation of droplets at low QT,
which is significant with fluid pair C6-1 (Fig. 7). The overall transition from dispersed to separated
flows is shifted toward larger flow rates as γ12 increases from fluid pairs C3-1 to C8-1. For instance,
the dripping-threading transition is found at larger Q1 and the jetting-threading transition, defined
as a fixed value of the product Q1 Q2, is also shifted toward higher values for larger values of γ12

from 1-propanol to 1-octanol. In the following, we discuss complementary aspects of immiscible
fluid flows.

B. Thread diameter

In this section, we analyze the evolution of normalized thread diameter ε/h with immiscible
fluid pairs (Fig. 8). Stable thread diameters ε0/h are measured in the base flow regimes, including
engulfment, threading, tubing, and bulging, and show good agreement with Eqs. (2) and (3) in a
fashion similar to the miscible fluid cases in the viscous regime at relatively large QT [Fig. 8(a)].
In the capillary regime at lower QT, however, viscous threads display a variety of morphologies
due to incomplete lubrication and dynamic wetting. Indeed, the relatively low value of advancing
contact angles in partial dynamic wetting conditions at low velocities favors thread adhesion to
microchannel walls and as a result the central stream adopts intermediate behavior between core-
annular flows and viscous stratifications. Measurements of central width ε/h as a function of ϕ in the
presence of partial wetting conditions show data bounded between a lower curve defined by stable
diameter ε0/h of core-annular flows based on Eq. (2) and the width εS/h of viscous stratifications
[Fig. 8(b)]. The strata width εS/h is estimated based on previous work [50] with fluids having low
χ < 1 in square microchannels using a relation of the form

εS

h
= 1

1 + 0.67ϕ−2/3χ−1/2
. (8)

Here, this relationship is extrapolated to the case of large χ � 1 that would otherwise form
lubricated viscous threads through viscous self-lubrication in the absence of wetting phenomena. In
general, loss of lubrication results in stream deceleration due to significant shear at the microchannel
walls, which is accompanied with a stream width enlargement to conserve mass. Hence, while ε0/h
of threads does not depend on χ , the strata width εS is contingent on χ as shown in Eq. (8).
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FIG. 9. Detachment length LD of immiscible fluid threads. (a) Micrographs of fluid contactor in pri-
mary flow regimes, fluid pair C7-1, from top to bottom: (i) ϕ = 1 × 10–2, 2 × 10–2, 2.5 × 10–2; (ii) ϕ =
5 × 10–2, 1 × 10–1, 2.5 × 10–1; and (iii) ϕ = 3.3 × 10–1, 5 × 10–1, 1 × 100. (b) Evolution of stable detachment
length LD0/h as a function of ϕ in the viscous regime. Solid line: Eq. (6). (c) Evolution of LD/h as a function
of QT and ϕ along iso-Q1 curves, fluid pair C7-1. Solid lines: LD/h = 0.87QT

–0.2 (top) and LD/h = 1.9ϕ1/2

(bottom). (d) Chart of micrographs showing an increase of LD for capillary regimes at low QT. Fluid pair C8-1,
flow rates (Q1, Q2) in μl/min, from top to bottom, ϕ = 0.02 (2, 100), (0.8, 30), (0.2, 10), and ϕ = 0.2 (20,
100), (0.8, 4), and (0.2, 1). (e) Evolution of LD/h as a function of QT along iso-ϕ curves for fluid pair C8-1.
Solid line: LD/h = QT

–0.2. (f) Evolution of LD/h as a function of ϕ along iso-ϕ curves for fluid pair C8-1. Solid
line: Eq. (6). (g) Scaled length LD/LD0 versus QT. Solid lines: LD/LD0 = 1 + kQ−1/2

T . Inset: coefficient k as a
function of ϕ. Solid line k = k0ϕ

–1 with k0 = 0.17(μl/min)1/2. (h) Comparison of LD/h with Eq. (9).

Examples of characteristic wetting behavior are displayed in Fig. 8(c), including the wetting-
induced suppression of dripping regimes at low Q2 with 1-hexanol, partial separation and
reattachment of contact line, the formation of bead-on-thread during jetting, and lubrication failure
of small threads.

