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Natural convection exhibits turbulent flows which are difficult or impossible to resolve
in direct numerical simulations. In this work we investigate a quasilinear form of the
Rayleigh-Bénard problem which describes the bulk one-dimensional properties of con-
vection without resolving the turbulent dynamics. We represent perturbations away from
the mean using a sum of marginally stable eigenmodes. By constraining the perturbation
amplitudes, the marginal stability criterion allows us to evolve the background temperature
profile under the influence of multiple eigenmodes representing flows at different length
scales. We find the quasilinear system evolves to an equilibrium state where advective and
diffusive fluxes sum to a constant. These marginally stable thermal equilibria (MSTE) are
exact solutions of the quasilinear equations. The mean MSTE temperature profiles have
thinner boundary layers and larger Nusselt numbers than thermally equilibrated two- and
three-dimensional simulations of the full nonlinear equations. MSTE solutions exhibit a
classic boundary-layer scaling of the Nusselt number Nu with the Rayleigh number Ra of
Nu ∼ Ra1/3. When MSTE are used as initial conditions for a two-dimensional simulation,
we find that Nu quickly equilibrates without the burst of turbulence often induced by
purely conductive initial conditions, but we also find that the kinetic energy is too large
and viscously attenuates on a long, viscous timescale.
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I. INTRODUCTION

Rayleigh-Bénard convection plays a foundational role in astrophysical and geophysical settings.
The resulting buoyancy-driven flows regulate heat transfer and generate large-scale vortices [1].
Turbulent convection, which is associated with large Rayleigh numbers Ra, is difficult to simulate.
State of the art simulations performed by [2] have reached Ra ∼ 1014, but estimates for the sun’s
convective zone and earth’s interior are Ra ∼ 1016 − 1020 and Ra ∼ 1020 − 1030, respectively [3,4].
The scaling behavior of the Nusselt number Nu ∼ Raβ in the asymptotic ultimate regime is of
particular interest. There is a substantial body of work pertaining to this specific topic with no
general agreement between numerical simulations and asymptotic theories [5–11].

Absent solid evidence from direct numerical simulation, other methods have been developed to
try to infer large-Ra behavior or otherwise gain insight. In the presence of other physical effects (e.g.,
rotation, magnetic fields), one can sometimes derive an asymptotically consistent set of reduced
equations [12,13]. Reduced models are useful because they allow us to study the problem with less
expensive computations. Another approach relates to unstable exact coherent states (ECS), which
are steady solutions to the full nonlinear problem [14–17]. Simulations and analyses performed by
[18,19] suggest that chaotic solution trajectories might intermittently resemble these ECS. Should
that be the case, it is crucial that we discover and classify such equilibria.
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Others have turned to studying quasilinear systems. The quasilinear approximation starts with
a decomposition of all variables into a background and perturbations about this background. This
approximation neglects the nonlinear interactions between perturbations which would otherwise
modify the perturbations themselves [20]. This renders the perturbation equations linear. Although
the quasilinear approximation greatly simplifies the problem, an additional condition must be
imposed to determine the amplitude of the perturbations.

References [20,21] address this by initializing the perturbations to low amplitude and evolving
them together with the background. More recently, a different approach was taken in Ref. [22],
which computes ECS in parallel shear flows by deriving and solving a quasilinear formulation of
the Navier-Stokes equations via multiscale asymptotic arguments. They assume the background
velocity evolves on a slow timescale, and, to determine the perturbation amplitudes, they require
marginal stability at each time step. This quasilinear approach, which relies on multiscale arguments
in conjunction with a marginal stability constraint, is generalized by Ref. [23]. Studying two
somewhat generic systems, researchers observe the interdependent evolution of a background state
and its perturbations within a marginally stable manifold.

In Ref. [21], Herring derives a quasilinear model for Boussinesq convection and provides
supporting arguments for the model’s physical validity. He demonstrates that a single eigenmode
is dominant only when Ra < 106. Herring uses numerical integration along with Fourier decom-
position to approximate the transient solution to his model, allowing the system to saturate to a
state of marginal stability. Though efficient, this method is limited in its inability to model high-Ra
convection due to the appearance of a second unstable mode at Ra ≈ 106. How these modes interact
to form thermal equilibria is also of interest. In this paper we apply Ref. [23]’s generalized approach
to Ref. [21]’s reduced convection model by requiring marginal stability at the point of initialization.
When evolving the background state, we select the perturbation amplitudes such that marginal
stability is maintained with each successive time step. This method allows us to calculate marginally
stable thermal equilibria up to Ra = 109, involving as many as five eigenmodes, each with a unique
horizontal wave number.

The paper is organized as follows: In Sec. II we recall the underlying equations, and in Sec. III
we outline how we evolve the background temperature profile while maintaining marginal stability.
Section IV pertains to the properties of the marginally stable thermal equilibria, in particular, how
the Nusselt number and characteristic wave numbers vary with the Rayleigh number. Finally, we
analyze the results of simulations initialized with marginally stable thermal equilibria in Sec. V and
conclude in Sec. VI.

