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Rayleigh-Bénard convection: The container shape matters
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To study turbulent thermal convection, one often chooses a Rayleigh-Bénard flow
configuration, where a fluid is confined between a heated bottom plate, a cooled top plate of
the same shape, and insulated vertical sidewalls. When designing a Rayleigh-Bénard setup,
for specified fluid properties under Oberbeck-Boussinesq conditions, the maximal size of
the plates (diameter or area), and maximal temperature difference between the plates,
�max, one ponders: Which shape of the plates and aspect ratio � of the container (ratio
between its horizontal and vertical extensions) would be optimal? In this article, we aim to
answer this question, where under the optimal container shape, we understand such a shape,
which maximizes the range between the maximal accessible Rayleigh number and the
critical Rayleigh number for the onset of convection in the considered setup, Rac, � . First
we prove that Rac, � ∝ (1 + cu�

−2)(1 + cθ�
−2), for some cu > 0 and cθ > 0. This holds

for all containers with no-slip boundaries, which have a shape of a right cylinder, whose
bounding plates are convex domains, not necessarily circular. Furthermore, we derive
accurate estimates of Rac, � , under the assumption that in the expansions (in terms of the
Laplace eigenfunctions) of the velocity and reduced temperature at the onset of convection,
the contributions of the constant-sign eigenfunctions vanish, both in the vertical and at least
in one horizontal direction. With that we derive Rac, � ≈ (2π )4(1 + cu�

−2)(1 + cθ�
−2),

where cu and cθ are determined by the container shape and boundary conditions for the
velocity and temperature, respectively. In particular, for circular cylindrical containers with
no-slip and insulated sidewalls, we have cu = j2

11/π
2 ≈ 1.49 and cθ = ( j̃11)2/π 2 ≈ 0.34,

where j11 and j̃11 are the first positive roots of the Bessel function J1 of the first kind
or its derivative, respectively. For parallelepiped containers with the ratios �x and �y,
�y � �x ≡ �, of the side lengths of the rectangular plates to the cell height, for no-slip
and insulated sidewalls we obtain Rac, � ≈ (2π )4(1 + �−2

x )(1 + �−2
x /4 + �−2

y /4). Our
approach is essentially different to the linear stability analysis, however, both methods
lead to similar results. For � � 4.4, the derived Rac, � is larger than Jeffreys’ result
RaJ

c, ∞ ≈ 1708 for an unbounded layer, which was obtained with linear stability analysis
of the normal modes restricted to the consideration of a single perturbation wave in the
horizontal direction. In the limit � → ∞, the difference between Rac, �→∞ = (2π )4 for
laterally confined containers and Jeffreys’ RaJ

c, ∞ for an unbounded layer is about 8.8%.
We further show that in Rayleigh-Bénard experiments, the optimal rectangular plates are
squares, while among all convex plane domains, circles seem to match the optimal shape
of the plates. The optimal � is independent of �max and of the fluid properties. For the
adiabatic sidewalls, the optimal � is slightly smaller than 1/2 (for cylinder, about 0.46),
which means that the intuitive choice of � = 1/2 in most Rayleigh-Bénard experiments
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is right and justified. For the given plate diameter D and maximal temperature difference
�max, the maximal attainable Rayleigh number range is about 3.5 orders of magnitudes
smaller than the order of the Rayleigh number based on D and �max. Deviations from the
optimal � lead to a reduction of the attainable range, namely, as log10(�) for � → 0 and as
log10(�−3) for � → ∞. Our theory shows that the relevant length scale in Rayleigh-Bénard
convection in containers with no-slip boundaries is � ∼ D/

√
�2 + cu = H/

√
1 + cu/�2.

This means that in the limit � → ∞, � equals the cell height H , while for � → 0, it is
rather the plate diameter D.

DOI: 10.1103/PhysRevFluids.6.090502

I. INTRODUCTION

One of the very few advantages of a virtual format of the 73rd Annual Meeting of the APS
Division of Fluid Dynamics in virtual Chicago was the possibility to conduct an audience survey.
An anonymous poll that was launched at the very beginning of my talk and continued for about
one or two minutes had a single polling statement: “Rayleigh-Bénard convection in a cylinder for
Ra = 1020 and Pr = 1 is turbulent” with the following response options: (1) “yes,” (2) “no,” and (3)
“I don’t know.” The polling report stated that 52% of participants answered “yes,” 7% replied “no,”
and 41% did not know whether convection at these values of the Rayleigh number Ra and Prandtl
number Pr would be turbulent or not. Of course, the results of this poll should not be taken seriously,
as it was conceived and conducted for entertainment; however, the lack of unanimity in the responses
of the participants is quite noteworthy. If I would have taken part in the poll, I also would choose the
third response option, because information about the control parameters Ra and Pr is not sufficient
to give a definite yes or no: even in the simplest case of convection within the Oberbeck-Boussinesq
approximation [1,2], where the fluid properties are assumed to be independent of temperature and
pressure, we need to know at least the diameter-to-height aspect ratio � of the cylindrical container,
in order to be able to judge on the flow state, even for that large values of Ra. In this article, we will
discuss why the aspect ratio of the container, along with the other control parameters, Ra and Pr,
plays a very important role in Rayleigh-Bénard [3–5] experiments and numerical simulations (see
[6–9]).

Among other natural convection systems, like horizontal convection [10–14] or vertical convec-
tion (see, e.g., [15–20]), Rayleigh-Bénard convection (RBC) [3–5] (see also [6–8,21,22]), being of
particular importance in astrophysical and geophysical systems and in many industrial applications,
has been the most studied paradigmatic buoyancy-driven flow. Rayleigh-Bénard convection is a fluid
motion that occurs in a fluid layer confined between two isothermal horizontal surfaces of different
temperatures when a certain critical Rayleigh number is exceeded. In the case of an infinite fluid
layer and no-slip boundary conditions at the plates, this critical Rayleigh number for the onset of
convection RaJ

c,∞ is about 1708, as it was calculated by Jeffreys [23] and Harris and Reid [24]
with the linear stability analysis of the normal modes restricted to the consideration of a single
perturbation wave in the horizontal direction.

Although the onset of convection is known to be independent of Pr, the Prandtl number of
the fluid influences the flow dynamics and heat transport in larger Ra regimes. Thus, the main
dimensionless control parameters in Rayleigh-Bénard convection are the Rayleigh number Ra and
the Prandtl number Pr, which are defined, respectively, as

Ra ≡ αg�H3/(κν) and Pr ≡ ν/κ, (1)

where α is the isobaric thermal expansion coefficient, ν the kinematic viscosity, κ the thermal
diffusivity, g the gravitational acceleration, H the depth of the fluid layer (or the height of the
Rayleigh-Bénard cell), and � ≡ Tb − Tt is the temperature difference between the hot bottom
surface of the fluid layer and its cold top surface.
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The turbulent state of Rayleigh-Bénard convection, which develops for very large Ra, is the
most relevant in many astrophysical and geophysical applications and at the same time is the most
challenging for experimental and numerical studies. Accurate numerical simulations for high Ra
require very fine grids in space and time and, therefore, extremely huge and not always feasible
computational resources. On the other hand, for a fixed fluid and a fixed pressure used in a Rayleigh-
Bénard experiment under Oberbeck-Boussinesq conditions, increasing Ra requires either � or H
to be increased. Therefore, achieving possibly large Ra in experiments requires huge setups, with
possibly large height H , since the maximal variation of the temperature difference between the
bottom and top plates, i.e., the maximal � = �max, is quite restricted, especially if one aims to
conduct experiments under almost Oberbeck-Boussinesq conditions. In an effort to achieve very
large values of Ra, it becomes tempting to carry out experiments and simulations of Rayleigh-
Bénard convection for as slender convection cells as possible, which in terms of dimensionless
numbers means to use convection cells with as small aspect ratio �,

� ≡ D/H, (2)

as possible. Here D is a horizontal extension of the convection cell. In the case of a cylindrical cell,
D is the diameter of the cylinder, while in the case of a parallelepiped cell, D usually denotes the
length of the longest side of a rectangular plate. Thus, next to Ra and Pr, another control parameter
in the system is �. While aiming to achieve possibly large Ra in a certain Rayleigh-Bénard setup,
one usually assumes that one would cover a broader Ra range, measured in orders of magnitude
of Ra values, starting from the critical Rayleigh number for the onset of convection and up to the
maximal Rayleigh number that can be achieved in this experimental setup. But does an increase in
the height of the container always lead to an expansion of the parameter range that can be studied
using this cell (measured in orders of magnitude of Ra)? With this respect, what would be the
optimal choice of the cell height, for given heated and cooled plates? Which shape should the plates
have—a circle, a square, or maybe an elongated rectangle—to maximize the Ra range that can be
studied in a Rayleigh-Bénard experiment using these plates? And what is, in general, the role of the
aspect ratio � in Rayleigh-Bénard convection, close to the onset of convection and up to the fully
developed turbulent flow?

In this article, we intend to answer these questions for the case of Oberbeck-Boussinesq
Rayleigh-Bénard convection and discuss further related topics.

The paper is organized as follows. In Sec. II we will discuss the dependence of the onset of
convection on the container shape and will derive estimates of the critical Rayleigh number for the
onset of convection in cylindrical and parallelepiped domains as a function of the domain aspect
ratio. Section III is devoted to the discussion of the optimality of the shape of the Rayleigh-Bénard
cell, the form of the cell plates, and the optimal cell height. The optimality of the shape of the
cylindrical and parallelepiped domains will be formulated in terms of their aspect ratios. In Sec. IV
we will derive the relevant length scale in Rayleigh-Bénard convection and show the way how, with
that length scale, one can collapse all data for different � on a master curve. In Sec. V we will
discuss further applications of the developed ansatz to thermally driven flows. Finally, in the last
Sec. VI, we will summarize results and give an outlook.

II. ONSET OF CONVECTION

In order to determine the optimal container shape that provides a maximum range of Rayleigh
numbers, starting from the onset of convection, we need to know how the onset of convection
depends on the container shape. For standard geometries like parallelepiped or circular cylinder we
also need simple but sufficiently accurate formulas to estimate the critical Rayleigh number for the
onset of convection as a function of the container aspect ratio �.

The onset of convection has been studied quite intensively in the past, mainly for an infinite fluid
layer (theoretically) and for containers of large aspect ratios (experimentally) (see [6,21,25–27]).
Thus, under assumption that in the horizontal directions, the first unstable mode is represented by a
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single wave ∼ exp(ikxx + ikyy + σ t ), the onset of convection in an infinite layer bounded by no-slip
heated bottom and cooled top plates should occur at a critical RaJ

c,∞ ≈ 1708, according to Jeffreys
[23] and Reid and Harris [24]. Due to the above assumption, this estimate can be considered as an
upper bound of the critical Rayleigh number for the onset of bulk convection in the limit � → ∞.

For a laterally confined container, the critical Rac,� gets generally larger with decreasing �

[28–38]. Charlson and Sani [28] considered cylindrical containers of different aspect ratios, from
1 to 16, and obtained that the upper bounds for the critical Rayleigh number for the onset of
axisymmetric modes of convection decrease with growing �. Similar tendency was reported by
Charlson and Sani [29] for small aspect ratios � < 1 as well. They also reported that with decreasing
�, a transition in the marginal dynamic state from an axisymmetric state to an asymmetric state
happens at � ≈ 1.6 for adiabatic lateral walls and at � ≈ 1.2 for conducting sidewalls. These results
were in agreement with the previous experiments by Ostroumov [39] and later were also confirmed
by Hebert et al. [36].

Numerical solutions of the linearized perturbation equations for a cylindrical container by Catton
and Edwards [31] showed that the critical Rayleigh number for the first mode of convection for a
conducting sidewall is larger than for an adiabatic sidewall, and this difference is larger for smaller
aspect ratio of the container. For the limit � → 0 they also proposed the scaling Rac,� ∼ �−4 for
the onset Rayleigh number.

Buell and Catton [32] conducted similar analysis as Charlson and Sani [29,29] but for arbitrary
conductivity of the sidewall. They came to similar conclusions; however, more accurate simulations
showed that the critical Rayleigh numbers for the asymmetric modes are significantly (∼20%) lower
than previously reported. Thus, for any boundary conditions at the sidewall, the first asymmetric
mode is the least stable for all small aspect ratios up to about � � 1.6. At large aspect ratios, the
critical flow state alternates between the axisymmetric and asymmetric modes. Recent simulations
by Yu et al. [38] for integer values of �, 6 � � � 20, confirmed this fact and also showed that even
and odd values of � have different preferable modes.

In this section, starting from the governing equations, we will recollect some relevant relations
and then will derive a general estimate of a critical Rayleigh number for the onset of convection in
any geometry and finally will provide quite accurate estimates of the critical Rayleigh number for
the onset of convection in cylindrical and parallelepiped containers.

A. Towards a critical Rayleigh number for the onset of convection

Within the Oberbeck-Boussinesq approximation, the Rayleigh-Bénard flow is described by the
following system of the governing Navier-Stokes, energy, and continuity equations for the velocity
u, temperature T , and the kinematic pressure p:

∂t u + u · ∇u + ∇p = ν∇2u + αgT ez, (3)

∂t T + u · ∇T = κ∇2T, (4)

∇ · u = 0. (5)

Here ez is a unit vector pointing upwards. The boundary conditions for the velocity are no-slip at
all walls. The temperature equals Tb at the bottom plate (z = 0) and Tt at the top plate (z = H). The
sidewalls are adiabatic, ∂T/∂n = 0. (Later we will also discuss conducting sidewalls, but our main
focus here and derivations are for the insulated walls.)

The main response characteristic of a Rayleigh-Bénard flow is the dimensionless heat transport,
which is known as the Nusselt number:

Nu ≡ 〈uzT 〉z − κ∂z〈T 〉z

κ�/H
, (6)
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where 〈·〉z denotes the average in time and over a horizontal cross section at height z from the
bottom. Averaging Eq. (6) for z ∈ [0; H] one obtains

Nu = H

κ�
〈uzT 〉 + 1, (7)

where 〈·〉 denotes the time and volume average.
For the mean kinetic energy dissipation rate εu and the thermal dissipation rate εθ ,

εu = ν〈(∇u)2〉, (8)

εθ = κ〈(∇T )2〉, (9)

where (∇u)2 ≡ (∇ux )2 + (∇uy)2 + (∇uz )2, we also recall the following well-known exact relations
[40–42]:

εu = αg〈uzT 〉, (10)

εu = ν3

H4
(Nu − 1)

Ra

Pr2 , (11)

εθ = κ�2

H2
Nu, (12)

which one obtains directly from the governing equations (3)–(5) and the boundary conditions.
Here we will derive a general form of the dependence of the critical Rayleigh number for the

onset of convection, as a function of the container aspect ratio �. The approach we consider here is
different to the linear stability analysis [25,43], but as we will see later, it allows us to derive simple
but sufficiently accurate analytical estimates for the case of classical geometries of the Rayleigh-
Bénard container, like a cylinder or a parallelepiped. Our approach is rather a variational one and,
in contrast to the linear stability analysis, assumes neither vanishing contributions of the nonlinear
terms in the governing equations, nor separation of variables in the horizontal and vertical directions
for the flow components at the onset of convection, nor the same structure in the horizontal directions
(x and y) of the velocity components and of the deviation of the temperature from the linear profile.
Note that the latter assumption is quite restrictive in the case of confined containers with no-slip
conditions for the velocity and adiabatic for the temperature: This combination of the boundary
conditions actually excludes the legitimacy of reducing the stability analysis to the consideration of
a single mode in the horizontal directions [in a form like ∼ exp(ikxx + ikyy + σ t )].

