
PHYSICAL REVIEW FLUIDS 6, 093101 (2021)

Learning swimming escape patterns for larval fish under energy constraints

Ioannis Mandralis , Pascal Weber , Guido Novati , and Petros Koumoutsakos *

Computational Science and Engineering Laboratory, ETH Zürich, CH-8092, Switzerland
and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 23 November 2020; accepted 26 August 2021; published 20 September 2021)

Swimming organisms can escape their predators by creating and harnessing unsteady
flow fields through their body motions. Stochastic optimization and flow simulations
have identified escape patterns that are consistent with those observed in natural larval
swimmers. However, these patterns have been limited by the specification of a particular
cost function and depend on a prescribed functional form of the body motion. Here, we
deploy reinforcement learning to discover swimmer escape patterns for larval fish under
energy constraints. The identified patterns include the C-start mechanism, in addition to
more energetically efficient escapes. We find that maximizing distance with limited energy
requires swimming via short bursts of accelerating motion interlinked with phases of
gliding. The present, data efficient, reinforcement learning algorithm results in an array of
patterns that reveal practical flow optimization principles for efficient swimming and the
methodology can be transferred to the control of aquatic robotic devices operating under
energy constraints.

DOI: 10.1103/PhysRevFluids.6.093101

I. INTRODUCTION

Aquatic organisms involved in predator-prey interactions perform impressive feats of fluid
manipulation to enhance their chances of survival [1–8]. Since early studies where prey fish were
reported to rapidly accelerate from rest by bending into a C shape and unfurling their tail [9–12],
impulsive locomotion patterns have been the subject of intense investigation. Studying escape
strategies of prey fish has led to the discovery of sensing mechanisms [13–15], dedicated neural
circuits [16–19], and biomechanic principles [20,21]. From the perspective of hydrodynamics,
several studies have sought to understand the C-start escape response and how it imparts momentum
to the surrounding fluid [22–27].

Despite the large volume of literature on the C-start escape response, experiments and ob-
servations indicate that swimming escapes can take a variety of forms. For example, after the
initial burst from rest, many fish are seen coasting instead of swimming continuously [11,28,29].
Furthermore, theoretical and experimental studies have suggested that intermittent swimming styles,
termed burst-coast swimming, can be more efficient than continuous swimming when maximizing
distance given a fixed amount of energy [30–33]. This raises the question of when and why different
swimming escape patterns are employed in nature, and which biophysical cost functions they
optimize.

This question has been investigated by using reverse engineering methodologies to identify links
between biophysical cost functions and resulting swimming patterns. For example, fast and efficient
swimming motions [34,35] or the C-start escape response [36] have been reverse engineered based
on the appropriate objective functions. In particular, when reverse engineering the C-start escape
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response, the parameters of a predefined motion sequence were optimized to maximize the escape
distance. While the identified escape pattern was consistent with larval fish escapes observed in
nature, the reverse engineering method employed had inherent limitations: It required an a priori
defined objective function and a specification of the functional form for the two stages of the
observed escape patterns. As a result, the full space of swimming escapes remained unexplored
since reverse engineered escape patterns could only reside within the predefined design space and
depended strongly on the underlying parametric assumptions.

In recent years, reinforcement learning (RL), an alternative framework for learning behavior
based on objective functions, has emerged. RL has found an application for a variety of problems
related to fluid mechanics, including learning natural swimming and flying behaviors [37–44]
and optimizing and controlling engineering flow systems [45–48]. In the RL framework, decision
making processes are viewed as multistage optimizations instead of one-shot optimizations that
require rigidly predefined motion parameters. Due to this flexibility, RL circumvents many of the
limitations of classical reverse engineering and offers a novel way through which to explore the
space of swimming escape patterns.

In this paper, we introduce reinforcement learning (RL) to the study of escape responses. In
particular, we employ the RL framework to understand the links between objective functions
and swimming escape patterns for larval fish. The fish escape is formulated as an incremental
process where a swimming agent receives information about the flow field and learns to maximize
its cumulative reward autonomously. By endowing the swimming agent with limited energy and
rewarding the escape distance, we find that burst-coast swimming escapes, consisting of rapid body
accelerations through C bends followed by powerless gliding, maximize escape distance when the
available energy is limited, in alignment with theoretical predictions [30–32]. Furthermore, we find
that the RL algorithm is able to produce a wide array of different escape patterns, according to the
amount of energy available, due to its inherent generalization capability. This “kaleidoscope” of
escape patterns sheds light on key mechanisms which are responsible for rapid propulsion in fluids
and evidences the fundamental advantage of using RL to provide links between objective functions
and biological behavior.

