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Wetting at nanoscale: Effect of surface forces and droplet size

Nikolai Kubochkin * and Tatiana Gambaryan-Roisman
Institute for Technical Thermodynamics, Technische Universität Darmstadt,

Alarich-Weiss-Straße 10, 64287, Darmstadt, Germany

(Received 16 February 2021; accepted 19 August 2021; published 10 September 2021)

Despite being intensively investigated, wetting at the nanoscale leaves a manifold of
questions unresolved. In particular, the dependence of a contact angle on a droplet size for
the droplets of the height of the order of a few nanometers is intensively debated. This effect
is believed to be related to intermolecular (surface) forces. In the present work, we use the
disjoining pressure concept and solve the Derjaguin equation numerically and analytically
to model profiles of the sessile droplets of heights comparable with the range of the surface
force action. We show that values of the contact angle are dramatically dependent on
the droplet height as well as the way the contact angle is defined. For the axisymmetric
droplets, the contact angle increases with increasing droplet height, and this dependency
becomes universal for different disjoining pressure isotherms when plotted dimensionless
with respect to the surface force action range. We demonstrate that for cylindrical droplets,
different contact angle definitions can lead to opposite dependencies on the droplet size.
We show as well that varying orders of magnitude of the apparent line tension reported can
be additionally explained by the contact angle definition chosen.

DOI: 10.1103/PhysRevFluids.6.093603

I. INTRODUCTION

Wetting is omnipresent and occurs when a solid is exposed to a liquid phase. Understanding
wetting phenomena is of great significance for a variety of branches of industry, which can be
exemplified by nanofluidics [1,2], nanolithography [3], ink-jet printing [4], care products industry
[5], food industry [6], and medical products [7]. Despite a long history of wetting science, a manifold
of questions still remain unresolved. In particular, understanding the influence of intermolecular
forces (usually referred to as surface forces) on statics and dynamic processes is still intensively
discussed and requires further investigation [8,9]. Surface forces significantly affect the wetting at
nanoscale and, hence, play an important role in nucleation [10,11] and elastocapillarity [12].

In the simplest case one can observe in everyday life, a macroscopic liquid droplet deposited
onto a homogeneous flat solid surface either spreads over it or attains an apparent shape of a cap
with height and wetted perimeter depending on the properties of the liquid itself, the solid, and
the surrounding gas phase. The conventional and, at first glance, simple way for determination of
surface wettability is the introduction of a contact angle with which the liquid droplet meets the
solid . In most cases, the macroscopic contact angle is defined as a slope of a tangent line in a point
of intersection of the liquid-gas interface with the solid surface [13]. The widely employed Young’s
approach [14] for the contact angle estimation considers a surface energy of each phase and gives
the relation

cos θ0 = 1 + S

γLG
, (1)
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where θ0 is an equilibrium contact angle and S is the spreading parameter defined as the work
required to cover a unit area of a solid with the surface energy γSG with a liquid by expanding
the solid-liquid and liquid-gas interfaces with energies γSL and γLG, respectively (S = γSG − γSL −
γLG). The surface energy of the liquid-gas interface γLG is denoted γ0 hereafter for the sake of
simplicity. It can be shown within the variational approach that the contact angle set by Eq. (1) is
independent of the external fields and of the shape of the droplet [15,16]. However, straightforward
application of Young’s equation is impossible (even assuming γSG measurable), since γSL values
cannot be experimentally determined and must be approximated by splitting it into the components.
On the other hand, the contact angle within this approach is defined as an angle between the
horizontal plane and the tangent line to the liquid-gas interface drawn at the triple line [15,16].
This definition leads to confusion if the sessile drop is surrounded by a thin wetting film.

In many experimental and theoretical studies, it is assumed that the sessile liquid droplet has
a shape of a spherical cap if its characteristic size is below the capillary length lc [17] defined as
the length the capillary pressure and the hydrostatic pressure are equal at lc = √

2γ /ρg, where the
factor 2 corresponds to the axisymmetric droplet, ρ is density of the liquid, and g is the gravitational
acceleration. If the drop characteristic length is above lc, hydrostatic pressure compels the drop to
change its shape and to deviate from the spherical cap.

The effects of the droplet size and geometry on the contact angle have been investigated by Vafaei
and Podowski [18]. Young-Laplace equations corresponding to long (that is, cylindrical or 2D) and
axisymmetric droplets have been solved. It has been reported that the contact angle of 2D droplets
does not depend on the droplet volume, whereas for axisymmetric droplets of decreasing volume,
the contact angle converges to the asymptotic value, which corresponds to the contact angle of the
spherical cap. Yet only capillary forces and gravity effect were considered in their work resulting in
the preservation of the contact angle when decreasing the droplet size down to zero.

In the present work, we focus on not that tangible albeit paramount reason why the contact
angle does not stay the same for the smaller droplets. We demonstrate a tremendous effect of the
surface forces [13,19,20] on the shape and, consequently, on the contact angle of droplets with
height comparable to the range of the surface force action. In particular, we show that different
trends for the contact angle dependence on the droplet size reported in the literature can be explained
by the different ways of the contact angle determination. We report that the dependencies of the
contact angle on the dimensionless droplet height collapse to the master curve when the range of
the surface force action is chosen as a scaling parameter. We demonstrate that the big differences
in the magnitude of the apparent line tension reported by different authors can be caused by the
choice of the contact angle definition when the influence of the contact angle hysteresis and surface
heterogeneity is absent.

This work is organized as follows. In Sec. II we summarize approaches used to model the wetting
at the nanoscale and present a short review of theoretical and experimental works devoted to the
statics of nanowetting. The model of the surface forces employed in this work and the governing
equations with the boundary conditions are presented in Sec. III. In Sec. IV we focus on the impact
of the intermolecular forces on the wetting statics. We evaluate the apparent line tension for different
contact angle definitions and, as well, extract the key features of the surface force influence which
can gain further understanding of wetting of substrates which can respond to the liquid action by
deformations. Finally, we draw conclusions and collect main takeaways.

II. WETTING AT THE NANOSCALE: MAIN APPROACHES AND EXPERIMENTAL EVIDENCES

It is well known that the nanoscale wetting is essentially distinguished from wetting by the
macroscopic droplets [13,21–24]. One of the manifestations of such differences owing to the surface
force action is the significant variation of the contact angle with the droplet size when the latter is far
below the capillary length. This effect has been theoretically as well as experimentally studied for at
least last three decades [9,25–29] rendering, nevertheless, controversial results [9,25,29,30]. Three
concepts are usually employed when modeling and explaining the experimental findings. Those are
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line tension [25,31], Tolman length [21,30], and disjoining pressure [13,22,32,33]. In this section,
we discuss each of the concepts alongside the experimental works reporting on the dependence of
the contact angle on the droplet size.

A. Line tension and Tolman length

The dependence of the contact angle on the surface forces and on the size of the droplet appears
explicitly when using the line tension concept introduced by Gibbs [23]. The line tension is an
excess energy the triple contact line possesses itself (the work required to form a unit length of
the contact line). Young’s equation taking into account the line tension can be written as follows
[24,34]:

cos θ = cos θ0 − 1

γ0

(
τ

rd
+ dτ

drd

∣∣∣∣
)

|cos φ|, (2)

where θ is a microscopic value of the contact angle, τ is the line tension, rd is the in-plane curvature
of the droplet base, and φ is the tilt angle of solid formed by the principal normal vector to the
contact line and a tangent plane to the substrate surface [33]. The second term in the brackets is
referred to as a stiffness coefficient [31] and can be interpreted as a dependency of the apparent
line tension on how a surface dividing the liquid and gas phase is defined [34]. Schimmele,
Napiórkowski, and Dietrich [31] derived a more general and complex form of equation relating
the contact angle with the line tension:

cos θ = cos θ0 + 1

γ0rd

[(
2δγ0 − dτ

dθ

∣∣∣∣
)

sin θ0 cos θ0 − τ − rd
dτ

drd

∣∣∣∣
]
. (3)

According to them, the contact angle θ may show additional dependence on the stiffness
coefficient dτ

dθ
| and on the Tolman length [21]. The latter reflects the fact that the surface tension

of the curved surface is distinguished from that for the plane and depends on the curvature, that is,
on the size of the system under consideration. Such a dependency of the surface tension on the size
of the system has been obtained by Tolman [21]:

γ = γ0

1 + 2δ
R

, (4)

where γ0 is the surface tension of a planar interface, R is the curvature radius of the droplet surface,
and δ is the Tolman length defined as a separation distance between positions of the Gibbs equimolar
surface (at which the excess density is zero) and the surface of tension (at which the mechanical
definition of tension can be applied [35] and which radius appears in Laplace equation) in a planar
interface limit [35,36]. The Tolman length being substituted to (1) also gives us an idea on how θ

can alter with respect to the droplet size. However, as is for τ , the sign of δ is also debatable [30].
Despite, according to Amirfazli and Neumann, the stiffness coefficients being important for

geometries with high curvatures (nanodroplets) [25], in many cases this is ignored [27–29]. In
experimental studies commonly, the well-known form, the so-called “modified Young’s equation”
[25,27,28],

cos θ = cos θ0 − τa

γ0rd
(5)

is employed. One should bear in mind, however, that not the pure line tension τ but only apparent
line tension τa can be obtained via Eq. (5) since the contribution of the components of the apparent
line tension is difficult to distinguish [29]. The apparent line tension is, hence, an effective parameter
bringing together various effects set by Eq. (3). One can clearly see from (5) that positive values
of the apparent line tension cause the contraction of the wetted perimeter and attaining higher
values of the contact angle while the negative values oppositely compel it to expand decreasing
the equilibrium contact angle.
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The line tension concept is actively debated since the measured values of τa are reported to
be varying in a wide range τa ∼ 10−13–10−4 J/m and also distinguish in sign [9,25,28,29]. The
comprehensive reviews of the current state of line tension have been performed by Amirfazli and
Neumann [25] and Schimmele, Napiórkowski, and Dietrich [31].