We start to proceed in quite a standard way (see, e.g., [44]) and decompose the temperature
field into a linear function Tl (z), that satisfies the boundary condition at the plates, and the residual
function θ that vanishes at the plates:

T ≡ Tl + θ, Tl (z) ≡ Tb − (z/H )�. (13)

Since in a confined geometry 〈uz〉z = 0 holds for any z, from this and Eq. (13) one obtains 〈uzT 〉z =
〈uzθ〉z for any z, which after integration over the cell height, z ∈ [0; H], yields

〈uzT 〉 = 〈uzθ〉. (14)

Applying subsequently (14), (10)–(12), (9), (1), and (13), we obtain

〈uzθ〉 = κH

�
〈(∇θ )2〉. (15)

Combination of (8), (10), (1), and (14) yields

〈(∇u)2〉 = κ

�H3
Ra 〈uzT 〉 = κ

�H3
Ra 〈uzθ〉. (16)
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As soon as convection starts, u is not identically equal to zero and therefore 〈(∇u)2〉 > 0, which
means, according to Eq. (16), that the value 〈uzθ〉 becomes larger than zero. Extracting Ra from
Eq. (16) and applying successively the Cauchy-Schwarz inequality and Eq. (15), one obtains the
following estimate that holds true for any supercritical Rayleigh number:

Ra = �H3

κ

〈(∇u)2〉
〈uzθ〉 = �H3

κ

〈(∇u)2〉〈uzθ〉
〈uzθ〉2

� �H3

κ

〈(∇u)2〉〈uzθ〉
〈u2

z 〉〈θ2〉 = H4 〈(∇u)2〉〈(∇θ )2〉
〈uz

2〉〈θ2〉

� H4 〈(∇u)2〉〈(∇θ )2〉
〈u2〉〈θ2〉 . (17)

Formally, relation (17) holds for convective flows for any Ra. For flows close to the onset of
convection, the vertical velocity component uz and the deviation of the temperature from the linear
profile, θ , are strongly correlated. Moreover, for laterally confined geometries, the viscous boundary
layers near the sidewalls of the container play an important role: initial quite strong vertical motions
of the fluid near and along the sidewalls, being much stronger than the horizontal motions there,
determine the overall kinetic energy in the system at the Rayleigh numbers slightly larger than the
critical one for the onset of convection. Therefore, relation (17) can lead to quite accurate estimates
of the critical Rayleigh number for the onset of convection for laterally confined domains if one
precisely estimates the greatest lower bound of the right-hand side term in (17), for all theoretically
realizable convective flows in the considered domains.

One should also notice that the here developed approach can be considered as belonging to the
class of variational methods of energy (see, e.g., Joseph [45] and Goluskin [46]), understood in a
general sense. These methods to investigate the fluid system stability, having a long history (see,
for example, Reynolds [47] and Orr [48]), are aimed to localize the regions in the control parameter
space of the fluid system, where the global stability of the system is guaranteed so that the energy
of any introduced velocity or temperature fluctuations unavoidably decreases as time goes on. Thus
one can consider the linear stability theory and these variational methods as complementary ones, as
the former theory delivers conditions (or the range of the control parameters) under which the fluid
system is definitely unstable, while the latter methods give conditions under which the system is
stable for sure. For some fluid systems the two sets of the critical control parameters, i.e., delivered
by the linear stability theory and the variational method of energy, can be generally different and
therefore the limits of these two approaches, i.e., the strict bounds on the conditions for the definite
instability and definite stability might be different. However, in the case of Oberbeck-Boussinesq
Rayleigh-Bénard convection, which we consider here, these limits coincide, which means that
instabilities at a Rayleigh number, lower than predicted as a strict bound by the linear stability
theory, do not exist (i.e., there are no arbitrary nonlinear subcritical instabilities). This was first
proved by V. S. Sorokin in 1953, and then later, independently, by other authors (see [44,49–
52]). Thus, the critical Rayleigh number for the definite stability or instability is the same and

equals min
�H3

κ

〈(∇u)2〉
〈uzθ〉 [cf. relation (17)], where the minimum is sought among all possible

convective flow fields in the considered container, which satisfy the imposed boundary conditions.
Knowing this fact, however, does not diminish the intrigue: we still need precise, but fairly easily
computable estimates of the critical Rayleigh numbers for the onset of convection, for convection
cells of different shapes. Assuming that u and θ can be any arbitrary fields, not necessarily satisfying
the governing equations (3)–(5), one can relatively easy calculate the mathematically strict lower
bounds for the right-hand side of (17) for ordinary domains, like circular cylinder or parallelepiped.
However, to obtain realistic estimates of the critical Rayleigh number for the onset of convection,
one needs to take into account all relevant properties of the functions u and θ , which is of course
not that trivial.
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In the following subsections, we will briefly discuss mathematically strict lower bounds for
the critical Rayleigh number that one can derive from the relation (17) and will focus on more
realistic and quite precise estimates of the critical Rayleigh numbers for the onset of convection
in cylindrical and parallelepiped domains while making physically reasonable assumptions on the
convective flows at the very onset of convection in confined geometries.

B. Poincaré-Friedrichs inequalities and the principle dependence of the critical Rayleigh number on
the domain aspect ratio

The chain of the relations (17) can be further continued by applying inequalities of the Poincaré-
Friedrichs type to the velocity field u and to the reduced temperature θ and taking into account the
corresponding boundary conditions and the specific geometry of the container. With that, we will
obtain a (positive) lower bound in (17) and thus a lower bound for the Rayleigh number, below
which a motion in a Rayleigh-Bénard cell cannot occur.

The Poincaré inequality∫


g2d � c1

∫


(∇g)2d + c̃1

(∫


gd

)2

(18)

and the Friedrichs inequality∫


g2d � c2

∫


(∇g)2d + c̃2

∫
S

g2 dS (19)

hold for a function g (which in our case might be the velocity or deviation of the temperature
from the linear profile) defined in the here considered domain  with the boundary S. [Formally,
g belongs to the Sobolev space H1() and  is a domain with a Lipschitz boundary S; see, for
example, Rektorys [53].] The constants c1 and c̃1 in (18) and c2 and c̃2 in (19) are non-negative and
depend on the geometrical characteristics of  only, but not on the function g.

When the average over the whole domain  of the function g equals zero, the Poincaré inequality
(18) reduces to

〈g2〉 � c1〈(∇g)2〉. (20)

When the function g vanishes at the domain boundary S, the Friedrichs inequality (19) takes a
similar form:

〈g2〉 � c2〈(∇g)2〉. (21)

Although the reduced inequalities (20) and (21) look similar, the constants are generally different.
For any bounded and convex domain  ⊂ R3

0 < c2 � c1 � [diam()/π ]2 (22)

holds true, where diam() is the maximum distance between any two points of the domain 

(i.e., the diameter of the domain ); see [54]). This implies, in particular, that for any defined in a
bounded and convex domain , square integrable function g, having square integrable gradient ∇g,
we will find to hold

〈(∇g)2〉
〈g2〉 � 1

c2
� 1

c1
�

[
π

diam()

]2

> 0. (23)

Applying (23) to the reduced temperature θ and to the velocity and substituting this into (17), one
obtains that the critical Rayleigh number Rac, � for the onset of convection satisfies

Rac, � �
[

πH

diam()

]4

. (24)
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Although the estimate (24) of the critical Rayleigh number Rac, � for the onset of convection in any
bounded convex domain  is not precise for the case of ordinary domains like circular cylinder
or parallelepiped, it gives us a hint that geometrical characteristics of the Rayleigh-Bénard cell are
important. (More accurate estimates for cylindrical and parallelepiped domains we will derive in
the following subsections.)

From Eq. (22) it follows also that among all boundary conditions for the sidewalls, which
guarantee that averages of θ over the whole domain vanishes and that relation (17) holds, the largest
critical Rayleigh number Rac, � for the onset of convection will be obtained when θ vanishes at the
sidewalls. Thus, one can expect larger Rac, � for the case of conducting sidewalls (i.e., when the
temperature T is linear at the sidewalls and thus θ vanishes there) compared to the case of adiabatic
sidewalls.

C. Variational characterization of the critical Rayleigh number on the domain aspect ratio

To estimate the lower bounds of the quantities like 〈(∇g)2〉/〈g2〉 in (17), we will use the
variational characterization of the lowest eigenvalues of the Laplace operator (−�) in the
domain ,

�g + λg = 0 in , (25)

with Dirichlet boundary condition,

g = 0 on the boundary S of , (26)

or with Neumann boundary condition,

∂g/∂n = 0 on the boundary S of , (27)

or with mixed boundary conditions, where on disjoint parts of the boundary either Neumann or
Dirichlet boundary conditions are satisfied. Dirichlet boundary conditions (26) are associated with
the no-slip boundary conditions for the velocity at all walls and also with the boundary conditions for
the reduced temperature θ at the plates and at conducting sidewalls. Neumann boundary conditions
(27) are associated with the boundary conditions for θ at the adiabatic sidewalls.

The variational characterization of the lowest (positive) eigenvalue λ1 of the Laplace operator is
known to be

inf
g�=0

〈(∇g)2〉
〈g2〉 = λ1, (28)

where the infimum is sought among the functions that satisfy the corresponding boundary conditions
(see, e.g., [55–57]). (The eigenvalues here have the dimension of inversed squared length.) It is
obvious that for any fixed boundary conditions, the eigenvalues of the Laplace operator can depend
only on the geometry of the domain in which the operator is defined. In particular, for Dirichlet,
Neumann, or mixed boundary conditions, the lowest eigenvalue λ1 depends on the geometrical
properties of the domain  only.

Thus, using Eq. (28), from relation (17) we obtain that the critical Rayleigh number for the onset
of convection Rac, � is bounded as follows:

Rac, � � H4λuλθ , (29)

where λu and λθ are the lowest relevant eigenvalues of the Laplace operator in the considered domain
 and for the corresponding boundary conditions for the velocity and temperature, respectively.
Here we also used the fact that from

〈(∇ux )2〉 � λu〈u2
x〉, 〈(∇uy)2〉 � λu〈u2

y〉, and 〈(∇uz )2〉 � λu〈u2
z 〉, (30)

for

(∇u)2 ≡ (∇ux )2 + (∇uy)2 + (∇uz )2 (31)
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the following relation holds:

〈(∇u)2〉 � λu 〈u2〉. (32)

The properties of the Laplace operator, its eigenfunctions and eigenvalues are well investigated
(see [55,58]). In the next subsections we will consider eigenfunctions and eigenvalues of the Laplace
operator for simple geometries like parallelepiped and circular cylinder. As we will see, for these
geometries and for both Dirichlet and Neumann boundary conditions, it holds that

λu ∝ H−2(1 + cu�
−2), (33)

λθ ∝ H−2(1 + cθ�
−2) (34)

for certain constants cu > 0 and cθ > 0. Combining (29) with (33) and (34), we will significantly
improve the approximation (24) and will accurately estimate the dependence on the domain as-
pect ratio � of the critical Rayleigh number for the onset of convection, in particular for small
values of �.

D. Estimate of the critical Rayleigh number for the onset of convection in parallelepiped
Rayleigh-Bénard cells

Let us consider the eigenvalue problem (25) for the Laplace operator (−�), � = ∂2
x + ∂2

y + ∂2
z ,

in a domain  ≡ (0, Dx ) × (0, Dy) × (0, H ) with Dirichlet boundary conditions (26) or Neumann
boundary conditions (27) at the boundary S of the domain . The eigenfunctions take the form

g(x, y, z) = gx(x) gy(y) gz(z) (35)

with the eigenvalues

λ = λx + λy + λz, (36)

where for Dirichlet boundary conditions

gx(x) = sin(πnxx/Dx ), λx = π2n2
x/D2

x , (37)

gy(y) = sin(πnyy/Dy), λy = π2n2
y/D2

y , (38)

gz(z) = sin(πnzz/H ), λz = π2n2
z /H2, (39)

and for Neumann boundary conditions

gx(x) = cos(πnxx/Dx ), λx = π2n2
x/D2

x , (40)

gy(y) = cos(πnyy/Dy), λy = π2n2
y/D2

y , (41)

gz(z) = cos(πnzz/H ), λz = π2n2
z /H2, (42)

with integers nx � 0, ny � 0, and nz > 0, where at least one of the integers, nx or ny, is positive (see
illustrations for two-dimensional rectangular domains in Fig. 1).

Estimating λu and λθ with the smallest positive eigenvalues λ (36) of the Laplace operator for
nonvanishing eigenmodes (35) with respective boundary conditions, one obtains

λu � π2

H2
+ π2

D2
, (43)

λθ � π2

H2
+ π2

D2
. (44)

Here we introduced

D ≡ max{Dx, Dy}, (45)
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FIG. 1. Examples of eigenfunctions of the Laplace operator (possible dominating temperature modes
close to the onset of convection in Rayleigh-Bénard convection) for two-dimensional domains and Dirichlet
boundary conditions at the top (z = H ) and bottom (z = 0) boundaries and (a–c) Dirichlet boundary conditions
at the side boundaries (x = 0 and x = D) or (d–f) Neumann boundary conditions at the side boundaries, for
different aspect ratios of the domain: (a, d) � = 1, (b, e) any case of � < 1 (shown example is for � = 1/3),
and (c, f) � > 1 (shown example is for � = 5). All modes have a form (a–c) ∼ sin(πnxx/D) sin(πnzz/H )
for Dirichlet boundary conditions at the side boundaries or (d–f) ∼ cos(πnxx/D) sin(πnzz/H ) for Neumann
boundary conditions at the side boundaries. Pink and blue correspond to warm or cold fluid, respectively.

so that the aspect ratio of the domain  is � = D/H . Using (43) and (44) one can derive the estimate
(29), which will then hold for any smooth function g that satisfies the corresponding boundary
conditions and which might be thought of as the reduced temperature or the velocity components.
With the relations (43) and (44) one finalizes a mathematically rigorous proof of the relations (33)
and (34) which, if combined with the derived relation (29), leads to

Rac, � � H4

(
π2

H2
+ π2

D2

)2

= π4(1 + �−2)2. (46)

This is a stronger result than relation (24), as 1 + �−2 > 1/(1 + �2). We see that the critical
Rayleigh number for the onset of convection must grow as �−4 when � → 0.

While deriving the estimates (43) and (44) for a function g, we have not used any specific
features of the velocity or temperature, which the function g is sought for. To derive (46) we used
relation (29), the derivation of which, in turn, is based on relation (17), which involves already
some integral information about the flow, like the balance of the dissipation rates and connection to
the dimensionless heat transport, i.e., the Nusselt number. However, all the so far used information
is about the time- and volume-averaged quantities and the specific properties of the velocity and
temperature, for instance, their spatial structures or that they satisfy the Navier-Stokes (3), energy
(4), and continuity (5) equations, have not yet been used. While applying some physical arguments
about the flow characteristics, we can refine the mathematically strict relation (46), to obtain more
realistic estimates of the critical Rayleigh number for the onset of convection in laterally confined
geometries.

Indeed, while deriving the estimates (43) and (44), we assumed only that the considered functions
are smooth and satisfy the prescribed boundary conditions. A set of generally possible flow states
is, however, quite restricted, and, moreover, all possible states by the onset of convection form only
a subset of the set of all possible states for supercritical Rayleigh numbers. First of all, the functions
that describe the flow close to the onset of convection should satisfy the continuity equation. This
implies that the velocity profiles should change signs in the vertical direction and at least in one
horizontal direction. With the onset of convection, also the vertical temperature profile starts to
deviate from the linear profile in a symmetric way so that the reduced temperature, θ = T − T�,
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becomes negative in the lower half of the convection cell and positive in the upper half. Since
near the onset of convection, the vertical component of the velocity uz, strongly correlates with the
reduced temperature θ , also the horizontal profile of θ needs to change the sign. All this means that
the functions, which describe the flow components at the onset of convection, cannot be of the same
sign through the entire domain (they cannot be either non-negative or nonpositive through the whole
height or width of the domain), thus, they must be alternating functions (i.e., they change the sign)
in the vertical direction and at least in one horizontal direction. Furthermore, we assume symmetry
of the flow close to the onset of convection, and therefore, the functions that describe the flow near
the onset must vanish, when averaged over the whole domain.

Thus, bearing in mind only realistic flows at the onset of convection in confined geometries,
which admit alternating behavior of the velocity and temperature deviations from the steady state
(i.e., that the corresponding functions change the sign in horizontal as well as in the vertical
directions in the domain ), we propose here (without proof) that the smallest relevant eigenvalues
correspond to the first alternating eigenfunctions. The correctness of this assumption has no proof;
this is rather an intuitive guess supported by the reasoning from the previous paragraph. However,
this assumption, being the only one in our analysis, leads to very accurate predictions of the critical
Rayleigh numbers for the onset of convection in laterally confined convection cells, as we will see
later. Thus, with the requirement that the leading eigenmodes are alternating functions we exclude
from the consideration Dirichlet eigenmodes (37)–(39) for the values of nx, ny, and nz equal to one,
and Neumann eigenmodes (40)–(42) for zero values of nx, ny, and nz.

With that, taking into account that the velocity satisfies Dirichlet (no-slip) boundary conditions
at all boundaries, for λu we obtain

λu = 4π2

H2
+ min

{
4π2

D2
x

,
4π2

D2
y

}
= 4π2

H2
+ 4π2

D2
= 4π2

H2

(
1 + 1

�2

)
. (47)

Here and in the following we assume that Dy � Dx = D.
The leading eigenvalue λu (47) for Dirichlet boundary conditions can be interpreted as an

eigenvalue (36) for a quasi-two-dimensional eigenmode g; see Eqs. (35) and (37)–(39) with nx = 2,
ny = 0, and nz = 2, which has a four-roll (two-by-two) structure. This eigenvalue corresponds to the
first most energetic mode that occurs right after immediate switch on of the heating and cooling of
the plates and that further develops into a well-known stable state with rolls attached to each other
and aligned in a horizontal direction only, with nz = 1 and nx = 2 in the case � � 1 or nz = 1 and
nx � 2 in the case � � 1.