II. MODEL SETUP

We begin with the Boussinesq approximation for Rayleigh-Bénard convection, nondimen-
sionalized on the free-fall timescale. The domain D is two-dimensional (2D), rectangular, and
horizontally periodic with Cartesian spatial coordinates 0 � x < 4 and −1/2 < z < 1/2. We define
the corresponding domain width Lx = 4 and height Lz = 1. The fluid of interest is constrained
between two flat boundaries at z = −1/2 and z = 1/2 with fixed temperatures 1/2 and −1/2,
respectively. At both boundaries we specify impenetrable, no-slip conditions, such that the velocity
u = ux̂ + wẑ = 0 at z = ±1/2, where x̂ and ẑ are the unit vectors in the x and z directions. The
equations of motion are then given by

∇ · u = 0, (1)

∂u
∂t

+ u · ∇u = −∇p + T ẑ + R∇2u, (2)

∂T

∂t
+ u · ∇T = P∇2T, (3)
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where p is pressure and T is temperature. A Boussinesq convection system of this form can be

characterized by its dimensionless Rayleigh number Ra = gαL3
z �T

νκ
and Prandtl number Pr = ν

κ
,

where g, α, �T, ν, κ are the gravitational acceleration, coefficient of thermal expansion, imposed
temperature difference, kinematic viscosity, and thermal diffusivity, respectively. In this paper, we
fix Pr = 1. For convenience, we define

R =
√

Pr

Ra
, P = 1√

Pr Ra
. (4)

To derive the quasilinear form, we posit that an arbitrary field f can be represented as the sum of
a mean profile (denoted by f ) and a perturbation function (denoted by f ′),

u(x, z, t ) = u′(x, z, t ) (5)

= u′(x, z, t )x̂ + w′(x, z, t )ẑ, (6)

T (x, z, t ) = T (z, t ) + T ′(x, z, t ), (7)

p(x, z, t ) = p(z, t ) + p′(x, z, t ), (8)

where the mean velocity components vanish due to incompressibility and symmetry. Perturbations
are defined to have no horizontal average:

〈 f ′(x, z, t )〉x ≡
∫ Lx

0
f ′(x, z, t )dx = 0. (9)

Substituting (7) into (3) and taking the horizontal average reduces the system to a simple initial
value problem for T ,

∂T

∂t
+ ∂

∂z
〈w′T ′〉x = P ∂2T

∂z2
, (10)

with associated boundary conditions T (−1/2, t ) = 1/2 and T (1/2, t ) = −1/2. It should be noted
that we could obtain a similar equation for u by breaking reflection symmetry about the midplane
z = 0 and considering some nontrivial mean horizontal flow u(z, t ). However, we must have
w(z, t ) = 0 due to incompressibility.

Substituting (8) into (2) and taking the horizontal average reveals that the mean pressure field
p(z, t ) must satisfy

0 = −∂ p

∂z
+ T . (11)

To solve (10) numerically, we need an expression for the perturbations so we can calculate the
advective heat flux. Here we will make the quasilinear approximation, dropping the u′ · ∇u′ and
u′ · ∇T ′ terms from the evolution equations for the perturbations. Substituting (5)–(8) into (1)–(3)
followed by subtracting (10) and (11) from the resulting temperature and ẑ momentum equations
respectively give

∇ · u′ = 0, (12)

∂u′

∂t
= −∇p′ + T ′ẑ + R∇2u′, (13)

∂T ′

∂t
+ ∂T

∂z
w′ = P∇2T ′, (14)
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with Dirichlet boundary conditions

T ′|z=± 1
2

= 0, u′|z=± 1
2

= 0, p′|z=± 1
2

= 0. (15)

This is now a linear problem in u′ and T ′ which can be solved as an eigenvalue problem.
In his groundbreaking report [24], Lord Rayleigh observed that (12)–(14) can be manipulated

into a separable form with generalized solutions:

w′(x, z, t ) = A 
[W (z) ei(kxx−st )], (16)

u′(x, z, t ) = A 
[U (z) ei(kxx−st )], (17)

T ′(x, z, t ) = A 
[θ (z) ei(kxx−st )], (18)

p′(x, z, t ) = A 
[P(z) ei(kxx−st )], (19)

where A is the (undetermined) mode amplitude, s = ω + iσ is the eigenvalue, and kx is constrained,
by periodicity, to the countably infinite set (spectrum) of wave numbers:

kx ∈
{nπ

2

∣∣ n ∈ N
}
. (20)

We normalize the eigenmodes to have

〈|θ |2〉D = 1, (21)

where 〈·〉D denotes the spatial mean over the entire domain. Crucially, we emphasize that (16)
and (18) are solutions to the linear problem. In the quasilinear context, the background state
and its eigenmodes vary in time. By convention, our notation neglects this t dependence in the
eigenfunctions, as they will always be computed from the autonomous linear system.

For each kx, we can assess the stability of the perturbations by solving for the eigenvalue s, whose
imaginary component σ plays the role of an exponential growth rate. Positive eigenvalues indicate
that the system is unstable to small disturbances whose Fourier decomposition includes a nontrivial
component of wave number kx. Negative eigenvalues indicate stability. A complete linear stability
analysis requires solution over the full spectrum of wave numbers. The prototypical case is used to
demonstrate that the critical Rayleigh number Rac = 1708 when ∂T

∂z = −1.
To calculate the advective heat flux in Eq. (10), we can sum the individual advective terms

〈w′T ′〉x of every marginally stable mode. In this way, the heat flux from the perturbations influence
the evolution of T . But the evolution of T also influences the perturbations, as Eq. (14) depends on
∂zT . Thus the mean temperature and perturbation fields are coupled, as is the case in Refs. [22,23].