C. Detachment length

In this section, we examine the detachment length of capillary threads. Similar to their diffusive
counterparts, viscous threads formed between immiscible fluids progressively detach from top and
bottom walls at the fluid junction. At relatively large QT, contact lines adopt a triangular shape,
characteristic of the viscous regime [Fig. 9(a)]. By contrast, the contact lines are more curved at low
QT in the capillary regime. The stable detachment length LD0/h of immiscible threads is measured
as a function of ϕ in the viscous regime and good agreement is found with Eq. (6) of miscible
threads as can be seen in Fig. 9(b). The behavior of LD/h at low QT, however, significantly differs
from that in the viscous regime and observed lengths are found in excess of LD0/h. In Fig. 9(c),
we examine the evolution of LD/h along iso-Q1 curves for fluid pair C7-1, which shows a rather
complex, yet regular, dependency of LD/h on both absolute and relative flow rates, QT and ϕ. While
examining iso-Q1 curves is useful since in practice it is convenient to fix the high-viscosity fluid flow
rate Q1 and vary the low-viscosity fluid flow rate Q2 to collect data, the evolution of iso-Q1 curves
is difficult to interpret. Therefore, we rationalize the evolution of LD/h based on parameters such as
ϕ and QT and show that for a fixed flow rate ratio ϕ, the detachment length of immiscible threads
decreases with QT, which is in the opposite trend of miscible threads [Fig. 9(d)]. In the dripping
regime, LD/h periodically varies during the droplet emission process with an increase during droplet
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squeezing and a decrease after droplet detachment. Therefore, we measure the minimal length after
detachment as the reference data of LD/h and find that this quantity remains significantly larger than
LD0/h. To develop an empirical relationship for LD/h, we first compare the evolution of LD/h along
iso-ϕ curves as a function of QT and ϕ in Figs. 9(f) and 9(e). Since LD/h tends to LD0/h at large
QT, we plot the evolution of LD/LD0 as a function of QT in Fig. 9(g) and observe the ungrouping
iso-ϕ curves at low QT and their convergence toward unity at large QT. Overall, curves are well
fitted using the simple analytical function LD/LD0 = 1 + kQ−1/2

T where the coefficient k is found
to depend on ϕ according to k = k0ϕ

–1 [Fig. 9(g), inset]. Since the coefficient k0 depends on the
specific fluid pair, we find it useful to express this quantity in the form of a critical flow rate, such
as k0 = Q1/2

D , which enables the definition of the function

L∗
D.I

h
= 1.9ϕ1/2[1 + ϕ−1(QT/QD)−1/2], (9)

which is in good agreement with experimental data [Fig. 9(h)]. Next, we relate the charac-
teristic QD with fluid properties and flow geometry and calculate the critical capillary number
Ca1C = η1QD/(γ12h2), which remains nearly constant, Ca1C ∼ 10–3, for the immiscible fluid pairs
[Fig. 9(h), inset]. Hence, the term QT/QD is expected to be proportional to the capillary number
Ca/Ca1C. Comparing Eq. (7) of diffusive threads to Eq. (9) of capillary threads underscores major
differences between miscible and immiscible thread behavior in microfluidic flow contactors, where
LD increases with QT for diffusive flows and LD decreases with QT for capillary flows. In both cases,
however, a similar viscous regime is recovered at larger QT due to the predominance of the role of
viscosity in confined microsystems.

D. Droplet regimes

Finally, we investigate the dynamics of droplet regimes through analysis of periodic flow patterns
of dripping and jetting droplets. Parameters of interest include droplet size d and spacing L, as
well as velocity V and frequency f of emission. The droplet size d consists in the longitudinal
length of confined droplets as this parameter controls the overall morphology of segmented flows.
In the dripping regime, previous work [42] showed that for relatively large values of γ12 at χ � 1,
measurements of normalized droplet size d/h depend on parameter α2Ca2, where the side flow
liquid fraction α2 = Q2/(Q1 + Q2) and the side flow capillary number Ca2 = η2Q2/(γ12h2). Here,
data show good agreement with previous scaling where d/h ∼ (α2Ca2)–1 for large droplets and
d/h ∼ (α2Ca2)–0.17 for smaller droplets [Fig. 10(a)]. Given the very low values of γ12 examined
in the current study, however, most droplets display small d and form in the diluted regime at low
ϕ, which corresponds to modest variation of α2 between 0.5 and 1. As a result, data points also
collapse onto a single curve as a function of Ca2, which is well fitted with a simplified scaling of
the form d/h = 0.3Ca−1/3