The most energetic eigenmode of the developed stable state with multiple rolls attached to each
other corresponds to an eigenvalue λ̃u, which certainly cannot be larger than λu. The stable state
with multiple rolls and the two-by-two mode can also perfectly match, so that λ̃u = λu, through the
property of the degeneracy of the Laplace eigenvalues. The phenomenon of the degeneracy of the
Laplace eigenvalues for Dirichlet boundary conditions in spatially symmetrical systems is known
from different problems of quantum and classical mechanics, e.g., the vibration of a rectangular
membrane. Any degenerate eigenvalue corresponds to more than one linearly independent eigen-
mode. For example, an eigenmode g, [see Eq. (35) with (37)–(39)] with the mode numbers nx, ny,
and nz and another eigenmode g̃ with the mode numbers ñx, ñy, and ñz correspond to the same
eigenvalue if

( nx

Dx

)2
+

(
ny

Dy

)2

+
(nz

H

)2
=

(
ñx

Dx

)2

+
(

ñy

Dy

)2

+
(

ñz

H

)2

. (48)

From Eq. (48) one can see that the degeneracy of Dirichlet eigenvalues in confined rectangular
domains can happen for the domain aspect ratios Dx/H and Dy/H , which can be represented in
a form of the square roots of some rational numbers. Furthermore, the eigenvalue for the case
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nx = 2, ny = 0 and nz = 2 will asymptotically match the eigenvalue for ñy = 0 and ñz = 1 if ñx ≈√
4 + 3�2. This resembles the cases

ñx → 2 for � → 0, (49)

ñx ∼ � for � → ∞, (50)

of stable states by slightly supercritical convection.
When the reduced temperature also satisfies Dirichlet boundary conditions (i.e., the sidewalls are

conducting and the plates are isothermal),

λθ = λu. (51)

When the boundary conditions for the temperature are Dirichlet ones at the plates and Neumann
(adiabatic) at the sidewalls, from relations (36) and (39) for nz = 2, (40) for nx = 1 and (41) for
ny = 1 we obtain

λθ = 4π2

H2
+ π2

D2
x

+ π2

D2
y

= 4π2

H2

(
1 + 1

4�2
x

+ 1

4�2
y

)
, (52)

where

�x ≡ Dx/H, �y ≡ Dy/H. (53)

Now we can estimate the critical Rayleigh number Rac, � as a function of the domain aspect ratio
�, for parallelepiped domains with no-slip boundary conditions for the velocity at all boundaries.
From (29), (47), and (51), we obtain Rac, � for the conducting sidewalls:

Rac, � ≈ (2π )4

(
1 + 1

�2

)2

. (54)

For adiabatic sidewalls, from (29), (47), and (52) we obtain

Rac, � ≈ (2π )4

(
1 + 1

�2

)(
1 + 1

4�2

)
in 2D, (55)

Rac, � ≈ (2π )4

(
1 + 1

�2
x

)(
1 + 1

4�2
x

+ 1

4�2
y

)
in 3D. (56)

Thus using the facts that the velocity u and the deviation of the temperature from the linear
profile, θ , satisfy the prescribed boundary conditions and relation (17), without using any other
properties of u and θ , we have derived a rigorous estimate (46) for the critical Rayleigh number
for the onset of convection, Rac, � . However, under the assumption, which is in line with the
physical reasoning discussed above, that the first relevant eigenmodes in the expansions of u and
θ in terms of the Laplace eigenfunctions are alternating (i.e., changing the sign) functions in both
horizontal and vertical directions, we have derived physically more realistic estimates of Rac, � for
laterally confined domains. For adiabatic sidewalls these estimates are Eq. (55) for two-dimensional
rectangular domains and Eq. (56) for three-dimensional parallelepiped domains. When the thermal
boundary conditions at the sidewalls are conducting or periodic, the critical Rayleigh number for
the onset of convection can be estimated with Eq. (54).

E. Estimate of the critical Rayleigh number for the onset of convection
in cylindrical Rayleigh-Bénard cells

Let us now conduct a similar analysis as in the previous section, but for cylindrical domains. This
will allow us to derive the critical Rayleigh number Rac, � for the onset of convection in fluid layers
confined in cylindrical containers.
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FIG. 2. Examples of eigenfunctions of the Laplace operator in a circle for (a–c) Dirichlet boundary
conditions at the side boundary (r = D/2) or (d–f) Neumann boundary conditions at r = D/2. All shown
modes have a form ∼Jn(2αnk (r/D)) cos(nφ), where αnk is (a–c) the kth positive root jnk of the Bessel function
Jn, for Dirichlet boundary conditions at at r = D/2, or (d–f) the kth positive root j̃nk of the derivative J ′

n of
the Bessel function Jn, for Neumann boundary conditions at at r = D/2. These can be interpreted as possible
dominating temperature modes in the central horizontal cross section of a cylindrical Rayleigh-Bénard cell,
close to the onset of convection, for Dirichlet boundary conditions at the top (z = H ) and bottom (z = 0)
plates, where the reduced temperature θ vanishes, and (a–c) Dirichlet (conducting) boundary conditions at the
sidewall (r = D/2) or (d–f) Neumann (adiabatic) boundary conditions at the sidewall (r = D/2), for different
aspect ratios of the container: (a, d) � � 1, (b, e) � ≈ 2, and (c, f) � ≈ 5. Color scale as in Fig. 1.

We consider the eigenvalue problem (25) for the Laplace operator (−�) [55,58],

� = ∂2
r + (1/r)∂r + (1/r2)∂2

φ + ∂2
z , (57)

in a cylindrical domain  with the diameter D and height H , with Dirichlet boundary conditions
(26) or Neumann boundary conditions (27) at the boundary S of the domain . The eigenfunctions
take the form

f (r, φ, z) = Jn(2αnk r/D) cos(nφ) gz(z), (58)

where gz is given by Eq. (39), Jn is the Bessel function of the first kind and the coefficients αnk are
determined by the boundary condition at the sidewall (see illustrations for two-dimensional circular
domains in Fig. 2). Other eigenvalues are similar to those from Eq. (58), but with sin(nφ) (n �= 0)
instead of cos(nφ), thus leading to the same eigenvalues. As their consideration would not change
the results (the leading eigenvalues) and therefore the principle conclusions on the critical Rayleigh
number Rac, � , we do not discuss them here.

The eigenvalues that correspond to the eigenmodes (58) are

λ = λφ, r + λz (59)

with

λφ, r ≡ 4α2
nk/D2 (60)

and λz given in (39). For Dirichlet boundary conditions at the sidewall of the cylindrical container,
the values of αnk are the positive roots jnk of the Bessel function Jn. For Neumann boundary
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conditions, αnk are the positive roots of the derivative of the Bessel function, i.e., of J ′
n; these roots

are denoted as j̃nk .
With similar argumentation as in the previous section for parallelepiped containers, also for

cylindrical domains, we propose that the smallest relevant eigenvalues correspond to the eigen-
functions that change sign in the vertical direction and at least in one horizontal direction (r or
φ) of the domain , i.e., the leading eigenfunctions are alternating functions. This assumption
(or proposition) is in line with the symmetry, continuity, and vanishing in mean flow at the
onset of convection and is, as already mentioned, the only one assumption made in our analysis,
which, however, leads to precise estimates of the critical Rayleigh numbers Rac, � for the onset of
convection in confined cylindrical containers of the aspect ratio �, as we will show later.

Following our proposition, we consider Jn(2αnk r/D) cos(nφ) in Eq. (58) for only those combi-
nations of n and k that make eigenfunctions f (r, φ, z) alternating in the vertical direction z as well
in the horizontal plane φ − r, i.e., only those Jn(2αnk r/D) cos(nφ) that change sign in a φ-r plane,
at any height z. For Dirichlet boundary conditions, this excludes from the consideration a potential
choice of the αnk for n = 0 and k = 1 that corresponds to α01 = j01 ≈ 2.4048. Among other closest
values, which are α02 = j02 = 5.5201 for n = 0 and k = 2 and α11 = j11 = 3.8317 for n = 1 and
k = 1, the value of j11 is smaller and therefore is taken into the estimate. Thus the smallest relevant
eigenvalues correspond to J1 (n = 1) with k = 1, where

α11 = j11 ≈ 3.8317 (61)

for Dirichlet boundary conditions at the sidewall, and

α11 = j̃11 ≈ 1.8412 (62)

for Neumann boundary conditions.
The smallest relevant λz, Eq. (39), which is used in (59) corresponds to nz = 2. With this and

Eqs. (39), (60), and (59) we obtain

λ = 4π2

H2
+ 4α2

11

D2
. (63)

Taking into account that the velocity satisfies Dirichlet (no-slip) boundary conditions at all
boundaries, from (63) and (61) for λu we obtain

λu = 4π2

H2
+ 4 j2

11

D2
= 4π2

H2

(
1 + j2

11

π2�2

)
≈ 4π2

H2

(
1 + 1.4876

�2

)
. (64)

When the sidewall is conducting and the plates are isothermal, i.e., when the reduced temperature
also satisfies Dirichlet boundary conditions, we have

λθ = λu. (65)

In the case when the boundary conditions for the temperature are Dirichlet ones at the plates and
Neumann (adiabatic) at the sidewall, from relations (63) and (62) we obtain

λθ = 4π2

H2
+ 4( j̃11)2

D2
= 4π2

H2

(
1 + ( j̃11)2

π2�2

)
≈ 4π2

H2

(
1 + 0.3435

�2

)
. (66)

Now we can estimate the critical Rayleigh number Rac, � for the onset of convection as a function
of the aspect ratio � = D/H of the cylindrical container with no-slip boundary conditions for the
velocity at all boundaries. From (29), (64), and (65), we obtain Rac, � for the case of the conducting
sidewall:

Rac, � ≈ (2π )4

(
1 + j2

11

π2�2

)2

≈ (2π )4

(
1 + 1.4876

�2

)2

. (67)
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FIG. 3. Example of a pair of eigenfunctions, (a, c) “2 × 2 mode” and (b, d) “wall mode,” that correspond
to the same (degenerate) eigenvalue of the Laplace operator (possible dominating temperature modes close
to the onset of Rayleigh-Bénard convection) for a cylindrical domain with the aspect ratio � ≈ 3.878 and
Dirichlet boundary conditions at the top (z = H ) and bottom (z = 0) boundaries and Neumann boundary
conditions at the side boundary, which are plotted in the horizontal cross sections (a, b), for (a) z/H = 1/4 and
(b) z/H = 1/2, and in the central vertical cross sections (c, d). Both eigenfunctions, in (a, c) and in (b, d), have
a form Jn(2 j̃nk r/D) cos(nφ) sin(πnzz/H ) and correspond to the same eigenvalue λ = 4 j̃2

nk/D2 + π 2n2
z /H 2,

where (a, c) n = 1, k = 1, nz = 2 and λ ≈ 4π 2H−2(1 + 0.34�−2) and (b, d) n = 9, k = 1, nz = 1 and
λ ≈ 4π 2H−2(0.25 + 11.63�−2), both for � ≈ 3.878. Here Jn is the Bessel function Jn and j̃nk is the kth root
of the derivative of the Bessel function Jn. Pink and blue correspond to warm or cold fluid, respectively.

For the adiabatic sidewall, from (29), (64), and (66) we obtain

Rac, � ≈ (2π )4

(
1 + j2

11

π2�2

)(
1 + ( j̃11)2

π2�2

)
≈ (2π )4

(
1 + 1.4876

�2

)(
1 + 0.3435

�2

)
. (68)

Thus from the relation (17), under the assumption that in a laterally confined cylinder, in the
expansions of the velocity u and the deviation of the temperature from the steady-state profile, θ ,
in terms of the Laplace eigenfunctions, the first relevant eigenmodes change sign (alternate) in both
horizontal and vertical directions, we have derived estimates of the critical Rayleigh number for the
onset of convection, Rac, �; for the case of conducting sidewall, see Eqs. (67), and for the case of
adiabatic sidewall, see Eqs. (68).

We should mention that degenerate eigenvalues also appear in cylindrical domains. Two illus-
trations are presented in Fig. 3 and Fig. 4, where we can see that the “two-by-two” mode with
n = 1, k = 1, and nz = 2 [see Figs. 3(a) and 3(b) and Figs. 4(a) and 4(b)], which, in the above
analysis, was considered as the first relevant mode, can have exactly the same eigenvalue as a “wall
mode” [Figs. 3(b) and 3(d)] or as a “donut mode” [Figs. 4(b) and 4(d)] if the aspect ratio of the
domain allows this. Thus, the mode with n = 1, k = 1 and nz = 2 can transform into another, a
quite different in shape but energetically similar mode that corresponds to the same or smaller
eigenvalue. Whether the leading eigenvalue is degenerate or not depends on the aspect ratio of the
cylinder: only large values of � > 1 admit degenerate eigenvalues with that for n = 1, k = 1 and
nz = 2.

The “two-by-two mode” with n = 1, k = 1 and nz = 2 can be associated with an initial flow
motion in laterally confined containers, where the instability so to say starts from the corners of the
container, in a quite symmetric way. If the aspect ratio � is small, the mode with n = 1, k = 1 should
remain to be the most energetic because there are no other realisable eigenmodes that correspond
to the same or smaller eigenvalue. However, when the aspect ratio � is large, there appear other
mode options due to the above-discussed degeneracy of the eigenvalues. Thus for large aspect ratio
containers one might observe “donut modes” as in Figs. 4(b) and 4(d) or even “wall modes” like
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FIG. 4. Another example of a pair of eigenfunctions, (a, c) “2 × 2 mode” and (b, d) “donut mode,” that
correspond to the same (degenerate) eigenvalue of the Laplace operator (possible dominating temperature
modes close to the onset of Rayleigh-Bénard convection) for a cylindrical domain with the aspect ratio � ≈
1.235 and Dirichlet boundary conditions at the top (z = H ) and bottom (z = 0) boundaries and Neumann
boundary conditions at the side boundary, which are plotted in the horizontal cross sections (a, b), for (a) z/H =
1/4 and (b) z/H = 1/2, and in the central vertical cross sections (c, d). Both eigenfunctions, in (a, c) and in
(b, d), have a form Jn(2 j̃nk r/D) cos(nφ) sin(πnzz/H ) and correspond to the same eigenvalue λ = 4 j̃2

nk/D2 +
π 2n2

z /H 2, where (a, c) n = 1, k = 1, nz = 2, and λ ≈ 4π 2H−2(1 + 0.34�−2) and (b, d) n = 0, k = 1, nz = 1,
and λ ≈ 4π 2H−2(0.25 + 1.488�−2), for � ≈ 1.235. Here Jn is the Bessel function Jn and j̃nk is the kth root of
the derivative of the Bessel function Jn. Pink and blue correspond to warm or cold fluid, respectively.

in Figs. 3(b) and 3(d). The preference in realization and dominance of this or that mode depend on
specific values of the container aspect ratio �.

F. Illustration from the classical linear stability analysis for the Rayleigh’s free-slip case

Below we illustrate why the consideration of the flow near the onset of convection as expansion
in terms of the Laplace eigenfunctions can be useful and briefly discuss why the agreement of our
analysis with the classical linear stability analysis is good, though the underlying ansatz is different.

