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The interaction between shear-driven turbulence and stratification is a key process in
a wide array of geophysical flows with spatiotemporal scales that span many orders of
magnitude. A quick numerical model prediction based on external parameters of strati-
fied boundary layers could greatly benefit the understanding of the interaction between
velocity and scalar flux at varying scales. For these reasons, here we use the resolvent
framework [McKeon and Sharma, J. Fluid Mech., 658 (2010)] to investigate the effects
of an active scalar on incompressible wall-bounded turbulence. We obtain the state of
the flow system by applying the linear resolvent operator to the nonlinear terms in the
governing Navier-Stokes equations with the Boussinesq approximation. This extends the
formulation to include the scalar advection equation with the scalar component acting in
the wall-normal direction in the momentum equations [Dawson, Saxton-Fox and McKeon,
AIAA Fluid Dyn. Conf. 4042 (2018)]. We use the mean velocity profiles from a direct
numerical simulation (DNS) of a stably stratified turbulent channel flow at varying friction
Richardson number Riτ . The results obtained from the resolvent analysis are compared
to the premultiplied energy spectra, autocorrelation coefficient, and the energy budget
terms obtained from the DNS. It is shown that despite using only a very limited range
of representative scales, the resolvent model is able to reproduce the balance of energy
budget terms as well as provide meaningful insight into coherent structures occurring in
the flow. Computation of the leading resolvent models, despite considering a limited range
of scales, reproduces the balance of energy budget terms, provides meaningful predictions
of coherent structures in the flow, and is more cost-effective than performing full-scale
simulations. This quick model can provide a further understanding of stratified flows with
only information about the mean profile and prior knowledge of energetic scales of motion
in the neutrally buoyant boundary layers.

DOI: 10.1103/PhysRevFluids.6.084804

I. INTRODUCTION

Stratification plays an important role in both atmospheric and oceanic flows, and in particular,
near boundaries, it has a significant effect on turbulence production, propagation, and decay. The
interaction between shear-driven turbulence and stratification is a key process in a wide array of
relevant geophysical flows for which the spatiotemporal scales span many orders of magnitude. In
the atmosphere, stable boundary layers can be generated by the advection of warm air over a colder
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surface. Stably stratified atmospheric boundary layers are observed during clear nights as a result of
radiative cooling of the ground surface [1,2]. Oceans, unlike the lower atmosphere, are heated from
above and are stably stratified outside of small regions of localized convection [3,4]. This stable
stratification shapes many aspects of ocean turbulence although sampling is considerably sparser
than the atmosphere [5].

Classical understanding of stably stratified boundary layers is well described in a number of
textbooks [6–9] and reviews [10,11]. However, fundamental features of the stably stratified turbulent
boundary layer still remain elusive from a modeling standpoint. The strong intermittency observed
in stable boundary layers causes the upper portion of the boundary layer to decouple from the
near-wall region due to the inhibition in vertical mixing [8,12,13]. Strong stable stratification also
significantly changes the flow structures prevalent in a boundary layer with additional features
becoming prominent such as large-scale intermittency, gravity waves and Kelvin-Helmholtz insta-
bilities [12], and the near parallel downstream tilting of flow structures [14–16]. At the interface
between the boundary layer and an outer stratified region, a pycnocline can develop with the
stratification principally acting to limit the boundary layer height [17].

One way to study the stably stratified turbulent boundary layer is through on-site experiments.
Researchers in the past decades have conducted field experiments in the stably stratified atmospheric
boundary layer to study turbulent energy budgets [18], heat and momentum transfer [19], regime
characterization [12,20], flow structures [14], and the complexities of atmospheric stable boundary
layers [21]. Measurements of turbulence quantities in the ocean near the bottom boundary are
difficult to measure, and as such the literature is sparse. Smedman et al. [22], using data from a
marine coastal experiment over the Baltic sea, found that the near-wall turbulence was virtually
independent of forcing from large-scale structures embedded in the flow. Experiments performed
in the northern bay of San Francisco [23] found that active turbulence is confined near the wall.
Bluteau et al. [24] conducted a 21-day field study of the stratified flow dynamics near the bottom
boundary on the continental slope of the Australian North West Shelf; the authors found that
measurements closest to the seabed were described by the log law of the wall, and that stratification
had very little influence on turbulent shear production near the seabed. Furthermore, their results
showed that the production of turbulence weakened further from the seabed as the local buoyancy
frequency increased. Additionally, tidal channel experiments [25] demonstrated that the production
of turbulent kinetic energy is generally greatest near the bottom boundary while the buoyancy flux
is weakest in this region. Still, real-world atmospheric and oceanic boundary layers are complicated
by nonturbulent motions occurring simultaneously on a variety of scales, such as wave motions
[26] or tidal bores [27], the possible importance of radiative flux divergence of the air within
the boundary layer, surface condensation, and variable cloudiness [10,11,28]. In order to isolate
instances where the secondary effects are minimized, restrictions on nonstationarity or conditions on
the minimum allowed value of turbulence energy may be applied to the data collected. Nonetheless,
certain assumptions that are applied for analyses of these real-world stratified boundary layers are
not always valid. As such, researchers supplement their work with laboratory experiments as well
as simulations.