Gaydos and Neumann [37], Duncan et al. [38], Amirfazli et al. [39], and Amirfazli, Chatain,
and Neumann [40] studied the contact angle dependency on the droplet radius using the goniometry
technique and obtained the values of the apparent line tension of τa ∼ 10−6 J/m. Despite droplets
with diameters up to 4 mm having been under investigation, the authors found a correlation between
the contact angle and the contact radius and, applying the modified Young’s equation (5) to the
experimental data, obtained τa. It is important to note that in those works, hydrophobic surfaces
have been used, and the contact angles were found to be decreasing with increasing droplet radius.
The axisymmetric droplet shape analysis has been applied for the contact angle determination.
Curiously, the experimental results reported by Gaydos and Neumann [37] met good agreement
with the theoretical results by Vafaei and Podowski [18] who accounted for only the gravity and
capillary pressure in the Young-Laplace equation. Zhao et al. [29] examined the nanoscopic droplets
on the surfaces possessing different wettability. It has been reported that on the surfaces with low
surface energy, the contact angle increases with the increasing contact radius, while on surfaces
with the high surface energy the opposite trend is observed. The absolute values of τa reported are
τa ∼ 10−11–10−10 J/m. The same orders of τa have been obtained by Berg, Weber, and Riegler
[27] and Heim and Bonaccurso [28]. In their studies enhanced wetting of surfaces by smaller
droplets has been reported (τa < 0). Zhang et al. [41] presented a molecular dynamic simulation of
water droplets on surfaces with different wettability. The modeling showed that the contact angles
decreased with increasing droplet size for both hydrophilic and hydrophobic surfaces. It has been
also shown, however, that the position of the plane dividing solid and liquid phases can play a crucial
role in such simulations and can even lead to the change of the sign of the apparent line tension.
Atomic force experiments on partial wetting of light alkanes have been conducted by Checco [26].
Values of the apparent line tension agreeing with those Berg, Weber, and Riegler [27], Heim and
Bonaccurso [28], and Zhao et al. [29] have obtained. However, Checco et al. [26] have noted that
the surface heterogeneity is likely to affect the dependence of the contact angle on the droplet
size. The negative sign of τa agrees with that obtained by Heim and Bonaccurso [28]: the smaller
droplets have been shown to demonstrate the lower contact angles. In those works, the droplets were
assumed to be shaped as parts of spheres, and the contact angles have been defined as the slope at
the intersection of the spherical cap fitting and substrate surface. The effect of the curvature of the
droplet interface on the contact angle has been discussed and analyzed in terms of the line tension
in the work of Das et al. [42]. The modeled droplets were assumed to have a shape of the spherical
caps, and the contact angles were found to decrease linearly with decreasing radius of curvature of
the liquid-gas interface.

It is of interest to notice that the apparent line tension measured by means of using the big
droplets [37–40] is of at least five orders higher compared to that for the nanodroplets [27–29],
which can be related to the fact that the apparent line tension is not a constant value and also
depends on the droplet size. This idea is, on the one hand, in agreement with the experimental
results presented by Heim and Bonaccurso [28] and Berg, Weber, and Riegler [27], who reported
the nonlinear dependence of cos θ on 1/rd . However, one should expect smaller values of the line
tension for the bigger droplets since the contact angle of the large droplet has to be independent
on its size. On the other hand, the fact that the dependence cos θ (1/rd ) demonstrates the nonlinear
behavior agrees with the findings of Schimmele, Napiórkowski, and Dietrich [31], who stated that
values of τa in Eq. (5) in fact contain the effects of the stiffness coefficients and the Tolman length
additionally to the pure line tension.

According to Eqs. (2) and (3), the Tolman length alongside the stiffness coefficients is believed
to affect the apparent line tension. Recently, Kanduč et al. [43] combined molecular dynamic
simulations of the nanodroplets with their continuum description and showed that the contribution
of the stiffness coefficients dτ

dθ
| can render positive τa while τ remains negative. Interestingly, they
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also showed the presence of the size effects for the cylindrical droplets albeit less pronounced than
for those spherical.

B. Disjoining pressure

The main drawbacks of the line tension and curvature-dependent surface tension concepts are
being controversial [9,28,30,44] and the difficulty to distinguish between different contributions:
DLVO1 (van der Waals and electrostatic) and non-DLVO (for example, structural/solvation) forces.
Despite the existence of the works on splitting the line tension into components [45–47], it is not
commonly used, to the best of the present authors’ knowledge.

Another approach eliminating this difficulty and explicitly taking into account interactions not
at the triple line but in the thin film and transition zone between the droplet and the film introduces
the disjoining pressure �(h), which is an additional pressure arising from the surface layers
overlapping.

If only the disjoining pressure is accounted for, the Derjaguin equation for the mechanical
equilibrium of the sessile droplet with the adjoining wetting film can be written as

�(h) + pe(r) = �(hads), (6)

where hads is a thickness of an equilibrium adsorbed/wetting layer with which a droplet is connected
and pe = γ0κ is the Laplace pressure equal to the difference between pressure in the gas phase and
liquid phase induced by the curvature κ. In the case of a liquid wedge or a large droplet (pe(0) = 0),
the contact angle can be evaluated using Frumkin-Derjaguin theory [13,19,48] of the disjoining
pressure-governed wetting

cos θw = 1 + 1

γ0

∫ ∞

h1

�(h) dh. (7)

The wetting film thickness h1 can be determined from the equation

�(h) = 0. (8)

Equation (7), however, cannot be applied for the case of very small droplets, since the curvature-
induced Laplace pressure also comes into play altering the interface shape and, consequently, the
contact angle. This fact is oftentimes omitted [2]. One of the ways to predict the contact angle
behavior has been suggested by Derjaguin, Churaev, and Frumkin, who derived the following
equation:

cos θ = 1 + pe(0)hads

γ0
+ 1

γ0

∫ ∞

hads

�(h) dh, (9)

where pe(0) is the curvature-induced pressure at the droplet apex. It should be noted also that the
adsorbed film thickness for the small droplet, in contrast to the liquid wedge, cannot be determined
from Eq. (8) because existing pressure pe(0) affects the thickness of the wetting film. The typical
isotherm is shown in Fig. 1 (dark blue curve), and the pe(0)-induced film thickness shift is from
h1 to hads. One should, however, mind withal that the complete form Frumkin-Derjaguin equation
(9) accounting for the curvature-induced pressure has been originally derived for capillaries and
droplets assuming that (1) the geometry is 2D (flat capillaries and cylindrical droplets), (2) the
liquid-gas interface shape is a part of a circle, and (3) the droplet is not small enough to allow the
disjoining pressure to affect its apex [pe(0) = �(hads)]. The dependency of the contact angle on the
droplet size following from Eq. (9) has been pointed out by Boinovich and Emelyanenko [32]: the
contact angle increases with the decreasing droplet height.

1A theory of colloidal stability named after Derjaguin, Landau, Verwey, and Overbeek.
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FIG. 1. The sessile droplet in equilibrium with its surroundings for the case of pseudopartial wetting.
On the left side is the schematic representation of cylindrical and axisymmetric droplets. On the right
side, the disjoining pressure as a function of the local droplet height alongside with the droplet profile is
shown. The green points are as follows: h1 is the first root of Eq. (8) corresponding to thickness of the
equilibrium adsorbed/wetting layer for the liquid wedge, hads is the solution of the equation �(h) + pe(r) = 0
corresponding to the thickness of the equilibrium adsorbed layer for the small droplet, h2 is the second root
of Eq. (8) defining the range of the surface force action, and hm corresponds to the maximal slope (inflection
point). In points A and M, the equation �(hads ) = �(hm ) is fulfilled. The contact angle of the droplet is denoted
as θ .

