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This paper presents a numerical study of electrohydrodynamic flow for the problem of
electroconvection in a viscoelastic dielectric liquid subjected to unipolar injection. The
nonlinear evolution of flow for diverse characteristic Weissenberg numbers is examined
in detail. The influences of elasticity on the flow pattern, oscillation amplitude, current
transfer, and power-law spectral scaling accompanying oscillatory flow are also investi-
gated. The results demonstrate that the effect of viscoelasticity leads to hydrodynamic
behaviors that are absent in Newtonian fluids. The transition sequences to the chaos of
electroconvection in viscoelastic fluids are quite different from those in Newtonian fluids,
and the elasticity precipitates the onset of chaos. An asymmetric steady flow pattern
resulting from elasticity is observed in a perfectly symmetric geometry. The fluctuation
amplitude of fluid motion is found to be suppressed for weakly elastic fluids but amplified
when the fluid elasticity exceeds a certain threshold. For viscoelastic fluids, electric current
transfer is reduced in most cases, but for weakly elastic fluid, it may be enhanced.
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I. INTRODUCTION

Electrohydrodynamics (EHD) [1,2] describes the unique flow phenomena generated by the
interaction between charged fluids and an applied electric field, which involves several disciplines,
including fluid mechanics, electrochemistry, and electrodynamics. Fluid-driving technology based
on EHD does not require traditional mechanical moving parts and permits the advantages such
as lightweight structure, simple design, and low energy consumption. In an EHD system, the
convective fluid can be a conductive liquid (an electrolyte solution of an acid, alkali, or salt) or
a dielectric liquid such as silicone oil or ethanol. EHD flows involving the former liquids include
electro-osmosis [3], which is characterized by a small scale, with the electric force acting mainly
on the electric double layer near the electrode surface, and has received extensive attention in
both academic research and engineering application. EHD phenomena involving dielectric liquids
are also the basis of numerous engineering applications, such as electrostatic precipitation [4],
electrospinning [5], EHD turbulent mixing [6], and techniques for enhancing heat [7,8] or mass [9]
transfer. In contrast to the EHD flow of conductive liquids, the EHD flow mechanism in dielectric
liquids is relatively complex, and the understanding of various related processes is still superficial.

Electroconvection [10,11] is an important subtopic within EHD. The electroconvection in di-
electric liquids subjected to unipolar injection is a paradigmatic case of Coulomb-driven convection
and is as fundamental a phenomenon in such liquids as Rayleigh-Bénard convection (RBC) is
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in nonisothermal fluid [12]. When metal electrodes are placed in a dielectric liquid with low
conductivity, electrochemical reactions may occur at the electrode-liquid interface under an electric
field, and charge will be injected into the liquid. Under the action of the Coulomb force, the charge
moves directionally and drives macroscopic flow. It is worth noting that dissociation of impurities
is another way to generate ions in a dielectric liquid. However, a large number of experiments have
shown that the ion injection is dominant compared with the dissociation process [13,14]. The flow
in electroconvection is the result of complex and nonlinear interactions between charge transport,
electric fields, and fluid motion. Experimental observation by Lacroix et al. [15] showed that the
flow structure in electroconvection has a hexagonal pattern similar to that in RBC. Experiments
[16,17] have also been conducted to evaluate the impact of the flow caused by the charge injection
on heat transfer, and the results showed that heat transfer is increased significantly (up to an order
of magnitude). For electroconvection between two plates with the charge injected homogeneously
and autonomously, the flow exhibits linear instability corresponding to the onset of fluid motion. A
series of stability analyses on electroconvection have been conducted by Atten and Lacroix [18],
Schneider and Watson [19], Zhang and colleagues [20,21], and others. The study by Atten and
Lacroix [18] confirmed the presence of a subcritical bifurcation in electroconvection characterized
by a typical hysteresis loop [22].

Numerical simulation is another approach to gain detailed exploration of this problem. At first,
the finite-difference method was adopted to solve the entire set of equations, but the false diffusion
introduced by the numerical method made the result deviate greatly from the theoretical prediction.
Subsequently, the particle-in-cell (PIC) method [23], the finite-element method combined with the
PIC method [24] or the flux-corrected transport method [24], and the discontinuous Galerkin finite-
element method [25] have been applied to numerical studies of electroconvection. Traoré et al. [12]
combined the finite-volume method (FVM) with the total variation diminishing (TVD) scheme to
solve the charge transport equation that is hyperbolic in nature. Luo et al. developed a unified lattice
Boltzmann model [26] to simulate Coulomb-driven flows and obtained a hexagonal flow pattern
[27] for the first time.

After the onset of convection, as the voltage increases further, the flow will evolve from a steady
flow to oscillatory convection and will finally enter a chaotic state after several stages of periodic or
quasiperiodic oscillations. The nonlinear process of electroconvection has a more prominent effect
on the flow motion and heat transfer characteristics than steady electroconvection. RBC in a fluid
layer heated from below is a well-known phenomenon, and the sequence of transitions from steady
laminar to chaotic flow has been widely studied as a fundamental aspect of nonlinear hydrodynamics
[28,29]. However, unlike the chaotic flow in RBC, that in electroconvection remains relatively
unexplored [30,31]. Malraison and Atten [32] found two types of power spectra behavior of the
electric current fluctuations in the viscous-dominated regime and the inertia-dominated regime.
Castellanos et al. [33] investigated the maximum Lyapunov exponent of chaotic electroconvection
for different instability parameters. Li et al. [34] identified three diverse transition routes to chaos
in electrothermal convection.