2 [Fig. 10(a), inset]. By similitude with the behavior of fluid pairs C6-
1, C7-1, and C8-1, where interfacial tension γ12 is determined using a tensiometer, the value of
γ12 = 0.1 mN/m for fluid pair C3-1 is deduced in agreement with scaling relationships of dripping
droplets. Experimental micrographs of a dripping droplet with evolution of both d and L are shown
in Fig. 10(b).

In the jetting regime, the droplet size is proportional to the thread diameter ε and can be estimated
using the scaling d/h = 3.1ϕ1/2 for χ varying between 12 and 47, as seen in Fig. 10(c). Overall,
the jetting regime displays a variety of flow morphologies as capillary waves propagate along the
viscous thread before rupturing into droplets. Near the threading transition, viscous tails leading
to satellite droplets are typically observed during breakup. In the case of very long tails, small
filaments can also break through jetting as seen in Figs. 10(b)(v) and 10(d)(v). As regularly emitted
droplets form steady periodic patterns, the droplet velocity quickly reaches its terminal velocity
VD, which depends on both size d and total capillary number CaT = QTη2/(h2γ12) [Fig. 10(e)].
Overall, the droplet velocity VD can be reasonably approximated with the total superficial velocity
JT = QT/h2 [Fig. 10(e), inset]. The aspect ratio of segmented flow is characterized by the droplet
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FIG. 10. Droplet regimes with dripping (open symbols) and jetting (solid symbols) patterns. (a) Evolution
of normalized dripping droplet size d/h as a function of α2Ca2. Dashed line: d/h = 2.2 × 10–3(α2Ca2)–1, solid
line: d/h = 0.5(α2Ca2)–0.17. Inset: droplet size d/h versus capillary number Ca2, solid line: d/h = 0.3Ca2

–1/3.
(b) Micrographs of dripping droplets, flow rates in μl/min, fluid pair C8-1, Q1 = 0.1, Q2 = (i) 0.2, (ii) 0.6,
(iii) 1, (iv) 10, and (v) time series of dripping tail breakup with Q1 = 0.5 and Q2 = 10. (c) Jetting droplet size
with flow rate ratio ϕ, solid line: d/h = 3.1ϕ1/2. (d) Micrographs of jetting droplets with flow rates (Q1, Q2);
(i) fluid pair C-71 (0.5, 6); (ii) (0.3, 9); (iii) fluid pair C-81 (0.8, 1); (iv) (0.5, 2); (v) fluid pair C-31 (0.5, 5),
(0.5, 7), (0.5, 10), (0.5, 16); and fluid pair C8-1 (0.3, 30) and (0.3, 35). (e) Evolution of normalized droplet
velocity VD/JT as a function of (d/h)Ca−1

T . Solid line: VD/JT = 1 + 0.5[d/(hCaT)]–1/3. Inset: droplet velocity
VD as a function of JT; solid line: VD = JT. (f) Evolution of segmented flow aspect ratio d/L with flow rate
ratio ϕ. Solid line for dripping: d/L = 2ϕ. Dashed line for jetting: d/L = 0.1 + 2ϕ. (g) Normalized emission
frequency of dripping droplet f /τ1 as a function of CaTϕ–1. Solid line: f /τ1 = 10(CaTϕ–1)1/4. (h) Normalized
emission frequency of jetting droplet f /τ1 as a function of CaTϕ–1. Solid line: f /τ1 = 102(CaTϕ–1)1/2.