The influence of the droplet size on the contact angle has been discussed in the framework of the
disjoining pressure theory in several studies. Moldovan et al. [49] used scanning polarization force
microscopy for investigation of glycerol and sulfuric acid submicrometer droplets on highly oriented
pyrolytic graphite and aluminum-covered mica. The authors noted that the surface forces can
drastically affect the geometry of the droplets. In particular, an increase of the contact angle with the
droplet height was observed for all cases. The same wetting behavior—the contact angle increases
and then reaches a plateau—was observed by Xu and Salmeron [50], who studied condensation of
glycerol on mica preexposed to air. Xu and Salmeron [50] derived an analytical expression relating
the macroscopic contact angle with the nanoscopic contact angle via disjoining pressure. This
expression will be discussed in Sec. IV. Influence of the disjoining pressure on the nanodroplets
partially wetting the surface was investigated by Samoila and Sirghi [9]. Using the atomic force
microscopy, the authors showed that the top of the nanodroplet can be approximated by a spherical
cap while the droplet profile departs essentially from the spherical cap shape when approaching
the droplet foot. The authors reported that the AFM tip convolution (lower resolution due to the
geometry of the tip) had little effect on the shape of the nanodroplets. The nanodroplets attained
smaller contact angles, and the approximately threefold difference has been shown between contact
angles at the macro- and nanoscale. Experiments employing scanning polarization force microscopy
and the continuum mechanic approach involving DLVO surface forces implemented as a disjoining
pressure have been suggested by Barberis and Capurro [51] for analysis of the nanodroplet shape.
The modeling showed the rising contact angle (defined at the inflection point) with the increasing
droplet size as well. However, the parameters of the surface potential in their work were used as the
fitting parameters for experimental data, and, hence, no conclusion could have been made regarding
their influence as well as regarding the applicability of the spherical cap approximation. Another
group of works on a related problem of the liquid-gas interface shape and contact angles in systems
with high curvatures consider nanobubbles attached to a solid surface [52]. Those works, however,
do not generally discuss the complex and entangled influence of the parameters of the surface forces
on the droplet contact angle as well as the wetting film thickness and compare different approaches
to the contact angle definition but mostly pursue the particularly chosen systems.
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III. MATHEMATICAL FORMULATION OF THE PROBLEM

A. Derjaguin equation and surface force model

Consider a sessile droplet of an incompressible viscous Newtonian liquid deposited onto a flat
chemically and physically homogeneous substrate. The substrate is a cylinder of radius rc, and the
droplet is placed in the center of the substrate. The variable h measures the distance between the
liquid-gas interface and the substrate the way h = 0 corresponds to the substrate surface. Since the
pseudopartial wetting case is under investigation in the scope of this work, the substrate is assumed
to be covered with an adsorbed/wetting film of an equilibrium thickness hads (as is shown in Fig. 1).
The adsorbed film presence leads to the absence of the distinguishable three-phase contact line, and
the contact angle θ in this case can be determined either at the inflection point where the modulus
of the first derivative possesses the maximal absolute value that is θ = supr∈[0,rc]{| tan−1 dh

dr |} or at
the point of intersection of the spherical (or cylindrical) cap with which the profile is fitted and
the substrate plane. The radius of the droplet rd is defined as the distance between the axis of
rotation and the point of intersection of the tangent line built at the inflection point and r-axis. If the
spherical cap fitting is used, the rd is defined as the distance between the axis of rotation and the
point of intersection of the spherical (or cylindrical) cap and r-axis. The energy of the system can be
written as

F = 2π

∫ (
γ0

2

(
dh

dr

)2

+ S(h) + �(hads)h − S

)
r dr, (10)

where the first term is obtained assuming that dh
dr � 1, and the term S(h) reflects the contribution

of the intermolecular forces and is usually referred to as an interfacial potential in literature [2,53].
The interfacial potential can be transformed to the disjoining pressure by a simple relation

S(h) =
∫ ∞

h
�(h̃) dh̃. (11)

Note that we assume that the dependence of the surface tension on the interface curvature is
negligibly small for droplets with small contact angles. We restrict ourselves to effects rendered
by the disjoining pressure exclusively. The steady-state profile of the droplet can be obtained by
minimization of the energy functional and leads to the equation

d

dr

[
γ0

r

d

dr

(
r

dh

dr

)
+ �(h)

]
= 0 (12)

with pe(r) = γ0

r
d
dr (r dh

dr ) which after integration reduces to the Derjaguin equation (6). The boundary
conditions for the steady-state Eq. (12) are set as h = hd at r = 0, dh

dr = 0 at r = 0, and dh
dr = 0 at

r = rc, where hd is the maximal height of the droplet. The first boundary condition allows for setting
the certain volume of the droplet.

The influence of intermolecular forces is presented in (12) by the disjoining pressure term �(h).
According to Derjaguin’s theory [13,19] wetting and nonwetting modes are believed to result from
different types of the isotherms of disjoining pressure. If only an electrodynamic van der Waals
component of disjoining pressure is introduced, the disjoining pressure is written as

�(h) = A

h3
, (13)

where A is the effective Hamaker constant defined for the three-phase system. Van der Waals
interactions can be either repulsive, preventing adsorbed or wetting films from thinning and inherent
to the liquids perfectly wetting the solids θ0 = θ = 0◦, or attractive, which are inherent to the liquid
droplets ending up in the nonwetting state.

If the partial wetting case is considered, not only van der Waals but also electrostatic and/or
structural forces should be taken into account. For instance, when surfaces in an electrolyte medium
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are approaching, the electrostatic double layers (ionic clouds) after reaching the certain critical
thickness of the liquid film will overlap inducing an attractive/repulsive force [13,19]. The balance
between disjoining and conjoining forces results in the equilibrium contact angle existence when no
flow between the droplet and the adjoined liquid film occurs [in that case, the Derjaguin equation
or, equivalently, Eq. (12) is fulfilled].

In different works, different models of the disjoining pressure isotherms are used [54–56]. In
many cases, the disjoining pressure based on the Lennard-Jones/Mie potential form is adopted [55].
The advantage of such approach is conserving the principal form of the disjoining pressure isotherm
containing attractive and repulsive parts and the easier integration and polynomial equations for the
equilibrium film thickness. In some works, other functional forms like the sech(h) function are
employed to model the attractive term [57].

Throughout this work, we use the electrostatic component in the exponential form obtained
within the DLVO theory as a weak overlap approximation for electrostatic force between two planar
surfaces and, hence, write the disjoining pressure isotherm as [56,58,59]

�(h) = A

h3
− Ke− h

χ , (14)

where K is a magnitude of electrostatic forces (referred to as the electric Weber number in Ref. [60])
and χ is the Debye-Hückel screening length [58]. This term can be obtained by using the Yukawa
ansatz. The exponential term can describe the effect not only of electrostatic but also of structural
forces, albeit not simultaneously [56]. In the latter case, K is a magnitude of the structural forces
[19,58] and χ is a characteristic thickness of the hydration layer [22]. That representation agrees
with experimental studies [61,62]. Note that in our model, van der Waals interactions alone would
lead to the complete wetting and that no oscillating short-range behavior and no electromagnetic
retardation are taken into account.

Strictly speaking, all the aforementioned models of the disjoining pressure are applicable only for
the films with the uniform thickness, and considering convex or concave surfaces one should take
into account that � = �(h, dh

dr ,
d2h
dr2 ) [63]. However, we assume that for the small contact angles the

effect of derivative-containing terms of the disjoining pressure can be omitted [9].

B. Scaling, numerical methods, and parameters used

After introduction of the dimensionless variables and parameters in a form

h̄ = h

h0
, r̄ = r

h0
, χ̄ = χ

h0
,

Ā = A

γ0h2
0

, K̄ = Kh0

γ0
, �̄(h̄) = �(h)h0

γ0
,

where h0 is the characteristic length scale to be defined further, Eq. (12) attains the form

d

dr̄

[
1

r̄

d

dr̄

(
r̄

dh̄

dr̄

)
+ �̄(h̄)

]
= 0. (15)

Note that hereafter all the overbarred variables are considered to be dimensionless.
The MATLAB build-in solver has been employed for solving Eq. (15) and used the collocation

method [64]. The mesh for the boundary value problem has been chosen automatically (the tolerance
<10−9; further increase of the tolerance did not lead to any significant changes in solution) and
has been interpolated to the uniform mesh in order to make the compassion between the solutions
available. The variation of the substrate radius rc led to only negligible differences in the contact
angles and was generally less than 0.05%. Additionally, the full Derjaguin equation has been solved.
The differences between the solutions were small, and the contact angle’s variation did not exceed
0.05%. Therefore, the validity of the gradient-squared approximation has been justified.
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TABLE I. Surface force parameters.