II. SWIMMER MODEL AND KINEMATICS

The geometry of the artificial swimmer, displayed in Fig. 1(a), is modeled after a 5-day-
postfertilization zebrafish (see Appendix A for details). The swimmer propels itself by modifying
its instantaneous midline curvature κ (s, t ) ∈ R, a quantity which imitates muscle contractions in
natural anguilliform swimmers [34]. The midline curvature κ (s, t ), displayed in Eq. (1), is further
decomposed into a baseline component B(s, t ) ∈ R and an undulatory component K (s, t ) ∈ R. This
allows the swimmer to bend unilaterally and to undulate sinusoidally,

κ (s, t ) = B(s, t ) + K (s, t ) sin {2π [t/Tprop − sτL(t )/L] + φ(t )}. (1)

The baseline curvature B(s, t ) and the undulatory curvature K (s, t ) are modeled as natural cubic
splines defined by six control points on the swimmer midline [see Fig. 1(a)]. To imitate the stiff
head, neck, and tail of larval zebrafish, the curvature is set to zero at s1 = 0, s2 = 0.2L, s6 = L,
leaving three free control points at which the curvature can be controlled. The midline curvature is
parametrized by Tprop ∈ R, the undulatory swimming period L, the swimmer length τL(t ), the delay
of the tail, and φ(t ), the phase of the sinusoid. Given the curvature κ (s, t ), the midline coordinates of
the swimmer are retrieved by solving the Frenet-Serret formulas [35]. As per in vivo observations of
5-day-postfertilization zebrafish [49], the swimmer length is set to L = 4.4 mm and the propulsive
swimming period to Tprop = 44 ms. The resulting swimming Reynolds number, defined as Re =

L2

Tpropν
, where ν is the kinematic viscosity of water, is chosen as Re = 550. This places the swimmer

in the intermediate flow regime where both viscous and inertial forces have important effects. The
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FIG. 1. Interaction between flow solver and reinforcement learning. (a) Geometrical model of a 5-day-
postfertilization zebrafish larva [36]. The six curvature control points are indicated from top to bottom.
(b) Simulation environment. The swimmer is placed inside a square domain and is simulated using the
numerical flow solver described in Appendix A. (c) This is coupled with a deep reinforcement learning
algorithm, that receives a state from the flow solver and sends back an action, deciding how the swimmer
should act within the simulation.

Navier-Stokes equations are solved by performing a direct numerical simulation on a uniform grid
(see Appendix A for details).

III. REINFORCEMENT LEARNING FOR SWIMMING ESCAPES

In the RL framework, an agent learns to earn rewards through trial-and-error interaction with its
environment. The agent chooses an action ak ∈ A at discrete time instances k ∈ N by sampling a
stochastic control policy π(a|sk ) that is conditioned on its current state sk ∈ S , i.e., ak ∼ π( · |sk ).
Given the action, the environment transitions to a new state determined by the dynamics function D,
i.e., sk+1 ∼ D( · |ak, sk ). Upon transition, the agent receives a reward signal rk+1 ∈ R. The goal is
to learn the optimal control policy π�(a|s) which maximizes the action-value function Q(s, a) ∈ R,
defined as the expected long-term cumulative reward when starting from state s and taking action a

Q(s, a) = Eak ∼ π sk+1 ∼ D

[
N∑

k=0

γ krk|s0 = s, a0 = a

]
. (2)

Here, γ ∈ [0, 1) is the discounting factor which quantifies the tradeoff between immediate and
future rewards. We use a state of the art and data efficient RL algorithm (remember and forget
experience replay) to identify the optimal policy [50] (see Appendix B for details).

To model the escape behavior of a prey, the swimmer is trained to maximize the distance away
from its initial position after a fixed time. In addition, the work done by the swimmer on the
fluid is limited based on an escape energy budget E0. This imitates how the muscle fibers used
during fish escapes can be fatigued by lactic acid buildup as glycogen stores are depleted [32]. We
normalize these budgets by E0 which is the energy expended during the C-start escape sequence
reported by Gazzola et al. [36] that closely matches larval zebrafish escapes observed in nature
(E0 = 14.04, d0 = 1.15L; see Appendix B for details on computation and nondimensionalization).

