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The coalescence of two nanobubbles (NBs) in water is a process of great importance
to many industrial applications. In this work, we study the coalescence of two equal-sized
nitrogen NBs in water using molecular dynamics (MD) simulations and continuum-based
theoretical analysis. We vary the NB diameter from 30 to 50 nm and study the coalescence
characteristics including the expansion speed of the capillary bridge between two coalesc-
ing NBs, the dynamic regime of NB coalescence, the diameter of fully merged NBs, and
the temperature variation of NBs during the coalescence process. For all cases, we show
the MD simulation results can be well understood by the theoretical models developed in
this work. Due to the large Laplace pressure in the model NBs, the diameter ratio of fully
merged NBs to their daughter NBs is

√
2, which explains the recent experimental result

showing that the size of NBs in water is distributed discretely with a uniform increment
factor of

√
2 [Ma et al., J. Phys. Chem. B 124, 5067 (2020)]. The expansion of gas inside

the coalescing NBs and the heat transfer between the gas NB and surrounding liquid leads
to fluctuations of gas temperature during coalescence. From the theoretical analysis, we
find the coalescence dynamics of NBs is in the crossover regime where neither viscous
stress nor inertial stress in the surrounding liquid dominates even when the viscous stress
is more than ten times higher than inertial stress. In the range of Ohnesorge number from
0.33 to 0.82, we show the scaling exponent for the capillary bridge radius vs time at late
times of NB coalescence is around 0.75 ± 0.05, which is considerably higher than 0.5 in
the viscous-dominated regime.

DOI: 10.1103/PhysRevFluids.6.093604

I. INTRODUCTION

Nanobubbles (NBs) are gas-filled cavities in liquids with diameters smaller than 1 μm. When the
bubble size is less than 1 μm, the buoyancy effect on bubbles is insignificant compared to Brownian
motion. As a result, NBs are remarkably stable compared to macrobubbles, and have been observed
to remain suspended in liquids for as long as several days [1]. Due to their unique properties, NBs are
extremely useful in a broad range of applications, such as froth flotation of fine or ultrafine mineral
particles [2–6], wastewater treatment [7–10], detergent-free cleaning of clothes [11], and deinking
of recycled paper [12]. The coalescence of two NBs is a process of great importance to many of
these applications [13]. Therefore, a fundamental understanding of coalescence characteristics of
NBs is required for efficient use of NBs in various industrial applications.

Despite the importance of NB coalescence in many applications, the characteristics of NB
coalescence processes are not fully understood. This is mainly due to lack of experimental tools
that can image the nanosecond-timescale coalescence dynamics of NBs with nanoscale spatial
resolution. As a result, most experimental studies on characteristics of bubble coalescence focus
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on the coalescence dynamics of millibubbles and microbubbles [14–18]. It is not clear if the
coalescence characteristics of NBs are similar to those of millibubbles and microbubbles. Recently,
Ma et al. generated monodispersed bulk NBs in water by pushing gas through a porous alumina
membrane with almost uniform pore diameters [19]. Using nanoparticle tracking analysis, Ma et al.
measured the size distribution of NBs hours and days after gas injection and found the size of bulk
NBs is distributed discretely with a uniform increment factor of

√
2 [19]. This result implies that

the diameter ratio of a fully merged NB to that of the original NB is
√

2, which is different from
the 3

√
2 ratio that is often found in the coalescence of microbubbles or millibubbles [14]. Our recent

molecular dynamics (MD) simulations in a monatomic fluid system also verifies the size ratio of
√

2
for the coalescence of NBs [13]. This is an example showing that the coalescence characteristics of
millibubbles (or microbubbles) cannot be simply applied to NBs. Therefore, it is imperative to carry
out a study on coalescence of NBs to find the differences in the coalescence characteristics between
NBs and millibubbles (or microbubbles).

In this work, we resort to MD simulations coupled with theoretical analysis to study the coales-
cence characteristics of bulk nitrogen (N2) NBs in water. One of the challenges in the MD simulation
of NB coalescence is its high computational cost. Our recent MD simulations on the coalescence
of NBs in a monatomic Lennard-Jones (LJ) fluid system show that we need over 10 000 000 atoms
to model coalescence of NBs with a diameter of tens of nanometers [13]. The model system in
this work contains water molecules which are polyatomic polar molecules. Allowing for a more
complex potential model in the nitrogen-water system and a smaller time step size required in the
MD simulation of water, the computational cost for the nitrogen-water system could be two orders
of magnitude larger than that in a similarly sized monatomic LJ fluid system. Such computational
cost was prohibitive in the past. Thanks to the fast growth in computing power, we are now able
to use supercomputers [20] to run MD simulations to study coalescence of N2 NBs in water which
is more closely connected with experimental results than the NBs in a monatomic LJ fluid system.
Observing the coalescence process of N2 NBs in water in real time via MD simulations also allows
us to understand microscopic details of NB coalescence characteristics that are inaccessible by
current experimental means.

Recent experimental results imply that two NBs of the same size are more likely to coalesce in
water [19]. Furthermore, if two NBs are of different sizes, both NB coalescence and the Ostwald
ripening [21] could occur during the NB merging process. Therefore, to obtain a clear picture of the
NB coalescence process, we focus on the coalescence of two equal-sized N2 NBs in water in this
work. In MD simulations, we will vary the size of N2 NBs in water and study the coalescence
characteristics including the coalescing speed of N2 NBs in water, the dynamic regime of NB
coalescence, the size of the fully merged NB, and the temperature variations of NBs during the
coalescence process. To achieve this goal, we will monitor the time evolution of the capillary bridge
and the temperature variation in the coalescing NBs from MD simulations and compare the MD
simulation results to the theoretical predictions derived from the Navier-Stokes (NS) equation and
thermodynamics laws. Using MD simulations coupled with theoretical analysis, we will provide a
quantitative and fundamental understanding of the coalescence characteristics of N2 NBs in water.

The rest of the paper is structured as follows. In Sec. II, we introduce the theoretical models
for the prediction of (1) the evolution of the capillary bridge between two coalescing NBs, (2) the
ratio of the diameter of a fully coalesced NB to that of the original NB, and (3) the temperature
variation during coalescence. In Sec. III, we describe the MD model used for the study of the
coalescence of two equal-sized N2 NBs in water, and the properties of the model fluid obtained from
MD simulations. In Sec. IV, we present MD simulation results and compare them with predictions
from theoretical models. Finally, we close with our Conclusions.