Let us consider Rayleigh’s example [5] of the onset of convection in an infinite fluid layer for
free-slip boundary conditions at the plates. Following the fundamental idea of the linear stability
analysis [24,25], we can rewrite the governing equations (3)–(4) in terms of the velocity u and
reduced temperature θ , using the decomposition (13), in Cartesian coordinates (x, y, z). According
to the concept of the linear stability analysis, at the onset of motion, the contribution from the
nonlinear terms is negligible, therefore one obtains

∂t u + ∇p = ν∇2u + αgθez, (69)

∂tθ = κ∇2θ + uz�/H. (70)

Using �, H and κ/H as the reference temperature, distance, and velocity, one makes these equations
dimensionless. (Below in this section we use the same notations for the dimensionless quantities as
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for the corresponding dimensional quantities above.) Applying twice the curl operator [∇ × (∇×)]
to Eq. (69) one eliminates the pressure term,

∂t∇2uz = Pr ∇2∇2uz + Pr Ra (∂2
x + ∂2

y )θ, (71)

∂tθ = ∇2θ + uz, (72)

and thus obtains

(∂t − ∇2)(Pr−1∂t − ∇2)∇2uz = Ra (∂2
x + ∂2

y )uz. (73)

The boundary conditions at the plate are uz = 0 and in the free-slip case also ∂2k
z uz = 0 for k =

1, 2, . . . , that follows from the continuity.
Let us consider uz in a form

uz = exp(σ t ) g(x, y, z), (74)

i.e., as a product of the amplification of the velocity with time by growth rate σ and any eigenfunc-
tion g(x, y, z) of the Laplace operator (−�), � = ∂2

x + ∂2
y + ∂2

z ,

g(x, y, z) ≡ gx, y(x, y) gz(z), (75)

gz(z) ≡ sin(πnzz), (76)

(∂2
x + ∂2

y )gx, y + λx, y gx, y = 0, (77)

∂2
z gz + λz gz = 0, (78)

with integer nz and positive values of λx, y and

λz = (π nz )2. (79)

The function gz(z) (76) guarantees that the boundary conditions at the plate (z = 0) are met, i.e.,
∂2kuz = 0 for k = 0, 1, 2, . . . Substituting Eqs. (74)–(79) into (73), for the neutral (marginal) state
σ = 0 we obtain

(λx, y + λz )3 = λx, y Ra. (80)

Let us recollect that in an infinite fluid layer, λx, y can take any positive value. Therefore the
onset of convection starts at Rac, which corresponds to the minimum over all positive λx, y values of
Ra = (λx, y + λz )3/λx, y that is achieved at

λx, y = λz/2. (81)

The smallest λz corresponds to nz = 1, i.e., λz = π2, which together with Eq. (81) leads to
Rayleigh’s result [5]:

Rac = (27/4)π4.

Note that in the derivations that we have conducted right now, we neither assumed any specific
shape of the domain nor any specific form of the function gx, y(x, y) in the Laplace eigenfunction
g(x, y, z), Eq. (75).

However, when the flow is confined inside a parallelepiped [0, �x] × [0, �y] × [0, 1], the
function gx, y(x, y) must have a form

gx, y(x, y) ∼ sin
(πnxx

�x

)
sin

(
πnyy

�y

)
, (82)
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which leads to

λx, y =
(πnx

�x

)2
+

(
πny

�y

)2

. (83)

In the case � → 0, one cannot simply take λx, y according to Eq. (81), because nx and ny must be
integers. The closest to λz/2 for nz = 1 value of λx, y is estimated as

λx, y �
π2

max{�2
x , �2

y }
= π2

�2
. (84)

From this, Eq. (79) for nz = 1 and Eq. (80) we then obtain that

Rac �
(π2�−2 + π2)3

π2�−2
> π4�−4, � → 0, (85)

which confirms again that the critical Rayleigh number grows as ∼�−4 for tall containers, � → 0.
However, to form at least one roll in horizontal direction, either nx or ny must be larger than 1. With
that we obtain

Rac �
[(2π )2�−2 + π2]3

(2π )2�−2
→ (2π )4�−4, � → 0. (86)

The analytical derivations in the classical linear stability analysis for the case of an infinite fluid
layer with the no-slip boundary conditions at the plates are known to be not that easy as for the
case of the free-slip plates, due to the difficulty to meet the boundary conditions at the plates. The
boundary conditions for the no-slip horizontal boundaries of the fluid layer include uz = 0 as well
as ∂zuz = 0, which occur from the continuity equation at the plates. Therefore, it is not sufficient to
consider a single mode in a form (76) in the vertical direction. Consideration of a finite number of
such modes is not sufficient either. All this, as we do know, significantly complicates the analysis in
the case of the no-slip boundary conditions at the plates.

When the domain is laterally confined and the boundary conditions for the velocity and temper-
ature at the sidewalls are different (as, for example, for the no-slip conditions for the velocity and
adiabatic ones for the temperature), the analysis becomes even more complicated and analytically
unfeasible. Thus, in the case of different boundary conditions for the velocity and temperature at
the sidewalls, it is also not sufficient to consider a single mode in the horizontal directions [i.e., in a
form ∼ exp(ikxx + ikyy + σ t )], for both the velocity and the temperature, as is usually done in the
classical linear stability analysis [23–25] for laterally unbounded domains.

G. Comparison with the amplitude equation approximation

Here we compare our estimates with the results obtained from the amplitude equation by Ahlers
et al. [60]; see also [61–64]. The equation describes slow variations in space and time of the velocity
and temperature close to the onset of convection in terms of the projection of these variables on the
slowest unstable mode in the system. It allows estimating the increase in critical Rayleigh number
for the onset of convection due to the lateral boundaries, for containers with � � 1. In particular,
under the assumption that the first unstable modes in wide cylindrical containers with adiabatic
sidewalls are concentric rolls, one obtains [60]

Rac, � − Rac,∞
Rac,∞

≈ 1.18π2ξ 2
0

�2
≈ 1.73

�2
, � → ∞, (87)

with ξ 2
0 ≈ 0.148 [60,64].

Our estimate (68) can be rewritten in a similar form that gives

Rac, � − Rac, �→∞
Rac, �→∞

≈
(

1 + j2
11

π2�2

)(
1 + ( j̃11)2

π2�2

)
− 1 ≈ 1.83

�2
, � → ∞. (88)
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FIG. 5. Contours of the temperature fields in Rayleigh-Bénard convection close to the onset of convection,
in parallelepiped containers with �x = �y (upper row) and cylindrical containers (lower row) with adiabatic
sidewalls, for different aspect ratios �: (a, h) � = 1/10, (b, i) � = 1/5, (c, j) � = 1/2, (d, k) � = 1, (e, l)
� = 2, (f, m) � = 5, and (g, n) � = 10, as obtained numerically from the linearized governing equations. The
color scale ranges from blue (cold fluid) to pink (warm fluid). Simulations conducted by P. Reiter; adopted
from [59]. The flow structures in the horizontal direction are similar to the theoretical ones; cf. (h–k) with
Fig. 2(d) for � � 1, (l) with Fig. 2(e) for � ≈ 2, and (m) with Fig. 2(f) for � ≈ 5.

From the comparison of the approximations (87) and (88), we conclude that the estimate from the
amplitude equations [60] and our result, Eq. (68), are in good agreement for large aspect ratios of
the containers, � � 1. In the other limit, for small �, the deviation between these two approaches
is certainly huge, “because the amplitude equation is based upon the assumption of slow spatial
variations and therefore strictly applicable only for large L”; see Behringer and Ahlers [64] (page
237, where L ≡ �/2).

H. Comparison with the numerical linear stability analysis

Let us now compare the derived estimates for the onset of convection with the results from
Ahlers et al. [59] for the numerically conducted linear stability analysis; see Fig. 5. The critical
Rayleigh numbers Rac,� for the onset of convection, as functions of the domain aspect ratio �, are
presented in Figs. 6(a) and 6(b) for two-dimensional rectangular domains, and in Figs. 6(c) and
6(d) for three-dimensional cylindrical domains, with conducting sidewalls [Figs. 6(a) and 6(c)] and
adiabatic sidewalls [Figs. 6(b) and 6(d)]. As everywhere in our analysis, the boundary conditions
for the velocity are no-slip.

Being quite expensive, the classical linear stability analysis in terms of the normal modes was
conducted in [59] for two-dimensional domains only [see continuous blue curves in Figs. 6(a) and
6(b)]. A cheaper way to find the neutral stability curves for all studied geometries and boundary
conditions was undertaken in [59], using simulations of the linearized governing equations initiated
with random disturbances of small amplitudes. As soon as the kinetic energy Ekin had reached a
stable linear temporal growth (or decay), the growth rate was evaluated according to

2σ = d log(Ekin)/dt (89)

(see supplementary materials in [59]). These linear growth rates are shown with colored vertically
elongated boxes in Fig. 6. The best fits of the neutral stability curves, which in [59] were sought
in the form Rac,� ≈ 1708(1 + C/�2)2, are shown in Fig. 6 with black dashed lines. The theoretical
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FIG. 6. Critical Rayleigh numbers Rac,� for the onset of convection, as functions of the domain aspect ratio
�: Linear growth rates (shown with colored vertically elongated boxes), obtained from numerical solutions of
the linearized equations for fluctuations, initialized with random perturbations, and (a, b) the neutral stability
curves (blue solid lines) as obtained from the classical linear stability analysis using the full spectrum of
the normal modes, everywhere for no-slip boundary conditions for the velocity and (a, b) two-dimensional
rectangular domains and (c, d) three-dimensional cylindrical domains, with (a, c) conducting sidewalls and
(b, d) adiabatic sidewalls; adapted from [59]. Black dashed lines show fits of the numerical solutions of the
linearized equations, sought in the form Rac,� ≈ 1708(1 + C�−2)2, with the best-fit constants C shown in the
corresponding legends. Pink continuous lines show the theoretical estimates that we have derived in this paper;
see Eq. (54) for (a), Eq. (55) for (b), Eq. (67) for (c), and Eq. (68) for (d). Our theoretical estimates (pink
solid lines) and the linear stability results obtained numerically from the linearized equations (black dashed
lines) show excellent agreement. Blue dashed lines show a theoretical estimate RaJ

c, ∞ ≈ 1708 [23,24] for a
laterally unbounded fluid layer, obtained from the linear stability analysis of the normal modes, restricted to
the consideration of a single mode in the horizontal direction.

estimates of the critical Rayleigh numbers for the onset of convection, Rac,� , as functions of �,
which we have derived in the previous subsections, are shown with pink lines: Eq. (54) in Fig. 6(a),
Eq. (55) in Fig. 6(b), Eq. (67) in Fig. 6(c), and Eq. (68) in Fig. 6(d). One can see that our theoretical
estimates (pink solid lines) and the results of the numerically conducted linear stability analysis
(black dashed lines) are in excellent agreement.
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In Fig. 6 one can also see Jeffreys’ theoretical estimate RaJ
c, ∞ ≈ 1708 [23,24] for a laterally

unbounded fluid layer, shown with horizontal blue dashed lines. As we know, this theoretical
estimate, RaJ

c, ∞ ≈ 1708, was derived using the linear stability approach and under the assumption
that the first unstable mode in the horizontal direction can be described by a single perturbation
wave in a form ∼ exp(ikxx + ikyy + σ t ), which is the same for every component of the flow: the
vertical component of the velocity, the horizontal component of the velocity, and the deviation of
the temperature from its linear profile. This is actually a quite restrictive requirement and in fact
contradicts the boundary conditions at the sidewalls, which are no-slip for the velocity (Dirichlet
boundary conditions) and adiabatic for the temperature (Neumann boundary conditions). When the
aspect ratio of the container � becomes very large, the influence of the sidewalls reduces, and,
therefore, the difference between Jeffreys’ estimate for an infinite layer, RaJ

c, ∞ ≈ 1708 [23,24], and
our estimate, Rac, � for � → ∞, becomes smaller, however, not zero, as the set of possible solutions
of the linearized equations was restricted to a single wave in the horizontal directions in the case of
RaJ

c,∞.
For � � 4.4, the value of Rac, � becomes larger than the Jeffrey’s value RaJ

c, ∞ ≈ 1708 [23,24].
Both curves certainly deviate strongly in the limit � → 0, where Rac, � grows as ∼�−4, while RaJ

c,∞
is just constant. In the other limit, � → ∞, the value of Rac, �→∞ = (2π )4 for confined geometries
is about 8.8% smaller than RaJ

c, ∞ ≈ 1708.
As we have already discussed, for laterally confined containers it is not sufficient to consider a

single mode in the horizontal direction, and in this respect, the numerically conducted linear stability
analysis, which admits any combinations of the modes in the horizontal directions, becomes more
reliable and its results are more realistic than those of any theoretical approach based on an analysis
of the linear stability of a single-mode perturbation in the horizontal direction.

Figure 6 demonstrated an excellent support of our theoretical results by the numerically obtained
linear stability data from [59]. To have a closer look, let us also consider a ratio of the theoretical
Rac, � and the fits of the Rac, � obtained numerically, which we present in Fig. 7. In Fig. 7(a) the fits
of the numerical data are sought in a form Rac,� ≈ 1708(1 + C/�2)2, while in Fig. 7(b) they are
sought in a form Rac,� ≈ (2π )4(1 + C/�2)2, with fitting constants C, specified in the legend.

In the limit � → ∞, the ratio of the theoretical to numerical Rac, � converges to (2π )4/1708 �
0.91, showing a small deviation between the theoretical and numerical data, if the numerical data
are fitted in the form 1708(1 + C/�2)2; see Fig. 7(a). However, when the numerical data are fitted
in the form (2π )4(1 + C/�2)2, the ratio of the theoretical to numerical Rac, � clearly converges to 1
in the same limit � → ∞, showing excellent agreement of the theoretical estimates and numerical
linear stability data in that limit; see Fig. 7(b).

For very small �, the deviation between the numerical and theoretical data is larger, as one can
see in Fig. 7. However, one should notice that within two orders of magnitude in small �, the values
of the critical Rayleigh numbers, Rac, � , range over about eight orders of magnitude, since in the
limit � → 0, the values of Rac, � grow as ∼�−4. Thus, the accuracy of the numerically obtained
critical Rayleigh numbers for the onset of convection unavoidably reduces with decreasing �. The
ratio of the theoretical to numerical Rac, � , presented in Fig. 7, is quite sensitive to the accuracy of
the numerical data and the way they are fitted. In Fig. 7 one can also see, how a variation of the
fitting coefficient by only 5% (shown with dashed lines of the corresponding color) changes the
ratio between the theoretical and numerical values of Rac, � .

To complete the picture, in Fig. 8 we show the ratio between the plain numerically obtained linear
stability data and our theoretical estimates, without applying any fitting. Again, taking into account
that the values of the critical Rayleigh number for the onset of convection vary within about 5 orders
of magnitude in the considered range of �, we conclude that our theoretical estimates indeed are in
good agreement with the linear stability analysis.

Already for Rayleigh numbers slightly larger than the critical one, the flow can be represented
by several modes of similar eigenvalues. The spectrum of possible states is broader for larger aspect
ratios. In Fig. 5 one can see the temperature distributions in the convective flows close to the onset of
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FIG. 7. (a) Solid lines: ratios of the critical Rayleigh numbers Rac, � for the onset of convection, as
estimated in this study, and Rac, � as obtained from numerical solutions of the linearized equations for
fluctuations (numerical linear stability analysis) [59], plotted versus the container aspect ratio �. The numerical
linear stability data are represented by their fits sought in a form RaLSA

c,� ≈ 1708(1 + C/�2)2, with the best-fit
constants C shown in the legends here and in Fig. 6. Rac, � of this study are taken from Eq. (54) for two-
dimensional rectangular domains with conducting sidewalls, Eq. (55) for two-dimensional rectangular domains
with adiabatic sidewalls, Eq. (67) for three-dimensional cylindrical domains with conducting sidewalls, and
Eq. (68) for three-dimensional cylindrical domains with adiabatic sidewall. Everywhere no-slip boundary
conditions for the velocity are considered. Dashed lines show similar data as the continuous ones but with a 5%
correction of the fitting coefficients in the numerical linear stability data. Panel (b) is as (a), but the numerical
linear stability data are represented by their fits sought in a form RaLSA

c,� ≈ (2π )4(1 + C/�2)2, with the best-fit
constants C shown in the legend. Taking into account a very broad range of the considered aspect ratios � and
a certain inaccuracy of the numerical linear stability analysis data and of their fits, one can conclude that our
theoretical estimates and the numerically obtained linear stability data [59] are in good agreement.

convection in parallelepiped and cylindrical containers (shown in, respectively, the upper and lower
rows of Fig. 5) with adiabatic sidewalls, for different aspect ratios �. These thermal isosurfaces are
numerical solutions of the linearized governing equations. One can compare horizontal structures of
these modes, obtained in the linear stability study, with the theoretical ones shown in Fig. 2. A clear
similarity is seen between Figs. 5(h)–(k) and Fig. 2(d) for � � 1, between Fig. 5(l) and Fig. 2(e) for
� ≈ 2 and between Fig. 5(m) and Fig. 2(f) for � ≈ 5.
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FIG. 8. Ratios of the critical Rayleigh numbers Rac, � for the onset of convection, as obtained from
numerical solutions of the linearized equations for fluctuations (numerical linear stability analysis) [59], and
Rac, � as estimated in this study, plotted versus the container aspect ratio �. The numerical linear stability data
are shown as is, without any fitting procedure. The values of Rac, � of this study are taken from Eq. (54) for
two-dimensional rectangular domains with conducting sidewalls, Eq. (55) for two-dimensional rectangular do-
mains with adiabatic sidewalls, Eq. (67) for three-dimensional cylindrical domains with conducting sidewalls,
and Eq. (68) for three-dimensional cylindrical domains with adiabatic sidewall. Everywhere no-slip boundary
conditions for the velocity are considered. Taking into account that within the considered �-range, the values
of Rac, � vary within 5 orders of magnitude, one can agree that our theoretical estimates and the numerically
obtained linear stability data [59] are in good agreement.