III. PERTURBATION EVOLUTION

The linearized system (12)–(14) does not constrain the amplitude of the eigenmodes, A. However,
the advective heat flux is proportional to A2, so we need to specify the amplitude in order to solve
Eq. (10). To evolve T , we assume the perturbations evolve on a much faster timescale than the mean
temperature, as in [25]. Stable modes (σ < 0) decay away rapidly. Unstable modes (σ > 0) will
not persist on the slow timescale because the advective term 〈w′T ′〉x tends to stabilize T , thereby
creating a negative feedback loop. Only marginally stable modes can be maintained on the slow
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FIG. 1. Eigenvalue spectra for Ra = 105. The spectrum of an “initial” marginally stable mean temperature
profile T (z, t0 ) has a maximum eigenvalue of 0. Given a small fixed time step �t , diffusion [Eq. (23)]
destabilizes the system, increasing σ . Advection [Eq. (24)] tends to stabilize the system, decreasing σ . We
find the eigenfunction amplitude A2 such that the combination of diffusion and advection yields an “evolved,”
marginally stable mean temperature profile T (z, t0 + �t ). In this case A2 ≈ 1 due to approximately equal
magnitudes of the diffused and advected eigenvalues

timescale. Therefore the amplitude A must satisfy

max
kx

{σ } = 0. (22)

For various Ra and fixed Pr = 1, we seek marginally stable thermal equilibria (MSTE) satisfying
∂T
∂t = 0 according to (10). We employ the Dedalus pseudospectral PYTHON framework [26] to solve
the eigenvalue problem outlined in Sec. II as well as the time evolution equation (10). We represent
each field with Chebyshev polynomials and use the 3/2 dealiasing rule to calculate the advective
heat flux. The necessary number of basis functions increases with Ra as the eigenfunctions include
increasingly small-scale features (see Appendix C Table I and Appendix D). We use the EIGENTOOLS

package [27] to manipulate the eigenfunctions and calculate the advective heat flux 〈w′T ′〉x.
To initialize our calculations, we construct a marginally stable initial temperature profile T (z, t =

0) whose equation is given in Appendix A. Although this background temperature is marginally
stable, it is not in thermal equilibrium, so it will evolve in time. We use (10) to evolve T (z, t0) into
a marginally stable profile T (z, t0 + �t ). We use a second-order, two-stage IMEX Runge-Kutta
method. The eigenfunctions and amplitudes are assumed to be constant with respect to t over the
time step. We symmetrize T by setting the coefficients of its even Chebyshev basis functions to
zero at the start of each time step. This ensures T (z) = −T (−z). On every time step, we calculate
the marginally stable eigenfunctions and their amplitude A. It is essential that we pick the correct
eigenfunction amplitude when calculating the advective term to maintain marginal stability. We will
now illustrate our method of finding the appropriate A through an example.

Consider a marginally stable temperature profile T (z, t0). By definition, its maximum growth
rate is 0. Diffusing T (z, t0) tends to increase its growth rates while ignoring the diffusive term and
evolving according to advection tends to decrease its growth rates (see Fig. 1). The amplitude A
must be selected such that these two influences are equal and opposite. We can measure the effects
of diffusion and advection on the maximum growth rate by solving two new initial value problems

∂T diff

∂t
= P ∂2T diff

∂z2
, (23)

∂T adv

∂t
+ 2

∂

∂z

[W θ∗] = 0, (24)
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where T diff and T adv denote the diffused and advected temperature profiles, respectively. In Eq. (24)
we have set the amplitude of the eigenfunctions A = 1 so we can determine how advection changes
the temperature profiles. The factor of 2 arises due to the horizontal averaging of the advective term
in (10).

We solve Eqs. (23) and (24) from t = t0 to t = t0 + �t , initializing each temperature pro-
file with T (z, t0). Suppose k0 is the wave number of the marginally stable mode. We then
calculate the kx = k0 mode’s growth rates σdiff and σadv for T diff and T adv. A good guess for
A2 is

A2 ≈ �2
0 ≡ −σdiff

σadv
. (25)

This estimate follows from first-order perturbation theory. Note that σadv < 0 and σdiff > 0, so �2
0 >

0.
Using the approximate amplitude �2

0, the background temperature T (z, t0) is then evolved to t =
t0 + �t according to (10) and another eigenvalue solve is performed. This background temperature
is typically close to, but not exactly, marginally stable. In fact, in the limit �t → 0, the estimate �2

0
approaches the amplitude A2 necessary to keep the background temperature marginally stable [23].
We use Newton’s method to find an amplitude A2 such that the maximum growth rate is zero to
within 10−9. We observe that marginally stable modes do not oscillate in time, i.e., σ = 0 implies
ω = 0. This numerical result is consistent with the conventional notion of exchange of stabilities
[28]. Crucially, we do not assume the kx of the marginally stable mode is fixed. In Sec. III we
specify procedures for the treatment of multiple simultaneously marginal modes.

Treatment of multiple marginally stable modes

In most cases we encounter eigenvalue spectra with multiple marginal modes. To accommodate
this we generalize the advective term in (10) to accommodate N simultaneously marginal modes,

〈w′T ′〉x =
N∑

n=1

2A2
n
[Wnθ

∗
n ], (26)

where Wn and θn are the marginally stable eigenmodes associated with different values of kx. The
factor of 2 is again due to horizontal averaging. There are now N modes, each with their own
amplitude to solve for and eigenvalue to keep marginally stable. Given a small fixed time step �t ,
let A2 be the amplitude vector and σ(A2) be the eigenvalues of the N modes. We are searching for
Ã2 that satisfies σ(Ã2) = 0. We approximate the amplitudes with �2

0 by generalizing (25):

Ã2 ≈ �2
0 = −
−1

advσdiff . (27)

Here σdiff = σ(0) refers to the eigenvalues of the background temperature after evolving under only
diffusion [Eq. (23)] for a time interval �t . We account for the influence of N advection terms on
N eigenvalues (one for each mode) by constructing an eigenvalue matrix 
adv. To calculate the
element of 
adv at row i and column j, we evolve the background temperature under only advection
by mode j for a time interval �t . Then the i, j component of 
adv is given by the eigenvalue of the
ith mode.