II. THEORETICAL MODELS

A. Evolution of the gas bridge between NBs at the beginning of the coalescence

Figure 1(a) shows a schematic of a capillary bridge of radius rb between two equal-sized NBs of
radius R. From the geometry shown in Fig. 1(a), the gap �z(rb) between two NBs measured in the
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FIG. 1. (a) Schematic of coalescing NB system and (b–d) snapshots from MD simulation model. The
snapshots from the MD model show 40-nm N2 NBs coalescing in liquid water at 0, 100, and 200 ps. Green,
blue, and white dots represent nitrogen, oxygen, and hydrogen atoms, respectively. The liquid water phase is
hidden to clearly display the coalescing N2 NBs and the water liquid-gas interface. In (d), rL is the principal
radius at the bridge minimum on the liquid side.

equivalent configuration before coalescence is given by

�z(rb) = 2R[1 −
√

1 − (rb/R)2]. (1)

Since only the beginning of the coalescence process (i.e., rb/R < 0.45 [18]) is considered, we
use the small (rb/R)2 approximation in Eq. (1) and obtain

�z(rb) ≈ r2
b/R. (2)

Substituting Eq. (2) into the continuity equation and integrating the axisymmetric Navier-Stokes
(NS) equation from a quiescent point far from the bridge radius, we obtain the governing equation
for rb as a function of time t at the beginning of coalescence [13],

ρ

(
drb

dt

)2

+ ρ
rb

2

d2rb

dt2
+ 4ηL

rb

drb

dt
= 2γ

R
− γ

rb
+ γ

rL
, (3)

where ρ and ηL are the density and dynamic viscosity of the liquid, respectively; γ is the surface
tension at the NB liquid-gas interface; and rL and rb are the principal radii of curvature at the bridge
minimum on the liquid side and gas side, respectively, as shown in Fig. 1. The right side of Eq. (3)
is the Laplace pressure, i.e., the driving force �P = P(rb) − P∞ for the capillary bridge expansion,
where P(rb) is the liquid pressure near the capillary bridge, and P∞ is the liquid pressure at a
quiescent point far from the NB interface [see Fig. 1(a)]. The derivation of Eq. (3) is shown in our
previous work [13].

To solve Eq. (3) for rb(t), one needs to know the dependence of the principal radius rL on rb.
As suggested by Thoroddsen et al. in a study of the coalescence of millibubbles [18], one can use
the approximation rL ≈ �z(rb) if rb/R < 0.45. Hence, we set rL = c�z(rb) in the theoretical model
when rb/R < 0.45, where c is a dimensionless constant of order unity. Substituting the expression of
rL into Eq. (3) and rearranging the equation, we obtain the governing equation for the dimensionless

bridge radius r̃b = rb/R:(
τinert

dr̃b

dt

)2

︸ ︷︷ ︸
Ti

+ τ 2
inert

r̃b

2

d2r̃b

dt2︸ ︷︷ ︸
Ta

+ 4τvisc
1

r̃b

dr̃b

dt︸ ︷︷ ︸
Tv

= 2 − 1

r̃b
+ 0.5/c

1 −
√

1 − r̃b
2
, (4)

where the characteristic inertial time is τinert =
√

ρR3/γ and the characteristic viscous time is τvisc =
ηLR/γ . For analysis of NB coalescence dynamics, we further define the three terms from left to
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right on the left-hand side of Eq. (4) as the inertial term Ti, acceleration term Ta, and viscous term
Tv , respectively. We will calculate Ti, Ta, and Tv as a function of time to determine which term
dominates during NB coalescence.

B. Dynamics regimes of bubble coalescence

Bubble coalescence starts with an inertially limited viscous (ILV) regime in which the dynamics
is dominated by the viscous stress of gas inside the bubble. In this case, the scaling law for rb(t) is
given by [17]

rb/R = C0(γ /ηgR)t, (5)

where C0 is a constant of order unity and ηg is the viscosity of gas in the bubble. In the ILV regime,
rb ∝ t and the capillary bridge expands very fast since ηg in Eq. (5) is usually very small. Equation
(4) is not applicable in the ILV regime. Afterwards, the bubble dynamics transitions into a second
regime in which Eq. (4) is applicable. In the second regime, if the coalescence dynamics is
dominated by the viscous stress in the surrounding liquid [i.e., viscous term Tv in Eq. (4)], Eq. (4)
gives the scaling law [13]

rb/R = (1/2c )0.5
√

t/τvisc. (6)

Similarly, if the coalescence is dominated by the inertial stress in the surrounding liquid [i.e.,
inertial term Ti in Eq. (4)], Eq. (4) gives the scaling law [13]

rb/R = (4/c)0.25
√

t/τinert. (7)

Equations (6) and (7) are consistent with existing drop and bubble coalescence theory [17,18] in
that rb ∝ t0.5 for both the viscous-dominated regime and the inertial-dominated regime with only a
difference in their characteristic timescales.

A recent experimental study on millibubble coalescence found a crossover from inertial- to
viscous-dominated regimes occurs when the Ohnesorge number (Oh = ηL/

√
ργ R) is approxi-

mately 0.3 [17]. In our previous work [13], we studied the coalescence dynamics of monatomic
LJ NBs with Oh in the range between 0.33 and 0.46 and found neither the inertial nor viscous
terms in Eq. (4) were dominant in that range, which indicates the crossover with Oh found in the
millibubble study also applies to NBs. With the nitrogen-water system in this work, we expect to
have larger Oh numbers. We will investigate if we can observe a viscous-dominated regime during
NB coalescence in water.

C. Size of fully merged NB

As rb approaches and exceeds R during the coalescence, Eq. (4), which is obtained under the
assumption of small (rb/R)2, becomes less accurate or even invalid. Instead of using Eq. (4), there-
fore, we use the Laplace pressure and the ideal gas equation to predict the size of the equilibrium
NB after the two NBs fully merge.

The pressure of gas within a spherical NB of radius R in water is given by

PB = P∞ + 2γ

R
. (8)

If the gas inside the NB is considered as an ideal gas, we have

PB = NkBT
4
3πR3

, (9)
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where N and T are the number of gas molecules and the temperature of gas in the NB, respectively,
and kB is the Boltzmann constant. If we assume the pressure of liquid water is maintained at P∞ =
1 atm during bubble coalescence, we can readily predict the radius of a fully merged bubble using
Eqs. (8) and (9).

If the bubble radius R is greater than a few tens of micrometers, the Laplace pressure (2γ /R)
in Eq. (8) is negligible compared to P∞ = 1 atm for bubbles in water. In this case, PB is almost a
constant independent of R. Using this result in Eq. (9), we obtain R ∝ 3

√
N at the same temperature.