According to their rheological characteristics, fluids can be divided into two basic types: New-
tonian fluids and non-Newtonian fluids. The investigations of electroconvection mentioned above
were generally carried out for simple Newtonian fluids, and with little attention being paid to the
electroconvection in non-Newtonian fluids. Viscoelastic fluids [35,36] are a kind of non-Newtonian
fluid with both viscosity and elasticity and exhibit complex mechanical behaviors such as elastic
turbulence [37] and turbulent drag reduction [38]. To date, the nonlinear behavior of viscoelastic
flow has been extensively studied theoretically, numerically, and experimentally [39]. The nonlinear
process of electroconvection in a viscoelastic dielectric fluid will be affected by both inertial
nonlinearity and elastic nonlinearity, which will lead to intriguing physical interactions in the
flow. To the best of our knowledge, except for our previous study of the influence of elasticity
on the onset of electroconvection [40], no research on the electroconvection of viscoelastic fluids
subjected to unipolar injection has been reported. In our previous work, we focused on the types
of bifurcation that occur in a fluid flow as the fluid loses its instability from a hydrostatic state to
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FIG. 1. Schematic illustration of the EHD system.

a convective state. Three different types of bifurcations have been found: subcritical bifurcation,
supercritical bifurcation, and Hopf bifurcation. However, the transitions from stable to periodic
and then to chaotic behavior as the driving parameters increase after the onset of convection have
not been studied. In practical applications, unsteady convection and even turbulence are more
common, and many types of nonlinear behaviors need to be investigated. The influence of elasticity
on the unsteady flow behavior in electroconvection and the onset of chaos remains unexplored,
and the associated laws of evolutionary and mechanisms of induction are yet to be studied. The
effect of viscoelasticity of a fluid on heat transfer in thermal convection has also attracted much
attention [41,42]. By contrast, there has been a lack of studies of the effect of viscoelasticity on the
current transfer of EHD flows. Besides its fundamental academic interest, this topic is important for
technological applications such as enhancement of mixing or heat transfer.

In this paper, we are interested in the dynamical evolution of unsteady electroconvection in
viscoelastic fluids. We aim to investigate the effects of elasticity on flow patterns, oscillation
amplitude, and electric current transfer accompanying nonlinear oscillatory behavior, and we then
elucidate the physical mechanisms involved. The remainder of the paper is organized as follows.
The physical problem and the relevant nondimensional governing equations and parameters are
stated in Sec. II A brief introduction to the numerical method used in this paper is given in Sec. III.
Then, in Sec. IV, the codes are verified, and the results of our computations are discussed. Finally,
the conclusions are presented in Sec. V.

II. PROBLEM FORMULATION

The physical model of electroconvection in this paper is shown in Fig. 1. The dielectric liquid
is confined between two parallel electrodes of length L and with a distance of H between them.
The aspect ratio is defined as A = L/H . The potential difference V0 − V1 between the lower and
upper electrode plates remains constant, and the left and right walls are assumed to be insulated. As
far as the unipolar injection mechanism is concerned, the charge is assumed to be injected into the
dielectric liquid from the lower emitter homogeneously and autonomously. The homogeneous and
reproducible ion injection process can be achieved by covering the electrodes with ion-exchange
membranes [43]. Under the action of the electric field, the fluid will lose its stability and be put
into motion. This motion is assumed in this paper to be two dimensional, with the characters of
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self-similar rolls [23]. To monitor and track the time-varying information of the flow field, point A
with coordinates (0.25L, 0.25H) at the lower-left corner of the cavity is selected as the sampling
point.

The governing equations of electroconvection are the Navier-Stokes equations and a reduced
set of Maxwell’s equations in the electroquasistatic limit. In this paper, the fluid is assumed to
be incompressible and with constant physical properties. The typical residual conductivity of the
dielectric liquid is less than 10−11�−1 m−1, and so it is reasonable to completely ignore the
effects of magnetism and Joule heating [18]. The basic electrohydrodynamic equations can then
be expressed as [11,22]

∇ · u = 0, (1)

∂ (ρ0u)

∂t
+ ∇ · (ρ0uu) = −∇p + ∇ · τ + qE, (2)

∇2V = −q/ε, (3)

E = −∇V, (4)

∂q

∂t
+ ∇ · (qKE − D∇q + qu) = 0, (5)

where ρ0 is the density, ε is the permittivity, K is the ionic mobility, and D is the charge diffusion
coefficient. In addition, u = [u, v] is the fluid velocity vector, E = [Ex, Ey] is the electric field
vector, and τ is the extra stress tensor. The characters p, V , and q represent fluid pressure, electric
potential, and charge density, respectively.

The stress tensor τ can be decomposed into two contributions from the solvent and polymer,
respectively:

τ = τs + τp. (6)

For the solvent contribution, the Newtonian law holds, and so

τs = ηs[∇u+(∇u)T ], (7)

where ηs is the solvent viscosity.
To describe the dynamics of the viscoelastic fluid, we adopt the well-known Oldroyd-B model,

for which the constitutive equation is [44]

τp + λ τ∇
p = ηp[∇u + (∇u)T ], (8)

where ηp is the viscosity of the viscoelastic solution, and λ is the relaxation time. τ∇
p represents the

upper-convected time derivative [44]

τ∇
p = ∂τp

∂t
+ ∇ · (uτp) − ∇(u)T · τp − τp · ∇u. (9)

To facilitate the numerical solution, we rewrite the Oldroyd-B constitutive equation in terms of
the conformation tensor C, and then

τp = ηp

λ
(C − I), (10)

where I is the identity matrix. The general transport equation for the conformation tensor C is

∂C
∂t

+ u · ∇C = C · ∇u + C · ∇uT − C − I
λ

. (11)
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The physical variables can be nondimensionalized by introducing the following scalings:

(x∗, y∗) = (x, y)

H
, t∗ = t

H/u0
, u∗ = u

u0
, q∗ = q

q0
, V ∗ = V

(V0 − V1)
,

E∗ = E
(V0 − V1)/H

, p∗ = p

ρ0u2
0

. (12)

The governing equations are now written in dimensionless form as [11,40]

∇ · u = 0, (13)

∂u
∂t

+ u · ∇u = −∇p + β

T/M2
∇2u + 1 − β

Wi · T/M2
∇ · C + CM2qE, (14)

∇2V = −Cq, (15)

E = −∇φ, (16)

∂q

∂t
+ ∇ · (q(u + E) − α∇q) = 0, (17)

∂C
∂t

+ u · ∇C = C · ∇u + C · ∇uT − 1

Wi
· [C − I]. (18)

Six dimensionless parameters relevant to this problem appear in the above equations:

T = ε(V0 − V1)

ηK
, C = q0H2

ε(V0 − V1)
, M = 1

K

(
ε

ρ

)1/2

,

α = D

K (V0 − V1)
, Wi = λu0

H
, β = ηs

η
= ηs

ηs + ηp
. (19)

Here, the electric Rayleigh number T is the ratio of the destabilizing Coulomb force to the
stabilizing viscous force. C represents the charge injection strength. M is the ratio of the so-called
hydrodynamic mobility of the ionic mobility to the actual ionic mobility, which represents the
natures of the fluid and ion. M is greater than 3 for most situations [43]. α is the nondimensional
charge diffusion number and is typically in the range of 10–4 to 10–3 [45]. Pérez and Castellanos
[45] pointed out that the parameter C/α1/2 provides a measure of the relative importance of
both mechanisms in the sense that diffusion becomes dominant for small values of C/α1/2 but is
negligible in the limit C/α1/2 → ∞. In this paper, we choose the strong injection regimes (C = 10).
Charge is mainly transported by fluid flow and the drift mechanism driven by the electric field, and
the contribution of charge diffusion is extremely small compared with the migration term due to the
electric field. Therefore, as in Refs. [8,11,46,47], the influence of charge diffusion is ignored in this
paper. Wi is the Weissenberg number representing the ratio of the relaxation time of the viscoelastic
fluid to the timescale of the flow. The retardation ratio β is the ratio of the solvent viscosity to the
total viscosity η. In this paper, the typical values C = 10, M = 10, and β = 0.8 which are widely
adopted in the literature, are held fixed unless otherwise specified.

In the EHD experiments by Malraison and Atten [32], it was found that each convective cell’s
basic oscillatory mechanism plays a vital effect in the form that the chaotic motion takes, and no
difference with aspect ratio A has been found. Castellanos et al. [33] also agreed that the dynamics
inside each cell essentially determine the chaotic fluid motion. The half wavelength of the most
unstable model is equal to 0.614 for strong injection (C = 10) [48], and in our previous study
[40], we found that the value does not change in a viscoelastic fluid when Wi does not exceed 0.5.
Therefore, aiming to keep consistent with earlier studies [11,47] of the transition route to the chaos
of electroconvection, we fix the aspect ratio A = 0.614 and apply symmetrical boundary conditions
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at the lateral boundaries. For the initial condition, a rest state with zero field for all variables is used
in our calculation. For the boundary conditions, the conformation tensor components are linearly
extrapolated to the rigid walls and are applied with the zero-gradient condition at the symmetrical
boundary. The other nondimensional boundary conditions are as follows:

at the bottom emitter: u = v = 0, V = 1, and q = 1;
at the top collector: u = v = 0, V = 0, and dq/dy = 0;
at the lateral boundaries: u = 0, dV/dx = 0, dq/dx = 0, v = 0 (free walls).

III. NUMERICAL METHODS

The FVM is exploited to discretize the differential equations presented in the previous section.
To avoid pressure-velocity and stress-velocity decoupling, a staggered grid system with the velocity
located at the cell faces and the other variables cell centered is adopted. As the fluid is assumed
to be incompressible, the coupled equations are solved with the SIMPLER (semi-implicit method
for pressure-linked equations revised) algorithm. For the time integration of all variables, a second-
order semi-implicit three-time levels scheme is adopted. The central differencing scheme is used to
discretize the diffusive term in the Navier-Stokes equations.

The conformation transport equation and the charge transport equation neglecting the diffusion
term are typical hyperbolic equations, and so special attention must be paid. To prevent spurious
numerical oscillations and preserve sharp gradients and a bounded solution, the TVD scheme [49]
is recommended for discretization of the convective term of the charge transport equation. For a
control volume, the charge across the cell interface k is evaluated as

qk = qC + 1
2 (qD − qC )ψ (rk ), (20)

where rk = (qC − qU )/(qD − qC ) is the smoothness indicator. The subscripts C, U , and D represent
the central, upwind, and downwind control volumes related to interface k. The SMART scheme [50]
for which the flux limiter ψ (rk ) = max(0, min(2rk, 0.75rk + 0.25, 4)) is adopted.

Fk = ṁqC + ṁ

2
(qD − qC )ψ (rk ). (21)

When Wi increases to a certain value, the growth of the conformation tensor becomes exponen-
tial. Directly solving the conformation transport equation will then increase the error and easily lead
to numerical instabilities, in what is called the high Weissenberg number problem (HWNP) [51]. At
present, one of the most effective methods to solve HWNP is the log-conformation representation
developed by Fattal and Kupferman [52,53]. This representation cannot only maintain the symmetry
and positive definiteness of the conformation tensor, but also reduce the calculation error at high Wi.
The solution procedure is as follows.