Each escape episode proceeds by first sampling an energy budget uniformly in a range around
E0 ([ 1

3 E0, 3E0]), allowing the swimmer to interact with the fluid for a fixed time period, and finally
rewarding the overall distance traveled (r = d). If the energy budget is depleted before the allocated
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FIG. 2. Temporal evolution of the vorticity field for the optimized and learned escape patterns. (a) RL
burst-coast escape pattern obtained by RL swimmer using energy budget E0. (b) C-start escape pattern obtained
by simulating the optimized parameter set reported in [36]. Orange regions represent positive flow vorticity and
blue regions represent negative vorticity.

escape time is surpassed, the episode terminates prematurely (see Appendix B for training details).
During each escape, the swimmer controls its body through a nine dimensional action vector that
schedules changes in the shape of the curvature as well as the delay and phase of the sinusoidal mo-
tion. The swimmer senses the environment through a set of states (current distance and polar angle
from starting position, body orientation, mean forward and angular velocity, as well as the remaining
energy budget) and receives as reward its distance from the start, at the end of each episode.

IV. LEARNED VS OPTIMIZED ESCAPES

The vorticity field generated by the trained RL swimmer when escaping with energy budget E0

is displayed in Fig. 2(a). The swimmer initially forms a C bend and subsequently unfurls its tail,
propelling a counter-rotating vortex pair opposite to the direction of its forward motion and coasting.
Only when its speed drops significantly does the learned swimmer undulate its body further in an
attempt to extend its forward motion. This learned motion sequence is termed the burst-coast escape
pattern (see Video 1 [51] for full animation). In the following, we compare the burst-coast escape
pattern obtained using RL to the C-start escape pattern which was found by optimizing a predefined
motion sequence in [36].

The vorticity fields of the two escape sequences are displayed in Fig. 2(b). Figure 2(b) indicates
that, although the RL swimmer coasts after the initial burst instead of swimming continuously, the C-
bend starting pattern is remarkably close to that of the C start, without having been enforced through
predefined motion parameters. The two escape patterns differ in that the C start has a continuous
swimming phase which propels two counter-rotating vortex dipoles away from the swimmer body,
while the burst-coast escape pattern propels only one counter-rotating vortex dipole which is created
in the initial burst.

Moreover, the burst-coast strategy results in a greater escape distance than the C start while using
an equal amount of energy, as shown in Fig. 3(a). Since both escapes consume equal energy and
conform to natural mechanic or geometric constraints (see Appendix A), they are both feasible in
a hypothetical predator-prey encounter. In fact, the use of both intermediate swimming or coasting
phases are observed for various fish species in predator escapes [11,28,29].

In which situations is it advantageous to employ the C-start or the burst-coast escape patterns? We
found that, at the characteristic swimming Reynolds number for larval zebrafish, Re = 550 [36], the
C start sets the swimmer into motion faster than the burst coast pattern [circled region in Fig. 3(a)].
In contrast, the RL swimmer uses a burst-coast pattern which more efficiently solves the task we set
out for it—instead of propelling itself forward quickly, it delays the onset of its motion in order to
form a more pronounced C shape, evidenced by the higher peak in midpoint curvature in Fig. 3(a),
and achieves a greater overall distance using the same amount of energy. This underscores the
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FIG. 3. Comparison of the equal-energy RL burst-coast and C-start escape patterns. (a) Swimmer midpoint
curvature κ1/2 and normalized distance (in terms of swimmer length) as a function of time. The energy expended
by the RL escape (blue) and C-start escape (red) is in both cases equal to E0. (b) Vorticity fields and midline
profiles for the RL escape (left) and the C-start escape (right). For both escapes, the midline of the swimmer
is plotted over time within two intervals: The preparatory interval (t � 30 ms) and the propulsive interval
(30 ms � t � 50 ms)

energetic advantage of the burst-coast escape pattern as compared to continuous swimming (see
Sec. V).

V. INFLUENCE OF REYNOLDS NUMBER ON ESCAPE PATTERNS

We recorded the motion sequence of the burst-coast RL escape with energy budget E0 at the
original viscosity ν0 (corresponding to Reynolds number Re0 = 550), and simulated it along with
the C start for viscosities in the range ν ∈ [0.1ν0, 5ν0]. Based on the average speed during each
escape the ReŪ = ŪL

ν
was computed. The normalized distance traveled per unit energy consumed

d̃/Ẽ is plotted for each escape against the mean Reynolds number ReŪ in Fig. 4. This uncovers

FIG. 4. Influence of Reynolds number on escape efficiency. (a) The normalized distance per unit energy
d̃/Ẽ is plotted as a function of the mean Reynolds number ReŪ . d̃ = d/d0 and Ẽ = E/E0. In blue: The burst
coast escape sequence recorded by evaluating the RL control policy with energy budget E0 at ν0, simulated
for different viscosities. In red: The C-start escape sequence obtained by optimizing at ν0 [36], simulated
at different viscosities. (b) A zoomed-in segment of (a) on the range ReŪ ∈ [0, 150]. Displays the critical
Reynolds number Recrit