I. Comparison with measurements

Convection by its onset has been mainly studied for wide containers (see [6,21]). Here, the
measurements of the critical Rayleigh numbers and pattern formation have been of particular
interest. It is quite understandable that for very large aspect ratios one expects the critical Rayleigh
number about 1708 and the flow pattern with straight rolls, as predicted by the linear stability theory
for an infinite fluid layer, assuming that the sidewalls contribution is little in the case � � 1.

The critical Rayleigh number for the onset of convection is associated with a departure of
the Nusselt number from unity. Thus, based on measurements in cylindrical containers with the
aspect ratio � in the range 15.2 � � � 136.6, filled with different fluids, Silveston [65] reported
Rac, � = 1700 ± 51, in agreement with calculations by Jeffreys [23] for an infinite fluid layer. These
measurements were also the main experimental study to refer to Chandrasekhar [25]. Although the
declared critical Rayleigh number in the study [65] is Rac, � = 1700 ± 51, at least in some cases,
a fluid motion started prior to this value of the Rayleigh number. For example, Fig. 9(d) of [65]
shows a certain flow pattern for Ra = 1700 and � ≈ 28.3. This pattern becomes more pronounced
for larger Rayleigh numbers, but also can be quite clearly traced on Fig. 9(c) for Ra = 1640. The
remains of this pattern can be recognized even on Fig. 9(b) of [65] for Ra = 1590. Our estimate (68)
for � = 28.3 suggests that convection starts at Rac, � ≈ 1562. Measurements in water, conducted by
Behringer and Ahlers [64], reported Rac, � = 1599 ± 240 for � ≈ 9.44 and Rac, � = 1694 ± 250 for
� ≈ 4.15. The corresponding estimates that follow from (68) are Rac, � ≈ 1591 for � = 9.44 and
Rac, � ≈ 1694 for � = 4.15.

For large aspect ratios, a deviation of the Nusselt number from unity can become recognizable
in experiments only when bulk convection sets in, as any activity localized near the sidewalls can
significantly increase only the local Nusselt number, but not the averaged over the whole horizontal
cross-sectional heat transport. Thus if by the onset of fluid motion the flow is localized near
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FIG. 9. Mixed modes, according to Eq. (95), which are combinations of the donut mode and wall mode that
have similar eigenvalues. The contributions of the donut mode and wall mode are reflected in the prefactors ξd

and ξw , respectively.

the sidewall, it is not recognizable in the measurements of the Nusselt number, and therefore is
interpreted as a “subcritical” fluid motion; see, for example, Croquette et al. [66]. However, if under
the onset of convection we understand the onset of any fluid motion (as we do here) and not a
visible increase of the total heat transport compared to the steady state (as it is usually done in the
measurements of the critical Rayleigh numbers), we should admit that the true critical Rayleigh
number is lower than the one derived from the measurements, as soon as a “subcritical” flow
motion in the same setup was observed. Here one can also recollect that in the Oberbeck-Boussinesq
Rayleigh-Bénard convection there is no subcritical instability.

Flow patterns that are observed in experiments in confined parallelepiped and cylindrical contain-
ers of very large aspect ratios close to the onset of convection are quite remarkable. In parallelepiped
domains with �y < �x, the rolls always develop along the short side of the heated or cooled plates
(see [67]), which is in agreement with Eq. (56). Alignment of the rolls along the long side would
need larger Rac, � , i.e., proportional to (1 + �−2

y ) and not to (1 + �−2
x ), in accordance with Eq. (56).

For square plates, �y = �x, the flow structure can include rolls aligned orthogonally to each other,
along the x- and y-directions.

In experiments, it is also observed that the rolls in confined containers usually try to align
orthogonally to the sidewalls. This holds also for circular cylindrical containers with adiabatic and
conducting sidewalls. Even in very large aspect ratio containers, when the rolls are straight or look
like nested annular rolls in the core part of the domain, the rolls try to change their orientation
near the sidewall in such a way that they approach the sidewall at a right angle (see, e.g., [66,68]).
Although the role of the sidewalls weakens with increasing Rayleigh number, the flow pattern close
to the onset of convection is much affected by the sidewalls. One can reduce the effect of the
sidewalls by certain manipulations of the conditions at the plates, next to the sidewall. For example,
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one can let a certain gap between the top plate and a sidewall and thus support the development
of different three-dimensional flow structures next to the sidewall, which let the rolls approach
the sidewalls at any angle (see [21,69]). Another option is to achieve the thermal properties of the
sidewall very close to those of the working fluid and thus reduce the sidewall effects, as was done by
Meyer et al. [70]. With this or that way to reduce the influence of the sidewalls in large aspect ratio
containers for Rayleigh numbers close to the critical one, one can mimics a laterally unconfined
fluid layer and enjoy seeing the straight rolls [21,69,71] and cellular patterns [70] as predicted by
the linear stability theory for an infinite layer.

However, without suppression of the sidewall influence in wide cylindrical containers, at the
very onset of convection one usually observes concentric annular rolls that fill the core part of
the container and might show some irregularity near the sidewalls (see [6,21,68,70,72–74]). “The
pattern clearly reflects the geometry of the walls, and the images illustrate how this pattern spreads.
It develops in the region adjacent to the wall and moves inward filling the cell,” as reported by
Meyer et al. [70]. This axisymmetric flow structure becomes less stable as soon as the sidewall
influence is reduced (either by manipulation of the boundary conditions, as, e.g., in [70], or by
increasing the Rayleigh number), which might lead, in particular, to the formation of other patterns
like straight-roll patterns [68] or eccentric annular rolls patterns [75].

How can one interpreted in the light of the above theory the principle flow structure that one
observes in experiments by the very onset of convection in wide cylindrical containers, that is,
the concentric annular rolls, with possible irregularity near the sidewalls? For this we need to
recollect the property of degenerate eigenvalues, discussed in Secs. II D and II E, Fig. 3 and Fig. 4.
The reference “two-by-two” mode with n = 1, k = 1 and nz = 2 [like in Figs. 3(a) and 3(b) and
Figs. 4(a) and 4(b)] can have the same or very similar eigenvalue as a “wall mode” [like in Figs. 3(b)
and 3(d)] or as a “donut mode” [like in Figs. 4(b) and 4(d)].

Let us consider a thought example of a wide cylindrical container with a conductive sidewall.
The leading eigenmode by the onset of convection has a form

Jn(2 jnk r/D) cos(nφ) sin(πnzz/H ) (90)

and corresponds to the eigenvalue

λ = 4 j2
nk/D2 + π2n2

z /H2 (91)

with certain integers n and k and nz = 1. This mode should be energetically similar to the “two-by-
two” mode with n = 1, k = 1, and nz = 2, so that they both correspond to

Rac,� = H4(4 j2
nk/D2 + π2n2

z /H2)2 ≈ 1596. (92)

This leads to the following relation:

jnk ≈
(

3

4
π2�2 + j2

11

)1/2

, (93)

which for � about 11.17 gives jnk ≈ 30.6. The closest to this value is jnk for n = 0 and k = 10
( j0,10 ≈ 30.6), which suggests that the “donut mode” with concentric annular rolls is the first
candidate for the leading mode by the onset of convection in the considered geometry. This mode is
plotted in Fig. 9(a).

When the Rayleigh number is slightly increased and achieves the value Ra ≈ 1619, so that

ε ≡ (Ra − Rac,� )/Rac,� ≈ 0.014, (94)

and the system still remains in the linear regime, but can sustain modes with a little bit larger but
similar eigenvalues with jnk ≈ 30.7, one can observe a mixture of the above donut mode (n = 0,
k = 10, nz = 1) with the wall mode for n = 25, k = 1 and nz = 1, since for this wall mode j25,1 ≈
30.7. This wall mode is shown in Fig. 9(f). Thus in this case a mixture of the two modes, which is

090502-25



OLGA SHISHKINA

proportional to

∝ ξd J0(2 j0,10 r/D) sin(πz/H ) + ξwJ25(2 j25,1 r/D) cos(25φ) sin(πz/H ), (95)

might be possible.
Figure 9 shows some of those mixed modes, for different combinations of the prefactors ξd

and ξw that indicate the contributions of the donut or wall mode, respectively. One can see a clear
similarity between the donut mode in Fig. 9(a) and concentric rolls obtained in the experiments;
see, for example, Ahlers et al. [72] (Fig. 1, t = −0.2), Meyer et al. [70] (Fig. 1), and Hu et al.
[68] [Fig. 3(a)]. A combination of the donut and wall modes like in Fig. 9(e) shows similarity
with the experimentally obtained patterns that include concentric rolls in the core part of the
domain and transverse short rolls near the sidewalls; see examples in Croquette et al. [66] (Fig. 3),
Ahlers et al. [72] (Fig. 1, t = 0.3), and Hu et al. [68] [Fig. 3(b)]. Of course, this similarity is
only qualitative, since the aspect ratios in these measurements are different as well as the thermal
boundary conditions at the sidewall: in the experiments, they are rather adiabatic, while here, for
simplicity, we consider a conductive sidewall.

Analogously, with further increase of the Rayleigh number, modes with jnk ≈ 30.8 can occur,
and in particular, the mode with n = 9 and k = 6 becomes possible, as j9,6 ≈ 30.8. With that mixed
modes can take the form

∝ ξd J0(2 j0,10 r/D) sin(πz/H ) + ξw J25 (2 j25,1 r/D) cos(25φ) sin(πz/H )

+ξ J9 (2 j9,6 r/D) cos(9φ) sin(πz/H ). (96)

Figure 10 shows some of these modes for ξ = 1 − ξd − ξw. With increasing Rayleigh number,
however, not only more and more new modes occur, but also the nonlinearity of the governing
equations comes into play, which all together influences the evolution of the flow pattern.

As already discussed, with the dominance of the wall modes like in Figs. 9(e) and 9(f) or in
Figs. 10(d) and 10(h), the total heat transport enhancement due to convection is negligible. This is
because the area of the strongest fluid motion near the sidewall is small. Therefore the regime of
the wall mode dominance is usually identified in the experiments as a “subcritical” regime (which
strictly speaking, as we do know, does not exist in the Oberbeck-Boussinesq case).

We end this subsection with a proposition that in large aspect ratio containers, the probability
that convection starts from the sidewall increases with growing aspect ratio �. This means that the
wall modes should generally appear prior to the bulk (donut-like) modes. This can be explained as
follows. The roots jnk of the Bessel function Jn which appear in the leading mode of the form (90)
grow with the aspect ratio �, according to (93).

In the limit k → ∞, the roots j0k of the Bessel function J0, which appear in the donut mode of
the form (90), follow the Stokes asymptotic expansions [76]

j0k = πk − π/4 + O(k−1), k → ∞. (97)

On the other hand, in the limit n → ∞, the first root jn1 of the Bessel function Jn, which appears in
the wall mode of the form (90), follows the McMahon asymptotic expansion [77]

jn1 = n − Cn1/3 + O(n−1/3), n → ∞, (98)

with C ≈ 1.856. This means that asymptotically, the neighboring roots j0k are separated by π , while
the neighboring roots jn1 are separated by one; in other words, the roots jn1 are distributed much
denser than the roots j0k . This makes clear that most probably a certain value jn1 (that corresponds
to a wall n-mode) rather than a certain value j0k (that corresponds to a donut bulk k-mode) will be
the nearest one to a given large value of ( 3

4π2�2 + j2
11)1/2, which is dictated by the critical Rayleigh

number; see relation (93). Thus, in most cases of � � 1, the wall modes can provide the best match
between the critical Rayleigh number and the eigenvalues of the realizable modes. The presence of
the wall modes is the reason for the tendency of different roll-shaped flow patterns to approach the
sidewalls at right angles, like, for example, is shown in Figs. 9(e) and 9(f) or Figs. 10(d) and 10(h).
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FIG. 10. Mixed modes, according to Eq. (96), which are combinations of three modes that correspond to
similar eigenvalues. The contributions of the donut mode and wall mode are reflected in the prefactors ξd and
ξw , respectively.

With this respect, we can also refer to the experimental studies by Croquette et al. [66], where
the radial profiles of the measured modes are presented (Fig. 5 of [66]) and the structure of the
mixed mode (Fig. 3 of [66]) is sketched. The shown radial profiles clearly demonstrate that in
the measurements, only the onset of the bulk modes is associated with the supercritical regime
[Figs. 5(c)–5(g) of [66]]. In what the authors call as “subcritical” regime [Figs. 5(a) and 5(b) of
[66]], a fluid motion is also observed, however, with the maximal amplitude near the sidewalls only.
This is in agreement with our proposition.

We can remark that the onset of wall modes prior to bulk modes is similar to a certain extent to
the occurrence of the wall modes in rotational Rayleigh-Bénard convection prior to the onset of bulk
convection (see [78–89]). When a cylindrical Rayleigh-Bénard cell is rapidly rotated along its axis,
convection is certainly suppressed, and larger, compared to the nonrotating case, Rayleigh numbers
should be achieved in order to enforce a fluid motion. The critical Rayleigh number for the onset of
convection in the rotational case essentially depends on the rotation rate [25]. However, in rotational
Rayleigh-Bénard convection, the sidewalls always play a destabilizing role and convection first
occurs close to the sidewalls in a form of periodic wall modes, while the bulk modes occur later,
for larger Rayleigh number. (We will discuss rotational Rayleigh-Bénard convection later again, in
Sec. V.)

Very similar stable wall mode states, which are traveling waves along the sidewall of a cylindrical
container, one can also observe at the very onset of nonrotating Rayleigh-Bénard convection in
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mixtures; see, for example, “traveling waves surrounding pure conduction” in [90] and Fig. 3 there.
In these experiments by Lerman et al. [90], where an ethanol-water mixture was used as a working
fluid, short rolls, attached almost orthogonally to the sidewall, traveled in the clockwise direction.

J. Container distortion effect and imprecise implementation of the boundary conditions

Finally, at the end of this section, let us briefly discuss some specific features of the eigenmodes
of the Laplace operator in wide domains (� � 1), which might give an additional reason why
in experiments and numerical simulations of Rayleigh-Bénard convection in wide but anyway
laterally confined containers, convection can start from the sidewalls towards the bulk and not
simultaneously in the entire domain as it is supposed to be in an unbounded fluid layer. This also
concerns the first eigenvalues of the Laplace operator and, hence, the critical Rayleigh number for
the onset of convection in wide domains with imperfect sidewall boundary conditions, for which the
Laplace eigenvalues and, therefore, also the critical Rayleigh number, might slightly deviate from
the theoretical estimates for this considered geometry of a wide Rayleigh-Bénard cell.

Let us consider wide cylindrical containers (� � 1) with adiabatic sidewalls, where these side-
walls are not perfectly straight but somehow slightly distorted. (Such a situation is very realistic in
experimental facilities.) To estimate the critical Rayleigh number for the onset of convection in such
domains, we need to calculate the first eigenvalues of the Laplace operator for these domains, with
mixed boundary conditions, Dirichlet at the plates and Neumann at the distorted sidewalls. Nazarov
et al. [91,92] studied the behavior of the eigenfunctions of the Laplace operator with such mixed
boundary conditions in thin cylindrical domains subjected to a certain tiny distortion of the plates
and/or sidewalls and showed, in particular, that these tiny geometrical manipulations of the cylinder
sidewall for � � 1, can lead to localization of the first eigenfunctions in the vicinity of the sidewall,
with an exponential decay toward the center of the domain [93]. Such phenomenon of localization
and exponential decay of the eigenfunctions of the Laplace operator has been reported for various
perturbations of cylindrical domains; see Grebenkov and Nguyen [58]. The corresponding leading
eigenfunctions are known as “trapped modes,” as they are localized at some preferable places—near
the sidewall in the considered case. (See also Friedlander and Solomyak [94,95] concerning the
spectrum of Dirichlet eigenfunctions of the Laplace operator for narrow domains of different
profiles.) Thus, small perturbations of the sidewalls of wide cylindrical containers or of the boundary
condition prescribed on them, can lead to formation of the trapped modes, which are localized near
the sidewall—and, therefore, we can call them as “wall modes” as well—and which exponentially
decay toward the core of the cylinder.

For us, this means that for the case � � 1, any numerical or experimental distortion of the
sidewall or plates, or a little local change of the boundary conditions near or at the sidewalls can
lead to a formation of the wall modes, i.e., the first eigenmodes that are located near the sidewall
and exponentially decay towards the bulk. These wall modes would in any case appear prior to
the bulk modes that evolve in the entire domain. With that one can expect that the critical Rayleigh
number for the onset of these wall modes, Rac, � , would be slightly smaller than the critical Rayleigh
number for the onset of bulk convection in a perfect wide cylindrical container for the same large
aspect ratio of the container � � 1.