Assuming that u is a divergence-free velocity field and C is a symmetric positive-definite tensor
field, the velocity gradient ∇u can be decomposed as follows:

∇u = �+B + NC−1, (22)

where � is a pure rotational antisymmetric tensor, B is a pure extension symmetric tensor, and N
is a pure rotational tensor (the antisymmetric tensor of the conformation tensor). Substitution of
Eq. (22) into Eq. (18) then gives

∂C
∂t

+ u · ∇C−(� · C − C · �) − 2B · C = 1

Wi
· [I − C]. (23)

As the conformation tensor C is symmetric and positive definite, it can be decomposed as
follows:

C = D�DT, (24)
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TABLE I. The maximum vertical velocity and the electric Nusselt number for various values of M for
T = 190.

M 3 5 10 20 50 100

Vmax (Present) 3.149 3.515 3.745 3.810 3.819 3.820
Vmax (Wu et al.) 3.146 3.520 3.755 3.807 3.822 3.823
Ne (Present) 1.494 1.499 1.536 1.545 1.550 1.551
Ne (Wu et al.) 1.492 1.497 1.535 1.548 1.552 1.552

where D is the matrix composed of the eigenvectors of C, and � is the diagonal matrix composed
of the eigenvalues of C. The logarithmic form of C is ψ = logC = D log(�)DT. Equation (23) can
then be transformed into

∂ψ

∂t
+ u · ∇ψ−(� · ψ − ψ · �) − 2B = D · [�−1 − I]

Wi
· DT . (25)

Finally, the task of solving the conformation transport equation is transformed into the task of
solving Eq. (25). It can be seen that the product B · C reflecting the growth of C in Eq. (18) is
converted into the algebraic sum form of B in Eq. (25), which effectively reduces the numerical
error. Simultaneously, the above process can ensure the positive definiteness and symmetry of C
and enhance computational stability. Owing to its improved convergence properties, the Convergent
and Universally Bounded Interpolation Scheme for the Treatment of Advection (CUBISTA) [54] is
always adopted in the study of viscoelastic flows, and is adopted here to discretize the convective
terms in Eq. (25) and the Navier-Stokes equations.

IV. RESULTS AND DISCUSSION

The time series of the maximum velocity Vmax is utilized to analyze the bifurcation of the solution.
Similar to the Nusselt number in thermal convection, the electric Nusselt number Ne that represents
the electric current intensity in electroconvection will also be output. Ne is defined as [11,55]

Ne = Ie

I0
,

where I0 denotes the conductive current when there is no fluid motion, and Ie = ∫
y=constant

1
C

∂Ey

∂t +
q(Uy + Ey)dx denotes the total current in the nondimensional form. In this paper, three main regimes
with Wi = 0.05, 0.2, and 0.5 are considered, which correspond to weakly, moderately, and strongly
elastic fluids, respectively.

A. Model verification

The electroconvection in a liquid layer is in a steady conduction state when the value of T is
relatively low. As T increases, the steady conduction loses its stability and stationary convection sets
in. This instability of the conduction state is called the first instability. Table I gives the maximum
vertical velocity Vmax and electric Nusselt number of the steady-state convection corresponding to
different values of M when T = 190, together with the results of Wu et al. [56]. It can be seen that
there is good agreement between the two sets of results.

Periodic oscillatory convection emerges later following the first instability. Figure 2 shows the
phase portraits at the fixed point A and the power spectra densities of the maximum velocity for T =
230 and 277. When T = 230, it can be seen that the flow motion is typically periodic. The phase
diagram is a closed loop. The power spectrum corresponds to a fundamental frequency f = 0.687
and its harmonic frequencies 2 f , 3 f , etc. The amplitude of the fundamental frequency is much larger
than those of the higher harmonics. When T = 277, a subharmonic frequency appears, accompanied
by the fundamental frequency ( f1 = 0.719), which indicates that the flow is quasiperiodic. With the
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FIG. 2. Oscillating state in a Newton fluid for (a) T = 230 and (b) T = 277. The left panels are the phase
portraits of (u, v) at the point A, and the right panels are plots of the PSD with a logarithmic vertical scale.

same parameters, the fundamental frequency obtained by Wang et al. [47] through FVM is 0.692 and
0.724 for T = 230 and 277, respectively. It can be see that the present results are in good agreement
with the previous reference.

In the experiments by Lacroix et al. [15], a scaling law Ne ∼ M1/2 was obtained when the inertial
terms were dominant. To investigate this relationship numerically, a large T = 20 000 is chosen so
that the inertial terms are dominant in the range of M under consideration. To obtain the time-
average Ne, we average Ne over long periods of time. Figure 3 shows the variation in electric
Nusselt number as a function of M1/2. It can be seen that Ne varies nearly linearly with M1/2,
which is in agreement with the experimental findings. However, it is worth noting that because the
experiment is three dimensional, the slope of the linear relationship will not be the same in the
two-dimensional simulation, which is easy to understand.

In addition, the codes in this paper have been verified by the hydrostatic solution of electrocon-
vection and the lid-driven cavity flow of viscoelastic liquids. These verifications were presented in
our previous paper [40], where good agreement was observed. Thus, all these results suggest that
our codes can accurately simulate the problem considered in the present paper.