Ū at which the burst coast sequence becomes more efficient than the C start.
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FIG. 5. Influence of energy budget on escape distance and learned strategy. (a) Normalized escape distance
as a function of normalized energy expenditure for ten escapes with energy budgets linearly spaced between
1
3 E0 and 3E0. (b) Swimmer midpoint curvature κ1/2, and swimmer speed as a function of time for the ten
escapes. The higher energy escapes are represented by dark blue while the lower energy escapes are represented
with light blue. The lightest blue curve corresponds to an energy budget 1

3 E0, and the darkest blue corresponds
to an energy budget 3E0. All quantities are plotted for escapes of duration 118.8 ms and are simulated using the
same RL policy (for training details see Appendix B). (c) Vorticity fields in the wake of four escapes of energy
budgets, from left to right, 1

3 E0, 9
10 E0, 6

5 E0, and 3E0. Snapshots of the vorticity field are taken at t = 75 ms
for all four escapes. The dotted, circled region denotes a secondary vortical structure which emerges at higher
energy budgets.

two distinct regimes: The low Reynolds number regime ReŪ � Recrit
Ū = 50, and the high Reynolds

number regime ReŪ � Recrit
Ū = 50. In the high Reynolds number regime the discrepancy between

the burst-coast escape sequence and the C start increases. This finding is consistent with the theo-
retical considerations of Weihs [30–32] who predicted the existence of a transition regime, ReŪ ∈
[20, 200], in which burst coast swimming becomes more efficient than continuous swimming.

As the Reynolds number increases further, the gap between the burst coast and the C-start
escape patterns continues to grow. This transition can be attributed to the increased efficiency of
the intermediate coasting phase. In fact, for ReŪ � 200, the drag coefficient of a rigidly gliding fish
can be up to four times smaller than that of an actively swimming fish [33,52,53]. This is thought
to drive changes in the swimming style of fish who, when growing in length, transition from the
viscous hydrodynamic regime to the inertial hydrodynamic regime and replace their continuous
swimming style with predominantly burst coast swimming [31]. This biological transition has been
termed an adaptive energy sparing mechanism [31]. For the high Reynolds number regime, our
analysis supports this hypothesis, suggesting that burst-coast swimming patterns convert limited
energy into greater overall distance compared to patterns involving continuous swimming. Further
study to corroborate this hypothesis is needed since the model used is two dimensional, and fish
change their body form during growth [54].

VI. GENERALIZING ESCAPE PATTERNS ACROSS ENERGY BUDGETS

The RL swimmer was endowed with different energy budgets and the resulting escape patterns
were visualized in Fig. 5(c) (see Video 2 [51] for an example escape with energy 3E0). We found that
the learned swimmer was able to modulate its motions in order to travel further at higher energies
[see Fig. 5(a)]. Which aspects of the escape strategy does it modify to achieve this? Plots of the
midpoint curvature for escapes of different energies [Fig. 5(b)] evidence that, as the energy budget
increases, the swimmer performs more pronounced, faster C bends. As a result, the maximum speed
is attained at a higher value earlier in the escape, and the overall escape distance increases. This can
be seen by the peak midpoint curvature, as well as the peak speed, moving upwards and to the left
as the energy budget increases [Fig. 5(b)].

This strategy can be interpreted in terms of the duty cycle defined as DC = Tburst/Ttotal, where
Tburst is the time spent accelerating before the coasting phase, and Ttotal is the total time of the escape
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FIG. 6. Escape speed, drag coefficient, thrust force, and power consumption for equal-energy learned burst-
coast pattern vs optimized C-start pattern. The energy expended by the RL escape (blue) and C-start escape
(red) is in both cases equal to E0. (a) Speed and drag coefficient of the burst-coast pattern learned through
RL (blue) vs the C-start pattern (red). The speed is given in swimmer lengths per second (L/s) and the drag
coefficient is defined as Cd = Fd

ρU 2L/2
, where Fd is the drag force experienced by the swimmer, ρ is the density

of water, U is the swimmer speed relative to the fixed laboratory reference frame, and L is the swimmer length.
(b) Thrust force and deformation power of the burst-coast pattern (blue) vs the C-start pattern (red). For details
on the computation and nondimensionalization of the drag force Fd , thrust force, and deformation power, see
Appendix A.

bout. In this case, Tburst corresponds approximately to the time where the peak speed is attained.
As can be seen in Fig. 5(b), the peak speed is attained earlier for higher energies so the duty cycle
decreases as the energy budget increases. In contrast, experimental data on the duty cycle of fish
swimming at cruising speeds indicates that fish increase their duty cycle when higher speeds are
required [55]. This suggests that, for escapes where high acceleration is required in order to increase
escape distance in a fixed amount of time, the duty cycle of burst-coast strategies should be made as
small as possible.