III. OPTIMAL CONTAINER SHAPE IN RAYLEIGH-BÉNARD EXPERIMENTS

Now that we have quite accurate estimates of the critical Rayleigh number for the onset of
convection, let us discuss the optimum of the convection cell shape that maximizes the range of
the Rayleigh numbers studied experimentally or numerically. We will consider this problem as a
purely mathematical one, assuming that the Boussinesq conditions can hold for any height of the
convection cell and that there are no constraints on the laboratory space and technical feasibility.
We restrict our consideration only to containers that have the same horizontal cross sections at any
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height z, 0 � z � H . This allows separation of variables in (a) the horizontal directions and (b)
vertical direction.

By the optimal shape of the convection cell (under specified constraints) we understand such a
shape that for any given Boussinesq fluid maximizes the order of magnitude in the Rayleigh numbers
that can be achieved using this cell, relative to the onset of convection. In other words, the optimal
container shape maximizes the ratio between the maximal achievable in the experiment Rayleigh
number and the Rayleigh number for the onset of convection in the same container. We will first
discuss the optimal shape of the plates (i.e., the optimality of the convection cell in the horizontal
directions) and then the optimal height of the convection cell, for a given shape of the plates (i.e.,
the optimality of the convection cell in the vertical direction).

A. Isoperimetric inequalities and optimal shape of the heated and cooled plates

Neither shape nor size of the plates influences the Rayleigh number that can be achieved in
the experiment. However, the plate shape influences the critical Rayleigh number for the onset of
convection, Rac, � . Indeed, as we have estimated in the previous section,

Rac, � ≈ (2π )4λuλθ , (99)

where λu and λθ are related to the lowest relevant eigenvalues of the Laplace operator in the
considered domain for, respectively, the velocity and temperature boundary conditions. Due to the
separation of variables, these λu, and λθ take the form

λu ∼ 1 + cu�
−2 and λθ ∼ 1 + cθ�

−2, (100)

where the constants cu > 0 and cθ > 0 depend on the plate shape (or the shape of the horizontal
cross section of the container). These constants are related to the eigenvalues of the two-dimensional
Laplace operator in a domain, which has a shape of the plate, and for the boundary conditions as
those of the sidewall: Dirichlet (no-slip) for the velocity and Neumann or Dirichlet for the temper-
ature, for adiabatic or thermally conducting sidewalls, respectively. Thus, in order to minimize the
critical Rayleigh number for the onset of convection (99) by optimizing the shape of the plate, it is
necessary to answer the question, in which two-dimensional (convex) domains the smallest relevant
eigenvalues of the Laplace operator with the corresponding boundary conditions are minimized.

An answer to this question—which geometry provides the smallest Laplace eigenvalues with
Dirichlet boundary conditions—was proposed with respect to a different subject, namely, for the
theory of sound. This was done by Lord Rayleigh himself, after whom the here studied type
of thermal convection and the main control parameter, the Rayleigh number, are named. In his
theoretical study of sound [96], Lord Rayleigh evaluated the “relative frequency in certain calculable
cases for the gravest tone of membranes under similar mechanical conditions and of equal area” and
showed “the effect of a greater or less departure from the circular form” (see [96], Sec. 211 of
Chapter IX). In other words, it was conjectured that among all clamped membranes of the same
area and the same tension, the circular membrane produces the lowest fundamental frequency.
Note that up to a constant that depends on the tension of the membrane and its mass density, the
oscillation frequencies of the membrane are determined by the eigenvalues of the Laplace operator
with Dirichlet boundary conditions in a domain that matches the shape of the membrane. Rayleigh’s
proposition was proved independently by Faber [97] and Krahn [98] and now is known as the
Rayleigh-Faber-Krahn inequality that states that the circular shape of the domain minimizes the first
eigenvalue of the Laplace operator with Dirichlet boundary conditions among all two-dimensional
convex domains with the same area [56,57]. A similar result for Neumann boundary conditions was
obtained by Szegö [99].

However, the assumption, that in the expansions of the characteristics of the flow by the onset of
convection, in terms of the eigenfunctions of the Laplace operator, the first relevant eigenmode
changes the sign, would require in most cases minimization of the second and not the first
eigenvalue. Concerning the second eigenvalue of the Laplace operator with Dirichlet boundary
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conditions, Krahn [100] derived that its minimum among two-dimensional domains of the same area
is achieved by the union of two identical circles. This does not help much with respect to the optimal
shape of the heated and cooled plates in Rayleigh-Bénard experiments as we are essentially looking
for an optimal plate shape candidate only among convex plane domains. A natural hypothesis, that
a domain with a “stadium” shape (a convex hull of two identical tangent circles) minimizes among
convex plane domains the second eigenvalue for the case of Dirichlet boundary conditions, was
also refuted by Henrot and Oudet [101]. Unfortunately, the problem to find a convex planar domain
with a given area, which minimizes the second eigenvalue of the Laplace operator with Dirichlet or
Neumann boundary conditions seems to be still an open problem [58,102].

Good news is that a similar problem, to find a convex planar domain with not a given area but
a given diameter of the domain, that minimizes the first eigenvalues of the Laplace operator with
Dirichlet boundary conditions, was recently solved by Bogosel et al. [103]. (For a convex plane
domain, the diameter is the largest distance between two opposite parallel lines, which are tangent to
the domain boundary.) Bogosel et al. [103] even listed all 17 eigenvalues for which the circle-shaped
domain is a minimizer. This list includes the first two eigenvalues.

With that we can conclude that among all plates of the same diameter, a circle-shaped plate is
for sure the best choice to minimize the critical Rayleigh number for the onset of convection in
containers with conducting sidewalls. This might not be the case for other constrains, for example,
for other boundary conditions at the sidewall or when the area of the plates is fixed and not
their diameter. However, as discussed above, there are some serious arguments supporting that the
optimal shape of the heated and cooled plates is round or close to the “stadium” shape. In the
next subsection, we will demonstrate, in particular, that for the case of adiabatic sidewalls of a
Rayleigh-Bénard cell, the usage of circular plates always leads to smaller critical Rayleigh numbers
for the onset of convection than the usage of any rectangular plates, if the area of the circular and
rectangular plates are equal.

B. Rectangular and circular plates

In this subsection we will compare the critical Rayleigh numbers for the onset of convection in
cylindrical and parallelepiped convection cells with adiabatic sidewalls, assuming that the formulas
(56) and (68) are exact.

For a parallelepiped domain, among all �y � �x, the value of Rac, � is minimal if �y = �x = �;
see Eq. (56). Thus, both in a cylinder and in an optimal parallelepiped, the critical Rayleigh number
can be calculated as follows:

Rac, � ≈ (2π )4
(

1 + cu

�2

)(
1 + cθ

�2

)
(101)

with

cu = 1 and cθ = 0.5 for parallelepiped, (102)

cu ≈ 1.4876 and cθ ≈ 0.3435 for cylinder, (103)

where the values of cu and cθ we have taken from Eqs. (56) and (68).
In Fig. 11 we compare our theoretical estimates for the cases of the optimal parallelepiped and

cylinder. One can see that for the case of equal areas of the plates in a cylindrical and parallelepiped
containers, the critical Rayleigh number is generally smaller for the cylinder (see pink curves in
Fig. 11). This means that for a fixed area of the plates, a circular shape of the plates is closer to the
optimum.

In the limit � → 0, Eq. (101) is reduced to

Rac, � ≈ (2π )4cucθ�
−4, � → 0. (104)
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FIG. 11. Ratio of the critical Rayleigh numbers Rac, � for the onset of convection in a cylindrical container
and in an optimal parallelepiped container with equal widths of the sidewalls (�y = �x), for the cases of the
same aspect ratio � of the parallelepiped and cylindrical containers (blue line) or for the same area of the plates
in the parallelepiped and cylindrical containers (pink line), as functions of the aspect ratio of the cylindrical
container �. Everywhere, the boundary conditions are no-slip for the velocity at all walls and isothermal at the
plates, and adiabatic at the sidewalls for the temperature. Calculations are according to Eqs. (101)–(103).

Substituting Eqs. (102)–(103) into Eq. (104), we obtain

Rac, � (cylinder)/Rac, � (parallelepiped) ≈ 1.02, � → 0 (for equal �), (105)

which means that for the same aspect ratio of the cylindrical and parallelepiped convection cells,
the critical Rayleigh number for the onset of convection in a cylinder is only 2% larger than in the
optimal parallelepiped container (see blue dashed line in Fig. 11, for small �). We recall that here,
following the tradition of the Rayleigh-Bénard community, under the aspect ratio of a parallelepiped
domain we understand not the ratio of the length of the diagonal of a rectangular plate to the height
of the cell, but the ratio of the longest length of the plate to the height of the cell.

To compare results for cylindrical and parallelepiped containers with the same area of the plates,
for the latter case we need to substitute � for (

√
π/2)� in Eq. (101). Thus, for a parallelepiped

container, which has the same plate area as a cylindrical container of the aspect ratio �, we obtain

Rac, � ≈ 128 π2 �−4, � → 0 (�x = �y =
√

π

2
�). (106)

Taking Eq. (106) for a parallelepiped container and Eqs. (104) and (103) for a cylinder, we conclude
that in the limit of the cylinder aspect ratio � → 0, the critical Rayleigh number for the onset of
convection in a cylinder is significantly smaller than that for the optimal box with the equal area of
the plates. More precisely,

Rac, � (cylinder)/Rac, � (parallelepiped) ≈ 0.63, � → 0 (for equal plate area); (107)

see the pink solid line in Fig. 11, for small �.
In Fig. 11 we compared the cylindrical and the optimal parallelepiped containers, i.e., those with

�x = �y. Let us now compare the theoretical results for the parallelepiped containers of different
�y � �x with those for the optimal parallelepiped container with �x = �y. Figure 12 shows the
difference between the critical Rayleigh number for any �y � �x and that for the optimal �y = �x.
In Fig. 12(a) the difference is plotted versus the ratio �y/�x, 0 < �y/�x � 1, for different �x = 0.1,
0.5, 1, 5, and 10. In Fig. 12(b) this difference is plotted versus �x, for different ratios �y/�x = 10−4,
10−3, 10−2, 10−1.
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FIG. 12. (a) Ratios of the critical Rayleigh number, Rac, � (�y/�x ), for the onset of convection in a
parallelepiped container with different widths of the sidewalls (�y � �x) and the critical Rayleigh number for
the onset of convection in a similar container, Rac, � (1), for equal widths of the sidewalls (�y = �x), as functions
of �y/�x . Shown are curves for �x = 0.1, 0.5, 1, 2, and 10. (b) Ratios of the critical Rayleigh number Rac, � for
the onset of convection in a parallelepiped container with different widths of the sidewalls (�y � �x) and the
critical Rayleigh number for the onset of convection in a similar container with equal widths of the sidewalls
(�y = �x), as functions of �x = �. Shown are curves for �y/�x = 0.01, 0.1, 0.2, and 0.5. Everywhere, the
boundary conditions are no-slip for the velocity at all walls and isothermal at the plates, and adiabatic at the
sidewalls for the temperature. In both panels, the calculations are according to Eq. (56).

As soon as �y → �x, the difference between Rac, � (�y < �x ) and Rac, � (�y = �x ) certainly
vanishes. However, for any fixed �x, this difference grows dramatically when �y → 0, as one can
see in Fig. 12. From Eq. (56) it follows that even when �x → ∞, the critical Rayleigh number
grows as

Rac, � ≈ (2π )4

(
1 + 1

�2
x

)(
1 + 1

4�2
x

+ 1

4�2
y

)
∼ 4π4

�2
y

for �x → ∞, �y → 0. (108)

This result supports the known fact of laminarization of the confined Rayleigh-Bénard flow even for
very large Ra, as soon as the width of the three-dimensional domain becomes too small [104–107].

To conclude, we have confirmed that the optimal rectangular plates are squares, i.e., �x = �y,
while for a fixed length of the domain �x, a decreasing width of the container, �y → 0, leads to a
growth of the critical Rayleigh number as ∼�−2

y . Circular-shaped plates seem to match the optimal
ones among all convex plates in Rayleigh-Bénard experiments with different sidewalls conditions,
by providing the smallest critical Rayleigh number for the onset of convection among all convex
plates of a given area.

C. Optimal height of the container in Rayleigh-Bénard convection

In this subsection, we will discuss the optimal height of the container (or, equivalently, the
optimal container aspect ratio) for Rayleigh-Bénard experiments, assuming that the shape and size
of the plates are prescribed. Let us recall: the optimal container height means that it provides the
maximal range of the Rayleigh numbers, starting from the onset of convection, that one can achieve
in Rayleigh-Bénard experiments using this container and a certain fixed Boussinesq fluid. At first
glance, it might seem that choosing the highest possible container height would be the best choice,
because any increase of the container height H would lead to an increase of the achievable Rayleigh
number that grows as cubed height of the cell (∼H3). However, as we will see, this is not true.

For a fixed diameter D of the heated or cooled plates, an increase of H means a decrease of the
container aspect ratio � = D/H . Thus, with increasing height of the cell, the achievable Rayleigh
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number Ramax grows as

Ramax ≡ RaD�−3 ∼ �−3. (109)

Here

RaD ≡ αg�maxD3

κν
(110)

is the maximal diameter-based Rayleigh number, which is determined by the maximal possible
temperature difference between the plates that one can attain in the experiment, �max, and the
specific properties of the working fluid.

On the other hand, as we have already seen in the previous section, the critical Rayleigh number
for the onset of convection, Rac, � , also grows with decreasing �. In the limit � → 0, Rac, � grows
as ∼�−4, i.e., even faster than Ramax! This means that in extremely slender containers there might
be no convection at all although the Rayleigh number might be huge. Thus, in a container with given
shape and size of the heated and cooled plates, there is no convection if the container height is too
small or too large; in both extreme situations, the achievable in the experiment Rayleigh number
Ramax is smaller than the critical one for the onset of convection in this container, Rac, � .

Naturally, we aim to find the optimal height, or the optimal cell aspect ratio �, which maximally
broadens the range of the Rayleigh numbers for which convection takes place, i.e., between
Rac, � and Ramax. However, we want to maximize not the absolute range, Ramax − Rac, � , but
the range of orders of magnitude in Rayleigh numbers. (Clearly, an experiment that exhibits
Oberbeck-Boussinesq convection in a Ra range, say, from Rac, � = 106 to Ramax = 1016 is much
more interesting than that one from Rac, � = 1016 to Ramax = 2 × 1016, although the Ra range in
the latter experiment is larger. The former experiment covers 10 orders of magnitude in Rayleigh
numbers, while the latter one covers much less than one order of magnitude.) This means that the
aim is to maximize

m ≡ log10(Ramax/Rac, � ) = log10(Ramax) − log10(Rac, � ). (111)

In the following we use the notation

mmax ≡ max
�

m. (112)

Let us consider convection cells with rectangular or circular plates and find the optimal � that
maximizes the value of log10(Ramax/Rac, � ) (or, equivalently, the value of Ramax/Rac, �). In these
cases, the critical Rayleigh number for onset of convection in a container with the adiabatic sidewalls
can be approximated with Eq. (101) with the corresponding constants cu and cθ defined by Eq. (102)
and Eq. (103), respectively. From Eqs. (111), (101), and (109) we obtain

m = log10(RaD) − log10[(2π )4�3(1 + cu�
−2)(1 + cθ�

−2)], (113)

which is maximal at

� = �opt ≡
√√

(cu + cθ )2 + 12cucθ − (cu + cθ )

6
. (114)

For the optimal aspect ratio �opt, the maximal achievable range of the Rayleigh numbers, measured
in orders of magnitude, equals

mmax = log10(RaD) − log10[(2π )4�−1
opt (cu + �2

opt)(cθ + �2
opt )]. (115)

For a parallelepiped container with adiabatic sidewalls, from Eqs. (114), (115), and (102) we
obtain the following optimal aspect ratio �opt and maximal achievable Ra range of the orders of
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magnitude, mmax:

�opt ≈ 0.478, (116)

mmax ≈ log10(RaD) − 3.465. (117)

For a cylindrical container with adiabatic sidewalls, Eqs. (114), (115), and (101) lead to

�opt ≈ 0.456, (118)

mmax ≈ log10(RaD) − 3.504. (119)

For a cylindrical container with the conducting sidewall, cu = cθ ≈ 1.4876, and we obtain

�opt ≈ 0.704, (120)

mmax ≈ log10(RaD) − 3.940. (121)

One can see that the optimal aspect ratio of a cylindrical or parallelepiped container with �x = �y

and adiabatic sidewalls is achieved at the aspect ratio close to 1/2. The aspect ratio � = 1/2 is the
most popular in Rayleigh-Bénard experiments, and as we can see from our derivations, this intuitive
choice is right. For conducting sidewalls, the optimal aspect ratio is slightly larger, about 0.7, and
the attainable Ra range is slightly smaller.