Laboratory experiments of stratified wall-bounded flows show that buoyancy effects play an
important role in the transfer of heat and momentum in both the inner and outer layers of
the boundary layer [29–33]. In general, the experiments show that with increasing stratification,
the turbulence shear production rate is strongly affected by buoyancy and greatly reduced far from
the wall. One measure of stratification strength is the local gradient Richardson number, Rig. Since
shear originates at the wall, the local gradient Richardson number, which is inversely proportional
to the shear, is generally smaller in the near-wall region as the shear term overpowers the buoyancy
term. The stabilizing effect of stratification has a greater impact farther from the wall. Indeed, works
listed here demonstrated that velocity fluctuations become weaker further from the wall, and in
some cases, turbulence intensity is reduced as the buoyancy frequency in the system is increased.
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Additionally, the experiments of Komori et al. [32] show that the correlation coefficients associated
with the Reynolds shear stress approach zero at values of Rig � 0.2–0.3.

There have been many large-eddy simulations (LES) [34–39] and direct numerical simulations
(DNS) [40–44] of density stratified channel flows. The results support the experimental obser-
vations: strengthening the stratification leads to the reduction (or even suppression) of turbulent
velocity fluctuations further from the wall. Garg et al. [34] showed in their work that the mean
velocity profiles of the stratified channel were similar in the near-wall region but differed in the
logarithmic region. The difference is characterized by a reduction in the value of both the slope of
the log-law of the mean velocity and the gradient of the mean velocity profile. It should be noted that
the authors used the friction Richardson number to categorize the stratification strengths investigated
in their simulations and concluded that the friction Richardson number is superior to the local
gradient Richardson number in characterizing flow regimes as it is a global flow property. There
have also been DNS studies of homogeneous stably stratified flow which exhibit similar results
[45–47]. Holt et al. [47] found that as the gradient Richardson number increases, the production and
turbulent kinetic energy decrease. Their results also demonstrated that the production of streamwise
velocity fluctuations at low gradient Richardson numbers is due to the down-gradient Reynolds
stress. Furthermore, the kinetic energy is redistributed to the spanwise and vertical components via
pressure-strain interactions.

Previous research has also shown that stable stratification inhibits the self-sustained processes
that exist in turbulent channel flows, studied by, e.g., [48,49]. The coherent motions that persist
during the self-sustaining processes exist as quasistreamwise roll vortices in the sublayer, and they
take the form of hairpin vortices and double roller eddies above the sublayer. Bakas et al. [50]
found that the energy of the roll structures is suppressed by stable stratification compared to neutral
stratification. In addition, Eaves and Caulfield [51] demonstrated that stable stratification disrupts
the self-sustaining processes through an inhibition of vertical motions.

Performing experiments (both on-site and in laboratories) of stratified wall-bounded turbulence
can be challenging for reasons such as topography or secondary effects and simulations suffer
from computational constraints. Moreover, laboratory experiments and simulations can attain only a
limited range of Reynolds and Richardson numbers that are often orders of magnitude smaller than
real-world geophysical phenomena. A quick numerical model prediction of key features of stratified
boundary layers could greatly benefit the understanding of the interaction between velocity and
scalar flux at varying scales. Recently, works targeted towards reconstructing velocity fields from
a few spatial probe measurements and resolvent modes have been successful [52–54]. While these
studies have been focused on incompressible neutrally buoyant cases, we expect the methodology to
extend to stratified flows as well. For these reasons, in this paper, we aim to explore the interaction
between velocity and scalar fluctuations using the resolvent model [55].