Our estimate �2
0 does not typically give a background temperature for which all N modes are

exactly marginally stable. We refine our vector of amplitudes via Newton’s method. This requires
calculating the Jacobian matrix:

J =

⎡
⎢⎢⎣

∇σ1(A1, A2, ..., AN )
∇σ2(A1, A2, ..., AN )

...

∇σN (A1, A2, ..., AN )

⎤
⎥⎥⎦. (28)
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FIG. 2. Mean temperature profiles T for Ra = 108. The initial profile is given by (A1). We evolve this
background temperature profile according to Sec. III until we reach a marginally stable thermal equilibrium
(MSTE). ECS refers to a steady nonlinear solution for Boussinesq convection, given by Ref. [16]. The
DNS curve is obtained from a 2D nonlinear simulation of (1)–(3) with DEDALUS. DNS temperature data are
horizontally and time averaged. The initial profile has the narrowest boundary layer, while the DNS profile has
the widest boundary layer. The equilibrated MSTE and ECS curves lie between the initial and DNS curves, with
the ECS having a more diffuse boundary layer than that of the MSTE. The MSTE profile exhibits prominent
dips, nested alongside the boundary regions.

We approximate J via first-order finite differences, which requires an additional N2 sparse eigen-
value solves. We iterate Newton’s method until all marginally stable modes have eigenvalues within
10−9 of zero. We find σ(A2) does indeed have a unique root provided the time step is not too large
and there are no numerical instabilities, as outlined in Appendix B. Presumably, this is due to the
coupling of 〈w′T ′〉x with T . Over the course of a large time step, T evolves according to (10) and
eventually the original eigenfunctions cease to provide a stabilizing influence. This limits the time
step size we can take.

Difficulty arises when transitioning between different numbers of marginal modes. We facilitate
these transitions by defining an adjustable candidate tolerance εcand ∈ [10−6, 10−8]. A mode which
meets the candidate tolerance can be included in the subsequent time step as a candidate marginal
mode. Candidate modes are rejected when the root-finding algorithm converges on a negative
amplitude A2 < 0. Otherwise the mode becomes marginally stable. In a similar manner, a marginally
stable mode need not remain marginally stable. If its amplitude converges to some A2 < 0 as before,
then that mode is discarded and the time step is repeated.

IV. PROPERTIES OF THERMALLY EQUILIBRATED STATES

We evolve T as described above until max |∂t T | < 10−5. In this marginally stable thermal
equilibrium, T does not evolve in time, and the perturbations also do not evolve in time, as
they are marginally stable. Thus these configurations are exact solutions to the quasilinear system
[Eqs. (10)–(14)]. They differ from the usual ECS in that ECS are fixed points of the full nonlinear
problem (1)–(3). Such definitions are not mutually exclusive, but in general we can assume that
MSTE and ECS are not steady with respect to their counterparts’ equations. We compute symmetric
MSTE for Ra in the range 105 − 109.

Figure 2 gives temperature profiles for Ra = 108, where the initial profile is outlined in
Appendix A. We run a direct numerical simulation (DNS) of (1)–(3) with DEDALUS and plot the
horizontal- and time-averaged temperature profile. The temperature boundary layers in the DNS are
wider than in the MSTE, which is in turn wider than the boundary layer of the initial temperature
profile. By computing the maximum growth rates of the linearized system (12)–(14), we found that
both the DNS and the ECS profiles are linearly unstable when used as background states. Every
marginally stable initial profile we experiment with (tanh, erf) has thinner boundary layers than the
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FIG. 3. Heat fluxes (left) and eigenvalue spectra (right) of equilibrated states with Ra = 2 × 105 (top) and
Ra = 109 (bottom). The heat flux profiles are symmetric about z = 0, so we only plot for z < 0. We plot
the advection profiles for marginally stable modes. At low Ra, a single mode with kx = 1.5π is sufficient
to oppose boundary-layer diffusion and facilitate heat flux throughout the bulk of the domain. At large Ra,
high-wave-number modes contribute pronounced small-scale advection profiles which tightly hug the thin
boundary layers. A combination of progressively wider advection profiles is necessary to transition to bulk
advection provided by the kx = 1.5π mode. This bulk mode mimics the large-scale convective cells which are
characteristic of Rayleigh-Bénard convection, both in qualitative structure and number of cells in the domain.
The eigenfunctions which compose the advective profiles are illustrated in Appendix D.

DNS and MSTE profiles. When comparing our quasilinear equilibrium (MSTE) with Ref. [16]’s
nonlinear equilibrium (ECS), we find that the ECS profile is significantly more diffuse than that of
the MSTE. In conjunction, these two facts suggest that MSTE maximize boundary-layer thickness
while subject to the marginal stability constraint.

The most resilient and unexpected feature of MSTE temperature profiles are the pronounced dips
adjacent to the boundary layers. These dips appear in every solution, regardless of Ra. Physically,
they correspond to thin layers in which the mean temperature gradient reverses, contradicting an
important hypothesis of [5]. This counterdiffusion, which opposes overall heat transfer, is overcome
by the coinciding advective flux, shown in Fig. 3. Reference [21] observes this when studying the
same system. Similar temperature gradient reversals are reported by [17] along the midlines of 2D
convective cellular solutions at Ra ∼ 106. In that case, the reversals are due to nonlinear advection,
which is not present in our quasilinear model. Neither the present authors nor Herring were able to
provide a rigorous mathematical explanation for this behavior.