Assuming no gas molecules diffuse across the bubble surface during the coalescence process, the
number of gas molecules in the fully merged bubble will be twice that in the original smaller bubble.
Accordingly, the diameter ratio of a fully merged bubble to that of the original bubble is 3

√
2. The 3

√
2

diameter ratio was observed experimentally in the study of coalescence dynamics of microbubbles
[14]. In this case, the 3

√
2 diameter ratio also indicates that the volume of a fully merged bubble is

equal to the total volume of two original bubbles.
For NBs in water, however, 2γ /R � P∞. In this case, we have PB ≈ 2γ /R. Using this result in

Eq. (9), we obtain R ∝ √
N . Accordingly, the diameter ratio of a fully merged NB to that of the

original NB is
√

2. The recent experimental study shows the size of bulk NBs in water is distributed
discretely with a uniform increment factor of

√
2 [19], which implies the

√
2 diameter ratio for NB

coalescence in water. We will carry out MD simulations to directly measure the size of N2 NBs in
water before and after coalescence to verify the theoretical prediction.

D. Temperature variation during NB coalescence

As two NBs coalesce, the total gas volume and surface area of the NB both change with time.
The expansion of the gas in coalescing NBs tends to decrease the gas temperature. Meanwhile,
the heat transfer across the liquid-gas interface of the coalescing NBs tends to equilibrate the gas
with the surrounding liquid water. Accordingly, we expect to observe a temperature and pressure
change during coalescence. The pressure of gas inside the coalescing NBs can be readily determined
using the ideal gas equation, i.e., Eq. (9), if the temperature and volume of the gas are known.
Neglecting mass transfer across the NB interface, the temperature change in the coalescing NBs can
be calculated using the first law of thermodynamics:

δQ − PdV = NcV dT, (10)

where Q is the heat transfer across the NB interface, P and V are the pressure and volume of the
gas within coalescing NBs, N is the number of gas molecules within the NB, cV is the specific heat
per molecule of gas molecules, and T is the gas temperature. For N2 molecules at a temperature
around 300 K, cV = 2.5kB will be used in the theoretical calculation. In Eq. (10), the amount of heat
transfer across the NB interface in a small time interval dt can be computed by

δQ = G(Tw − T )Asdt, (11)

where G is the liquid-gas interfacial thermal conductance, Tw is the temperature of the surrounding
liquid water which is essentially constant, and As is the area of the coalescing NB surface. In Sec. III,
we will use MD simulations to calculate G at the nitrogen-water interface of the model NB. The
surface area As and the volume V of the coalescing NB will also be evaluated from MD simulations.
With these known properties, we will predict the variation of gas temperature in the coalescing NB
by numerical integration of Eq. (10) and compare the theoretical prediction to that directly obtained
from MD simulations.

III. MD SIMULATION OF COALESCENCE OF NBs

A. MD model

The representative MD model system contains two 40-nm N2 NBs suspended in saturated
liquid water at a temperature of 300 K. When close enough, the NBs form a capillary bridge and

093604-5



ERIC BIRD, ERIC SMITH, AND ZHI LIANG

coalescence begins as shown in Fig. 1. As the gas bridge forms, liquid is pushed outwards from the
center of the simulation box. To accommodate the liquid volume expansion and maintain the liquid
pressure at an almost constant value during the coalescence process, two water vapor regions are
positioned on both x directions. The periodic boundary conditions (PBCs) are applied in all three
directions. The size of the liquid domain is chosen to be large enough so that the characteristics of
NB coalescence are almost unaffected by the finite size of the liquid domain.

In all MD simulations, a rigid extended simple point charge (SPC/E) potential model [22]
is employed to describe the interactions between water molecules. The Coulombic interactions
in the SPC/E potential are evaluated using the Wolf summation [23] with a damping factor of
0.15 Å−1 and cutoff distance of 9.0 Å. The Wolf summation technique has been shown to produce
reasonable structural results and coexistence densities for SPC/E water [24]. Treating the long-range
Coulombic interactions using the Wolf summation allows us to carry out MD simulations in a
system containing more than 10 000 000 water molecules for over 7 ns. The LJ potential, with
parameters σ = 3.3078 Å and ε/kB = 36.67 K [25], is used to describe the N-N interactions
between the nitrogen molecules whose bond length is fixed at 1.09 Å [26]. The LJ potential is also
used to describe the interactions between nitrogen and water molecules with potential parameters
determined from the Lorentz-Berthelot mixing rule [27]. The cutoff distance for all LJ interactions
is 9.0 Å.

A velocity Verlet algorithm is used to integrate Newton’s equations with a time step size of 2 fs.
The SHAKE algorithm [28] is used to maintain the rigidity of water and nitrogen molecules in MD
simulations. All MD simulations are run using the LAMMPS simulation package [29].

The MD simulation of coalescence of two 40-nm N2 NBs in the model liquid water includes the
following three steps:

Step 1. We begin by inserting 6 132 417 water molecules into the center of a simulation box with
a total length of 90 nm in the x direction and a cross section of 65 nm × 48 nm (y and z directions,
respectively). The liquid water slab is flanked by two 14-nm vacuum regions in the x direction as
shown in Fig. 1, allowing the water molecules to evaporate and form a liquid-vapor interface. The
PBCs are applied in all three directions. We carry out an NVT simulation to equilibrate the pure
water system at a temperature of 300 K using a Nosé-Hoover thermostat [30]. After the system
reaches thermal equilibrium, the saturated liquid water coexistent with the saturated vapor water are
present in the simulation box.

Step 2. Once the liquid water has reached thermal equilibrium, a spherical region is defined
with a diameter of 40 nm. The spherical region is centered in the x and y directions, and the distance
between the top z boundary and the top of the sphere is 1.4 nm. Water molecules in the spherical
region are replaced with 39 620 N2 molecules. The number of gas molecules needed for a stable
40-nm NB is calculated using the Laplace pressure and ideal gas relation. After the simulation is
equilibrated for 65 ps under NVT conditions, all molecules are mirrored in the z direction. This
results in two stable N2 NBs separated by ∼2.8 nm of liquid water. The total number of water and
nitrogen molecules in the model system with two N2 NBs is 10 056 234 and 79 240, respectively.

Step 3. After two N2 NBs are generated, we turn off the thermostat and carry out an NVE
simulation. The two NBs are now in Brownian motion. After the NVE simulation is carried out
for 750 ps, the Brownian motion of the NBs eventually brings them closer together, causing the
initial formation of a capillary gas bridge between two NBs. To clearly show the geometry of NBs
and the capillary bridge between them, we hide all liquid molecules in the snapshots shown in
Fig. 1. In our MD model, a water molecule is defined as a liquid molecule if its potential energy is
lower than 0.84 times the average potential energy of a water molecule in the liquid phase. We have
successfully used a similar method in our previous work to study the coalescence of nanodroplets
and NBs [13,31,32]. Using the potential energy criterion, we can see clear boundaries of NBs as well
as the two liquid-vapor water interfaces as shown in Fig. 1. Using snapshots of the system every 5
ps, the bridge radius rb as a function of time can be directly measured from the projected front view.
In addition, the average gas temperature within the coalescing NBs and the average temperature of
the surrounding water are output every 2 ps.
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FIG. 2. (a) Snapshot from MD simulation of a liquid water slab coexisting with a nitrogen gas and water
vapor mixture. Green, blue, and white dots represent nitrogen, oxygen, and hydrogen atoms, respectively. (b)
Density profiles of water (ρH2O) and nitrogen (ρN2 ). (c) Pressure profiles in the normal (PN ) and tangential (PT )
directions.