Isotherm A, J Ā K̄ χ̄ h̄1 h̄2 h2, m θw,◦

Case 1A 2.48 ×10−16 2.689 ×10−5 0.1624 0.1149 6.66 ×10−2 1 1.13 ×10−5 6.98
Case 2A 2.48 ×10−16 5.189 ×10−5 0.1792 0.1227 8.28 ×10−2 1 8.15 ×10−6 6.98
Case 3A 2.48 ×10−16 7.372 ×10−5 0.1904 0.1273 9.3 ×10−2 1 6.84 ×10−6 6.98

Case 1B 9.84 ×10−17 3.982 ×10−5 0.1717 0.1195 7.59 ×10−2 1 5.86 ×10−6 6.98
Case 2B 9.84 ×10−17 8.838 ×10−5 0.1972 0.1297 9.86 ×10−2 1 3.93 ×10−6 6.98
Case 3B 9.84 ×10−17 1.445 ×10−4 0.2188 0.1366 1.15 ×10−1 1 3.08 ×10−6 6.98

Equation (15) has a regular singularity at r̄ = 0. Taking an infinitesimal value of r̄ instead of
r̄ = 0, as a direct way to avoid the singularity, did not lead to any change of the solution. The initial
guess for the boundary value problem (15) has been chosen in the form of a Gaussian half-bell
r̄ ∈ [0, r̄c]: hin = ae−r̄2/b + c, where a, b, and c are constants.

The contact angle for a liquid wedge can be evaluated for this type of the disjoining pressure
model using the Frumkin-Derjaguin theory (7)

θw = cos−1

(
1 +

∫ ∞

h̄1

�̄(h̄) dh̄

)
= cos−1

(
1 − K̄χ̄e− h̄1

χ̄ + Ā

2h̄2
1

)
. (16)

Three groups of isotherms have been used for modeling of wetting statics (Table I and Fig. S1
[65]). To show how the surface forces corresponding to different systems can alter wetting behavior
of the nanodroplets in those systems while preserving the wetting behavior of the macroscopic
droplets, the isotherms have been constructed the way that the contact angle corresponding to the
large drop or the liquid wedge (16) remains constant for each isotherm and is equal to θw = 6.98◦.
The dispersion forces are reported to be less sensitive to the changes of the composition of the
aqueous solutions [66] than structural and electrostatic forces. Therefore, the Hamaker constants are
chosen to be different for two groups, but their dimensional values are preserved within each group.
The parameters of electrostatic/structural forces vary within both groups, while the value θw =
6.98◦ is preserved. Since Eqs. (7) and (16) can be written via the interfacial potential as cos θw =
1 + S̄(h̄1), the constant contact angle of the wedge θw sets the fixed minimum of the interfacial
potential [2,53] while allowing for its shape variations.

The heights h̄1 and h̄2 are the roots of Eq. (8) and are as follows:

h̄1 = −3χ̄W0

(
− Ā1/3

3K̄1/3χ̄

)
, (17)

h̄2 = −3χ̄W−1

(
− Ā1/3

3K̄1/3χ̄

)
, (18)

where Wi is the Lambert W-function with i corresponding to the number of its branch [67]. In the
present work we focus on the droplets with heights comparable with the range of the surface force
action (Fig. 1). The range of h̄ corresponding to the negative pressure conjoining the interfaces is
h̄ ∈ (h̄1, h̄2). It is natural to take the second root h2 for the role of the scaling parameter h0. The
dimensionless isotherms are shown in Fig. 2.

The values of the surface force parameters used in this work are distinguished from the typical
realistic values inherent to the physical systems. Slightly larger values of the surface force parame-
ters compared to realistic ones have been chosen as has been done in Ajaev et al. [56] and Gielok
et al. [58] in order to reduce the time of calculation and to keep the droplet within the range of the
surface force action.
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FIG. 2. Disjoining pressure isotherms corresponding to different cases in Table I. Group A is shown in
black, group B is shown in blue. (a) The region of the disjoining-conjoining transition. The red markers depict
the location of h̄1. The red arrow is to exemplify the location of h̄1 for isotherm 3B. (b) The region of the second
conjoining-disjoining pressure transition and the disjoining part of the isotherm responsible for the repulsion
between interfaces. The red marker and arrow depict the location of h̄2 = 1.

IV. RESULTS AND DISCUSSION

A. Influence of droplet size on the contact angle: Axisymmetric droplets

In order to obtain the droplet profiles, the steady-state Eq. (15) with the boundary conditions
converted to the dimensionless form has been solved. The calculated profiles for the droplet heights
h̄d varying from 0.6 to 6.4 corresponding to case 2B (Table I) are presented in Fig. 3(a). The
profiles slightly flatten when h̄d decreases. Note that the profiles of the similar shape have been
experimentally obtained by Giro et al. [68].

In the following, we use the profiles presented in Fig. 3(a) to extract the contact angles employing
different definitions. In Fig. 3(b) the contact angles of the droplets (we focus first on the contact
angles evaluated at the inflection point as we mentioned in Sec. III) are plotted against the droplet
heights h̄d with the teal square markers. As can be seen, the contact angle defined at the inflection
point increases as the droplet height increases. It can be also seen that it is smaller than the contact
angle θw, which the Frumkin-Derjaguin equation (7) for the large droplet gives. The angle θw is
illustrated by the horizontal solid black line in Fig. 3(b). When the droplet height is equal to the
second root of Eq. (8) (h̄d = 1), the contact angle is almost twofold smaller than the Frumkin-
Derjaguin angle θw. For the bigger droplets, θ approaches the value θw that Eq. (7) gives. One
of the reasons for these differences is related to the dependence of the adsorbed film thickness
h̄ads on the droplet height h̄d . The adsorbed film thicknesses is illustrated in Fig. 3(b) with the red
squares. It increases as the droplet size decreases, and, hence, the smaller droplets are surrounded
by thicker wetting films. Additionally, for the smaller droplets, the contribution of the curvature-
induced pressure to the shaping of the liquid-gas interface is large since they possess larger curvature
at the droplet apex.

According to (9), the contact angle decreases with the increasing droplet height. It results in the
dependency opposite to that we obtained solving Eq. (15) and choosing θ at the inflection point h̄m.
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FIG. 3. (a) Stationary droplet profiles obtained from the Derjaguin equation (15) for different heights of
droplets h̄d . Isotherm 2B has been used for the profiles depicted. (b) The dependency of the contact angle θ

defined at the inflection point on the droplet height h̄d is shown with teal squares. The contact angles evaluated
using the spherical cap of the first kind (see discussion in the text) are marked with teal stars, the contact angle
in the Xu-Salmeron model [Eq. (19); see discussion in the text] is shown as a solid blue line. The straight black
solid line is to illustrate the contact angle θw of the liquid wedge or large droplet [Eq. (7)]. The blue triangles
show the contact angles evaluated using the full Frumkin-Derjaguin equation (9). The blue arrow is to show
that all teal/blue-marked dependencies belong to the left (angle) axis. The adsorbed/wetting film thickness
h̄ads is shown with red squares. The equilibrium wetting film thickness h̄1 corresponding to the liquid wedge
or large droplet is shown with the dashed red line. The red arrow is to show that all red-marked dependencies
belong to the right (thickness) axis.

Therefore, the Frumkin-Derjaguin equation in its full form (9) cannot be used for the prediction of
the contact angles of axisymmetric droplets. The applicability of Frumkin-Derjaguin equation (9)
will be further discussed in Sec. IV C.

Analyzing glycerol droplets wetting mica surfaces, Xu and Salmeron [50] have suggested a
theoretical expression for evaluation of the dependence of the contact angle θ on the droplet size h̄d .
Integrating the Derjaguin equation (6) using the small slope assumption, the authors obtained the
following relation for the contact angle prediction:

θ =
√

θ2
s + 2[S̄(h̄d ) + h̄d�̄(h̄d )], (19)

where θs is the asymptotic value of the contact angle, which can be calculated from the spreading
parameter S as θ2

0 = −2S/γ . In order to compare our results with θ obtained from the other
definition, θ0 has been taken equal to θw, since both of them describe the static angle of a large
drop. Relation (19), however, also differs from the results obtained on the basis of the inflection
point [Fig. 3(b), blue solid line]. According to model (19), the contact angle of the wedge θw is
reached for h̄d ≈ 1, whereas the contact angle defined at the inflection point demonstrates much
slower growth and asymptotically approaches θw at higher h̄d .