We can formulate the following rule of thumb [which we can call the “three and a half” rule;
see Eq. (119)]: To estimate the maximal possible Ra range, measured in orders of magnitude, one
needs to calculate RaD, according to Eq. (110), which is based on the diameter of the plates, the
maximal possible temperature difference between the plates that can be achieved in the experiment
and the properties of the fluid used in the experiment. Subtracting 3.5 from log10(RaD) will give a
number of orders of magnitude in Rayleigh numbers that can be attained in the optimal aspect ratio
experiment.

We know now, how to estimate the optimal aspect ratio of a Rayleigh-Bénard cell, Eq. (114),
and the corresponding maximal achievable range of the Rayleigh numbers in experiments or
simulations, using the cell with the optimal aspect ratio, Eq. (113). Finally, let us address the
question, how a deviation of the container aspect ratio from the optimal one would affect the range
of the attainable Rayleigh numbers.

From the relation (113), for the attainable order of magnitude in Rayleigh numbers, m, we obtain

m → log10 � + log10

(
RaD

(2π )4cucθ

)
, � → 0, (122)

m → log10 �−3 + log10

(
RaD

(2π )4

)
, � → ∞. (123)

Thus, in both limits, � → 0 and � → ∞, the attainable order of magnitude, m, decreases pro-
portionally to ∼ log10 �. In the limit � → ∞, the value of m decreases three times faster than in
the limit � → 0. This is illustrated in Fig. 13, for the case of cylindrical containers with adiabatic
sidewalls.

The intersection of the asymptotes, Eqs. (122) and (123), for, respectively, infinitesimal and
infinitely large aspect ratios �, takes place at

� = (cucθ )1/4, (124)

which for both, a parallelepiped, Eqs. (102), and a cylinder, Eqs. (103), gives � ≈ 0.84.
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FIG. 13. The dependence of orders of magnitude in Rayleigh numbers that one can attain in Rayleigh-
Bénard experiments in a cylindrical container with the adiabatic sidewall, as function of the cylinder aspect
ratio �. The maximal value, mmax, depends on RaD = αg�maxD3/(κν ), i.e., on the maximal Rayleigh number,
which is calculated based on the diameter of the plates, D, the maximal possible temperature difference between
the plates that one can attain in the experiment, �max, and the specific properties of the working fluid.

Finally, we should notice that the optimal aspect ratio of the container �, Eq. (114), depends
neither on the properties of the chosen fluid nor on the maximal temperature difference between the
heated and cooled plates that can be achieved in the experiment. In other words, the optimal � is
independent of RaD.

However, the maximal achievable range of the Rayleigh numbers, measured in orders of magni-
tude, mmax, Eq. (115), depends on RaD: the larger RaD is, the broader Ra range can be achieved in
the experiment. For any fixed fluid and �max, using containers with larger sizes of the plates, one
can explore a broader range (more orders of magnitude) in Rayleigh numbers. This means that not
only the aspect ratio of the containers matters but also their size.

IV. RELEVANT LENGTH SCALE IN RAYLEIGH-BÉNARD CONVECTION

In this section, we will derive that the relevant length scale in Rayleigh-Bénard convection in
containers with no-slip boundaries is

� ∼ D/
√

�2 + cu = H/
√

1 + cu/�2, (125)

where the constant cu is determined by the container shape and boundary conditions for the velocity.
In the case of no-slip boundary conditions, cu follows Eq. (102) for parallelepiped domains and
Eq. (103) for cylindrical domains. Thus, we will show that in the limit � → ∞, the relevant length
scale � equals the height of the Rayleigh-Bénard cell, H , while for � → 0, the length scale � equals
the cell diameter D (see also [59]).

A. Scaling relation for the Nusselt number close to the onset of convection and the relevant length scale �

Combining Eqs. (17) and (32) for the state close to the onset of convection we obtain

Ra � H4 〈(∇u)2〉〈(∇θ )2〉
〈u2〉〈θ2〉 � H4λu

〈(∇θ )2〉
〈θ2〉 , (126)
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where λu is given by Eqs. (47) and (64) for parallelepiped and cylindrical domains, respectively. In
both cases, λu takes the form

λu = 4π2

H2
(1 + cu�

−2), (127)

where cu is given by Eqs. (102) and (103) for parallelepiped and cylindrical domains, respectively.
Applying successively Eqs. (13), (9), and (12), we derive

〈(∇θ )2〉 = 〈(∇(T − Tl ))
2〉 = 〈(∇T )2〉 − �2

H2
= �2

H2
(Nu − 1). (128)

Since 〈θ2〉 = c�2 for a certain constant c, 0 < c < 1, from this and Eqs. (126) and (128) we obtain

Ra � H2λu c−1(Nu − 1). (129)

[Note that the value of c can be estimated with (Nu − 1)/Nu < (2π )2c � 1. This follows from
relation (129) and the fact that close to the onset Nu ∼ Ra/Rac, �→∞ for � → ∞ (see, e.g.,
[36,68,108]).]

Combining Eqs. (129) and (127) we derive that near the onset of convection the Nusselt number
behaves as

Nu − 1 ∼ c (1 + cu�
−2)−1Ra, (130)

or, equivalently,

f ∼
[

Ra

(1 + cu�−2)3/2

]2/3

, (131)

where

f ≡ (Nu − 1)Ra−1/3. (132)

On the other hand, in the classical turbulent regime (for not too small Pr and not extremely high
Ra), one expects Nu − 1 ∼ Ra1/3, or, equivalently,

f ∼
[

Ra

(1 + cu�−2)3/2

]0

. (133)

From Eqs. (131) and (133) we see that the respective scaling quantity is not the Rayleigh number
based on the height of the cell, H , but the Rayleigh number Ra�,

Ra� ≡ Ra(1 + cu�
−2)−3/2. (134)

This means that for the relevant length scale � in Rayleigh-Bénard convection it holds that

�3 ∼ H3

(1 + cu�−2)3/2
, (135)

which is equivalent to relation (125). Thus, for large �, the length scale � is rather H , while for very
small �, it is rather D.

Finally, we remark about the prefactors in the scalings of the dimensional heat transport Nu
versus Ra near the onset of convection, for small �. As we can see from Eq. (130), the prefactor is
smaller for smaller � in the scaling Nu versus Ra. However, in the relation Nu versus the Rayleigh
number normalized with the Rayleigh number for the onset of convection, i.e., Ra/Rac, � , the
prefactor is larger for smaller �. More precisely,

Nu − 1 ∼ c
(

1 + cθ

�2

) Ra

Rac, �
. (136)
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Thus, in a plot of the heat transport scaling with Ra/Rac, � near the onset of convection, one would
expect a steeper growth of Nu for slender containers with small �, although convection in such
containers starts later, i.e., for larger values of Rac, � .

B. Comparison with experiments and numerical simulations

Based on the results of (almost) Oberbeck-Boussinesq experiments and direct numerical simula-
tions of Rayleigh-Bénard convection in cylindrical containers [59,87,89,107,109–139], let us now
illustrate that the derived relevant length scale in Rayleigh-Bénard convection is �, Eq. (125), and
the corresponding Rayleigh number is Ra�, Eq. (134). For cylindrical Rayleigh-Bénard convection
cells, cu is defined by Eq. (103), which in combination with Eq. (135) gives the relevant scaling
quantity

Ra� ≈ Ra(1 + 1.49�−2)−3/2. (137)

In Fig. 14 we present the results [59,87,89,107,109–139] for fluids with Prandtl numbers ranging
from 0.7 to about 6, which correspond to the most popular fluids of air and water at room
temperature. The range of the considered aspect ratios � of the cylindrical Rayleigh-Bénard cell
used in these experiments is very broad, from 1/32 to 32.

Figure 14(a) shows the dependence of the compensated Nusselt number, (Nu − 1) / Ra1/3, on the
Rayleigh number Ra. A pronounced shape of this dependence is determined by the data for � = 1
and � = 1/2, which are the most popular in experiments and simulations. However, the data for
extremely small � lie completely off the main trend; see the data points for Pr = 4.38, for � from
1/32 to 1/5 from [109]. For any fixed Ra they simply show that Nu is larger for smaller �.

Another conspicuous feature of the plot Fig. 14(a) is related to the measurements for extremely
large Ra, where at high Rayleigh numbers one observes a transition, associated with an increased
exponent (>1/3) in the Nu versus Ra scaling. The Göttingen group (see [122,126–128,134,140])
studied the transition to the ultimate regime Rau,� in Rayleigh-Bénard convection [141–143], for the
cylindrical containers of the aspect ratios � = 1, 1/2 and 1/3. They found that the onset occurs at Ra
about 1014, which is consistent with the theoretical estimate by Grossmann and Lohse [143]; how-
ever, it shows a certain �-dependence. Their reported empirical formula is Rau,� ∝ �−3.04 [144].
Furthermore, based on different Oberbeck-Boussinesq and non-Oberbeck-Boussinesq experimental
data for the aspect ratios of the cylindrical containers 0.23 � � � 1.14 [126–128,134,145–150],
Roche [147,151] also proposed that for small �, the Rayleigh number for the onset of the transition
to the ultimate regime changes approximately as Rau,� ∼ �−3.

In Fig. 14(a) the transition, which was observed in the Göttingen almost Oberbeck-Boussinesq
measurements [122,126–128,134,140] for the cylindrical containers of the aspect ratios � = 1, 1/2,
and 1/3, is marked with vertical lines. However, in accordance with our theory, in the rescaled
plot [see Fig. 14(b)], where the reduced Nusselt number is plotted versus Ra�, these vertical lines
collapse at the same value

Ra�,u ≈ 2.4 × 1013. (138)

Substituting Ra� = Ra�,u from Eq. (138) into Eq. (137) and evaluating Ra (which we denote as
Rau,�), we obtain the expected �-scaling of the transition

Rau,� ≈ Ra�,u(1 + 1.49�−2)3/2. (139)

In the limit � → ∞, the value of Rau,� approaches Ra�,u, i.e., Rau,� → Ra�,u. In the other limit,
� → 0, according to the theory, the critical Rayleigh number for the transition should scale as

Rau,� ∼ �−3, (140)

which is in full agreement with the Göttingen experimental data [122,126–128,134,140,144] as well
as with analysis of further measurement data [145–150], conducted by Roche [147,151].
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FIG. 14. (a) Compensated Nu vs Ra, as obtained in (almost) Oberbeck-Boussinesq experiments and
numerical simulations of Rayleigh-Bénard convection in a cylinder or in a three-dimensional cell with periodic
boundary conditions, for Prandtl numbers Pr that correspond to water (Pr ≈ 4) and air (Pr ≈ 1), for different
� [59,87,89,107,109–139]. Most data are for � = 1 and 1/2, which form the shape of this dependence. The
data for extremely small � (Pr = 4.38) show no discernible dependence. Vertical lines indicate the onset of
the transition at high Ra, observed in Göttingen experiments [126–128] (the onset moves to higher Ra with
decreasing �). (b) Compensated Nu vs Ra based on the proper length scale �, for the same data as in (a). Now
the data for extremely small � follow the general trend and the transition happens at the same location for all
� (the vertical lines from (a) merge into one line). The legend on the right corresponds to both panels, (a) and
(b). Figure adapted from [59].
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Finally, we notice that the data by Hartmann et al. [109] for extremely small �, from 1/32 to 1/5,
for Pr = 4.38, which were completely off from the main trend and seemed to scatter when plotted
versus Ra [as in Fig. 14(a)], start to follow the trend, if they are plotted versus Ra�; see Fig. 14(b).
In Fig. 14(b) the data for different �, from 1/32 to 32, show similar behavior and collapse on the
theoretical curve of the Grossmann and Lohse predictions [137–139]. This again supports the fact
that the relevant length scale in Rayleigh-Bénard convection is �, Eq. (125), and the corresponding
relevant Rayleigh number is Ra�, Eq. (137).

V. FURTHER RELATIONS IN THERMALLY DRIVEN FLOWS THAT FOLLOW FROM THE
POINCARÉ-FRIEDRICHS INEQUALITIES AND ANALYSIS OF THE LEADING LAPLACE

EIGENMODES

Relations which we have derived in this paper and which are closely related to the Poincaré-
Friedrichs inequalities, can be useful in various other applications. In the next subsection, we will
show, for example, how one can estimate the upper bound for the Reynolds number through the
combination of the Rayleigh, Nusselt, and Prandtl numbers and the aspect ratio of the container.
This estimate is accurate near the onset of convection but formally also holds in the limit Ra → ∞.
In the following subsection, we will give another example and show how one can estimate the range
of the convection roll size in multiple-state turbulent two-dimensional Rayleigh-Bénard convection.
In the last subsection, we will briefly discuss rotating Rayleigh-Bénard convection.

A. Relation between kinetic energy and its dissipation

Let us consider, as previously, the case when the velocity satisfies Dirichlet (no-slip) boundary
conditions at all boundaries. Applying subsequently Eqs. (11), (8), and (32), we obtain

ν3

H4
(Nu − 1)

Ra

Pr2 = εu ≡ ν〈(∇u)2〉 � ν λu 〈u2〉. (141)

For a rectangular two-dimensional domain or a parallelepiped three-dimensional domain, using
Eq. (47), from Eq. (141) we derive that as soon as the Rayleigh number exceeds the critical Rayleigh
number for the onset of convection, the fluid motion starts and the following relation holds:

ν3

H4
(Nu − 1)

Ra

Pr2 � ν
4π2

H2

(
1 + 1

�2

)
〈u2〉. (142)

Introducing the Reynolds number Re, which is based on the total kinetic energy in the system,

Re ≡ 〈u2〉1/2H/ν, (143)

from Eq. (142) we obtain the following inequality:

(Nu − 1)
Ra

Pr2 � 4π2

(
1 + 1

�2

)
Re2, (144)

which relates the kinetic energy with the dissipation rate or, in other words, the Reynolds number
with Ra, Nu, Pr, and �. Relation (144) can be reformulated in a simper form if we introduce the
quantity B,

B ≡ Re2 Pr2

Ra (Nu − 1)
. (145)

Thus, using relation (144) we conclude that as soon as a convective fluid motion sets in, for the
integral quantity B, Eq. (145), we will find to hold

B � [4π2(1 + �−2)]−1. (146)
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FIG. 15. Snapshots of the temperature for the three statistically stable turbulent states in two-dimensional
turbulent Rayleigh-Bénard convection with no-slip boundary conditions at the top and bottom plates and
periodic boundary conditions at the sides, for Ra = 1010, Pr = 10, � = 8: (a) �r = 2/3 (m = 12, Nu ≈ 105.2),
(b) �r = 4/5 (m = 10, Nu ≈ 101.5), and (c) �r = 1 (m = 8, Nu ≈ 96.8). One can see that for exactly the same
control parameters Ra, Pr and �, the system can have different statistically steady states, with different number
of rolls and different heat transport properties. Adopted from [153].

This relation gives an upper bound for the quantity B. It is also useful for the derivation of the
range of the possible sizes of the convection rolls in two-dimensional turbulent Rayleigh-Bénard
convection, as we will see in the next subsection.

B. Multiple states in two-dimensional turbulent Rayleigh-Bénard convection

Another example of the applicability of our theoretical approach is related to the wall-bounded
flows that for the same control parameters can take different statistically stationary turbulent states.
Here, again, we consider two-dimensional turbulent Rayleigh-Bénard convection. In wide contain-
ers with no-slip walls, these convective flows can take different statistically stationary turbulent
states, which are characterized by different transport properties reflected in different values of the
Nusselt and Reynolds numbers, even for exactly the same values of the control parameters, i.e., the
Rayleigh and Prandtl numbers (see [152–155]).

Depending on the initial flow conditions, the convective system with specified control parameters
Ra, Pr, and �, can end up in different states. The state of the system is characterized by the number
m of convection rolls that develop in a wide container with the aspect ratio �. The mean aspect ratio
of the convection rolls is then equal to

�r = �/m. (147)

The more efficient heat transport is provided by slender rolls, i.e., for the smaller �r [152,153]; see
Fig. 15. But in general, what values can �r take? Here we answer this question, generalizing the
approach proposed in Wang et al. [153].