Another strategy learned by the swimmer consists in using the energy leftover from the C-bend
and swim phases in order to perform slight undulations during the coasting phase. These undulations
leave an imprint on the escape patterns in the form of a secondary vortical structure [circled region
in Fig. 5(c)]. However, this secondary vortical structure is absent from escapes of lower energy
budget. This indicates that undulatory motions during the coasting phase are second order to in-
creasing escape distance, when compared to forming more pronounced C bends or swimming more
energetically. Indeed, for high energy escapes which include undulations during the coast phase
(Ebudget � E0), the swimmer already performs C bends very close to the geometric or mechanical
limit κ = 2π and undulates with curvature close to κ = 2.5 in the final swim phase. Thus, not being
able to perform a C bend past κ = 2π due to mechanical constraints, and swim with curvature past
κ = 2.5 during the final phase because of increased drag, the leftover energy is used to undulate
during the coast phase. This extends the high-speed phase of the escape [circled in Fig. 5(b)] and
improves the overall distance. The saturation of the C bend to the max possible curvature κ = 2π

and the swim phase to κ = 2.5 are possible factors causing the rate of conversion of energy to
distance to flatten off as the energy budget increases (Fig. 5).

VII. PROPULSIVE MECHANISMS

The escape speed, drag coefficient, thrust, and power were computed for the RL burst-coast
pattern and compared to the C-start escape pattern with the optimal parameters from [36] in Fig. 6.
The RL swimmer produces a significantly higher peak thrust force than the C start during the starting
phase of the escape [Fig. 6(b)]. As alluded to in Sec. IV, this is a result of the RL swimmer curling

093101-7



IOANNIS MANDRALIS et al.

FIG. 7. Characterization of Lagrangian coherent structures at different energy budgets. Left: Vorticity fields
overlayed onto the finite time Lyapunov exponent field (FTLE) of three different escapes. From left to right are
the C start, the artificial swimmer with energy budget E0, and the artificial swimmer with energy budget 3E0.
The FTLE is visualized on a spectrum from white to black. The darker colors represent a higher value of the
FTLE. The LCS are the “ridges” of the FTLE field, i.e., the darkest contours on the visualization. All FTLE
fields are computed with the same integration length and displayed at the same time instant (see Appendix C).
(a) A visualization of the lump of fluid ejected by the swimmer, the average vortex diameter b, and the peak
C-bend midpoint curvature κC for escapes with energy budgets linearly spaced between 1

3 E0 and 3E0, shown to
scale. The lumps of fluid are extracted by localizing the high ridge (LCS) values in the respective FTLE field.
The average vortex diameter b is normalized by the swimmer length L as a function of the energy budget.

its body more than the C-start swimmer during the initial C-bend motion. As a result, a higher peak
power and maximum speed are attained [Figs. 6(a) and 6(b)]. Moreover, the RL swimmer achieves
a 13.5g peak acceleration, significantly greater than the 9.4g peak acceleration created by the lower
thrust C-start swimmer.

Furthermore, the RL swimmer produces close to zero thrust after the initial C bend while the
C-start swimmer continually produces thrust and expends power during the escape as a result of the
continuous swimming pattern [Fig. 6(b)]. Thus, the learned escape pattern uses more energy during
the initial propulsion but saves energy by coasting in the remaining time. Why does this result in
increased escape distance using the same energy? When plotting the drag coefficient Cd against time
for the two escape patterns we observe that the drag during the coasting phase of the escape is close
to zero for the RL swimmer while the C-start swimmer continually experiences elevated drag due
to the swimming motion. This analysis suggests that expending most energy in a strong initial C
bend and then coasting is advantageous due to the decrease of fluid dynamic drag when compared
to swimming.

Finally, the hydrodynamic mechanisms exploited by the artificial swimmer were analyzed using
Lagrangian coherent structures (LCSs) [56]. Well defined LCSs are characterized by negligible flux
across their surface, acting as transport barriers within the flow [57]. In Fig. 7(a) the resulting LCSs
are superimposed onto the vorticity fields for the C start and two RL escapes of different energy. The
LCSs evidence one predominant coherent structure: A lump of fluid carried by the counter-rotating
vortex pair. This has previously been observed in [58], and is a common structure found in fish
escape sequences.