B. Weakly elastic fluids

The weakly elastic effect with Wi = 0.05 is first chosen to investigate the interplay between
elasticity and fluid motion in electroconvection. By increasing T , we want to examine which of
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FIG. 3. Variation of the electrical Nusselt number Ne with M1/2.

the further instability can be found. For a Newtonian fluid or a viscoelastic fluid with weak elastic
effect, the flow varies from a hydrostatic state to a stable one-cell asymmetric steady state when T
is slightly above the value for onset of instability. With increasing T , a Hopf bifurcation occurs, and
the flow develops into oscillating motion but still with only one cell. With further increase in T , the
flow turns into a two-cell symmetric steady state. Here, we choose the solution with T = 600 and
Wi = 0.05 as an example, and the corresponding charge distribution and streamlines are shown in
Fig. 4. For electroconvection in a Newtonian fluid, periodic oscillatory convection emerges later,
after the two-cell symmetric steady state, and then a quasiperiodic route to chaos is established
[11,47]. However, in a viscoelastic fluid, the evolution of the flow motion is quite different. A
sequence of maximum velocity records, phase portrait, and corresponding power spectral densities
as T increases for Wi = 0.05 are shown in Fig. 5.

FIG. 4. Charge density isocontours (a) and streamlines (b) for T = 600 and Wi = 0.05.
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FIG. 5. Maximum velocity records (left panels), phase portraits of (u, v) at point A (middle panels), and
power spectral densities (right panels) for Wi = 0.05 showing the sequence of instabilities from steady to
nonperiodic flow: (a) T = 600, two-cell symmetric steady flow; (b) T = 750, periodic state; (c) T = 800,
quasiperiodic state; (d) T = 900, nonperiodic state.
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For T = 600, the disturbance of the flow field accumulates slowly in the initial stage [as shown
in Fig. 5(a)]. When the disturbance has accumulated to a certain extent, the flow field goes through
a stage of rapid development and reaches the first convection state of the one-cell structure. In
this state, the flow field is potentially unstable. After a period of transition, it eventually becomes
another steady state. This process can also be seen in the phase portrait, which regresses to a single
limit point [red point in Fig. 5(a)]. The flow field in the final steady state is characterized by two
symmetrical vortex structures and an apparently charge-free region. The onset of periodic oscillation
for a two-cell structure is between T = 480 and 485 [57] for a Newtonian fluid. It is found that at
a low Weissenberg number, the elastic effect delays the bifurcation from a two-cell steady flow to
a periodic flow. This phenomenon will be discussed in detail in Sec. IV E. When the value of T
is increased, the flow undergoes a Hopf bifurcation, as shown in Fig. 5(b). The sizes of the two
convection cells fluctuate, which results in one larger cell and one smaller cell. The power spectrum
shows a fundamental frequency with harmonics at integral multiples of the fundamental frequency.
When T increases to 800, as shown in Fig. 5(c), although the velocity time series also oscillates,
there is no obvious period. There is no longer a single closed-loop trajectory in the phase diagram,
but instead many nonoverlapping trajectories on a torus, and two fundamental frequencies appear in
the power spectrum at this time. Within the allowable range of standard error, the frequencies at all
peaks can be identified as linear combinations of two basic fundamental frequencies, indicating that
the flow is in a quasiperiodic state at this time. The onset of the subharmonic frequency might be
explained by a secondary time-dependent instability of the oscillating flow [58]. When T increases
to 900, as shown in Fig. 5(d), the velocity records become complicated and irregular. The trajectories
in the phase diagram are also twisted into a ball, and the power spectrum shows obvious broadband
characteristics. In the case of unsteady flow with a broadband spectrum, the power spectrum cannot
be used to determine whether the system is random or deterministic, because the many fundamental
frequencies of the quasiperiodic state may lead to a misleading judgment of the flow as being
chaotic. To further quantify the time dependence of the flow, calculations of the fractal dimension
and Lyapunov exponent are necessary.

In fact, this strange behavior of the flow can be described by calculating the fractal dimension of
the related strange attractor. Therefore, we introduce a method for calculating the fractal dimension,
namely, the correlation dimension [59], which is defined as

dC = lim
r→0

ln (Cp(r))

ln r
, (26)

where Cp(r) is the number of data pairs for which the distance between two points in phase space is
less than r, divided by N2, and is given by

Cp(r) = lim
N→∞

1

N2

N∑
i, j=1
i �= j

h(r − |−→Xi − −→
Xj |), (27)

where h is the Heaviside function,
−→
Xi and

−→
Xj are a pair of data points in the p-dimensional phase

space, and N is the total number of data points. As the phase-space dimension p increases, the slope
of the linear part of the relationship between ln C(r) and log r becomes independent of p (except for
white noise), and the slope is the value of the fractal dimension. For periodic flow, the slope is close
to 1, for two-frequency quasiperiodic flow, it is close to 2, and for deterministic chaos, it is close to
k, where k is a real number greater than 2 [60].

Another technique to further quantify the strangeness or chaos of strange attractors is calculation
of Lyapunov exponents. It is generally believed that a strange attractor has at least one positive
Lyapunov exponent, which represents the exponential divergence of two adjacent trajectories. Since
the attractor is bounded, this exponential divergence means that a systematic folding process of
fractal dimension usually occurs. Grassberger and Procaccia [61] pointed out that the lower bound
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FIG. 6. Chaos judgment for T = 900 and Wi = 0.05: (a) fractal dimension computation; (b) lower bounds
of the sums of positive Lyapunov exponents.

of the sum of positive Lyapunov exponents can be determined by the following formula:

K2 = lim
p→∞
r→0

1

τ
ln

Cp(r)

Cp+1(r)
= lim

p→∞
r→0

Kp(r). (28)

Figure 6(a) shows the calculation of the fractal dimension when T = 900. It can be seen that as
the phase-space dimension p increases, the slope of the linear part of the curve continues to increase
until p � 6. The corresponding fractal dimension is dc = 3.05 which is greater than 2. Looking at
the variation of the lower bound Kp(r) of the positive Lyapunov exponent as shown in Fig. 6(b), it
can be seen that Kp(r) remains greater than zero as p increases, indicating that at least one Lyapunov
exponent is greater than zero. From the above analysis, it can be judged that the flow corresponding
to T = 900 is indeed chaotic. However, the oscillation is quasiperiodic for the electroconvection in
a Newtonian fluid under the same working conditions. Thus, it is also worth noting that the onset
of chaotic behavior for a viscoelastic fluid with Wi = 0.05 occurs at a value of T lower than that
corresponding to a Newtonian fluid. In the following study, all chaotic oscillations are determined
by the fractal dimension and Lyapunov exponent.