The resolvent model provides an optimal basis, in an energy sense, that allows an in-depth
comparison of the underlying mechanisms in the flow. Moreover, the model is computationally
efficient where only the singular vectors corresponding to the largest singular value are required
to obtain the leading order model. Resolvent analysis has been widely applied to a range of flow
configurations to identify dominant flow structures and the underlying forcing, e.g., Refs. [55–61],
and has been reviewed in detail in Refs. [62,63]. The resolvent model does not need a priori
knowledge of the flow fluctuations and the assumption of white-noise forcing is often employed.
Recently, Morra et al. [64] performed DNS of unstratified turbulent channel flows at Reτ = 179
and used the cross-spectral density to quantify the nonlinear forcing term. They showed that
the nonlinear forcing is structured and the resulting resolvent response modes are in very good
agreement with DNS data. Similarly, Nogueira et al. [61] also showed that the forcing is structured
in turbulent plane Couette flow.

We use the model to provide analysis of the flow using only mean quantities, which are easy to
obtain even in field experiments, along with knowledge from the energetics of the unstratified case,
which is better documented than the stably stratified case. The predictions from the resolvent model
are then compared to the flow statistics from a DNS of a stably stratified turbulent channel flow. Note
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that we do not compute the nonlinear forcing term from DNS to use as input in the resolvent model.
The Reynolds number under consideration in the current study is considerably lower than those
observed in geophysical flows, which is dictated by the available DNS data for comparison, rather
than by the resolvent model. Resolvent analysis of unstratified wall-bounded flows shows that the
results of the model are still relevant for moderate Reynolds numbers [65] with the resolvent modes
in the logarithmic layer showing self-similar behavior. We expect the capability of the model in
stably stratified regimes to extend to higher Reynolds numbers as well.

The paper is organized as follows. In Sec. II we introduce the resolvent framework with the
inclusion of the scalar advection-diffusion equation and discuss the relevant energy norm, boundary
conditions, and computational methods. In Sec. III A we examine the sensitivity of the low-rank
properties of the resolvent operator to the stable stratification strength and compare these properties
with the most energetic scales in each flow. In Sec. III B we analyze the characteristics of the forcing
and response modes of both velocity and scalar. We compare the mode shapes with correlations
obtained from DNS data. In Sec. III C we study the turbulent kinetic energy budget in the resolvent
formulation and compare the results with the energy budget obtained from the DNS data. Finally,
our conclusions on the application of the resolvent framework to a stably stratified boundary layer
are given in Sec. IV.

II. MODELING ACTIVE SCALAR DYNAMICS IN THE NAVIER-STOKES EQUATIONS

A. Navier-Stokes equation with active scalar

We consider a density-stratified turbulent channel flow where the density acts in the direction of
gravitational acceleration. We use a Cartesian coordinate system x = (x, y, z) such that the force of
gravity acts in the −y direction, with x, y, and z being the streamwise, wall-normal, and spanwise
directions, respectively. The governing equations are given by the nondimensional Navier-Stokes
equation under the Boussinesq approximation,

∂ũ
∂t

+ (̃u · ∇ )̃u = −∇ p̃ + ∇2ũ
Reτ

− Riτ ρ̃ey, (1a)

∂ρ̃

∂t
+ (̃u · ∇ )̃ρ = ∇2ρ̃

Reτ Pr
, (1b)

∇ · ũ = 0. (1c)

Here ũ = (ũ, ṽ, w̃) is the instantaneous velocity vector in the reference system (x, y, z), t is time,
p̃ is the kinematic pressure field that remains after removing the part that is in hydrostatic balance
with the mean density field, ρ̃ is the density deviation from the reference density ρ0 (̃ρ � ρ0), and
ey is the unit vector acting in the y-direction. The velocity and length scales are nondimensionalized
using the friction velocity uτ and channel half-height δ, respectively, and the density is nondimen-
sionalized using �ρ, the difference in density between the two channel walls. We define the walls
to be located at y = 0 and y = 2. The nondimensional quantities are given by the Reynolds, Prandtl,
and Richardson numbers, defined as

Reτ = uτ δ

ν
, Pr = ν

γ
, Riτ = g�ρδ

ρ0u2
τ

, (2)

where ν is the kinematic viscosity, γ is the molecular diffusivity of density, and g is the acceleration
due to gravity.