size to spacing, d/L, which remains essentially proportional to the flow rate ratio ϕ since for a unit
cell λ = d + L emitted during time period T, the intrinsic mass conservation argument indicates
that d ∼ Q1T/h2 and L ∼ Q2T/h2 [Fig. 10(f)]. The period of droplet emission T can be estimated
based on frequency as T = 1/ f and together with the basic wave equation f = V/λ, one would
expect f ∼ JT/(d + L). Here, we develop a simple scaling for the frequency based on external
control parameters and normalize the frequency f with the viscous fluid injection shear rate τ1 =
Q1/h3 since in the diluted dripping regime with d ∼ h, one would expected f ∼ τ1. The normalized
frequency is shown to weakly depend on parameter CaTϕ–1 with f /τ1 ∼ (CaTϕ–1)1/4 for a dripping
droplet [Fig. 10(g)] and f /τ1 ∼ (CaTϕ–1)1/2 for jetting droplets [Fig. 10(h)]. The parameter CaTϕ–1

is found to collapse all data points for all immiscible fluid pairs investigated.

VI. CONCLUSIONS

This study provides a comprehensive examination of the role of fluid properties during the
formation of viscous fluid threads in microchannels. A series of a low molecular weight primary and
secondary alcohols is used together with a single oil to initiate capillary thread destabilizations when
fluids are immiscible and diffusive thread swelling when fluids are miscible. In the viscous regime
at relatively large flow rates, both diffusive and capillary threads display similar behavior in terms
of thread diameter ε0/h ∼ 0.7ϕ1/2 and detachment length LD0/h ∼ 1.9ϕ1/2, which yields a nearly
constant aspect ratio LD0/ε0 ∼ 2.7. At lower flow rates, however, our comparative study reveals
different thread behaviors depending on fluid molecular affinity. For miscible fluid pairs, the thread
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diameter εM is shown to swell in the diffusive regime and decreases with QT toward ε0. By contrast,
the detachment length LD grows with QT and tends to LD0. For immiscible fluid pairs, the diameter
ε remains near ε0 in the threading regime and viscous filaments display traveling varicose deforma-
tions in the jetting regime as well as enlargement due to lubrication failure resulting from dynamic
partial wetting. The behavior of the detachment length LD with immiscible fluids decreases with QT

and tends toward LD0, which is in opposite trend compared to that of miscible fluid pairs since in this
situation LD increases with QT. Therefore, our analytical approach based on direct measurement of
flow features as a function of control parameters, Q1 and Q2, clearly delineates different phenomena
between miscible and immiscible fluid pairs. The method that consists in independently examining
the influence of the relative flow rate ϕ = Q1/Q2 and the absolute flow rate QT = Q1 + Q2 on
thread behavior is particularly useful for highlighting similarities and disparities between miscible
and immiscible fluids in the absence of a specific conceptual framework. In turn, the development
of simple functional relationships based on ϕ and QT facilitates the introduction of dimensionless
numbers, such as capillary number Ca and Péclet number Pe, which are useful for conducting
similitude studies across fluid pairs and for determining interfacial tension γ12 for immiscible fluids
and diffusion coefficient D12 for miscible fluids depending on microflow regimes of viscous threads.
For miscible fluids, the winged regime presents intriguing features for large Q1 with the presence
of recirculating islands suggesting partial miscibility of our silicone oil and polar organic solvents.
The winged regime displays intermediate features between diffusive and bulging regimes. Indeed,
many thread flow regimes share common characteristics and our extended study of bulk and outer
regions of flow maps sheds light on a wealth of interrelated viscous fluid phenomena in confined
microsystems. The definition of a viscous regime in the context of microscale flows, however,
provides a useful reference for investigating other regimes, including diffusive, capillary, inertial,
and gravitational. In each regime, our study underscores the presence of numerous subregimes,
such as engulfment, threading, tubing, and bulging within the viscous regime; dripping, jetting, and
wetting in the capillary regime; and winged, ultradiffusive, or diffusive buckling in the diffusive
regime. Other regimes, such as fragmentation for miscible threads, can be found at low ϕ and
large QT, suggesting a possible role of inertia, which is beyond the scope of the present work.
Further studies, including theoretical and numerical investigations, would facilitate quantification of
complex interactions between flows and fluid physicochemical properties in microchannels. Overall,
this work shows the possibility to systematically investigate interfacial flow phenomena with viscous
fluids at ultralow interfacial tension using microchannels, which hints at the possible development
of microscale hydrodynamic methods for examining spontaneous emulsification between various
oils and polar organic solvents in confined microsystems.
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