In Fig. 3, we give heat flux profiles and eigenvalue spectra for two cases: Ra = 2 × 105 (top) and
Ra = 109 (bottom). Appendix D shows representative vertical velocity and temperature perturbation
eigenfunctions. For Ra = 2 × 105, there is a single marginal mode at kx = 1.5π whose advective
flux occupies the bulk of the domain. These states have wide boundary layers, with diffusive fluxes
which gradually subside as advection becomes the dominant flux component. Transitional regions
occur over a smaller length scale for Ra = 109 where the shift from diffusion to advection is sharp.
At Ra = 109 we find five marginally stable modes are necessary to reach an MSTE. Thin advection
profiles, belonging to high-wave-number modes with kx = 23.5π, 24π , hug the boundary layer.
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FIG. 4. Wave numbers of marginally stable modes in thermally equilibrated states. Marginal modes often
appear in adjacent pairs, which we denote with a common color. Within each of these pairs, the largest and
smallest kx are denoted with an x and a +, respectively. For example, the spectrum corresponding to Ra = 105

has adjacent marginal wave numbers kx = π, 1.5π . The Ra = 109 spectrum, shown in the lower right corner
of Fig. 3, has three groups of maxima, with a single marginal mode in the first group (kx = 1.5π ), two adjacent
marginal modes in the second group (kx = 6π, 6.5π ), and two adjacent marginal modes in the third group
(kx = 23.5π, 24π ). The largest wave numbers of the green and blue branches depend on Ra according to
power laws. For the green branch, max{kx} ∝ Ra0.300 with R2 = 0.998, while for the blue branch, kx ∝ Ra0.155

with R2 = 0.988.

Closer to the bulk of the domain, we see wider advection profiles corresponding to modes in a
second pair of marginal modes kx = 6π, 6.5π . Adjacent pairs of marginal modes whose wave
numbers differ by 0.5π are common among MSTE. The isolated kx = 1.5π mode forms the same
arrangement and number of large-scale convective cells observed in DNS, again occupying the bulk
of the domain. The pairs of modes kx = 6π, 6.5π and kx = 23.5π, 24π are each associated with a
single maximum in our plots of growth rate σ as a function of kx (lower right panel of Fig. 3). If we
allowed wave numbers to vary continuously, there would be an unstable mode between these pairs
of wave numbers. However, since we have fixed the horizontal size of our domain, we are left with
pairs of discrete marginal modes.

MSTE for large Ra tend to have a diverse combination of marginal modes. In every case, the
kx = 1.5π mode is included. In Fig. 4 we give the wave numbers kx of marginal modes. Adjacent
pairs of marginal modes are common but not ubiquitous. Like kx = 6π, 6.5π and kx = 23.5π, 24π

for the Ra = 109 MSTE, these are due to the discretization of wave numbers from our domain
of width 4. We think of the pairs of modes as acting together as part of a single maximum of the
growth rate as a function of the wave number. When wave numbers are adjacent, we plot them in the
same color and denote the larger mode with an x and the smaller with a +. For Ra � 106, a second
branch of marginal modes is shown in light green. Least-squares regression gives max{kx} ∝ Ra0.300

with R2 = 0.998 for this maximum branch. This relationship does not appear to be asymptotic.
If we consider only those MSTE whose Ra � 108, we observe max{kx} ∼ Ra1/3, in agreement
with classical scaling arguments. For large Ra, the advective fluxes of this maximum branch
compensate for the strongly peaked diffusive flux in the thin boundary layers. At Ra � 108, a third
branch appears (shown in blue), splitting the widening gap between the other two. For these points
regression gives kx ∝ Ra0.155 with R2 = 0.988. The blue branch is associated with moderately wide
advection profiles, filling a niche in the total flux by uniting the thin profiles of the maximum branch
with those of the bulk-domain-oriented minimum branch.

The largest marginal wave number max{kx} (represented by the light green branch in Fig. 4)
serves as an inverse minimum length scale in the x direction. The finest vertical structures in T (z)
appear near the boundaries, requiring more basis functions (resolution) at large Ra. Naturally, this
provides a complementary minimum length scale for z. We define the boundary-layer height δ as
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FIG. 5. For Ra � 106, the maximum, marginally stable wave number (corresponding to the green x markers
in Fig. 4) are inversely related to the boundary-layer height δ. (max{kx})−1 gives a minimum x length scale
for the perturbations, and consequently, the advection. For large Ra, the boundary layers admit small-scale
features, requiring more vertical basis functions (higher resolution, see Appendix C for specifications). The
boundary-layer height gives an estimate of the minimum vertical length scale in the problem. This suggests
that the minimum horizontal and vertical length scales are proportional to each other over a wide range of Ra.

the distance from the boundary where ∂zT equals zero, i.e.,

∂T

∂z

∣∣∣∣
z=− 1

2 +δ

= 0, 0 < δ < 1/2. (29)

This height corresponds to the local extrema of the MSTE temperature profile, e.g., in Fig. 2. In
Fig. 5 we show max{kx} is proportional to δ−1 over our range of Ra. Least-squares regression gives
δ−1 = 1.71 max{kx} − 2.13 with R2 = 0.996.

We find the MSTE can be characterized by their boundary-layer height. In Fig. 6, we illustrate the
scaling behavior of the boundary-layer height δ ∼ Ra−1/3. This is consistent with Malkus’ classical
marginal stability theory, a scaling argument which perceives the boundary regions as subdomains
which are themselves marginally stable [5].

The temperature boundary layers of MSTE exhibit self-similarity despite great variation in Ra.
We illustrate this in Fig. 7 where the mean temperature T is plotted along a rescaled z coordinate
z+1/2

δ
. It is also noteworthy that we do not encounter any appreciable variation in the boundary-layer

geometry as we extend Herring’s findings beyond Ra = 106. The rescaled boundary-layer geometry

FIG. 6. Boundary-layer height δ of MSTE. We define the boundary-layer height based off the location
where ∂T

∂z = 0 [see Eq. (29)]. Plotting on a log-log scale, we find that δ and Ra obey a power-law relationship.
We also demonstrate that Ra1/3δ is approximately constant with respect to Ra, which is consistent with [5]
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FIG. 7. Temperature boundary-layer geometries of various MSTE. Rescaling according to the previously
defined boundary-layer height δ reveals self-similarity in the temperature boundary layers despite large
variation in Ra. The rescaled curves remain approximately self-similar for z < 0.

appears intrinsic to the MSTE, possibly minimizing diffusion as previously hypothesized. This again
highlights the importance of the boundary-layer height’s dependence on Ra.