B. Resolvent framework with an active scalar

The total fields ũ, p̃, and ρ̃ can be split into mean and fluctuating parts as

ũ(x, t ) = u(y) + u(x, t ), (3a)
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p̃(x, t ) = p(y) + p(x, t ), (3b)

ρ̃(x, t ) = ρ(y) + ρ(x, t ), (3c)

where the mean is taken in the homogeneous directions, x and z, and time. Note that u = (ū, v̄, w̄)
and v̄ = w̄ = 0. We substitute the decomposed variables into Eq. (1) to obtain the fluctuation
equations

∂t u + (u · ∇)u + (u · ∇)u = −∇p + ∇2u
Reτ

− Riτ ρey + f u, (4a)

∂tρ + (u · ∇)ρ + (u · ∇)ρ = ∇2ρ

Reτ Pr
+ fρ, (4b)

∇ · u = 0, (4c)

where f u = −u · ∇u and fρ = −u · ∇ρ are the nonlinear terms.
Taking the Fourier transform of the fluctuation equations above in homogeneous directions and

time, the variables can be expressed as⎡⎣u(x, y, z, t )
p(x, y, z, t )
ρ(x, y, z, t )

⎤⎦ =
∫∫∫ ∞

−∞

⎡⎣û(y; kx, kz, ω)
p̂(y; kx, kz, ω)
ρ̂(y; kx, kz, ω)

⎤⎦ei(kxx+kzz−ωt ) dkx dkz dω, (5)

for k = (kx, kz, ω) �= (0, 0, 0), where (·̂) denotes the Fourier transformed variables. Here the stream-
wise and spanwise wavenumbers are kx and kz, respectively, and ω is the temporal frequency defined
as ω = ckx, where c is the wave speed. The streamwise and spanwise wavelengths are defined as
λx = 2π/kx and λz = 2π/kz, respectively. Critical layers can be identified when the wave speed
c is equivalent to the mean velocity, i.e., yc is the critical layer location for wave speed c = u(yc).
Assuming the mean velocity and density profiles are known, the fluctuations equations are expressed
compactly in a linear equation as

−iωq̂ − Aq̂ = f̂ , (6)

where we define q̂ = [û v̂ ŵ p̂ ρ̂]T as the state vector and f̂ = [ f̂u f̂v f̂w 0 f̂ρ]T as the forcing vector.
The linear operator is given by

A =

⎛⎜⎜⎜⎝
A −∂u/∂y 0 −ikx 0
0 A 0 −Dy −Riτ
0 0 A −ikz 0

−ikx −Dy −ikz 0 0
0 −∂ρ/∂y 0 0 Aρ

⎞⎟⎟⎟⎠, (7)

where

A = −ikxu + �̂

Reτ

, (8a)

Aρ = −ikxu + �̂

Reτ Pr
, (8b)

Dy is the wall-normal derivative operator and �̂ ≡ Dyy − k2
⊥ is the Laplacian with k2

⊥ = k2
x + k2

z .
The block matrix A describes the linear dynamics of the system. Equation (6) can be rearranged to
yield

q̂ = H(k) f̂ , (9)

where H(k) = (−iωI − A)−1 is the resolvent of the linear operator and I is the identity matrix. A
related analysis has been performed in Ref. [66].
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From Eq. (9) we wish to find a decomposition of the resolvent operator that enables us to identify
high-gain input and output modes with respect to the linear operator. For resolvent analysis, this
is given by the Schmidt decomposition. However, this decomposition must be accompanied by a
choice of inner product and the corresponding norm. The natural and physically meaningful norm
is given by the nondimensionalized energy norm, which is the sum of kinetic and potential energies
[67,68]

1

2
‖q‖2

E = 1

2
(q, q)E = 1

2

∫ 2

0
[u∗u + v∗v + w∗w + Riτ (ρ∗ρ)]dy, (10)

where (·)∗ denotes the conjugate transpose.
We perform the Schmidt decomposition of the resolvent operator H to generate a basis based on

the most highly amplified forcing and response directions such that

H(k) =
∞∑
j=1

σ j (k)ψ̂ j (y; k)φ̂
∗
j (y; k), (11)

where the right and left Schmidt bases (or singular vectors in the discrete case) are given by φ̂ j and

ψ̂ j along with their corresponding gains σ j . The singular values are in descending order such that
σ1 � σ2 � · · · � 0. The forcing and resolvent modes are orthonormal such that

(φ̂ j, φ̂k )E = (ψ̂ j, ψ̂k )E = δ jk, (12)

where δ jk denotes the Kronecker delta. The basis pair defined above is used to decompose the
nonlinear forcing and response field at a specified wavenumber triplet as

f̂ (y; k) =
∞∑
j=1

φ̂ j (y; k)χ j (k), (13a)

q̂(y; k) =
∞∑
j=1

χ j (k)σ j (k)ψ̂ j (y; k). (13b)

Here χ j is a projection variable that is obtained by projecting the nonlinear forcing onto the forcing
modes and subsequently use to weight the response modes. Note that the largest energy is obtained
when the forcing is aligned with the leading singular vector, i.e., when χ j = δ j1. While the values
of χ j may be obtained from time-resolved flow fields, for simplicity, we assume white-noise forcing
in the wall-parallel directions and time throughout the paper.