By comparing the measured rb and T as a function of time from MD simulation with the pre-
dictions from the theoretical models described in Sec. II, we will determine if the continuum-based
theoretical models give good predictions of the coalescence dynamics and identify the coalescence
characteristics of nitrogen NBs in water. To obtain the theoretical predictions, several fluid proper-
ties including density, surface tension, viscosity, and liquid-gas interfacial thermal conductance of
the model fluid are needed. In Sec. III B, we describe the MD simulations used to determine these
properties of the model fluids.

B. Determination of fluid properties

As noted in Sec. III A, the Wolf summation technique significantly enhances the computational
efficiency in MD simulations of water systems. However, this technique also leads to a slight
underestimate of saturated liquid densities and a lower surface tension of water when compared
to those using Ewald sums [24]. Allowing for the very high computational cost in this work,
we have to make a compromise to use an MD model which is not exactly the same as the real
nitrogen-water system but still reasonably resembles nitrogen NBs in water in experiment. The
fluid properties calculated in the following subsections are specifically for the model water whose
Coulombic interactions are evaluated using the Wolf summation with the parameters in this work.

1. Determination of density and surface tension

The density ρ and surface tension γ of the model fluid can both be obtained from a single
equilibrium MD (EMD) simulation in a system consisting of 110 560 water molecules with two
adjacent regions filled with 3900 N2 molecules as seen in Fig. 2(a). The density of N2 gas is
identical to that in the representative 40-nm NB. The simulation box of the dimensions 30 nm
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FIG. 3. The pressure-tensor autocorrelation function (PACF) and the running integral of the PACF of the
model liquid water at a temperature of 300 K and density of 981 kg/m3.

× 15 nm × 15 nm has PBCs applied in all three directions. The box size is fixed during the EMD
simulation. A Nosé-Hoover thermostat is applied to equilibrate the entire system at a temperature
of 300 K for 250 ps. After the system reaches equilibrium, a saturated liquid water sandwiched by
a gas mixture of N2 and saturated vapor water is present in the simulation box. Subsequently, the
thermostat is turned off and an NVE simulation is carried out for 500 ps to determine the water
density (ρH2O), nitrogen density (ρN2 ), and normal (PN ) and tangential (PT ) pressure tensor profiles
along the x direction, as shown in Fig. 2. The surface tension is calculated from its mechanical
definition [33,34]:

γ = 1

2

∫ Lx

0
[PN (x) − PT (x)]dx, (12)

where Lx is the simulation box length in the x direction. From the EMD simulation results at T =
300 K, we find the density of saturated liquid water is ρ = 981 ± 1 kg/m3 and the surface tension of
the model water is γ = 0.049 ± 0.001 N/m. We carried out similar simulations as described above
with different nitrogen densities corresponding to other NB sizes studied in this work and found the
density and surface tension of the model water are essentially independent of the nitrogen density
in the gas phase. Therefore, we assume the surface tension and water density to be constant for all
NB sizes studied in this work.

2. Determination of viscosity

To evaluate the viscosity ηL of the model liquid water at T = 300 K and ρ = 981 kg/m3, we carry
out a separate EMD simulation in a cubic simulation box containing 4095 model water molecules.
The box side length is fixed at 5 nm such that the density of water equals 981 kg/m3. The PBCs
are applied in all three directions. A Nosé-Hoover thermostat is applied for 100 ps to equilibrate
the model liquid water to a temperature of 300 K. After the system reaches the thermal equilibrium,
we turn off the thermostat, and carry out the simulation in a microcanonical ensemble for 6 ns to
calculate the autocorrelation function of the pressure tensor in the model liquid water as shown in
Fig. 3. The viscosity is then determined from the Green-Kubo relation [27]:

ηL = V

kBT

∫ ∞

0
dt〈Pαβ (t )Pαβ (0)〉, (13)
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FIG. 4. (a) A snapshot of the NEMD simulation used to obtain the liquid-gas interfacial thermal conduc-
tance of the model system. Yellow, green, blue, and white dots represent gold, nitrogen, oxygen, and hydrogen
atoms, respectively. (b) Temperature profile at steady state from MD data. The dashed line in (b) indicates the
position of the liquid-gas interface.

where

Pαβ = 1

V

(∑
i

mviαviβ +
∑

i

∑
j>i

ri jα fi jβ

)
. (14)

In Eqs. (13) and (14), V is the system volume, Pαβ is the off-diagonal (α�β) elements of
the pressure tensor, t is time, 〈· · · 〉 means the ensemble average, m is the molecular mass, vi

is the translational velocity of molecule i, and r and f are the intermolecular separation and
force, respectively. From the plateau of the running integral [Eq. (13)] shown in Fig. 3, we find
ηL = 700 ± 5 μPa s which has reasonable agreement with ηL = 729 μPa s obtained by the SPC/E
water models using Ewald sums [35]. Using a similar method, we find the viscosity of the model
N2 gas within the 40-nm NB is ηg = 12.6 μPa s.

3. Determination of liquid-gas interfacial thermal conductance

To evaluate the temperature variation in the coalescing NBs, heat transfer between gas molecules
inside the NBs and the surrounding liquid must be considered. Equation (15) shows that the heat
transfer rate depends on the interfacial thermal conductance G, which is defined as

G = q/�T , (15)

where q and �T are the heat flux and temperature drop across the liquid-gas interface, respectively.
In our previous work, we used nonequilibrium MD (NEMD) simulations and Eq. (15) to evaluate
the thermal conductance at liquid-gas interfaces of monatomic fluids and polymers [36,37]. We use
a similar method in this work to determine the thermal conductance at the interface between model
water and N2 gas.

As depicted in Fig. 4(a), the model system contains two solid Au plates formed by three fcc
atomic layers oriented in the [100] direction with a cross-sectional area of 10 × 10 nm2. A liquid
water thin film with a 5-nm thickness is positioned on the right Au plate and an adsorbed water
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layer is placed on the left Au plate. Nitrogen gas fills the remainder of the simulation box volume at
a density equal to that within the representative 40-nm NB. The total box length is 40 nm, and the
total number of water and nitrogen molecules is 17 198 and 4138, respectively. PBCs are applied in
the y and z directions and the atoms in the outermost Au layers are fixed.