Since using a spherical cap approximation is very common in literature as long as hd <
√

2γ /ρg
[17,27,29,69], the droplet profiles obtained from the numerical experiments have been compared to
the spherical caps. Two ways of building the cap over the profile have been used. In the first case,
the spherical cap for each profile has been plotted on the basis of three predefined points: the droplet
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apex, the inflection point, and the point lying on the grid exactly in the middle between them. We
denote the contact angle corresponding to that case θ2. Another way to determine the spherical cap
can be based on the curvature κ̄(0) dictated by the liquid-gas excess pressure at the droplet apex:

p̄e(0) = κ̄(0) = �̄(h̄ads) − �̄(h̄d ). (20)

The contact angle, hence, follows from the simple geometric considerations

θ3 = cos−1[1 − h̄d |κ̄(0)|]. (21)

The latter equation, on the other hand, is the simplified version of the modification of the Frumkin-
Derjaguin equation accounting for the possible effect of the surface forces at the droplet apex, which
has been recently suggested by Iwamatsu [70] for 2D droplets in the form

cos θ = 1 − S̄(h̄ads) − S̄(h̄d ) − �̄(h̄ads)h̄ads

�̄(h̄ads)
[�̄(h̄d ) − �̄(h̄ads)]. (22)

Note, however, that we can apply (21) for both axisymmetric and cylindrical (as has been derived
by Iwamatsu [70]) droplets changing the curvature prefactor.

For simplicity, the spherical caps based on the three-point fitting and on Eq. (21) are designated
as “Spherical Cap 1” and “Spherical Cap 2” (or “Cylindrical Cap 1” and “Cylindrical Cap 2” for
2D droplets), respectively, in figures below. The contact angle θ1 defined at the inflection point
alongside the contact angles θ2 and θ3 following from the assumption on the spherical shape of
the droplet (defined at the intersection of the spherical caps with abscissa axis) is presented in
Fig. 3(b) and Fig. 4(a). Comparison of the droplet profiles with the spherical cap fittings is shown
in Figs. 4(b)–4(d).

The spherical caps of the first kind (three-point-based approach) generally fit the numerically
obtained profiles well. At a certain point, the droplet profile relaxes to the wetting film h̄ads, and one
can see that it starts to depart from the spherical cap shape and becomes significantly distorted in the
transition zone. The departure is more prominent if the droplet height h̄d < 1. The difference in the
vicinity of the droplet apex even for the droplets which are fully within the range of the disjoining
pressure action can be considered negligible.

Figure 4(a) shows that θ2 following from the three point-based spherical cap attains higher values
compared to θ1 evaluated at the inflection point. It can be seen indeed that θ2 for the droplets
with h̄d ≈ 1 differs from θ1 by the factor reaching up to ≈1.5 [the profiles are shown in Fi. 4(c)].
Increasing h̄d to a value of 3 [shown in Fig. 4(d)] already allows θ2 to reach θw while θ1 only slowly
approaches θw but never reaches it within the set of h̄d chosen.

The spherical caps based on the curvature that the pressure at the droplet apex dictates also follow
the numerically obtained profiles until the triple contact line and are close to the spherical cap based
on the three points. However, the spherical caps of the second kind depart from the profile more
strongly than those defined by three points. It is especially remarkable for h̄d < 1.

The contact angles obtained within this approximation appear to be slightly higher then θ2 and,
hence, almost twofold larger then θ1. Similarly, when the droplet height increases, the differences
between profiles and contact angles become less pronounced. It is interesting that θ3 becomes very
close θw when h̄d ≈ 1 as is in the case of the Xu-Salmeron model (19). Indeed, if one looks back, one
can see that the contact angle computed from the Xu-Salmeron equation agrees well with the values
obtained from the assumption of the spherical cap shape. This can be related to the approximate
integration ignoring the details of the droplet profile close to its foot where it relaxes to the wetting
film.

Note that the spherical cap approximation legitimacy has been also recently discussed by Giro
et al. [68]. The deviation of a spherical cap surface from actual droplet topography has been
measured by plotting the surface area against the volume for both cases (measured and fitted) and
comparing the values. The spherical caps have been reported to underestimate the surface area
of droplets as is in our case. However, the authors did not use the contact angles to quantify the
wettability and introduced the adsorption energy as a measure of the wettability at nanoscale instead.
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FIG. 4. (a) The dependency of the contact angle θ1 on the droplet height h̄d is marked by squares. The
contact angles θ2 and θ3 estimated using spherical caps of the first and second kinds are marked by stars and
circles, respectively. The lines are a guide to the eye. The dashed black line is to illustrate the contact angle θw

of the liquid wedge or large droplet [Eq. (7)]. Three droplet profiles with different h̄d have been chosen to show
the differences in the profile geometry. Those correspond to panels (b), (c), and (d). The numerically obtained
profiles are shown with black solid lines, the spherical caps of the first and second kinds with solid blue and
dashed green lines, respectively. (b) The graphical means of the contact angle choice: θ1 denotes the contact
angle defined at the inflection point, θ2 denotes the angle defined at the intersection of the spherical cap of the
first kind with abscissa axis, and θ3 denotes the angle defined at the intersection of the spherical cap of the
second kind with abscissa axis. All profiles correspond to Case 2B.

Consequently, the choice of the contact angle of the nanoscale droplets coexisting with the
wetting films is questionable, and treating the droplet as a part of a sphere can result in the
significantly different contact angle (compared to the inflection point), especially when the droplet
height appears to be within the characteristic range of the disjoining pressure action (h̄d < 1).
However, the spherical cap approximation can be justified for relatively big droplets used (the
condition hd <

√
2γ /ρg is still held), for example, in experiments on wetting and spreading [68,69].

The parameters of the disjoining pressure in the present study differ from those corresponding
to real physical systems, and, thus, the question may arise at which scale the size effects reveal
themselves. The typical parameters of the disjoining pressure isotherms are A ∼ 10−22–10−21 J,
K ∼ 105−106 Pa, and χ∼10−8–10−9 m. The values of the parameters A, K, χ can be found, for
example, in the work of Teletzke, Davis, and Scriven [71] or Churaev and Derjaguin [62]. Note,
nevertheless, that generally orders of magnitude of K may vary in a wider range depending on the
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FIG. 5. (a) Traction T̄ (r̄) (the curvature-induced pressure) distribution over the wetted area. The shape of
T̄ (r̄) under the droplet shows the transition from “sinking” to the dimple emergence occurring as the droplet
size increases. The region where the dimples appear is shown by arrows. (b) Pressure dimples emerging for
the droplets of h̄d > h̄cr

d . (c) The disjoining pressure distribution along the height of the droplets for which
no dimples emerge (solid black line) and dimples emerge (dashed blue line), accordingly. The inset plot is to
schematically illustrate the droplet profiles and the disjoining pressure distribution. The plots correspond to the
isotherm 2B.

system [61,62]. For the isotherms with the parameters given above, the second root of equation
�(h) = 0 attains values, which can vary from several nanometers to hundreds of nanometers
depending on the system examined. The phenomena examined in the present work are relevant
for the dimensionless droplet heights in the range h̄d ≈ 1–6. Therefore, we suggest that the ef-
fects described afore manifest themselves if the droplet height is in the range up to hundreds of
nanometers.

B. Influence of the droplet size on the pressure within the wetted area

Another interesting observation is related to the pressure distribution over the wetted area under
the droplet. In the static case, when no flow occurs, the pressure the liquid exerts onto the substrate
or so-called traction can be written as [22,72,73]

T̄ (r̄) = −�̄[h̄(r̄)] + p̄e(0). (23)

Combining the first integral of Eq. (15) with T (r̄), we obtain

T̄ (r̄) = 1

r̄

d

dr̄

(
r̄

dh̄

dr̄

)
, (24)

which is the curvature-induced Laplace pressure. Figure 5(a) shows the Laplace pressure over the
wetted area for the cases of different droplet heights h̄d . Both tensile and compressive stresses
are exerted onto the substrate [22]. For very small droplets possessing high values of curvature at
the apex, the pressure under the droplet is distributed in the way the substrate responses to it by the
so-called “sinking” [74]—the droplet causes an ellipsoidal distribution of pressure over the wetted
area. Apparently, the sinking cannot be observed for the rigid wetting but becomes prominent when
the solid substrate is not rigid anymore (for example, a droplet placed on a layer of a soft gel). Note
that the term sinking is also used for describing spreading of droplets over thick liquid layers [75].
If one increases the droplet height, the pressure distribution under the droplet flattens and, at certain
h̄d , becomes almost plane-shaped. After that, with further increasing height, the pressure dimple
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starts to form [Figs. 5(a) and 5(b)]. We refer to the droplet height at which the dimple forms as a
critical droplet height h̄cr

d .
The undulation appears away from the contact line region where one could expect such kind

of waviness to exist. The explanation of the pressure undulation lays in the S-like shape of the
disjoining pressure isotherm [Figs. 1 and 5(c)]. For the droplets with the heights in the range of
h̄d ∈ (h̄1, 1], the disjoining pressure isotherm causes only the expected sharp increase of the pressure
in vicinity of the contact line. When h̄d > 1, the droplet may be high enough and may contain a
level where the isotherm reaches its maximum after crossing the h axis and changing its sign. That
imposes an observed peculiarity appearance in the Laplace pressure. We illustrate that by plotting
�̄(h̄) for two droplets of heights h̄d1 < hcr

d and h̄d2 > hcr
d , accordingly, in Fig. 5(c). Therefore, the

value of h̄cr
d can be found directly as the maximum of function �̄(h̄) and reads

h̄cr
d = −4χW−1

(
− (3Ā)1/4

4K̄1/4χ̄3/4

)
. (25)