C. Computational approach

1. Mean velocity and density profiles

Mean velocity and density profiles are required to close the resolvent model. We obtain the
one-dimensional mean velocity and density profiles from a DNS of a stratified turbulent channel
at Reτ = 180 for a wide range of Riτ . The simulations are performed by discretizing the incom-
pressible Navier-Stokes equations with a staggered, second-order accurate, central finite-difference
method in space [69], and an explicit third-order accurate Runge-Kutta method for time advance-
ment [70]. The system of equations is solved via an operator splitting approach [71]. The code has
been verified for neutrally buoyant cases in Refs. [72,73].

Periodic boundary conditions are imposed in the streamwise and spanwise directions, the no-slip
and no-penetration condition with ρ̃ = 0 is applied at the bottom boundary, and a no-slip and
no-penetration condition with ρ̃ = 1 is applied at the top boundary. The streamwise, wall-normal,
and spanwise domain sizes are Lx = 4π , Ly = 2, and Lz = 2π respectively. The grid spacings in
the streamwise and spanwise directions are uniform with �x+ = 8.8 and �z+ = 4.4; nonuniform
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TABLE I. Comparison of our DNS and the results of Ref. [44] denoted under columns titled GV11, both at
Reτ = 180. ReB is the bulk Reynolds number defined as uBδ/ν where the bulk velocity is uB = ∫ 2

0 u dy/2. RiB

is the bulk Richardson number, which is defined as RiB = g�ρδ/(2ρ0u2
B ). Nu is the Nusselt number defined as

Nu = 2δqw/(γ�ρ ), where qw is the density flux at the wall. For laminar flow Nu = 1.

ReB RiB Nu

Riτ GV11 DNS GV11 DNS GV11 DNS

0 2820 2823 0.000 0.000 6.03 6.08
10 – 2970 – 0.018 – 4.78
18 3043 3060 0.031 0.031 4.02 4.15
60 3436 3473 0.082 0.081 2.80 2.82
100 – 3850 – 0.109 – 2.37

meshes are used in the wall-normal direction, with the grid stretched toward the wall according
to a hyperbolic tangent distribution with min(�y+) = 0.31 and max(�y+) = 5.19, where the
superscript + indicates length scales in wall units normalized by ν/uτ rather than δ. A constant
pressure gradient is applied to drive the flow. The simulation was run over 100 eddy-turnover times,
defined as δ/uτ , after transients. The mean quantities computed from the simulations are statistically
stationary and converged.

The work of García-Villalba and del Álamo [44] at Reτ = 180 is used to validate the results.
The comparison of a few key quantities is shown in Table I, which indicates a good agreement for
all Richardson numbers. The mean and root-mean-squared streamwise velocity and density profiles
are shown in Fig. 1 for all current cases and select cases from Ref. [44] and show good agreement
among all statistics. The mean profiles are linearly stable in each case.

2. Resolvent mode computation

The Schmidt decomposition of the resolvent operator outlined in Sec. II B is numerically
implemented as the singular value decomposition (SVD) of the matrix (−iωI − A)−1, where each
block of the linear operator A in Eq. (7) is a Ny × Ny matrix with Ny being the number of points
in the wall-normal direction. The discrete system limits the number of singular values to 5Ny

because the state vector q̂ ∈ C5Ny×1. The wall-normal points are chosen as Chebyshev nodes. The
nondimensional-energy norm is similarly discretized using a numerical quadrature. See Trefethen
and Embree [74] for more details on the numerical computation of the resolvent modes. In this study,
after conducting a grid convergence study examining the singular values, we selected a wall-normal
grid resolution of Ny = 400. Thus, the computational cost of the resolvent mode computation is at
most O(N3

y ) (less if randomized algorithms are employed [65,75]), often requiring only a leading
order singular value decomposition (see Sec. III A for more information) and can be performed in
seconds on a personal computer.

The discretized linear operator is constructed using Chebyshev differentiation matrices and is
shifted to integrate between y ∈ [0, 2] rather than y ∈ [−1, 1]. The mean velocity and density pro-
files obtained from DNS as well as their wall-normal derivatives are interpolated to the Chebyshev
grid points to form the resolvent operator as in Eq. (7). The no-slip and no-penetration boundary
conditions for the fluctuating velocities and density, i.e., u, v,w, ρ = 0, are applied at the walls.