We now examine the flow when T exceeds 900, and the results are shown in Fig. 7. Interestingly,
with the increase of T from 900 to 950, the degree of chaos does not directly increase but the flow
turns into a quasiperiodic oscillation again. For T = 950, the fundamental frequency is evident in
Fig. 7(a), which is distinctly different from the broadband noise in Fig. 5(d) that typically charac-
terizes chaotic behavior. Multiple linear combinations of f1 and f2 illustrate the strong nonlinearity
of this process. As T is further increased to 1100, as shown in Fig. 7(b), the subharmonic frequency
disappears, and the flow turns into a periodic state. Then the limit cycle loses its stability when
T = 1200, and the flow turns into a quasiperiodic state, as shown in Fig. 7(c). At a still higher
electric Rayleigh number of T = 1300, the spectrum becomes disordered, and chaotic fluctuations
reappear [as shown in Fig. 7(d)].

When compared with the results for a Newtonian fluid, it can be seen that there is an additional
periodic regime between the chaotic regime (between T = 900 and 1300) for electroconvection in
a viscoelastic fluid with a low Weissenberg number.

C. Moderately elastic fluids

In this subsection, the value of Wi is set equal to 0.2. When T is gradually increased above the
critical value for the onset of convection, the phenomenon in the initial stage is similar to that for
Wi = 0.05, and so the results will not described again there. However, after the two-cell symmetric
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FIG. 7. Phase portraits of (u, v) at point A (left panels) and power spectra density (right panels) for Wi =
0.05: (a) T = 950, quasiperiodic state; (b) T = 1100, periodic state; (c) T = 1200, quasiperiodic state; (d)
T = 1300, nonperiodic state.
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FIG. 8. Time evolution of the maximum velocity for T = 650 and Wi = 0.2. The insets show the charge
density distribution, streamlines, and first principal normal stress difference in the final steady state.

state becomes unstable through a Hopf bifurcation, and with increasing T , it is interesting that the
flow bifurcates into a steady structure with four cells. This phenomenon occurs when T = 650. The
time evolution of the maximum velocity for T = 650 is displayed in Fig. 8 and shows that the flow
finally reaches a steady convective state. In addition, a four-cell asymmetric steady flow structure
can be seen from the inset.

To explain the appearance of the four-cell structure, we need to introduce the definition of the
first principal normal stress difference Np which is defined as [41]

NP = T̃1 − T̃2, (29)

where T̃1 is the eigenvalue of the first principal axis of the tensor T = 1
Wi (C − I), and T̃2 is the

eigenvalue with eigenvector perpendicular to the first eigenvector. The Np distribution corresponding
to T = 650 is shown in the inset of Fig. 8. It can be seen that the large values of Np are distributed
between adjacent convection cells. Dubief and Terrapon [41] pointed out that Np in plumes will
push adjacent convection cells apart, thereby splitting the cell. This phenomenon leads to the fact
that the horizontal length of the convection cell is shorter than that of the Newtonian flow. Therefore,
a flow pattern with two cells will bifurcate into four cells for suitable values of Wi. The asymmetric
steady state of a viscoelastic fluid’s in a perfectly symmetric geometry has also been reported in
experiments [62] and numerical simulations [63] for flow at the “cross-slot” geometry. Arratia
et al. [62] hypothesized that stretching of polymer molecules near the hyperbolic point might cause
this phenomenon. By contrast, Poole et al. [63] suggested that the asymmetry results from the
compressive nature of the flow upstream of the stagnation point rather than the high elongational
stresses in the flow downstream of the stagnation point. Similar to RBC with polymer additives
[41], large Np regions seem to be mainly confined to the extensional flow region near the stagnation
point, in which the electric plume lifts off from the lower electrode plate. In the root region of the
electric plume from its inception, the flow is primarily extensional. It can also be seen from the inset
in Fig. 8 that the distribution of Np deviates more from the center of the computational domain near
the stagnation point, while it still seems to be close to left-right symmetry in other regions. Thus,
we predict that high elongational stress in the flow downstream of the stagnation point results in the
asymmetric flow pattern in this paper, similar to that in Ref. [59].
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FIG. 9. Maximum velocity records (left panels) and power spectra density (right panels) for Wi = 0.2: (a)
T = 700, periodic state; (b) T = 705, quasiperiodic state; (c) T = 710, nonperiodic state.

The sequence of instabilities after the asymmetric pattern is shown in Fig. 9. With an increase of
T to 700, the flow with four asymmetric cells will undergo a Hopf bifurcation and evolve into an
oscillatory flow. Figure 9(a) shows that the velocity oscillates periodically, although the amplitude
of oscillation is tiny. With an increase of T to 705, as shown in Fig. 9(b), the oscillation amplitude
increases, and the flow becomes quasi-periodic. Above this T value, as shown in Fig. 9(c), the noise
grows rapidly. The spectra at T = 710 are almost featureless, and the underlying basic flow is hardly
distinguishable, which indicate that the flow develops into chaos.