First, a Nosé-Hoover thermostat is applied to the left and right Au plates at 330 and 300 K,
respectively. A run time of 6 ns is allowed for the system to reach steady state. Due to the absence
of liquid water on the hot plate (except the adsorbed layer which will not evaporate), no evaporation
will occur at steady state and heat transfer across the liquid-vapor interface is by conduction only
[36,37]. Afterwards, the thermostats are removed and energy is added and subtracted from the hot
and cold plates using the eHEX algorithm [38] at a rate of 2 nW, respectively. Thus, a constant heat
flux of q = 20 MW/m2 is applied in the NEMD simulation. The simulation is run for 4 ns to ensure
steady state is reached at a constant heat flux boundary condition. The average temperature profile
shown in Fig. 4(b) is computed using data collected over an additional 4 ns. A temperature gradient
fit is calculated using temperature data in the bulk vapor region defined between x = 6 nm and
x = 30 nm. By extrapolating the temperature gradient fit to the liquid-gas interface, the temperature
drop is �T = 4.1 ± 0.2 K. Accordingly, we directly obtain G = 4.9 MW/m2 K from Eq. (15).

IV. MODELING RESULTS

A. Representative modeling results

In this section, we present the representative theoretical and molecular modeling results of the
coalescence of two 40-nm-diameter N2 NBs in the model liquid water at a temperature of 300 K.
Using R = 20 nm and the fluid properties obtained in Sec. III B, we calculate the characteristic time
τinert = 0.40 ns and τvisc = 0.29 ns for the 40-nm NBs in the model fluid system. Substituting these
time constants into Eq. (4), we obtain the theoretical prediction of rb(t), the scaling exponent in
rb ∝ t n, and the ratio of viscous to inertial stresses.

1. Comparison of rb(t)

In Fig. 5(a), we compare the rb(t) measured directly from the MD simulation to that obtained
from Eq. (4), i.e., the governing equation derived from the axisymmetric NS equation. To use Eq. (4)
properly in the analysis of NB coalescence, we must check the following three things carefully.

(i) When should we start to use Eq. (4)? As noted in Sec. II A, Eq. (4) is not valid until the
NB coalescence exits the ILV regime. To determine at what time we can start to apply Eq. (4) for
analysis of the MD data, we estimate the theoretical expansion speed in the ILV regime from Eq. (5)
and obtain drb/dt ≈ γ /ηg ≈ 3800 m/s. We fit the MD data of rb(t) between 10 and 20 ps with a
linear function and obtain the bridge expansion speed of ∼110 m/s which is significantly lower
than the theoretical expansion speed in the ILV regime. Therefore, we believe the NB coalescence
has already exited the ILV regime 10 ps after the coalescence begins. Equation (4) should be
applicable from t = 15 ps. To obtain the theoretical prediction from Eq. (4), we use initial conditions
rb(t = 15 ps) = 1.22 nm and drb/dt (t = 15 ps) = 110 m/s which are obtained directly from MD
simulation results.

(ii) The minimum rL: rL is the liquid side principal radius of curvature at the bridge minimum
which determines the Laplace pressure, i.e., the driving force for the bridge expansion. In the
derivation of Eq. (4), we used the approximation rL ≈ �z(rb). From the relation �z(rb) ≈ r2

b/R
[see Eq. (2)], one can readily find that �z(rb) is less than the size of the model water molecule (i.e.,
σ = 3.17 Å in the SPC/E potential for water) if rb is smaller than 2.55 nm. Obviously, the actual
rL should be no smaller than the size of a single water molecule. Otherwise, one would obtain an
unrealistically small rL which results in an unrealistically high Laplace pressure at the early time
of the NB coalescence. In our previous study on the coalescence of NBs in a LJ fluid system [13],
we showed that using the approximation rL ≈ �z(rb) at the early time of coalescence results in an
overprediction of the expansion speed of the capillary bridge. Therefore, if rL = c�z(rb) is less
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FIG. 5. (a) MD data (measuring snapshots) and theoretical prediction [Eq. (4) with c = 0.85] of the
minimum bridge radius rb(t ) during the first 200 ps of coalescence of two 40-nm N2 NBs submerged in the
model water (Oh = 0.71). The inset shows the same MD data on logarithmic scale with early and late time
slope fits. (b) Viscous, inertial, and acceleration terms in Eq. (4) over time t . The inset shows the ratio of
viscous to inertial terms over time t .

than 3.17 Å (i.e., the size of the model water molecule), we will set rL = 3.17 Å in the theoretical
model. After implementing the minimum rL correction, we show in Fig. 5(a) that within 200 ps after
the coalescence begins, rb increases to ∼11.2 nm (rb/R = 0.56) and the best fit of the theoretical
prediction to the MD data is obtained when the dimensionless constant is c = 0.85 in Eq. (4). The
optimized c value (c = 0.85) indicates rL ≈ �z(rb) is a reasonable approximation for the liquid side
principal radius of the capillary bridge between two NBs.

(iii) The curvature effect on surface tension: At the early time of NB coalescence, the principal
radius rL is comparable to the size of the fluid molecules. The surface tension at these highly curved
surfaces could significantly deviate from that at a flat surface [39,40]. The curvature effect on surface
tension can be evaluated by the Helfrich expansion [40]

γc(J, K )

γ
= 1 − δJ + k1

2γ
J2 + k2

γ
K. (16)
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In Eq. (16), γc is the surface tension at a curved surface, γ is the surface tension at a flat interface,
J = 1/r1 + 1/r2 is the total curvature, and K = (r1r2)−1 is the Gaussian curvature, where r1 and r2

are the principal radii of curvature. At the capillary bridge minimum, r1 = −rb and r2 = rL. In
Eq. (16), the three constants δ, k1, and k2 are the Tolman length [41], the bending rigidity, and the
rigidity constant associated with Gaussian curvature, respectively. To take into account the curvature
effect on surface tension of the SPC/E water, we used the Tolman length, bending rigidity, and
rigidity constant calculated by Sedlmeier and Netz [42] and by Wilhelmsen et al. [43]. In both cases,
we found the surface tension only deviates from that of the flat surface by ∼20% when rb is less than
2.5 nm and rapidly approaches its flat-surface equivalent once rb is greater than 4 nm. For rb in the
range of a few nanometers, the minimum rL correction to the Laplace pressure is more significant
than the correction from the curvature effect. As a result, we found the theoretical prediction was
nearly unaffected by the curvature effect. Hence, the curvature effect on surface tension is neglected
in our theoretical predictions in this work.