In the case of a turbulent channel, due to the symmetry in the geometry, the resolvent modes
appear in pairs that can be linearly combined to produce symmetric and antisymmetric modes.
Depending on the support of these modes, the singular values may be identical or similar in
magnitude. For the results in the following sections, only results in the bottom half-channel will
be shown, but the corresponding upper half-channel results are analogous in all cases.

The results from the analysis of resolvent modes are compared to DNS data. In particular we
compare the energy contained in the leading resolvent modes to the the energy spectra, the mode
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FIG. 1. Mean (a) streamwise velocity and (b) density profiles and root-mean-square (r.m.s.) (c) streamwise
velocity and (d) density profiles from the current DNS for Riτ = 0, 10, 18, 60, 100 (solid lines darker to
lighter), compared to the mean profiles of Ref. [44] for Riτ = 0, 18, 120 (dashed lines darker to lighter). The
friction density is defined as ρτ = qw/uτ , where qw is the density flux at the wall.

shapes to the proper orthogonal decomposition (POD) modes and correlation coefficients, and
energy budgets from resolvent modes to those computed from DNS data.

III. RESULTS

In this section, we explore how the resolvent analysis provides insight into changes in flow
characteristics with increasing stratification from only a limited range of representative scales.
We compare (1) the resolvent energy spectra, obtained from the ratio of the energy in the leading
resolvent response mode pair to the total response, (σ 2

1 + σ 2
2 )/

∑
j σ

2
j , to the premultiplied energy

spectra of the DNS, (2) the structure identified by the leading resolvent mode to the correlation
computed from DNS, and (3) the energy budgets of the resolvent modes to that of the DNS.

In order for full representation of the system, a wide range of scales, as well as information of all
other subsequent modes in addition to the leading resolvent modes, are necessary [55,62]. However,
the goal here is to provide a quick model for characterizing the flow. The simplest and quickest
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model can be provided via a rank-one approximation, where only the leading resolvent mode is
computed. Thus, our focus will be on the representation given by the leading resolvent mode for a
limited number of scales.

A. Resolvent energy spectra

The resolvent norm, σ1, quantifies the system’s sensitivity to temporal forcing. Here we use√
σ 2

1 + σ 2
2 (to account for pairs of singular vectors from geometric symmetry), of the resolvent

operator H to study the energetic response from broadband forcing associated with the first two
modes. The resolvent operator H can be described as low-rank if the majority of its response
to white-noise forcing in the wall-normal direction is captured by the first few response modes.
Theoretically, there are an infinite number of singular values and corresponding modes because
the wall-normal coordinate is continuous. However, not all of the singular vectors are energetically
significant. As described in Sec. II B, a self-sustaining representation of the flow will correspond
to a weighted assembly of forcing modes rather than a white-noise forcing [61]; however, past
studies have shown that broadband forcing is successful in identifying the important component
of the flow, e.g., Ref. [55,59]. McKeon and Sharma [55] demonstrated that the characteristics
of the leading response modes for a range of wavenumber-frequency combinations agree with
experimental observations in pipe flow and with scaling concepts in wall-bounded turbulence.
Moarref et al. [65] showed that the first two resolvent modes account for more than 80% of the total
response in a channel. Bae et al. [59] investigated the low-rank nature of a compressible turbulent
boundary layer and highlighted the similarities in the region where the low-rank approximation is
valid for the incompressible regime.

Assuming the resolvent operator is low-rank (σ1 � σ2 � σ3) allows us to approximate the
operator as

H(k) ≈ σ1 ψ̂1 φ̂
∗
1 + σ2 ψ̂2 φ̂

∗
2, (14)

for each k since most of the energy in the system is modeled by the principal singular value. The
low-rank behavior of H is typically representative of there being a dynamically significant physical,
spatiotemporal structure at the scale dictated by k.

To study the variation in the low-rank behavior for different magnitudes of stratification, we
plot the energetic contribution of the principal response mode to the total response in the model
for a given k quantified by (σ 2

1 + σ 2
2 )/� jσ

2
j for a range of wall-parallel wavelengths (Fig. 2). The

leading response mode pair accounts for more than 80% of the total response over a large range of
homogeneous wavelengths for the three wave speeds selected.

The range of wavenumbers for which the resolvent operator is low-rank changes significantly
with stratification. In the neutrally buoyant case (Riτ = 0), we see that H is low-rank in a range
of moderate-to-large streamwise wavelengths. For the neutrally buoyant case, it is known that the
low-rank region coincides with the most energetic wavenumbers from the premultiplied energy
spectra of a turbulent channel [65]. As the friction Richardson number first increases, the low-rank
behavior shifts to only a small range of streamwise wavelengths. We see a similar phenomenon in
the premultiplied streamwise energy spectra from the DNS (Fig. 3), where with increasing Riτ , the
larger streamwise wavelength content is suppressed. This was also observed in the premultiplied
energy spectra of Ref. [44] for a wider range of Reτ and Riτ .