The Nusselt number, which measures convective performance, is given by

Nu = 〈〈w′T ′〉x − P ∂T
∂z 〉z

〈−P ∂T
∂z 〉z

. (30)

There is no general consensus surrounding the scaling behavior of Nu for high-Ra systems, which
are of particular importance in astrophysical and geophysical systems. In Fig. 8 we report Nu
for MSTE, “steady rolls” ECS [16], and DNS [29,30]. We find that MSTE satisfies Nu ∼ Ra1/3,
consistent with our finding that the boundary-layer height scales like δ ∼ Ra1/3. Herring was
able to demonstrate this for Ra � 106. Our results confirm this trend in MSTE up to Ra = 109.
The Nusselt numbers of the ECS are somewhat lower and the DNS Nusselt numbers are yet
lower still. In both cases, the Ra dependence appears slightly more shallow than for the MSTE.
Reference [16] hypothesized that the Nu of all ECS which admits classical Malkus scaling must

FIG. 8. Nusselt numbers are shown for MSTE, aspect-ratio-optimized “steady rolls” ECS [16], as well as
statistically steady 2D and 3D DNS [29,30]. All datasets obey power-law relationships, with the MSTE and
ECS scaling like Nu ∼ Ra1/3. MSTE have greater Nu than the ECS, which in turn have greater Nu than the
DNS. This can be explained by the contrasting boundary-layer geometries shown in Fig. 2.
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FIG. 9. Nusselt numbers of simulations performed at Ra = 108, initialized with the conductive equilibrium
plus thermal noise (black), the MSTE (blue), and the MSTE absent initial flow (green). The MSTE simulation
does not undergo a convective-transient period because the characteristic large-scale convective cell structure
exists on initialization. The MSTE no-flow simulation exhibits quasiperiodic oscillations in Nu which appear
to persist for long times. The oscillations are great enough in amplitude that Nu is quasiperiodically negative,
indicating brief periods of average heat transfer reversal.

always exceed the Nu of turbulent convection. If we generalize this notion to include quasilinear
equilibria, our findings agree; MSTE have larger Nu than two- and three-dimensional (2D, 3D)
DNS. This might be due to the chaotic transitions among the unstable periodic orbits outlined
by [18,19] inhibiting heat flux. We might also anticipate the existence of similar equilibria
with smaller Nu, occupying complementary nodes in the Markov chain, whose behavior agrees
with DNS.

V. SIMULATIONS WITH THERMALLY EQUILIBRATED INITIAL CONDITIONS

This investigation is partially motivated by the prospect of decreasing DNS runtimes by employ-
ing MSTE as initial conditions. One common choice of initial conditions for DNS of Eqs. (1)–(3)
is

T (x, z)|t=0 = 0.5 − z + N , u(x, z)|t=0 = 0, (31)

where N is low-amplitude random noise concentrated in the bulk of the domain. Here we instead
initialize using the MSTE,

T (x, z)|t=0 = T (z) +
N∑

n=1

An
[θn(z)eikxn x] + N ,

u(x, z)|t=0 =
N∑

n=1

An
[(Un(z)x̂ + Wn(z)ẑ)eikxn x], (32)

where θn(z), Un(z), Wn(z); An; and kxn refer to the complex eigenfunctions, amplitude, and wave
number of the nth marginal mode, respectively. Note that although the MSTE is an equilibrium of
the quasilinear equations, it is not an equilibrium of the full nonlinear equations. Accordingly, the
simulation state would evolve on initialization absent a random noise term. Here we include noise
as a source of asymmetries. We also perform a simulation with MSTE absent any initial velocity
(u(x, z)|t=0 = 0). This state is not in equilibrium, but we refer to it as “MSTE No Flow” for clarity.

Simulations initialized with the conductive equilibrium plus low-amplitude thermal noise have a
large peak in Nu early on in their evolution (Fig. 9). This is due to a burst of turbulence which occurs
when the convective motions first become nonlinear. The MSTE no-flow simulation undergoes
a similar transient period, albeit less pronounced as illustrated by the smaller peak in the green
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FIG. 10. Average kinetic energies are reported for the same simulations illustrated in Fig. 9 (Ra = 108).
The eigenfunctions belonging to MSTE have significantly more kinetic energy than the statistically steady
state. Kinetic equilibrium is achieved on a long viscous timescale.

curve. A simulation initialized with the MSTE, however, does not exhibit this transient burst of
turbulence, as the large-scale anatomy of convective cells exists on initialization. Simulation of this
transitional period is prohibitive [31]. For high-Ra experiments, researchers often “bootstrap” data
by initializing simulations with the results of similar Ra runs [29,32]. MSTE can be perceived as
a set of initial conditions, designed for avoiding the simulation of transient high-Reynolds-number
flows. MSTE absent velocity effectively achieve the same goal.

MSTE are laminar, lacking the small-scale structures associated with moderate- to high-Ra
experiments. This is an apparent consequence of the quasilinear assumptions. If we perceive
MSTE as background states, DNS suggest that plumes, vortex sheets, and other unstable turbulent
features inhibit total heat transfer. This perspective agrees with conventional models of transitions
to turbulent flows, such as Boussinesq’s turbulent-viscosity hypothesis [33]. The emergence of
small-scale velocity structures is indicative of nonlinear energy transfer to small scales where
energy is lost due to viscosity. Buoyancy-driven flows are therefore impeded and the advection
in the bulk of the domain decreases in magnitude [28,33]. We could also attribute the diffuse DNS
temperature profile in Fig. 2 with unsteady boundary-layer penetration and mixing that MSTE do not
exhibit.