Furthermore, we notice that the lump of fluid ejected by the C-start escape motion [Fig. 7(a),
left] is less symmetric, and smaller than that of the RL escape [Fig. 7(a), middle]. Thus, the RL
swimmer uses more of the allocated energy budget to trap and accelerate a large volume of water
opposite to the escape direction, while the C-start swimmer uses less energy to propel the initial
ball of water, but compensates by using the leftover energy to swim continuously for the rest of the
escape. Moreover in the case of RL, the vortex dipole and its lump of fluid are more aligned with
the direction of the motion than what is observed in C start. This continuous alignment minimizes
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the time derivative of the vorticity linear impulse and as such the drag experienced by the swim-
mer [59]. Finally, we found that as the energy budget increased, the average diameter of the lump
of fluid ejected by the swimmer began to flatten off close to b ≈ 1

2 L [see Fig. 7(b)]. Since the peak
curvature of the C bend cannot increase beyond 2π (κC � 2π ), the swimmer cannot convert higher
energy into more escape distance indefinitely by forming more pronounced C bends [Fig. 5(b)], thus
limiting the maximum escape distance attainable at a given Reynolds number and morphology.

VIII. CONCLUSIONS

This study explores the use of deep reinforcement learning to discover swimming escape patterns
which maximize distance given a fixed amount of energy. In contrast to an optimization process with
an overarching goal, RL explores an array of incremental processes allowing it to learn a range of
escape patterns. Our results indicate that maximum swimming distance can be achieved through
short bursts of accelerating motion interlinked by phases of powerless gliding. In the context of fish
escaping from disturbances, we find that, at higher Reynolds numbers, burst-coast escape patterns
result in greater escape distances than burst-swim escape patterns (C starts), but C starts propel the
swimmer away from the initial position faster. This suggests that larval zebrafish performing C starts
may not only be aiming to maximize escape distance, but their internal reward function may further
include a notion of urgency to distance themselves from their initial position as quickly as possible.
Future studies may benefit from encoding urgency into the reward function and observing how the
resulting swimming escape patterns change.

Contrary to an optimization setting which requires using domain-specific knowledge to pre-
define stages of motion, the reinforcement learning setting is free from prior bias on the functional
form of the escape pattern. This additional freedom results in escape patterns that outperform
those obtained by optimization, for the same energy budget. Moreover, we find that training the
swimmer to control its motions as a function of the energy budget produces a “kaleidoscope” of
escape patterns that reveal practical flow optimization principles for efficient swimming. Studying
the learned strategies indicates that the formation of a C shape, a coasting phase, and a final swim
motion are necessary components of distance maximizing escapes across energy budgets. Other
strategies, such as slight undulations during the coasting phase, are eliminated as the energy budget
decreases, indicating their second-order, but non-negligible, importance for achieving rapid propul-
sion from rest. This suggests that reinforcement learning can more robustly discover swimming
escape patterns than methods based on reverse engineering via optimization.

Finally, we emphasize that RL is a data efficient learning methodology. In the current problem
setup, each action is determined by nine real valued parameters, and each escape consists of around
seven actions. If this problem were to be solved with a stochastic optimizer, this amounts to solving
a n = 63 dimensional constrained optimization problem. Stochastic optimizers like CMA-ES find
global optima for a variety of functions using 300n–500n2 function evaluations [60]. Thus, the
computational cost can be anywhere between 18 900 and 1 984 500 simulations. Furthermore, the
RL policy can be controlled according to a real-valued energy budget, producing a wide array of
swimming escapes. Approximating this level of fine-grained control with an optimization approach
would require repeating the optimization for many different energy budgets (e.g., N times)—further
increasing the computational cost to anywhere between 18 900N and 1 984 500N simulations. Com-
pounded with the fact that the optimal number of actions to be taken given the energy and time
constraints is not known in advance and should be learned (as done by reinforcement learning)
renders the problem totally impractical if approached with optimization-based reverse engineering.
On the contrary, we find that solving the full problem via RL is tractable using only around 150 000
simulations.

In summary we find that RL is a powerful tool for the discovery of swimming escape patterns
under energy constraints. The identified escape patterns deepen our understanding of the hydrody-
namic mechanisms that are exploited by natural swimmers.
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APPENDIX A: NUMERICAL METHOD

We use a simplified two-dimensional (2D) geometric model of a 5-day-postfertilization ze-
brafish [36]. The swimmer shape is described by the body half-width w(s) ∈ R along the curvilinear
coordinate s ∈ [0, L] for a body length L ∈ R,

w(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wh

√
1 − ( sb−s

sb

)2
0 � s < sb

(−2
w − wt
s)δs3
b

+(3
w + wt
s)δs2
b sb � s < st

+wh

wt − wt
( s−st

L−st

)2
st � s < L

. (A1)