2. Comparison of the scaling laws

As shown in the inset of Fig. 5(a), the power function fit (rb ∝ t n) to the MD data exhibits
different exponents at the early time and the late time of the coalescence. At early time (10 ps <

t < 40 ps) of the coalescence, the scaling exponent from MD simulations is rb ∝ t1.02. Although it
is close to the scaling law rb ∝ t in the ILV regime, we showed in Sec. IV A that it has already
exited the ILV regime since its expansion speed is much lower than that predicted in the ILV
regime.

At late times of bubble coalescence, if the coalescence dynamics is in a regime dominated by
either liquid viscosity or liquid inertia, the theoretical model predicts the scaling law rb ∝ t0.5. Since
both the characteristic inertial time τinert and the characteristic viscous time τvisc in Eqs. (6) and (7)
depend on the surface tension, the rb ∝ t0.5 scaling law is only valid when the surface tension is
a constant. Therefore, we use Eq. (16) with the parameters calculated by Sedlmeier and Netz [42]
to estimate the curvature-dependent surface tension at the bridge minimum and select the moment
t at which the calculated surface tension deviates less than 1% from that of the flat surface as the
starting time for the late time coalescence. Furthermore, from the study of the coalescence dynamics
of millibubbles, Thoroddsen et al. showed that the scaling law rb ∝ t0.5 is valid for rb/R < 0.45 [18].
Hence, we used rb/R < 0.45 as the upper limit of the late time coalescence. The same criteria
will also be used to define the late time coalescence of NBs of other sizes in this work. Between
the aforementioned upper and lower limits for the late time coalescence, the power function fit to
the MD data in Fig. 5(a) shows the exponent n = 0.7 which is considerably larger than n = 0.5
predicted by the scaling laws for viscous-dominated or inertial-dominated regimes.

The high exponent found in the MD data implies that neither viscous stress nor inertial stress in
the surrounding water dominates the coalescence dynamics. To verify this prediction, we calculate
the Oh of NBs, which is a good indicator of relative magnitude of viscous and inertial stresses.
The recent experimental study on the coalescence of millibubbles shows the crossover from the
inertial-dominated regime to the viscous-dominated regime occurs if Oh is close to 0.3 [17]. Using
the fluid properties found in Sec. III, we obtain Oh = 0.71 for the model 40-nm N2 NBs in water.
This value is apparently higher than the crossover Oh = 0.3, which indicates that the viscous stress
is more significant than the inertial stress in the surrounding liquid during the NB coalescence. To
qualitatively determine the ratio of viscous to inertial stresses in the surrounding liquid, we calculate
the inertial term Ti, acceleration term Ta, and viscous term Tv in Eq. (4) as a function of time. It is
shown in Fig. 5(b) that Ti, Ta, and Tv in Eq. (4) all decay with time after t > 40 ps, and the magnitude
of Ta is much smaller than Ti and Tv . The inset of Fig. 5(b) shows after t > 40 ps the ratio Tv/Ti is
nearly a constant around 8. This indicates the magnitude of viscous stress is indeed much greater
than that of inertial stress at the later time coalescence. However, it seems the inertial term Ti is still
not small enough to be considered negligible since the MD data show the exponent n = 0.7 instead
of n = 0.5.
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FIG. 6. (a) MD data (measuring snapshots) of the dimensionless bridge radius rb/R for two 40-nm diameter
coalescing N2 NBs in water. Measurement uncertainties are smaller than the circle symbols showing the MD
data. The horizontal dashed line at rb/R = √

2 is the theoretical radius of the fully merged NBs. The four
insets are snapshots of the model system at 0.8, 2.0, 4.0, and 6.5 ns. (b) Temperature variation of N2 inside the
40-nm diameter coalescing NBs and H2O in the surrounding liquid from MD simulations, and the temperature
prediction [Eq. (10)] of the gas inside the coalescing NBs. The two insets are snapshots of the model system at
0.5 and 1.3 ns.

To further confirm the high exponent found from the MD simulation of 40-nm NBs in water,
we fit the theoretical prediction of rb(t ) at the late time of coalescence with a power function and
obtain rb ∝ t0.71. The scaling exponents from the theoretical prediction and the MD simulation
agree very well. As a comparison, our previous work [13] studied the coalescence of two 40-nm
NBs in a LJ fluid system in which Oh = 0.4. As the Oh in the LJ fluid system gets closer to the
crossover Oh = 0.3, it is reasonable to see Tv/Ti in the LJ system is around 4, which is closer to 1
than Tv/Ti = 8 in the water system. The power fit to the MD result in the LJ system gives rb ∝ t0.76

[13], whose exponent is also apparently greater than n = 0.5 in the viscous-dominated regime. In
both cases, therefore, the coalescence dynamics at the late time is still in the crossover regime
where neither viscous nor inertial stresses in the surrounding liquid dominate. This explains why
the growth of the bridge radius does not follow the scaling law rb ∝ t0.5 at the late time.

3. Size of fully merged equilibrium NB

To capture the full merge process of the model 40-nm N2 NBs in water, we carry out the MD
simulation for 6.5 ns. The MD results in Fig. 6(a) show the bridge expansion is fast at the initial
several hundred picoseconds, but suddenly slows down at t ≈ 800 ps. The significant change of the
expansion speed at t ≈ 800 ps is mainly caused by the transient convex liquid-vapor interfaces as
shown in the inset Fig. 6(a). As the liquid is pushed outwards from the center of the simulation
box during NB coalescence, the two originally flat liquid-vapor interfaces become convex surfaces
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FIG. 7. (a–d) MD data (measuring snapshots) and theoretical prediction [Eq. (4)] of the dimensionless
bridge radius rb/R over time t for 30-, 35-, 40-, and 50-nm diameter NBs. The horizontal dashed line at
rb/R = 0.45 marks the upper limit of late coalescence times. The radii, Oh numbers, and c values are shown
for all simulation cases. (e–h) MD data and slope fits at early and late coalescence times for the bridge radius
rb(t ) on logarithmic scales.

which results in an extra Laplace pressure added to liquid and slows down the bridge expansion.
This is an artifact due to the finite size of our model system. In the first 200 ps, however, we show in
Fig. 1 that the two liquid-vapor interfaces remain flat. This means our model system is big enough
to avoid the finite-size effects on the MD simulation results at the first 200 ps.