However, after Riτ = 18, the low-rank behavior of the principal resolvent modes intensifies along
a vertical band λx/δ � 1 until the system becomes low-rank at large spanwise wavelengths with
almost no low-rank behavior below the green dashed line in Fig. 2 (λx = 15λz, 10λz, and 5λz for
y+ = 15, 30, and 100, respectively). This seems to indicate a low-rank behavior in structures that
are descriptive of quasi-two-dimensional flow where λz � λx. Hopfinger [77] details the emergence
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FIG. 2. Contour plots depicting the energy contained in the leading response mode relative to the total
response, (σ 2

1 + σ 2
2 )/� jσ

2
j , for different streamwise and spanwise wavelengths at (a) c = u(y+ = 15), (b) c =

u(y+ = 30), and (c) c = u(y+ = 100) for Riτ = 0, 10, 18, 60, 100 (top to bottom). Green dashed lines are
(a) λx = 15λz, (b) λx = 10λz, and (c) λx = 5λz.

of two-dimensional modes for a variety of flows with strong stratification. Moreover, Mahrt [11]
alludes to the emergence of two-dimensional modes (often referred to as pancake modes) owing
to the conversion of vertical kinetic energy to potential energy in the presence of strong stable
stratification. The premultiplied energy spectra for higher Riτ indicate high energy in the vertical
band as well [44].
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FIG. 3. Contour plots depicting the premultiplied streamwise kinetic energy spectra as functions of the
streamwise and spanwise wavelengths obtained from DNS at (a) y+ = 15, (b) y+ = 30, and (c) y+ = 100
for Riτ = 0 (solid line), Riτ = 60 (dashed line), and Riτ = 100 (dotted line). The shaded contours are from
the Reτ = 180 neutral channel [76]. The levels plotted are 0.1, 0.3, 0.5 times the maximum value of the
corresponding spectrum.

Though not plotted here, the changes in the singular value magnitudes exhibit a similar pattern
to that of Fig. 2. The largest singular values occur at larger spanwise wavelengths as stratification
increases and a similar vertical band is formed for λx/δ � 1 at y+ = 100. We also see that as Riτ
increases the largest singular values shift from being below the green line to being above it for all
of the wave speeds investigated.

B. Mode shapes

In order to study the flow structures, we compute the resolvent response modes for a set of wave
parameters. The most energetic scales for the various Riτ under consideration for the different wall-
normal heights still coincide with the neutrally buoyant case (Fig. 3), falling in the low-rank region
despite the fact that including the scalar advection-diffusion equation in the governing equations
changes the wavelengths at which the resolvent operator is low-rank (Fig. 2). In this section we
study the resolvent response mode shapes for these wavenumber and wave speed combinations.
The list of mode combinations under consideration is listed in Table II. In particular, mode E1 is the
most energetic mode for y+ = 15, E2 for y+ = 30, and E3 for y+ = 100. To study the emergence
of low-rank regions at long spanwise wavelengths we also look at the S1 mode at y+ = 100 in
Sec. III B 2.

Note that for the POD modes of the DNS, the wavenumbers in Table II are approximated
such that kxLx/(2π ) and kzLz/(2π ) are rounded to the nearest integer. For example, for kx = π/2,
kxLx/(2π ) = π ∼ 3, and thus we use kx = 1.5.

TABLE II. Representative wavenumber combinations that we explore in Sec. III B.

Mode name kx kz c

E1: most energetic mode for y+ = 15 π/2 4π u(y+ = 15)
E2: most energetic mode for y+ = 30 π/2 3π u(y+ = 30)
E3: most energetic mode for y+ = 100 π/2 2π u(y+ = 100)
S1: spanwise-constant mode for y+ = 100 π/2 0 u(y+ = 100)
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FIG. 4. Amplitudes of the leading resolvent response modes for the (a) streamwise velocity and (b) density,
and leading forcing mode for the (c) wall-normal velocity for Riτ = 0, 10, 18, 60, 100 (darker to lighter) at c =
ū(y+ = 15) (dashed line), ū(y+ = 30) (dot-dashed line), and ū(y+ = 100) (dotted line) for wave parameters
corresponding to E1, E2, and E3, respectively. The subscripts u and ρ indicate the corresponding components
of the resolvent response mode, and the subscript v indicates the component of the forcing mode.