We also find that the average kinetic energy of the simulation initialized with MSTE is
significantly larger than those found in either of the other cases, as shown Fig. 10. This is
because MSTE contain strong large-scale high-velocity flows, which decay on a long viscous
timescale tν . These powerful advective flows balance the heat flux in the bulk of the domain
with the strong diffusion of thin MSTE temperature boundary layers. Fluid in the other cases is
initialized at rest. Two viscous timescales can be derived for this problem: one for the boundary
layer

tν,δ = δ2

P = 2.86 (33)

and another for the entire domain

tν,L = L2
z

P = 104. (34)

Empirically, we find tν ≈ 200, suggesting the true kinetic energy decay timescale is based on a
length scale � ≈ 0.14, which is longer than the boundary-layer height δ but shorter than the domain
height Lz. Consequently, MSTE initial conditions do not reduce the simulation time required to
achieve a statistically steady state—rather, they increase it considerably! This is alleviated by using
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no-flow MSTE initial conditions. The MSTE temperature state is a promising candidate initial
condition for high-Rayleigh-number convection simulations.

VI. DISCUSSION

In this paper we describe a way to study Rayleigh-Bénard convection. We compute marginally
stable thermal equilibria, which are equilibria of the quasilinear equations. To compute MSTE,
we construct a marginally stable mean temperature profile and evolve it according to the advec-
tive flux of its marginally stable eigenfunctions, and its own diffusion. We assume that at least
some modes are always in a marginally stable configuration and all other modes are stable. The
marginal stability constraint then fixes the ratio between advection and diffusion (eigenfunction
amplitude A2). We use standard root-finding algorithms to solve for the appropriate A2 at each
time step until the combination of diffusive and advective flux sum to a constant. The MSTE
calculation is a one-dimensional problem, combining eigenvalue solves, and the time evolution
of the one-dimensional mean temperature profile. Thus, MSTE can be calculated on a single
workstation.

Our method allows several marginally stable eigenmodes to participate in the evolution of
the background state simultaneously. Consequently, we are able to exceed Herring’s Ra = 106

threshold. For Ra > 106 we did not observe any significant deviations from the trends observed
in low-Ra MSTE.

MSTE contain large-scale convective cell structures and have Nu ∼ Ra1/3. These are similar
to what has been found in experiments and direct numerical simulations. But MSTE also exhibits
unexpected features: mean temperature gradient reversals/dips, high-kinetic-energy flows, and a
larger Nu than other equilibrated solutions. When initializing with different mean temperature
profiles, we find the same MSTE, suggesting these equilibria might be unique.

Simulations initialized with the MSTE (32) do not undergo an early convective-transient
period but have faster flows when compared with DNS. From a dynamical systems per-
spective, unstable orbits depart from MSTE and approach the global attractor on a viscous
timescale. This requires more computational effort to achieve relaxation when compared
to the conventional conductive initial condition (31). Initializing with only the tempera-
ture state of the MSTE avoids an early convective transient but does not have excessive
large-scale flows. These states could be excellent initial conditions for high-Rayleigh-number
DNS.

Using the mean temperature in a statistically steady DNS as a background state for an eigenvalue
problem yields positive eigenvalues: the system is in a perpetual state of instability. Unstable modes
tend to stabilize the system rapidly, creating a negative feedback loop whose average state is linearly
unstable. Future work could adjust the marginal stability criterion to allow for moderately unstable
modes. Should the fast and slow timescales not be entirely separate, these modes might persist for
long times. This might lead to greater agreement with DNS.

Another significant difference with DNS is the treatment of shear in the boundary layers. At
sufficiently high Ra, the shear in the kinetic boundary layers could become unstable and turbulent
[11]. This cannot occur in our quasilinear model because the background state has no velocity
shear. One avenue for future work is to include a mean horizontal flow, which could develop
boundary-layer structures. In that case we would search for states which also balance viscous and
Reynolds stresses across the domain. Perturbations about this background state could include shear
flow instabilities. Another approach would be to use the generalized quasilinear approximation, in
which the background state includes both the mean and low-wave-number temperature and velocity
profiles [20]. This would allow for linear instabilities of the shear driven by low-wave-number rolls,
as we see in all MSTE. Generalized quasilinear calculations are inherently multidimensional, so
they are more computationally expensive than the eigenvalue-based analysis used to find MSTE.
Despite these limitations, our one-dimensional MSTE states capture many interesting features of
convection.
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APPENDIX A: INITIAL BUOYANCY PROFILE

We initialize the thermal-equilibration algorithm with an analytical thermal boundary-layer
equation, derived by [34]:

T 0(ξ ) =
√

3

4π
log

(1 + aξ )3

1 + (aξ )3
+ 3

2π
arctan

(4π

9
ξ − 1√

3

)
+ 1

4
,

ξ = z + 1/2

δ0
� 0, a = 2π

3
√

3
, (A1)

where δ0 is a measure of the boundary-layer height (δ0 �= δ in general). This function is meant to
describe the temperature near z = −1/2, so it does not pass through the origin. An appropriate initial
mean temperature profile T 0 must be odd symmetric, i.e., T 0(z) = −T 0(−z). Due to continuity, this
implies T 0(0) = 0. Accordingly, we construct T 0(z) by translating T 0(z) vertically to pass through
the origin. We then take its odd extension and include a scaling coefficient to satisfy the boundary
conditions T 0(−1/2) = 1/2 and T 0(1/2) = −1/2. The initial mean temperature profile is therefore
given by

T 0(z) = 1

2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − T 0

(
z+1/2

δ0

)
T 0

(
1

2δ0

) − 1/2 � z � 0

−1 + T 0

(
1/2−z

δ0

)
T 0

(
1

2δ0

) 0 < z � 1/2.