At t ≈ 4 ns, the convex liquid-vapor interfaces return to flat again and remain flat in the rest
of the coalescence process as shown in Fig. 6(a). No oscillations of merged NB are found in our
MD model which is a result of much higher viscous stress than inertial stress in liquid during NB
coalescence. After the two 40-nm NBs fully merge into a bigger NB, it is shown in Fig. 6(a) that the
bridge radius approaches rb/R = 1.41, or

√
2, which is consistent with the theoretical prediction in

Sec. II C. We ran three additional MD simulations of N2 NBs in water with diameters of 30, 35, and
50 nm, and find they all follow the

√
2 diameter ratio. In our previous work [13], we also found the

fully merged Ne NBs in liquid Ar follows the
√

2 diameter ratio. Hence, our MD simulation results
suggest that the

√
2 diameter ratio is one of the coalescence characteristics of bulk NBs.

It is noteworthy that Ma et al. recently generated monodispersed NBs of different gases including
N2, O2, CO2, etc., in water and measured the size distribution of NBs hours and days after gas
injection [19]. In all cases, they found discrete distribution of NB sizes with a uniform increment
factor of

√
2. Ma et al. infer that the coalescence of two equal-sized bulk NBs in water obeys the√

2 diameter ratio rule. Our MD simulations provide the direct evidence of the
√

2 diameter ratio
for the NB coalescence in water. The

√
2 diameter ratio also indicates that the surface area of a fully

merged NB in water is equal to the total surface area of two original NBs.
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4. Temperature of N2 gas during coalescence

As the volume and surface area of the coalescing NBs change over time, we expect the temper-
ature and pressure to change accordingly. Figure 6(b) shows the average temperature T of N2 gas
inside the coalescing NBs obtained directly from MD simulation. To understand the variation of T
of N2 gas from the first law of thermodynamics in Eq. (10), one needs to know how the volume V ,
surface area As, and pressure P of gas inside the coalescing NBs, the interfacial thermal conductance
G, and the liquid water temperature Tw change with time t during coalescence.

Among the five parameters (i.e., V , As, P, G, and Tw), Tw is essentially a constant around 301.7 K
as shown in Fig. 6(b). V and As of the coalescing NBs are calculated numerically by reconstructing
their shape in computer-aided design (CAD) freeware using the MD snapshots every 50 ps until
the coalescing NBs resemble a triaxial ellipsoid at t = 0.6 ns. Afterwards, the coalescing NBs are
approximated as a triaxial ellipsoid and the diameter in each of the three directions is measured from
MD snapshots every 250 ps and used to calculate V and As [44]. A fourth order polynomial is fit onto
the V and As vs t data to use for evaluation. The pressure P inside the coalescing NBs is found from
the ideal gas equation with T and V of N2 gas obtained directly from MD simulation. The kinetic
theory of gases [45] predicts the thermal conductance G at a liquid-gas interface is proportional to
the gas pressure P. Accordingly, we scale the G value obtained in Sec. III B by the transient gas
pressure P to predict transient heat transfer rate across the NB surface in Eq. (11). Substituting these
known parameters into Eq. (10), we obtain the theoretical prediction of T (t ) as shown in Fig. 6(b).

Immediately after coalescence begins, the fast expansion of the gas within the coalescing NBs
results in an evident temperature drop inside the NBs. As the gas temperature gets lower than water
temperature, the heat transfer from the surrounding liquid to the NBs tends to equilibrate the gas
with the liquid. The heat transfer rate increases as gas temperature decreases. At t ≈ 0.5 ns, the
heat transfer rate becomes comparable to the energy loss rate induced by gas expansion, and gas
temperature reaches a minimum as shown in Fig. 6(b). The inset of Fig. 6(b) shows the minimum
gas temperature occurs when the bridge radius rb is approximately equal to the NB radius R. In the
initial 0.5 ns of the coalescence, the prediction from Eq. (10) agrees with the MD simulation result
very well. This implies that the lumped system approximation in our theoretical model for the gas
inside the coalescing NBs is reasonable in the initial 0.5 ns of the coalescence.

After t ≈ 0.5 ns, the gas expansion in the radial direction gradually slows down and at t ≈ 1.0 ns
one starts to see the decrease of the gas volume due to the compression of gas in the longitudinal
direction [see the difference between the two snapshots in Fig. 6(b)]. As a result, both the MD
data and the theoretical prediction show the temperature inside the NBs increases to a maximum
by t ≈ 1.3 ns and approaches the surrounding liquid temperature for the remainder of coalescence.
However, the theoretical prediction from Eq. (10) apparently underestimates the magnitude of gas
temperature increase during this time frame. We believe the difference between theoretical and
MD results is mainly caused by the lumped system assumption in our theoretical model between
t = 0.5 ns and t = 1.5 ns. In this stage, the gas inside the NBs slowly expands in the radial direction
and is rapidly compressed in the longitudinal direction. Hence, the gas flow inside the coalescing
NBs is in a nonequilibrium state such that the approximation of the gas as a lumped system with
a single temperature and pressure becomes inappropriate. In this case, a more complex theoretical
model is required to give a more precise prediction of the gas temperature in the late stage of NB
coalescence. Nevertheless, our simple theoretical model, which predicts a reasonable trend of the
temperature variation inside the coalescing NBs, implies the gas expansion and the heat transfer
between the gas and the surrounding liquid are the two important processes that lead to the variation
of gas temperature within the NBs.

B. Effects of NB size on coalescence dynamics

We use methods described in Sec. III A to study coalescence dynamics of three other NB sizes
ranging from 30 to 50 nm in diameter. For each NB size, we find rb(t ) directly from the MD
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FIG. 8. Ratios of viscous to inertial terms for N2-H2O and LJ fluid systems [13]. The error bars show the
minimum and maximum ratios calculated during late coalescence times. The number below each symbol shows
the NB diameter.

simulation and adjust the value of dimensionless constant c in Eq. (4) to obtain the best fit between
the prediction from the continuum-based theoretical model and the MD simulation results. As shown
in Figs. 7(a)–7(d), the optimized constants c fall in the range 0.85 ± 0.05, and theoretical predictions
have good agreement with MD results for all NB sizes. In our previous study of NB coalescence
in a monatomic LJ fluid system [13], we also found the optimized c values are close to 1. This
indicates the approximation rL(rb) ≈ �z(rb) is reasonable for the principal radius of the capillary
bridge between two NBs in both the simple LJ fluid system and the more complex and realistic
nitrogen-water system.

As the NB diameter in the model nitrogen-water system decreases from 50 to 30 nm, the
corresponding Oh increases from 0.64 to 0.82. A larger Oh implies the viscous stress in the
surrounding liquid is more significant on NB coalescence dynamics. To quantitatively define the
relative significance of viscous stress to inertial stress in the surrounding liquid, we calculate Tv and
Ti from Eq. (4) for each NB size. Similar to the inset of Fig. 5(b), we find the ratio Tv/Ti is nearly
a constant during late coalescence times. To show the variation of the ratio Tv/Ti in a wider range
of Oh, we combined the calculation results for the nitrogen-water system and those in our previous
work for the LJ fluid system [13] in Fig. 8. Although these are results for different fluid systems and
at different temperatures, Fig. 8 exhibits the general trend of increasing Tv/Ti with increasing Oh as
expected.