Above, 
w = wt − wh, 
s = st − sb, and δsb = s−sb

s , where sb = 0.0862L, st = 0.3448L, wh =

0.0635L, wt = 0.0254L. In order to resolve the head and the tail of the swimmer, the spacing along
the midline in the first and last 10% of the body is linearly increased from 
x/8 to 
x/

√
2, where


x denotes the uniform resolution of the computational grid.
The flow field generated by the motion of the artificial swimmer is simulated by solving the

two-dimensional, incompressible Navier-Stokes equations with volume penalisation [61–63]:

∇ · u = 0,
∂u
∂t

+ u · ∇u = −∇p

ρ
+ ν∇2u + λχ (us − u). (A2)

Here, u(x, t ) ∈ R2 corresponds to the fluid velocity and p(x, t ) ∈ R to the pressure. The fluid
properties are determined by the viscosity ν ∈ R and the fluid density ρ ∈ R. The fluid-structure
interaction is modeled by the penalty term λχ (us − u), where us ∈ R2 denotes the combined
translational, rotational, and deformation velocity of the swimmer. The characteristic function
χ (x, t ) ∈ R is 1 inside the swimmer, 0 elsewhere. The equation is solved in a two-dimensional
domain x ∈ � ⊂ R2, over a time interval t ∈ [0, T ] ⊂ R. The domain was chosen to be four times
the length of the swimmer � = [4L, 4L] ⊆ R2 and we ran the solver up to time Tmax = 118.8 ms.

In order to solve Eq. (A2) we discretized the equation on a uniform grid in space. On this grid,
the spatial derivatives were approximated using second-order centered finite differences. For this
purpose we used the uniform grid library Cubism [64]. The time stepping is performed using explicit
Euler, where the time step 
t was adopted such that the CFL number was constrained to 0.1. To
ensure momentum conservation and stability the penalty parameter is set to λ = 1/
t [62]. For the
characteristic function we use a second order approximation of the Heaviside function [65]. During
the reinforcement learning, we use 512 × 512 grid points. All quantities of interest are subsequently
computed at the higher resolution of 1024 × 1024 grid points.

In the following we describe the operator splitting formalism used to compute the time step.
Starting with the velocity field ut at time step t we computed an intermediate velocity u∗ by
performing advection and diffusion,

u∗ = ut + 
t (ν∇2u − u · ∇u). (A3)

The resulting velocity field is nondivergence free and we used pressure projection [66]

u∗∗ = u∗ − 
t
∇pt+1

ρ
. (A4)

The pressure field was computed by solving the Poisson equation that results when taking the
divergence of Eq. (A4) and using that the obstacle velocities can be nondivergence free due to
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the deformation component ∇ · u∗∗ = χ∇ · ut+1
s ,


pt+1 = ρ


t

[
∇ · u∗ −

Ns∑
s=1

χ∇ · ut+1
s

]
. (A5)

We conclude the time step by employing the penalization force on the field,

ut+1 = u∗∗ + χ
(
ut+1

s − u∗∗), (A6)

where we used λ = 1/
t .
Using the numerical solution of the Navier-Stokes equation we can compute the work done by

the deformation of the swimmer body udef on the surrounding flow, which can be thought of as the
muscle input power, as

E (t ) =
∫ t

0

[∫
∂�

udef · dF
]

dt . (A7)

Note that the computational model used does not account for muscle dynamics so the muscle input
power cannot directly be computed, only approximated.

The energy values reported are nondimensionalized by ML2/T 2
prop, where M is the swimmer

mass, L is the swimmer length, and Tprop is the propulsive swimming period. The deformation
power follows from Eq. (A7), computed as Pdef = dE (t )

dt , and is nondimensionalized by ML2/T 3
prop.

The propulsive thrust Ft and drag force Fd are computed as displayed in Eqs. (A8) and (A9) are
nondimensionalized by ML2/T 2

prop,

Ft =
∫

∂�

(u · dF + |u · dF|)/(2|u|), (A8)

Fd =
∫

∂�

(u · dF − |u · dF|)/(2|u|). (A9)

In Eqs. (A7)–(A9), ∂� denotes the swimmer surface, and dF is the force acting on the swimmer
comprised of viscous and pressure-based forces dF = dFP + dFν = 2μDndS − PndS. Here, D =
1
2 (∇u + ∇uT ) is the strain-rate tensor, P is the surface pressure, μ is the dynamic viscosity, n is the
surface normal, and dS is the infinitesimal surface element.