We expect each Ra to be associated with a unique δ0 for which T 0(z) is marginally stable. It should
be noted that when experimenting with various initial profiles (tanh, erf ) we obtain indistinguish-
able equilibrated states. Therefore these initial states lie in the MSTE basin of attraction with respect
to the quasilinear system. This might also suggest that solutions are unique. An example of (A1) is
given by the blue curve in Fig. 2.

APPENDIX B: TIME STEP MANAGEMENT

To find MSTE, we advance T by time steps of size �t . For large �t , we find the advective flux
terms fail to provide a stabilizing influence. This is due to coupling between the eigenfunctions
W (z), θ (z) and the mean temperature profile T . In the context of our algorithm, this effectively
deletes the sought-after root of the maximum eigenvalue function σmax(A2), causing the root-finding
method to fail. This is not a numerical instability, rather, it is an inherent limitation of our
time stepping algorithm. To curtail this, we halt the root-finding algorithms after 20 successive
approximations and reduce the time step by a factor of 1.1, and try again.
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TABLE I. Control parameters and results are given for the MSTE time stepping algorithm. Nz denotes
the number of Chebyshev basis functions employed. This, along with Ra, are specified on initialization. The
remaining quantities are computed directly from the MSTE. The low Ra = 105 case requires ∼12 h to compute,
while the high Ra = 109 case requires ∼72 h. Eigenvalue solves are performed for various kx simultaneously
using 28 cores.

Ra Nz Nu δ Marginal kx

105 256 5.9343 0.15746 1π , 1.5π

2 × 105 256 7.45986 0.12341 1.5π

4 × 105 256 8.92597 0.10395 1.5π

106 256 11.6689 0.07922 1.5π , 2.5π , 3π

2 × 106 256 14.8463 0.06345 1.5π , 3.5π

4 × 106 256 18.9433 0.04933 1.5π , 4.5π

107 256 25.6821 0.03632 1.5π , 5.5π

2 × 107 256 32.4531 0.02820 1.5π , 6.5π , 7π

4 × 107 512 40.7925 0.02289 1.5π , 8π , 8.5π

108 512 55.4383 0.01690 1.5π , 4.5π , 10.5π , 11π

2 × 108 512 69.8349 0.01318 1.5π , 5π , 13.5π , 14π

4 × 108 512 87.8525 0.01053 1.5π , 5.5π, 17.5π

109 768 119.318 0.00817 1.5π , 6.0π , 6.5π , 23.5π , 24π

The time step must be also reduced to avoid a numerical instability. We find that for large �t ,
after several hundred iterations, highly concave features develop in the advective flux term 〈w′T ′〉x

near z = 0. Such features are undesired, as they are uncommon in similar calculations [5] and we
do not believe they accurately represent a physical process. If ignored, the concave features grow in
magnitude until they affect T on a readily apparent scale. Eventually T develops oscillations near
z = 0 and the time step must be reduced. Once these oscillations reach some amplitude, they cannot
be eliminated via time step reduction and the roots of σmax(A2) vanish. To avoid this, we measure
the curvature of the advective flux | ∂2

∂z2 〈w′T ′〉x|z=0| of the dominant kx = 1.5π mode. We find that
reducing the time step �t by the same factor of 1.1 whenever this curvature measure exceeds 10−6

curtails the problem. Both of these issues appear to become more prominent as the boundary layers
diffuse over the course of the algorithm’s execution (see Fig. 2). Thus there is never a practical
opportunity to increase the time step.

APPENDIX C: MSTE PARAMETERS AND RESULTS

Table I provides control parameters and dependent MSTE properties. High-Ra cases require
increased resolutions and run times due to their decreased boundary layer thicknesses and the
appearance high-kx marginal modes.

APPENDIX D: MSTE EIGENFUNCTIONS

In Fig. 11 we plot the velocity and temperature perturbation eigenfunctions for the marginally
stable modes in the Ra = 109 MSTE. Though the eigenfunctions are in general complex, the
linear system (12)–(14) obeys phase-shift symmetry. Any set of solutions can be phase-shifted by
multiplying the perturbations by a complex quantity of unit modulus eiφ . In this particular case,
we can eliminate the perturbations’ imaginary components by selecting the proper φ. This is due to
the apparent exchange of stabilities observed previously: ω = 0 at marginal stability implies that the
system admits a set of real solutions. Adjacent modes, whose wave numbers only differ by 0.5π , are
superimposed to illustrate their similarity. For the large-scale kx = 1.5π mode, we find the vertical
velocity eigenfunction W is maximized near the center of the domain. As kx increases, we observe
two vertical velocity maxima, each tending towards their respective boundary. However, in all cases,
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FIG. 11. The temperature and pressure MSTE eigenfunctions are shown in separate plots for various
marginally stable modes. The eigenfunctions are normalized such that 〈|θ |2〉D = 1. We select a phase such
that the eigenfunctions are real. In this case the eigenfunctions are even, which we exploit by plotting over half
the domain.

the temperature perturbations are more concentrated at the boundaries than the vertical velocity.
This trend is also apparent in the two pairs of adjacent modes. In the temperature eigenfunctions θ ,
small-scale zigzags appear near the boundaries at kx = 1.5π , subsiding as kx increases. The leftmost
peaks of these temperature perturbation profiles approximately coincide with the previously defined
boundary-layer height δ.
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