D. Strongly elastic fluids

We now examine the solutions when the Weissenberg number is equal to 0.5. After the onset
of convection, the flow evolves from a one-cell steady state to a periodic oscillation state as T
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FIG. 10. Maximum velocity records for Wi = 0.5 at T = 200, 250, 275, and 287.5.

is gradually increased. Figure 10 shows the time evolution of the maximum velocity for different
values of T . The oscillation behavior gets more and more complicated with increasing T , and there is
a bifurcation from a periodic structure (T = 200, 250, and 275) to a quasiperiodic one (T = 287.5).
However, for the current Wi value, a stable two-cell structure cannot be obtained, which is quite
different from the cases of weakly elastic and moderately elastic fluids.

As T is further increased, the flow bifurcates into chaos, as shown in Fig. 11 at T = 295.
Although the power spectrum has obvious peaks, the corresponding fractal dimension is 2.62. As
T is increased to T = 305, the oscillation evolves from chaotic to periodic. It can be seen that after
an initial transient of highly erratic fluctuations, the flow converges to a periodic solution, and as
T continues to increase, the early chaotic evolution process becomes shorter (e.g., at T = 330).
Chimanski et al. [64] pointed out that the nonattractive chaotic set of the chaotic saddle is the cause
of such chaotic transients.

FIG. 11. Maximum velocity records for Wi = 0.5 at T = 295, T = 305, and T = 330.
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FIG. 12. Maximum velocity records (left panels) and power spectra density (right panels) for Wi = 0.5:
(a) T = 350, quasiperiodic state; (b) T = 360, nonperiodic state.

After the periodic oscillation regime, the system bifurcates into a period-8 flow. The power
spectrum near the onset of the bifurcation (T = 350) is shown in Fig. 12(a). Although the fluctuation
in Vmax is quite complicated, all the peaks in the power spectrum are at f1/8 and its multiples. At a
still higher electric Rayleigh numbers of T = 360, as shown in Fig. 12(b), chaotic flow reappears.

E. Comprehensive comparison

A comprehensive comparison of the above results shows that the greater the value of Wi,
the earlier the system enters chaotic state. The examination of the influence of elasticity on the
oscillations of the two-cell flow in this paper indicates that the onset of these oscillations may
be delayed or advanced. To analyze this phenomenon, Fig. 13 provides some insight into the
evolution of maximum velocity as a function of time for different Weissenberg numbers. For the
case with T = 600, as shown in Fig. 13(a), the electroconvection of a Newtonian fluid exhibits
periodic oscillation. However, the flow is steady when the fluid is replaced by a viscoelastic fluid
with Wi = 0.05. When Wi is increased to 0.2, the flow becomes periodic again. In addition, with
increasing Wi, the oscillation amplitude of the maximum velocity first decreases and then increases.
For T = 1000, as shown in Fig. 13(b), the effect of elasticity on the fluctuation amplitude is
analogous to this phenomenon. It can be inferred that weak elasticity can suppress the oscillation
amplitude of electroconvection, whereas strong elasticity plays a counterproductive role. To explain
this, we introduce the fluid kinetic energy, defined as Ek = 1

2

∫
�

(u2 + v2)dV . For T = 600, the
time-averaged values of Ek for a Newtonian fluid and for viscoelastic fluids with Wi = 0.05 or
0.2 are 1.91, 1.88, and 1.06, respectively, while for T = 1000, the corresponding values of Ek are
3.25, 2.82, and 0.89, respectively. Similar to the polymer drag reduction, in which polymers apply
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FIG. 13. Influence of the viscoelastic effect on oscillation: (a) T = 600; (b) T = 1000.

a negative torque to the motion [41,65], the polymer slows down the circulation in the convection
cell. Therefore, oscillation is suppressed for weakly elastic fluids. However, when the elasticity
reaches a certain level, the polymer stress exhibits steep gradients in the velocity field. Even without
inertia, the flow in a viscoelastic fluid can still spontaneously show a time dependence when elastic
stresses overcome viscous stresses. Therefore, it is easy to understand that the elasticity amplifies
the oscillation. In view of this phenomenon, by selecting an appropriate viscoelastic fluid, it should
be possible to improve the stability of the system as required. Besides, the flow of electroconvection
is strongly perturbed for values of the elasticity, and this may be utilized to produce mixing.

The influence of elasticity on heat transfer has been examined extensively in recent years. The
electric Nusselt number characterizes the current intensity of electroconvection, somewhat similarly
to the Nusselt number in thermal convection. To figure out how elasticity influences the electric
current in the bulk flow of electroconvection, a series of numerical simulations are carried out,
with results shown in Fig. 14. For the oscillating flows obtained in this paper, we take the average
value of Ne over a long period of time. In a pure Newtonian fluid, electroconvection undergoes a

FIG. 14. Evolution of the electric Nusselt number with T for different values of viscoelastic parameters.
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FIG. 15. Log-log plots of the power spectral density of electric Nusselt number fluctuations for T = 1500:
(a) Newtonian fluid; (b) Wi = 0.05; (c) Wi = 0.2; (d) Wi = 0.5.