The maximal absolute value of the traction compressing the substrate under the droplet changes
with the size of the droplet and can be evaluated as | inf r̄∈[0, ¯rc]{T̄ (r̄)}| as a function of h̄d . For
h̄d � hcr

d , | inf r̄∈[0, ¯rc]{T̄ (r̄)}| = |�̄(h̄ads) − �̄(h̄(0))| while for h̄d > hcr
d the value of the maximal

traction equals | inf r̄∈[0, ¯rc]{T̄ (r̄)}| = | − �̄(h̄cr
d ) + �(h̄ads)| and decreases to the value that the liquid

wedge gives: ∣∣ inf
r̄∈[0, ¯rc]

{T̄ (r̄)}∣∣ = ∣∣ − �̄
(
h̄cr

d

)∣∣. (26)

Therefore, for big droplets, the depth of the dimple is dictated only by the surface force parameters
and is not changed with the further size increase.

The distribution of the curvature-induced pressure under the droplet has been shown in a few
works [22,33]. However, no analysis on the influence of the droplet size on the depth of the pressure
dimple has been presented. The emergence of the dimple leads to the important consequences for
the cases when the substrates are not rigid and can respond to the applied pressure by deforming.
A discussion of the consequences of our findings for the soft wetting [72,73,76–80] is presented in
Sec. S1 of the Supplemental Material [65].

C. Influence of droplet size on the contact angle: Cylindrical droplets

The Derjaguin equation (12) in the case of rotational symmetry and the assumption of the small
contact angles can be rewritten as

d2h̄

dr̄2
+ 1

r̄

dh̄

dr̄
+ �̄(h̄) = �̄(h̄ads). (27)

Unfortunately, Eq. (27) cannot be analytically integrated to extract the explicit dependency θ (h̄d )
without significant simplification of the disjoining pressure isotherm. It can be suggested, however,
that the cylindrical droplet model can be used for the contact angle determination. For example,
2D droplets instead of 3D have been modeled by Iwamatsu [70], Ghosh and Stebe [81], and
Heine, Grest, and Webb [82]. In the following, we compare a semianalytical solution of the
Derjaguin equation for the cylindrical droplet and numerical solution of Eq. (15) corresponding
to the axisymmetric case. Let us highlight that the concept of the disjoining pressure can easily be
applied for 2D droplets, whereas it may seem that no size effects are expected to appear within the
line tension concept. In fact, one must account not only for a volume, surface, and a line contribution
but additionally for the stiffness of the interfaces and contact line [31] when using a variational
procedure.
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FIG. 6. The slopes v for 2D (cylindrical) droplet obtained from Eq. (28) and 3D (axisymmetric) droplet
obtained as a numerical solution of Eq. (15) shown with solid and dashed lines, accordingly, are plotted for
h̄d = 1.59 (h̄d corresponds to 3D droplet) on the left side (a), and for h̄d = 6.36 (h̄d corresponds to 3D droplet)
on the right side (b). The isotherm corresponding to the case 2B is used. The red dash-dotted line is to show
the range of h̄d , within which the 2D model demonstrates good agreement with the 3D model.

For the 2D case, the Derjaguin equation within the long-wave approach in dimensionless form
(27) can be rewritten as

d2h̄

dx̄2
+ �̄(h̄) = �̄(h̄ads). (28)

Introducing variable v = dh̄
dx̄ , one can write the equation as

v2 = 2
∫ h̄

h̄ads

(�̄(h̄ads) − �̄(h̃))dh̃. (29)

Comparison of v evaluated for cylindrical and axisymmetric droplets is presented in Fig. 6. The
same �̄(h̄ads) for 2D and 3D droplets has been chosen. The cylindrical droplet model, how it follows
from the calculations, is indeed in a good agreement with the axisymmetric model. However, the
range of the applicability is very narrow (the height at which major differences between models
start to occur is highlighted with a red solid line). The cylindrical droplet has the same values of
the slopes for the adsorbed/wetting film region and very close values of the slopes in proximity
to the contact line region but distinguished in the inflection point region where v finds its minimum.
The range of the applicability increases with increasing droplet height. This is due to the fact that
the smaller droplet obtains higher second curvature values quite close to the contact line region.
That curvature compels the 3D droplet to distinguish from the 2D case. Therefore, the 2D model
cannot be applied for determination of the contact angles in the case of the small droplets with the
same �̄(h̄ads) giving lower contact angles but shows better results for bigger drops.

The other way to demonstrate the differences between the cylindrical droplet model and axisym-
metric droplet model is to analyze the droplet profiles directly. The analytical solution of Eq. (28)
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can be presented in the implicit form∫ h̄

h̄ads

dh̃√
2

∫ h̃
h̄ads

[�̄(h̄ads) − �̄(ĥ)] dĥ
= x̄0 − x̄. (30)

The form of the disjoining pressure isotherm including the exponential function does not allow
for direct integration, and, hence, the integral has been taken numerically. This method is more
straightforward for the Lennard-Jones type of the disjoining pressure isotherm.

Following the logic described afore, we analyze the contact angles resulting from profiles (30)
and plot dependency of θ on the droplet height h̄d for three cases when the contact angle is defined
(1) in the inflection point (θ1), (2) at the intersection of the cylindrical cap of the first kind (three-
point-based) with abscissa axis (θ2), and (3) at the intersection of the cylindrical cap of the second
kind [Eq. (21)] with the abscissa axis (θ3). The results are presented in Fig. 7. Note that contact
angle θ2 depends on the location of the points. In the case of 2D profiles the x-grid resulting from
the integration (30) is not uniform and the middle point lays closer to the inflection point. The
spherical caps, nevertheless, follow the profiles well. Obtaining the solutions in the form h̄(x̄) and
plotting the spherical caps of the first kind on their basis changes the contact angles only slightly
(the variations do not exceed 5%).

As is in the axysimmetric case, the cylindrical caps of both first and second kinds give generally
good results on following the profile. However, similarly, the departure from the solution of the
Derjaguin equation can be observed close to the contact line for droplets with size h̄d < 1 [Figs. 7(b)
and 7(c)], and the cylindrical cap of the first kind follows the profile better than that of the second
kind for those small droplets. For cylindrical droplets with h̄d > 2 [Fig. 7(d)] the cylindrical droplet
face is almost perfectly circular.

The contact angle (21) for cylindrical nanodroplets has been considered by Iwamatsu [70].
Similarly, a good agreement between the cap and the profile at the droplet top has been reported
while in the vicinity of the liquid-solid interface the profiles departed from the cap. The author
examined only the cylindrical cap approximation and defined the contact angle at the intersection
of the droplet profile with the substrate plane.

The most curious thing, however, appears when quantifying the contact angles that the cylindrical
caps of both kinds yield. The contact angles θ1 defined in the inflection point as well as those θ2

given by the cylindrical cap of the first kind show an increase with increasing h̄d as was in the
case of axisymmetric droplet, whereas the contact angle θ3 evaluated with Eq. (21) demonstrates
a nonmonotonic dependence on h̄d . θ3 increases until h̄d ≈ 1 and then decreases with increasing
droplet height. Note, however, that for h̄d < 1, the cylindrical cap follows the profile approximately
until reaching the inflection point h̄m and then departs. Thus, the values of the contact angles for
those h̄d are questionable. The function θ (h̄d ) decreasing at h̄d > 1 brings us back to Eq. (9).
Plotting θ (h̄d ) as follows from (9), one can see the perfect agreement between the analytical solution
provided by Frumkin, Derjaguin, and Churaev [13] and Starov [22] and results one can obtain using
the cylindrical cap assumption (21). The difference between the contact angles evaluated using
Eqs. (9) and (21) for h̄d < 1 is apparently related to the assumption made when deriving (9). For the
small droplets with height comparable to the surface force action range not only Laplace pressure
but also disjoining pressure shapes the droplet apex, which is not accounted for in (9).

Figure 7(a), hence, shows all the insidiousness of the contact angle choice: depending on the
definition of the contact angle one can report increasing or decreasing contact angles.