APPENDIX B: REINFORCEMENT LEARNING

During the escape, the swimmer senses its cylindrical coordinates (d, φ) ∈ R2, its center-of-
mass velocity v ∈ R2, as well as its orientation and angular velocity θ, θ̇ ∈ R relative to the fixed
laboratory frame. Furthermore, it has access to the remaining energy available for the escape Eto-go ∈
R, and a memory of its action from two previous time steps at , at−1. These perceptive abilities
form the state vector s = (d, φ, v, θ, θ̇ , Eto-go, at , at−1) ∈ R25. The energy available for the escape,
Eto-go ∈ R, is computed as the difference between the available energy Ebudget and the work done by
the swimmer on the surrounding flow.

Given each current state, the swimmer is able to influence its mid-line configuration by schedul-
ing changes in curvature. In particular it can select the amount of monolateral (baseline) curvature
B(s, t ) ∈ R, undulatory curvature K (s, t ) ∈ R, the traveling wave phase τL ∈ R, the overall phase
φ ∈ R, and the duration of each transition 
t ∈ R. Since the baseline and undulatory curvature
are each parametrized by six control points, of which three are free, the actions are given as
a = (B1, B2, B3, K1, K2, K3, τL, φ,
t ) ∈ R9. Here, Bi, Ki ∈ R for i = 1, 2, 3 denote the three con-
trollable baseline and three controllable undulatory curvatures on the swimmer midline. As per
experimental observations of zebrafish performing fast starts [49], we constrain the maximum cur-
vature of the artificial swimmer to |κ (s, t )| � 2π/L and the action duration to 
t ∈ [0.5Tprop, Tprop].
The phases are constrained to τL, φL ∈ [0, 2π ]. The transition between actions takes place in time
by cubic interpolation with derivatives equal on both sides of extrema to ensure continuity.
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The swimmer starts in a zero curvature configuration at the center of a square simulation domain
and is assigned a random energy budget Ebudget sampled uniformly between 1

3 E0 and 3E0. The
episode terminates if the swimmer has depleted its energy budget, the allocated time is surpassed, or
spatial constraints are violated. The maximum time for the escape is set to Tmax = 118 ms, equal to
the time length of the C-start escape [36]. Furthermore, the episode is terminated and the swimmer
is penalized with r = −10 if the swimmer changes orientation by |
θ | � π/2. Since a typical
zebrafish only changes its orientation by approximately 44◦ during a fast start [49], this constraint
restricts the exploration space, but is sufficiently relaxed to not significantly influence the escape
pattern. To model the scenario of a predator approaching from behind the zebrafish, we enforce
that the swimmer center-of-mass remains in an infinite triangular region starting 0.2L behind the
swimmer tail end point and with 40◦ aperture. If the swimmer exits the allowable region the episode
is terminated and the swimmer is penalized with r = −10.

The off-policy actor-critic reinforcement learning algorithm V-RACER [50] implemented in
smarties [67] is employed for 1 000 000 state-action-reward observations. The neural network used
to approximate the policy network and state value function has three hidden layers of 32 parameters
each. A discount factor of γ = 0.99 is used, the batch size is set to 128, the exploration noise
probability is set to 0.2, and the learning rate for stochastic gradient descent is set to 0.0001. The
other hyperparameters are left as described in the original publication.

APPENDIX C: LAGRANGIAN COHERENT STRUCTURES

The Lagrangian coherent structures (LCSs) are the ridges of the finite time Lyapunov exponent
field (FTLE). The FTLE is a scalar field σ (X 0) which characterizes the amount of stretching about
the trajectory of a passive flow particle, from the location X 0 to the location X during time T [68].
The trajectory X (t ) of a particle located at position X 0 = X (t0) at time t0 can be obtained by
integrating

d

dt
X (t ) = u[X (t ), t], (C1)

where u is the flow velocity field. By following the particle trajectories for a time length T , we obtain
the particle flow map which gives the particle position at later times X 0 → X (t0 + T ) = φ(X 0, T ).
From the flow map we can obtain the (right) Cauchy-Green deformation tensor 
, which quantifies
the stretching of an infinitesimal material line,


(X 0) =
[
∂φ(X 0, T )

∂X 0

]�
∂φ(X 0, T )

∂X 0
. (C2)

The finite-time Lyapunov exponent (FTLE) is then defined as the square root of the logarithm of the
maximum eigenvalue λmax of the Cauchy-Green deformation tensor 
 normalized by the integration
time T ,

σ (X 0) = 1

T

√
ln{λmax[
(X 0)]}. (C3)

The FTLE fields reported in this study are calculated by integrating in forward time using the open
source software FTLE2D [68]. We use a set of 158 velocity fields of the 118.8-ms escape, spaced
at equal time intervals. The FTLE is computed for the first 100 velocity fields, thus the receding
integration time horizon is 58 time steps. The time horizon is chosen to be sufficiently long in order
to adequately locate the LCS on the FTLE fields.
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