As the ratio Tv/Ti increases from 2.4 to 10.9 (see Fig. 8), one would expect the coalescence dy-
namics to transit from a crossover regime where neither viscous stress nor inertial stress dominates
the coalescence dynamics to the viscous-dominated regime, and the scaling exponent in rb ∝ t n

at late times to approach n = 0.5. However, the scaling exponents obtained from MD data do
not exhibit such a trend. As shown in Figs. 7(e)–7(h), a fit of the MD data for N2 NBs in water
(Oh = 0.64 − 0.82) at later times of coalescence gives rb(t) ∝ t0.75±0.05, which is close to rb(t) ∝
t0.76±0.04 for Ne NBs in liquid Ar (Oh = 0.33 − 0.46) [13]. In the range of Oh from 0.33 to 0.82,
therefore, the MD simulation results show the scaling exponents at the late times of NB coalescence
are essentially constant. We attribute the essentially constant scaling exponents in the range of Oh
from 0.33 to 0.82 to two main reasons:
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FIG. 9. Theoretical scaling exponents during late coalescence times for 50-nm NBs as the viscosity ηL of
water is varied from 0.3 to 10 mPa s in Eq. (4). The dashed lines represent the range of Oh (0.33–0.82) studied.

(i) The range of Oh (0.33–0.82) studied in our MD model is still not wide enough to see a
transition into a viscous-dominated regime. Even for the largest ratio Tv/Ti = 10.9 at Oh = 0.82,
the scaling exponent (n = 0.79) at late times is considerably higher than n = 0.5 in the viscous-
dominated regime, which indicates the inertial term Ti is still non-negligible in this case. To
investigate how much we should further increase Oh and Tv/Ti to observe the transition into a
viscous-dominated regime, we use Eq. (4) to calculate the scaling exponents at higher Oh and
Tv/Ti by artificially increasing the liquid viscosity. All parameters except the liquid viscosity ηL

are the same as those in the study of the coalescence of 50-nm diameter N2 NBs in water. As
shown in Fig. 9, the theoretical model predicts the scaling exponent n decreases monotonically
with increasing Oh for Oh > 0.3. To see a transition into a viscous-dominated regime, one needs
to increase ηL from 0.7 mPa s to at least 7.0 mPa s. For 50-nm N2 NBs in water, ηL = 7.0 mPa s
corresponds to Oh = 6.4 and Tv/Ti = 587. In this case, the scaling exponent decreases to n ≈ 0.56.
Hence, to observe a viscous-dominated regime Tv must be at least hundreds of times greater than Ti.

(ii) If neither viscous stress nor inertial stress dominates the coalescence dynamics, the scaling
exponent at late times also depends on the c value in Eq. (4). Note the theoretical prediction in
Fig. 9 is obtained when the c value in Eq. (4) is fixed. If the c value for the LJ fluid system (Oh =
0.33 − 0.46) is the same as that for the water-nitrogen system (Oh = 0.64 − 0.82), therefore, one
would expect higher scaling exponents in the model LJ fluid system. To obtain the best fit to the
MD data, however, we find the optimized c values for the LJ fluid system are in the range 1.2 ± 0.2
[13], which is higher than 0.85 ± 0.05 in the water-nitrogen system. A relatively higher c value
in Eq. (4) indicates a large radius rL and smaller Laplace pressure at the capillary bridge which
results in slower bridge expansion and lower scaling exponent n. As a result, the relatively higher
c value makes the scaling exponent for the LJ fluid system decrease and get close to that for the
water-nitrogen system.

From the above analysis we conclude that in the range of Oh studied in our MD model the
coalescence dynamics is all in the crossover regime where neither the viscous stress nor the inertial
stress in the surrounding liquid dominates the coalescence dynamics.
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V. CONCLUSIONS

Using MD simulations coupled with continuum-based theoretical models, we studied the co-
alescence of bulk N2 NBs in water with diameters ranging from 30 to 50 nm. The following
characteristics of NB coalescence are observed from our modeling results.

(1) At the beginning of coalescence, rL(rb), i.e., the principal radius in the liquid side of the
capillary bridge between two NBs can be well approximated by �z(rb), i.e., the gap between two
NBs measured in the equivalent configuration before coalescence. To avoid overestimate of the
Laplace pressure, i.e., the driving force for the NB coalescence, the principal radius rL(rb) should
be no smaller than the size of a liquid molecule. In all cases studied, the theoretical prediction of
rb(t) from the axisymmetric NS equation agrees with the MD data very well.

(2) The diameter ratio of a fully merged NB to its daughter NBs is
√

2, which is different from
the diameter ratio 3

√
2 observed in millibubbles and microbubbles. The

√
2 diameter ratio indicates

that the surface area of a fully merged NB is equal to the total surface area of two original NBs.
The

√
2 diameter ratio also explains the discrete distribution of NB sizes with a uniform increment

factor of
√

2 found in recent experiment on characteristics of bulk NBs in water [19].
(3) At the beginning of coalescence, the gas temperature inside the coalescing NBs drops due to

the fast expansion of gas. The subsequent heat transfer between surrounding liquid and gas inside
NBs and the compression of gas after the bridge radius rb is greater than the NB radius R increase
the gas temperature and eventually equilibrate the gas with the surrounding liquid. The theoretical
model based on the first law of thermodynamics gives a reasonable prediction of temperature
variation. The difference between the theoretical prediction and the MD simulation results indicates
the gas inside the coalescing NBs cannot be approximated as a lumped system once the bridge
radius rb is greater than the NB radius R.

(4) In the range of Oh (0.33–0.82) studied, the viscous stress in the surrounding liquid is a
few to ten times greater than the inertial stress and the scaling exponent in rb ∝ t n at late times
of NB coalescence is in the range 0.75 ± 0.05, which is considerably higher than n = 0.5 in the
viscous-dominated regime or the inertial-dominated regime. To observe a clear transition into the
viscous-dominated regime, the theoretical analysis shows the viscous stress in the surrounding liquid
must be hundreds of times greater than the inertial stress. Hence, we conclude the coalescence of
N2 NBs in water is in a crossover dynamic regime where neither viscous stress nor inertial stress in
the surrounding liquid dominates.

The theoretical models presented in this work are shown to be valid for a nitrogen-water system
as well as a LJ monatomic fluid system [13]. Furthermore, Ma et al. find the

√
2 diameter ratio rule

applies to NBs containing a variety of gases [19]. This evidence suggests universality of coalescence
characteristics of NBs in different fluid systems.
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