D. Modified Frumkin-Derjaguin equation

Now we derive an equation similar to Eq. (9) for the cylindrical droplets and analytical function
θ (h̄d ) linking the contact angle of the droplet with its height h̄d . However, in contrast to Frumkin,
Derjaguin, and Churaev [13], we define the contact angle at the inflection point of the droplet profile
(θ = θ1) and also, as Iwamatsu [70], account for the disjoining pressure at the droplet apex.
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FIG. 7. (a) Contact angles for cylindrical droplets evaluated using different approaches. The dependency
of the contact angle θ1 defined at the inflection point on the droplet height h̄d is marked with squares. The
contact angles evaluated using cylindrical caps of the first and second kinds are marked with stars and circles,
respectively. The dashed black line is to illustrate the contact angle θw of the liquid wedge or large droplet
[Eq. (7)]. The blue triangles show the contact angles evaluated using the full Frumkin-Derjaguin equation (9).
The lines are a guide to the eye. Three examples of profiles and cylindrical caps (b), (c), and (d) show the
differences in the profiles’ geometry. The semianalytically obtained profiles are with black solid lines, and the
cylindrical caps of the first and second kinds with solid blue and dashed green lines, respectively. The inset
picture in (d) shows the magnified contact line region and departure of the cylindrical caps from the numerically
evaluated profile. All profiles were plotted for isotherm 2B.

We start from the first integral of the Derjaguin equation (29). The point at the droplet interface
h̄m corresponding to the maximal slope is the inflection point, which states zero curvature at this
point. The latter, in turn, means that the location of this point is determined by the equation

�̄(h̄m) = �̄(h̄ads). (31)

Two solutions of this equation are graphically shown in Fig. 1. Taking into account that v(h̄m) = θ ,
one can write the contact angle as

θ2

2
=

∫ h̄m

h̄ads

[�̄(h̄ads) − �̄(h̄)]dh̄ = �̄(h̄ads)(h̄m − h̄ads) −
∫ h̄m

h̄ads

�̄(h̄) dh̄. (32)
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The contact angle of the liquid wedge �̄(h̄ads) is derived as

θ2
w

2
= −

∫ ∞

h̄1

�̄(h̃) dh̃. (33)

Equations (32) and (33) can be transformed to the form similar to the Frumkin-Derjaguin
equation for a small droplet (9)

cos θ = 1 − �̄(h̄ads)(h̄m − h̄ads) +
∫ h̄m

h̄ads

�̄(h̄) dh̄ (34)

and to Eq. (7) for the liquid wedge, accordingly, by applying a small-angle approximation. Com-
bining Eqs. (32) and (33), we arrive at the equation for the contact angle of the cylindrical droplet

θ2

2
= θ2

w

2
+ �̄(h̄ads)(h̄m − h̄ads) +

∫ h̄ads

h̄m

�̄(h̄) dh̄ +
∫ ∞

h̄1

�̄(h̄) dh̄. (35)

A relation between h̄d and h̄ads can be built from the condition at the droplet apex where v = 0,
and, hence, it reads

�̄(h̄ads)(h̄d − h̄ads) −
∫ h̄d

h̄ads

�̄(h̄) dh̄ = 0 (36)

or equivalently from the Derjaguin equation

�̄(h̄d ) = �̄(h̄ads) − p̄e(0), (37)

which is easier and more convenient, but cannot be applied directly in those cases when the droplet
is small but nevertheless under the negligible action of the surface forces in its apex. Therefore, in
the most general case function θ (h̄d ) can be written as

θ2(h̄d )

2
= θ2

w

2
+

∫ h̄d

h̄ads
�̄(h̄) dh̄

h̄d − h̄ads
(h̄m − h̄ads) +

∫ h̄ads

h̄m

�̄(h̄) dh̄ +
∫ ∞

h̄1

�̄(h̄) dh̄ (38)

or using the interfacial potential form

θ2(h̄d )

2
= θ2

w

2
+ S̄(hads) − S̄(h̄d )

h̄d − h̄ads
(h̄m − h̄ads) + S̄(h̄m) + S̄(h̄1) − S̄(h̄ads). (39)

Thus, both dependencies θ (h̄d )—increasing and decreasing depending on the definition of the
contact angle—can be obtained analytically. It is of necessity to notice, however, that in the case
of the liquid wedge or the large droplet, θw is defined as the constant value v reaches at h −→
∞. Therefore, the maximum angle θ f reached with the increasing droplet size is not θw but is
defined by

θ2
f

2
= lim

h̄d →∞
θ2(h̄d )

2
= S̄(1) − S̄(h̄1), (40)

which can be written in the dimensional form accounting for Eq. (7) as

cos θ f = cos θw − S(h2)

γ
. (41)

E. Effect of the electrostatic/structural interactions on the equilibrium microscopic contact angle

In this subsection, we show how parameters responsible for electrostatic and structural interac-
tions can affect the interface shape of the smaller droplet while preserving θw. Note that constant θw

fixes the minimum of the interfacial potential while allowing for the variations of its shape.
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FIG. 8. (a) Influence of the surface forces on the dependence of the contact angle on the dimensionless
droplet height for the axisymmetric droplet. The contact angle is defined at the inflection point. (b) Dependence
the dimensionless adsorbed/wetting film thicknesses on the dimensionless droplet height.

The dependence of θ (defined at the inflection point, θ = θ1) on h̄d for different disjoining
pressure isotherms (Table I) is presented in Fig. 8(a). The curves θ (h̄d ) plotted for all isotherm
collapse and generally can be considered as a “master curve” and used for the contact angle
prediction based on the ratio of the droplet height and the second root of Eq. (8): h̄d = hd/h2.

The thicknesses of the adsorbed/wetting films h̄ads corresponding to the different droplet heights
h̄d are presented in Fig. 8(b). One can see that the smaller droplets have the thicker adjoining wetting
films. However, despite the fact that the dependence h̄ads(h̄d ) is similar for all isotherms, the curves
do not collapse to one master curve. The dependency of the contact angle on the dimensional droplet
height for different disjoining pressure isotherms alongside a discussion of the influence of the
dimensional parameters of the isotherms on it can be found in Sec. S2 of the Supplemental Material
[65].

The similar master curve θ (h̄d ) can be observed in the case of cylindrical droplets [Fig. 9(a)]. In
order to explain this behavior, we restrict ourselves to analyzing very small droplets with the height
h̄d < 1. We further use a simplified disjoining pressure isotherm depicted in Fig. 9(b). We assume
that in this simplified form, the branch of the isotherm d�̄/dh̄ > 0 has a constant slope. The branch
of the isotherm d�̄/dh̄ < 0 has also a constant slope, which is steep that it can be assumed that
h̄min − h̄1 � 1 where h̄min is the height corresponding to the minimum of the disjoining pressure
isotherm �̄min.

Using Eq. (32) and simple geometry of the isotherm [Fig. 9(b)], one can write the slope of the
droplet at any height h̄ as

v2

2
= �̄(h̄ads)(h̄ − h̄1) − �̄min(2 − h̄ − h̄1)(h̄ − h̄1)

2(h̄ − h̄1)
. (42)
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FIG. 9. (a) Dependencies of the contact angle on the dimensionless height of the cylindrical (2D) droplet
obtained with Eq. (44) (shown with empty black markers connected with dashed lines) as well as the contact
angles resulting from the solution of the Derjaguin equation (28) (shown with filled colored markers). (b) The
simplified disjoining pressure isotherm (solid blue line) where h̄1 is the dimensionless thickness of the equilib-
rium adsorbed/wetting film for the liquid wedge, h̄ads is the dimensionless thickness of the adsorbed/wetting
film for the droplet, h̄min is the height at which the disjoining pressure attains its minimal value �̄min, h̄m

corresponds to the inflection point, and h̄2 = 1 defines the range of the surface force action.

After that, Eq. (36) can be employed in order to relate the height of the inflection point h̄m with the
height of the droplet h̄d . That results in a simple equation

h̄m = h̄1 + h̄d

2
, (43)

which together with Eqs. (32) and (42) results, in turn, in the equation for the contact angle of the
cylindrical droplet as a function of its height

θ = h̄d − h̄1

2

√
�̄min

(h̄1 − 1)
. (44)

The latter can be rewritten using Eq. (40) defining the contact angle θ f , which larger droplets
eventually reach:

θ = h̄d − h̄1

1 − h̄1
θ f . (45)

The contact angles obtained with Eq. (44) as well as the contact angles resulting from the solution
of the Derjaguin equation (28) are presented in Fig. 9(b). As one can see, the agreement is very
good, and a similar master curve results from the simplified consideration.

Despite the fact that the dependence of the contact angle on the scaled droplet height h̄d does not
show universality in its strict definition (θ still depends on h̄1), we suggest that the variation of the
shapes of interfacial potential does not lead to significant departure of θ (h̄d ) from each other, when
the minimum of the interfacial potential is fixed.
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FIG. 10. The dependency of the contact angle θ on the dimensionless curvature of the three-phase contact
line 1/r̄d (a) for the contact angle defined at the inflection point and (b) for the contact angle defined at the
intersection of the spherical cap of the first kind (three-point-based) with abscissa axis. Inset schematic pictures
illustrate the way that the contact angle is defined. The solid red lines are a guide for the eye and schematically
show the slopes required for the apparent line tension evaluation.