We assume that the two-dimensional convective flow is just a set of elliptical rolls of similar
shape, which are attached to each other in the horizontal direction x. Since all rolls are similar, let
us consider a single roll which is described by a streamfunction �,

�(x, z) = (ξ + η)
z2

2
+ (ξ − η)

x2

2
, (148)
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in the area

 ≡ [−�rH/2, �rH/2] × [−H/2, H/2], (149)

where ξ � η � 0. Here η is the strain and ξ is half of the vorticity; the balance between them
determines the elliptical shape of the convection roll. More precisely, the aspect ratio of the roll, �r ,
is related to the strain η and vorticity ξ through the relation

�r =
√

(ξ + η)/(ξ − η), (150)

or, in other words,

η

ξ
= �2

r − 1

�2
r + 1

. (151)

Now we extract the horizontal and vertical components of the velocity u ≡ (ux, uz ) from the
streamfunction �, which are, respectively, ux(x, z) = ∂�/∂z and uz(x, z) = −∂�/∂x, and evaluate
the Reynolds number of the roll,

Rer ≡ 〈(∂�/∂x)2 + (∂�/∂z)2〉1/2H/ν, (152)

where the average is made over . With that we estimate the Reynolds number as follows:

Re2 � Re2
r = ξ (ξ + η)H4

6ν2
. (153)

According to Eq. (150), in order to form a roll, the strain must be smaller than the vorticity, η < ξ ,
which together with Eq. (153) gives

Re2 >
η2H4

3ν2
. (154)

On the other hand, there is the exact global balance (see, e.g., [156]) of the total enstrophy ω2 and
the mean kinetic energy dissipation rate εu, namely,

4νξ 2 = νω2 = εu. (155)

Combining Eqs. (155), (11), and (145), we obtain

ξ 2 = ν2

4H4

Re2

B
. (156)

Applying successively Eqs. (151) and (156) to the relation (154), we derive

Re2 >

(
�2

r − 1

�2
r + 1

)2 Re2

12B
, (157)

which is equivalent to the following lower bound for the quantity B, Eq. (145),

B >
1

12

(
�2

r − 1

�2
r + 1

)2

. (158)

The upper bound for the integral quantity B was actually derived in the previous subsection. As
soon as convection maintained by the considered roll of the aspect ratio �r is able to sustain (and
does not decay), the relation (146) should hold also for �r taken instead of �. Thus, we obtain

B � 1

4π2(1 + �−2
r )

. (159)
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Combining (158) and (159) we finally derive a constraint for possible values of the convection
roll aspect ratio �r in the case of no-slip plates:

π2

(
1 + 1

�2
r

)
� 3

(
�2

r + 1

�2
r − 1

)2

, (160)

which gives a principle range of possible �r :

0.7 � �r � 1.6. (161)

This estimate is very precise as one can conclude from comparison with plenty numerical simula-
tions reported in Wang et al. [153]. Which exactly states are realizable, depends on particular values
of B, i.e., on particular combinations of Ra, Pr, Nu, and Re (see [153]).

In the three-dimensional case, the typical size of the rolls can differ from those in the above
discussed two-dimensional case, because the corresponding leading eigenmodes of the Laplace
operator are different. All this needs further investigations, to understand better the formation and
dynamics of the superstructures in turbulent Rayleigh-Bénard convection in wide domains (see, e.g.,
[157–159]).

C. The problem of the whispering gallery and rotating Rayleigh-Bénard convection

Another example is again closely related to the studies by Lord Rayleigh. Six years before Lord
Rayleigh published his seminal “attempt to examine how far the interesting results obtained by
Bénard in his careful and skilful experiments can be explained theoretically” [5], he explained an
interesting acoustical phenomenon known as the problem of the whispering gallery in Saint Paul’s
Cathedral in London [160]: a high-frequency whisper or bird call can propagate along the curved
wall. So if the whispering person is standing near the wall, he or she can be heard by someone
who is far from him but is also standing near the wall. Lord Rayleigh wrote that the phenomena
“indicate that sonorous vibrations have a tendency to cling to concave surface” [160] and explained
it by considering the eigenmodes of the Laplace operator in a circular domain. The eigenfunctions
∼Jn(2 jnk r/D) cos(nφ) with the corresponding eigenvalues λ = 4 j2

nk/D2, for the first nontrivial root,
jnk , of the Bessel function Jn for k = 1 and sufficiently large n are the supporters of the whispering
gallery phenomena. [One can see an illustration of such eigenfunctions in Fig. 9(f) for k = 1 and
not that large but representative n = 25.] It was shown that for larger eigenvalues the associated
eigenfunctions are localized closer to the sidewall.

In fact, the problem of the whispering gallery is closely related to the problem of rapidly rotating
Rayleigh-Bénard convection, where the cylindrical sample is rotated very fast around its vertically
aligned axis so that convection is suppressed in the core part of the domain and the fluid motion takes
place close to the sidewall only. This phenomenon is known as wall modes in rotating Rayleigh-
Bénard convection (see [78–84,161]).

The wall modes, that occur at the onset of convection prior to the bulk modes, are very important
as they persist (in different forms) through all regimes of rotating Rayleigh-Bénard convection,
where rotation dominates or at least influences processes inside the convection cell [162]. The wall
modes are connected to the recently discovered boundary zonal flows in turbulent regime of rotating
Rayleigh-Bénard convection (see [87,89,125,162,163]), which first were observed in cylindrical
containers of small aspect ratio, for � � 1/2 [87,163], and later also for � � 1 (see [89,162]).
Thus, with increasing thermal driving (or with decreasing rotation rate) the linear wall modes start
to interact with each other and also with the occurring bulk modes and then finally form the boundary
zonal flow, which remains till buoyancy start to strongly dominate over rotation (or, in other words,
the role of rotation becomes negligible).

The wall modes are extremely robust, as it was demonstrated in a recent study by Favier and
Knobloch [86,88]. They seem to stubbornly drift along any wall and follow its contour, indepen-
dently of the presence of geometric obstacles. Favier and Knobloch [86] provided the evidence of
the robustness of the wall modes: the introduction of an extreme radial barrier, which extends from
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the cylinder centerline to its sidewall through the whole height of the cylinder, had almost no effect
on the wall mode properties, compared to the case without the barrier. It seems that the wall modes
do not require the shape of the sidewall to be concave (from inside)! (With this respect one might
wonder, whether it is possible, being inside Saint Paul’s Cathedral near the wall, to hear a whisper
of a person standing at a distance, but also inside and near the wall, if a huge soundproof screen
would be placed from the center of the Cathedral to its wall.)

In light of the here presented study, it might be reasonable to revisit the problem of the stability
and properties of the wall modes close to their onset, in terms of the eigenmodes of the Laplace
operator in cylindrical domains of different aspect ratios, with Neumann boundary conditions. For
such analysis, one needs the roots of the derivative of the Bessel function Jn, i.e., j̃nk , for a certain
sufficiently large number of n, which nowadays are well studied. Let us recall that in a numerical
linear stability analysis of rotational Rayleigh-Bénard convection in a cylindrical sample, conducted
by Goldstein et al. [81], two types of modes were found: the “fast modes,” which locate near the
cylinder sidewall and which have relatively large precession velocity, and the “slow modes,” which
show their largest values in the central part of the domain. These modes resemble the eigenfunctions
of the Laplace operator in a circular domain, ∼Jn(2 jnk r/D) cos(nφ), with k = 1 and large n in the
case of fast modes (see Fig. 2 in [81]) and with k � 1 and n � k in the case of slow modes (see
Fig. 7 in [81]). The fast modes are naturally related to the here discussed wall modes, trapped modes,
and Rayleigh’s whispering gallery modes.

With respect to the geostrophic regime in rotating Rayleigh-Bénard convection, recent studies
[87,89,125,162–164] showed that the heat transport in the systems with strong thermal driving
(i.e., at very high Rayleigh numbers) and under rapid rotation (at very small Ekman numbers)
is highly influenced by the boundary zonal flows, which, however, should be of little relevance
in astrophysical systems. With that a question occurs [88], how should rotating Rayleigh-Bénard
experiments be designed, to gain the relevant knowledge on geo- and astrophysical flows in the
laboratory? How to disentangle the contributions and roles of the bulk and boundary zonal flows
to all processes inside the convection cell, including the dynamics and global heat and momentum
transport? What is the optimal shape of the container to study rotating Rayleigh-Bénard convection
in the geostrophic regime? These problems and many others related to the shape of the container in
rotating Rayleigh-Bénard convection certainly need further investigations.

VI. CONCLUSIONS AND OUTLOOK

Investigation of turbulent Rayleigh-Bénard convection for very large Rayleigh numbers numeri-
cally or experimentally is challenging. To save resources, one is tempted to perform measurements
or simulations at possibly small aspect ratio � of the Rayleigh-Bénard convection cell. In this paper,
we have studied how �, especially small �, influences processes inside the convection cell and how
it affects the different flow regimes, from the onset of convection and up to the transition to the
ultimate regime.

We have proved analytically that the critical Rayleigh number Rac, � for the onset of convection
in containers of different shapes, with no-slip boundaries, for small � grows as ∼(1 + cu�

−2)(1 +
cθ�

−2), cu > 0, cθ > 0, Eqs. (29), (33), and (34). In order to derive accurate estimates of Rac, � ,
we assumed that in the expansions of the temperature and velocity by the onset of convection in
terms of the eigenfunctions of the Laplace operator, the contributions of the constant-sign eigen-
functions, both in the horizontal and vertical directions, vanish. With that we have derived Rac, � ≈
(2π )4(1 + cu�

−2)(1 + cθ�
−2), where the constants cu and cθ are determined by the container

shape and boundary conditions for the velocity and temperature, respectively; see Eqs. (54)–(56),
(67)–(68), and (101)–(103). For the regime close to the onset of convection, we also derived some
relations for the Nusselt number, Eq. (130), and Reynolds number, Eq. (144). In the derivations we
assumed the validity of the Navier–Stokes equations under Oberbeck-Boussinesq approximation,
which in real situations of extremely small aspect ratios � � 1 would not hold; they would fail in
the case of extremely tall containers as well as in the case of extremely thin containers.
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We demonstrated that the derived estimates for the critical Rayleigh number for the onset of
convection are in very good agreement with the numerically conducted linear stability analysis
from Ahlers et al. [59]. A very good agreement was also obtained between our results and the
estimates occurring from the amplitude equation [60,64] for � � 1, i.e., for the domain of validity
of the amplitude equation; see Eqs. (87) and (88). In the limit � → ∞, our estimates of the critical
Rayleigh number Rac, �→∞ for the onset of convection in confined geometries tend to (2π )4, which
is about 8.8% smaller than Jeffreys’ 1708 [23]. Note that the Jeffreys result was derived from the
linear stability analysis, where the consideration of the perturbations in the horizontal directions was
restricted to a single wave of the form ∼ exp(ikxx + iky + σ t ), and, therefore, it approximates the
onset of bulk convection only. Our ansatz admits perturbations of any form, under the restrictions
that they are represented by combinations of the eigenfunctions that change the sign in the vertical
direction and at least in one horizontal direction and that the average of these perturbations over the
whole domain vanishes. Therefore, our consideration includes not only the bulk modes but also the
wall modes by the onset of convection [see example in Fig. 3 and Figs. 9(e) and 9(f)].

What has been interpreted as “subcritical” modes in some (almost) Oberbeck-Boussinesq
Rayleigh-Bénard experiments is nothing else by wall modes (note that subcritical convection does
not exist in the Oberbeck-Boussinesq case). The wall modes contribute a little to the total heat
transport and therefore are undetectable in the Nusselt number measurements, based on which one
recognizes the onset of the subcritical regime. At the same time, the probability that modes with the
near the wall activity occur prior to the bulk modes is high in large aspect ratio cylindrical containers.
As we have explained, the reason for that is that the eigenvalues of the wall modes are distributed
much denser than the eigenvalues of the bulk modes and that the critical Rayleigh number for the
onset of convection is directly related to these eigenvalues. Once the wall modes set in, they ease
and realize the implementation of the well-known property of the roll-shaped structures to approach
the sidewall of the container at right angles.

We have also addressed the question, which shape of the convection cell is optimal, for the given
Oberbeck-Boussinesq fluid and given the maximal size of the plates and maximal achievable in
temperature difference between the plates. Of course, the optimality of the convection cell can be
defined very differently. For example, one might simply want to have a possibly wide container
of a fixed sufficiently large height, to study turbulent superstructures [121,157]. In this paper,
under the optimal shape of the convection cell, we, however, understand such a shape, which
provides the maximal range in Rayleigh numbers (measured in orders of magnitude), from the
onset of convection up to the maximal achievable Rayleigh number. In other words, the cell of
the optimal shape provides the maximal ratio between the maximal achievable Rayleigh number
and the critical Rayleigh number for the onset of convection in the same container. For the case
of no-slip boundaries we have calculated the optimal �, Eqs. (114), and showed that deviations
from the optimal � lead to a reduction of the attainable Ra range, as log10(�) for � → 0 and as
log10(�−3) for � → ∞. One should note here that in real experiments, the lowest Rayleigh number
might be restricted not by the onset of convection, but rather by the smallest reliable temperature
difference that one can achieve in the experiment.

Furthermore, we have derived that the relevant length scale in Rayleigh-Bénard convection for
any � is � ∼ D/

√
�2 + C = H/

√
1 + C/�2, Eq. (125), and not simply the distance between the

plates, H . For large � � 1 one indeed has � ≈ H , while for small � � 1, the diameter of the
plates, D, determines the relevant length scale, � ≈ D. Moreover, we have shown that the scaling of
the reduced heat transport data, i.e., (Nu − 1)Ra−1/3, is independent of the container aspect ratio �

if plotted versus the Rayleigh number Ra�, which is based on the relevant length scale �. Using this
relevant length scale �, we managed to put on one master curve plenty of numerical and experimental
reduced heat transport data (Nu − 1)Ra−1/3, for the aspect ratio of the cylindrical container from
1/32 to 32 (see also [59]).

A further example of the applicability of our ansatz is the derived accurate estimate of the
principle range of possible states in two-dimensional turbulent Rayleigh-Bénard convection with
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no-slip plates, in terms of the roll aspect ratio �r , namely, 0.7 � �r � 1.6, Eq. (161). This estimate
does not include any information on the fluid properties, the aspect ratio of the domain, or the
Rayleigh number. Independently from these input characteristics the estimate (161) for the roll
aspect ratio should hold. Which exactly rolls aspect ratio states the system chooses depends on the
balance between the kinetic energy and its dissipation; see also Wang et al. [153].

As we have seen in this study, the lateral confinement of the convection cell can significantly
influence all global response characteristics in the system and also the global structure of the
convective flow. Therefore it is desired in the future to advance also the boundary-layer theory
for Rayleigh-Bénard convection (see Shishkina et al. [165,166] and Ching et al. [167–169]) to the
case of confined plates, in order to obtain accurate predictions of the profiles of the main flow
characteristics in confined geometries.

Furthermore, the here developed approach, which is based on the analysis of the relevant and
most energetic modes in terms of the Laplace eigenfunctions, can be further applied to study
formation and dynamics of the superstructures in wide domains [153,158,159], and in general,
the dependence of the wall-bounded flows on the geometry of the container in different systems,
for example, the Taylor-Couette flows [170], double-diffusive convection [171], modulated with
the boundary conditions thermal convection [172,173], thermomagnetohydrodynamic problems
[174], internally heated convection [46,175–178], vertical and horizontal convection [179–182],
and classical and rotating Rayleigh-Bénard convection, in particular, its wall modes regime in a
form of traveling waves [79–81,84,86,88,162], as well as other traveling-wave wall mode regimes
that occur in nonrotating convection of fluid mixtures [90].

The problems can have different driving forces, different boundary conditions, and different
geometries. Solving the problems with modified steady boundary conditions or modified container
geometry seems to be straightforward: here one would need to calculate and examine Laplace
eigenmodes for the prescribed boundary conditions in specific geometries. Problems of convection
in containers with plate roughness or under the presence of rigid obstacles inside the container
or convection in porous media (see, e.g., [183]) are also directly related to the problems of the
confined geometry of the container in convective processes. Investigations of these topics might
raise additional problems related to the convex shape of the domain occupied with fluid. Interesting
and important is also to investigate the systems with dynamically changing driving force, container
geometry, and/or boundary conditions, for example, those related to solidification or melting of
the working substance (see, e.g., [184]. And finally, how the non-Oberbeck-Boussinesq effects
change all convective processes and their main response characteristics, starting from the onset
of convection and up to highly turbulent regimes, remains to be one of the challenging problems to
investigate.

To sum up: the shape of the Rayleigh-Bénard container matters. Now we know a little more
about how the container shape influences the critical Rayleigh numbers and typical flows patterns
and length scales. Many questions still remain to be answered.
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