transition from a viscous to an inertial regime as T increases. It can be seen that Ne first increases
and then decreases slightly as T increases, which is qualitatively consistent with the results of
Traoré et al. [11] for different values of M. In the case of electroconvection in a viscoelastic fluid,
elasticity plays a crucial role in addition to those of viscosity and inertia. Therefore, compared with
a Newtonian fluid, the electroconvection in a viscoelastic fluid presents a more complex process,
as can be observed in the curves of Ne vs T . In particular, elastic stresses tend to increase with
the shear rate. Therefore, one should expect the effect of fluid elasticity to become more significant
in the chaotic regime. Figure 14 highlights the vital role of the value of Wi in the electric current
transfer. In a viscoelastic fluid with low Wi, the electric Nusselt number is higher than that of
the corresponding Newtonian fluid when T is below 700. As T increases, the corresponding flow
develops towards chaos (as shown in Fig. 5), and Ne decreases. After that, the flow changes from
chaotic to periodic, and the corresponding Ne increases and again exceeds the corresponding value
for a Newtonian fluid. Finally, Ne is reduced remarkably to a value lower than the corresponding
value for Newtonian fluid in the process in which the flow eventually turns into chaotic. For higher
Weissenberg numbers (Wi = 0.2 and 0.5), the results suggest that elasticity inhibits electric current
transfer. For Wi = 0.5, the flows in the range of T values considered in Fig. 14 are all chaotic. The
Coulomb force, as a convection-driven force, gradually becomes stronger with increasing T , which
results in a more violent fluid motion. Computation of the fractal dimension computation shows
that the degree of chaos does not increase very much in this process. Then, Ne naturally increases
until saturation. However, for Wi = 0.2, a bifurcation from two cells to four cells is involved, which
leads to a decrease in the maximum velocity of the flow. Thus, the curve of Ne vs T shows a sudden
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reduction. It can be concluded that the transfer of electric current depends strongly on Wi and the
flow state. Because viscoelasticity suppresses oscillation within a certain range, there is less energy
loss from the system, and this contributes to enhancement of current transfer. When oscillatory
vortex flows develop and become chaotic, flow resistance increases [66], and the electric Nusselt
number then decreases compared with that of a Newtonian fluid. The reason is consistent with the
results for the effect of the elasticity on oscillation shown in Fig. 11.

The experimental study of Malraison et al. [32] showed that in the inertially dominated regime,
the power spectral density (PSD) of current oscillation in the high-frequency region decays with
frequency, according to an asymptotic negative power law, PSD ∝ f –a, where the exponent a =
7 ± 1. To investigate the effect of elasticity on a, the chaotic solutions are analyzed. The cases with
T = 1500 are selected as being representative, and the log-log plots of the power spectral density
of electric Nusselt number fluctuations for different viscoelastic parameters are shown in Fig. 15. A
broad continuum range of frequencies with power-law spectral scaling behavior is visible. For the
Newtonian fluid, we obtain a = 7.07 which is in the range found by Malraison’s experiment [32].
For the viscoelastic fluid with Wi = 0.05, the exponent a = 7.96. When Wi is increased to 0.2 and
0.5, the corresponding a values are 5.64 and 5.77, respectively. Although the different exponents a
found here suggest that elasticity may modify the statistical properties of the current fluctuations,
the deviation from the lower bound of a value obtained in the experiment is small. We have also
tested the solutions corresponding to other larger values of T and have observed similar phenomena.
Within the range of Wi values considered, the viscoelasticity effect has a small effect on the range
of a value. Because the value of T corresponding to the inertial regime is rather high, and the
term 1−β

Wi·T/M2 ∇ · C on the right-hand side of the Navier-Stokes equation [Eq. (14)] is divided by T ,
which makes it plays a minor role compared to the Coulomb term qE. Therefore, the values of a
corresponding to different values of Wi do not deviate too much from the range of experimental
results for Newtonian fluids.

V. CONCLUSIONS

In this paper, the bifurcation sequences of transitions leading to chaos of electroconvection sub-
jected to unipolar injection in viscoelastic fluids have been investigated numerically. The influence
of fluid elasticity on the flow has been examined for Weissenberg numbers in three main regimes.
The chaotic behavior of oscillatory convection has been confirmed through calculations of fractal
dimension and Lyapunov exponents. In addition, variations in flow pattern, oscillation amplitude,
and current transfer generated by the unique oscillation behavior have been investigated.

The major conclusions to emerge from the study are that the transition sequence of electrocon-
vection has distinctive features for different levels of elasticity. In the viscoelastic fluid, the value
of the driving parameter (i.e., the electric Rayleigh number) corresponding to the onset of chaos is
lower than that in the Newtonian fluid. To be more specific, the stronger the elastic effect, the earlier
the chaotic behavior sets in. For both weakly elastic fluid and strongly elastic fluids, after the onset
of chaos, as the electric Rayleigh number is increased further, there is a flow transition to periodic
oscillatory convection and then a transition to chaos again. For a moderately elastic fluid, however,
the flow undergoes a transition from two-cell oscillatory convection to a steady four-cell structure
before entering chaos. Moreover, for a moderately elastic fluid, a symmetry-breaking phenomenon
due to elasticity is predicted numerically for the perfectly symmetric geometry studied. We have
also demonstrated that the introduction of polymers with low Weissenberg number can suppress the
oscillatory fluctuations of electroconvection, whereas strong elasticity plays a counterproductive
role. Moreover, elasticity may enhance the electric current transfer in a weakly elastic fluid for
a certain range of driving parameters, but make this transfer poorer for most other cases. In
addition, the power spectral density of the electric Nusselt number oscillation in the high-frequency
region with frequency according to an asymptotic negative power law under high values of driving
parameters, and the exponents of the power law for viscoelastic fluids do not deviate very much
from the range of experimental results for Newtonian fluids.
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In summary, the electroconvection in viscoelastic fluid exhibits a rich variety of hydrodynamic
behaviors in the transition to chaos and differs greatly in this respect from that in Newtonian
fluids. The research reported here can provide a reference for applications of electroconvection,
such as enhancement of mixing and heat transfer. More detailed studies are ongoing, and future
work includes experimental investigation of the origins of instability and expansion flows in three
dimensions, where we expect there to be an even wider range of flow behaviors.
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