F. Apparent line tension of axisymmetric droplets

Despite the fact that the line tension concept is generally a macroscopic concept, it is often ap-
plied for the nanodroplets. The modified Young’s equation (5) is commonly used for determination
of the line tension [27–29,41]. In fact, as has been demonstrated by Schimmele, Napiórkowski, and
Dietrich [31], only the apparent line tension τa can be obtained this way [29,41]. In the following,
we show that for the nanoscopic droplet profiles, one may obtain different values of τa depending
on the definition of the contact angle chosen.

In Figs. 10(a) and 10(b) cosines of the contact angles plotted against curvature of the triple line
are shown for two definitions of the contact angle. In Fig. 10(a) the contact angles θ1 defined at the
inflection point are shown and in Fig. 10(b) the spherical cap of the first kind has been used to obtain
the contact angles θ2. Note that using the contact angle defined via Eq. (21) (spherical cap of the
second kind) results in a dependency very close to that depicted in Fig. 10(b), and, hence, we do not
present it. As has been stated in Sec. III, when the contact angle is defined at the inflection point,
we define r̄d as the distance between the axis of rotation and the point of intersection of the tangent
line built at the inflection point and r̄-axis. For the spherical cap of the first kind, r̄d is defined as the
distance between the axis of rotation and the point of intersection of the spherical (or cylindrical)
cap and r̄-axis.

The dependencies cos θ (1/rd ) are conventionally employed for the evaluation of the apparent line
tension τa [27,28,39,40]. In many works [29,39], functions cos θ (1/rd ) were found linear, while in
another group of experimental works [27,28] a necessity to account for additional terms or second
order in the modified Young’s equation (5) was reported. Interestingly, we also observe different
shapes of cos θ (1/r̄d ) curves for different contact angle definitions, and, what is also of importance,
the curves in both cases collapse to one master curve.

Let us average the data for the collapsing curves cos θ (1/r̄d ) depicted in Fig. 10(a) and eval-
uate the dimensionless apparent line tension τ̄a = τa

γ0h2
using Eq. (5). When the contact angle is
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defined at the inflection point (where the profile can be considered following the spherical cap),
the curve perfectly fits with the linear trend giving τ̄a ≈ −6.6 × 10−2. If the surface tension is
γ0 ≈ 72 × 10−3 J/m2, that results in |τa| ∼ 10−3 × h2. In our case (h2 ∼ 10−6–10−5 m, Table I),
|τa| ∼ 10−9–10−8 J/m, while for h2 ∼ 10−9–10−7 m (corresponding to the real isotherm parame-
ters), we have |τa| ∼ 10−12–10−10 J/m. The latter values agree with the those obtained by Berg,
Weber, and Riegler [27], Heim and Bonaccurso [28], Zhao et al. [29], and Zhang et al. [41].

According to Fig, 10(b), the situation is more complex. When the spherical cap of the first kind
is used to obtain the contact angle, the dependence of the contact angle θ2 on the dimensionless
curvature of the three-phase contact line 1/r̄d is not linear. The apparent line tension is still negative
but is not a constant anymore being dependent on the droplet size. The function is fitted better
with polynomials. Remarkably, τ̄a −→ 0 when h̄d −→ ∞, which is physically convincing because the
contact angle of the large droplet is not to change with the size. However, that faces the contradiction
with the results presented by Heim and Bonaccurso [28] who reported higher values of the apparent
line tension for bigger droplets.

Yet we highlight once again that only the apparent line tension can be captured by the modified
Young’s equation in form (5). Therefore, the values τa still contain the stiffness coefficients and the
Tolman length term, and no conclusion can be drawn about the sign and the magnitude of the pure
line tension, τ .

V. CONCLUSIONS

In this work, employing the disjoining pressure concept, we investigated the influence of the
droplet size and surface forces on the contact angle of sessile droplets of height comparable with
the range of the surface forces action. The Derjaguin equation in the case of low contact angles has
been used for obtaining the steady-state profiles of the droplets.

We have shown that the equilibrium contact angle is generally dramatically dependent on the
droplet size. That results from the interplay of the surface forces and curvature-induced pressure,
which is often omitted. In the case of the axisymmetric droplets, the contact angle increases with
increasing droplet height. It differs from the contact angle predicted by the Frumkin-Derjaguin
theory and reaches it only when the droplet is large (but is still below the capillary length). We
demonstrated that the contact angle at nanoscale is highly sensitive to the way it is defined—via
the spherical cap approximation or at the inflection point—which impacts the values of the contact
angle and can lead to those distinguishing from each other by almost 100%.

The contact angles of cylindrical (2D) droplets show noticeable difference compared to those of
the axisymmetric droplets and are in agreement with them only for the cases of the relatively big
droplets (which are still below the capillary length). It has been shown that different ways of the
contact angle definition can lead not only to the different values but also to the opposite trends when
considering the size effects.

The electrostatic/structural forces are shown to affect the contact angle of the sessile droplet.
However, the dependencies of the contact angle on the droplet height for the disjoining pressure
isotherms keeping the contact angle of the wedge (the interfacial potentials have the same minimum)
collapse to the master curve when plotted dimensionless with respect to the range of the surface
force action. This finding can be used for prediction of the contact angle for different nanosystems
having, nevertheless, the same contact angle for the large droplet. We developed the simple model
in order to show the reasons behind this behavior.

In the present work, we have additionally summarized the dependencies of the contact angle
on the droplet height obtained analytically in previous work [13,50,70] and have derived the
equation for the evaluation of the contact angle defined at the inflection point for the cylindrical
droplets. Therefore, all trends of contact angle alterations with the droplet height—decreasing,
nonmonotonic, and increasing—can be mathematically described.

The applicability of the commonly used spherical and cylindrical cap approximation has
been discussed for both axisymmetric and cylindrical droplets. Despite the common belief in its
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applicability for droplets with height smaller than capillary length [17,47], it has been concluded
that the profiles of droplets with height comparable to the range of the surface force action strongly
deviate from the spherical (cylindrical) cap shape. The significant distortion of the droplet shape is
caused by the surface forces.

We suggest, nevertheless, that there is no preferable way for the contact angle definition appli-
cable for all cases. Defining the contact angle at the inflection point may seem a very good strategy
since it introduces no ambiguity in contrast to the other definitions. This way of contact angle
determination can be easily adopted in theoretical/numerical studies. However, it does not have a
counterpart at macroscopic level, and, hence, a perfectly defined (down to the nanometric foot of
the droplet) profile is required for the evaluation of the contact angle. In experimental studies of
nanodroplets, the position of the inflection point is usually unavailable due to technical reasons. In
rare cases, when the position of the inflection point can be detected, great care has to be taken
for the elimination of the tip convolution effects (for example, if the AFM technique is used).
All that complicates the application of the inflection point definition for the experimental studies.
Therefore, the spherical (cylindrical) cap approximation (or its variations) remains the easiest way to
characterize the wettability since it can be applied even in the cases of the scattered data. However,
the procedure of the fitting of the droplet profile must be clearly stated to avoid any confusion.

The contact angle dependence on the three-phase contact line curvature is conventionally used
for the evaluation of the apparent line tension [28,29,39,41]. To the best of the authors’ knowledge,
for the first time, it has been pointed out that the way the contact angle defined significantly affects
the magnitude of the apparent line tension value. Therefore, the wide range of the line tension values
reported in the literature [9,25] can be related to the contact angle definition. Other reasons of the
wide range of the line tension values reported are scattering in the experimental results [41], peculiar
behavior of some of the liquid systems under consideration, and contact angle hysteresis. The
dimensionless apparent line tension for all contact angle definitions presented can be considered to
be dependent only on the second root of the disjoining pressure isotherm when the surface tension of
the liquid is set constant. Similarly to the contact angle, it can be predicted for different isotherms as
long as the contact angle of a large droplet (minimum of the interfacial potential) is kept preserved.

It has been found that above the critical droplet height curvature-induced Laplace pressure shows
nonmonotonic behavior within the wetted area: the pressure undulation related to the S-shaped
disjoining pressure isotherm can be observed. These findings are in agreement with the experimental
results reported [78] and can find applications when considering soft surfaces.

Future work could aim to reveal the contact angle dependence on the droplet size for droplets
on hydrophobic surfaces since in that case low contact angle approximation cannot be applied and,
in addition, the disjoining pressure must contain curvature-dependent terms [83]. Also, the size-
dependent line tension that appeared in recent studies and showed larger values for larger droplets
[27,28] is in contradiction with the theory and requires further investigation. The present work could
be also extended by considering spreading processes over rigid and soft surfaces for the droplets
comparable with the surface force action range since the number of works on such systems is still
limited.
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