1. Energy-containing modes E1, E2, and E3

The predictive capabilities of the resolvent modes are first shown through the amplitudes of the
leading resolvent response modes [Figs. 4(a) and 4(b)] of the streamwise velocity and density. The
resolvent modes compare well to the streamwise and density turbulence intensities in Figs. 1(c)
and 1(d). The streamwise root-mean-square (r.m.s.) quantities and resolvent amplitudes show no
variation among different Richardson numbers closer to the wall and increase slightly with Riτ
farther away from the wall. On the other hand, the density r.m.s. and resolvent amplitudes decrease
significantly with Richardson number at all wall-normal heights. Despite only using the leading
resolvent mode, the relative magnitude at each corresponding wall-normal height is well captured
for the range of Richardson numbers considered here. The wall-normal forcing mode component
indicates that the lift-up mechanism exists even as stratification is increased; see Fig. 4. The forcing
amplitudes are unaffected by the different Richardson numbers in the near-wall region, but when
y+ = 100 the amplitudes decrease slightly.

Additionally, we examine the response mode shapes in two dimensions for the different regions
and compare the structures observed in the resolvent modes with the POD modes obtained from
the DNS data. The POD modes are computed as the principal component of matrix X , where each
row of X is the wall-normal vector corresponding to the (kx, kz ) Fourier mode of the velocity and
density components. The principal component is the first left singular vector of X , where the energy
norm in Eq. (10) is used to compute the SVD. Over 1000 snapshots from DNS data are used to form
matrix X [78].

The two-dimensional structures of mode E1, which coincides with the size of the near the wall
structures observed previously in experiments and simulations [79,80], are plotted in Fig. 5 for
a reference location of y′+ = 15. The POD modes of the streamwise, wall-normal, and spanwise
velocity fields, as well as the density field, are shown in Fig. 6, for a two-dimensional slice at
�z = 0. Even though the POD modes are integrated results from all values of ω, we see that the
POD modes are more or less centered around the y+ = 15 region.

Finally, we examine the response mode shapes in two dimensions for the different regions and
compare the structures observed in the resolvent modes with the autocorrelation coefficient from
the DNS data. We first define the streamwise autocovariance as

R̂qq(kx, y, y′, kz ) = 〈q̂(kx, y, kz )q̂∗(kx, y′, kz )〉, (15)

where q is a generic variable of zero mean and 〈·〉 is the expected value. The autocovariance
in physical space, Rqq(�x, y, y′,�z), is obtained as the inverse Fourier transform of R̂, where
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FIG. 5. Two-dimensional slices of response mode shapes for (kx, kz ) = (π/2, 4π ) at a critical-layer lo-
cation of y+ = 15 for (a) Riτ = 0, (b) 18, and (c) 100. Red and blue contours represent positive and negative
fluctuations, respectively. The contour levels are scaled by the maximum of each mode component. The dashed
black line in each subplot is the location of the critical layer where c = u(y+ = 15).

�x = x − x′ and �z = z − z′ are the distances between the two points in the homogeneous di-
rections. The autocorrelation coefficient,

Cqq(x, x′) = Rqq(x, x′)
ςq(x)ςq(x′)

, (16)

is obtained by normalizing the covariance with the product of the standard deviations, ς , at the
two points involved in the measurements, which is the normalization adopted by most researchers
[81–86].

The two-dimensional structures of mode E1, which coincides with the size of the near the wall
structures observed previously in experiments and simulations [79,80], are plotted in Fig. 5. The
autocorrelations of the streamwise, wall-normal, and spanwise velocity fields as well as the density
field are shown in Fig. 7, for a two-dimensional slice at �z = 0. The reference location y′+ = 15.

FIG. 6. POD modes corresponding to (kx, kz ) = (π/2, 4π ) for (a) Riτ = 0, (b) 18, and (c) 100. The
horizontal dashed line is y+ = 15.
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FIG. 7. Autocorrelation coefficients Cuu, Cvv , Cww , and Cρρ of the DNS at y+ = 15 for (a) Riτ = 0 and
(b) 100. Red and blue contours represent positive (0.4, 0.6, 0.8) and negative (−0.2) correlation, respectively,
with each contour level signifying 0.2 increments. The horizontal dashed line is y+ = 15, and the vertical
dotted line is �x = 0.

The LES of Ref. [35] and the DNS of Ref. [44] demonstrated that structures in the near-wall
region (y+ � 15) are largely unaffected by stable stratification. As expected, both the resolvent
response modes and the correlations do not change significantly for the range of Riτ considered.
For the velocities, the main difference is a slight backward tilt in the wall-normal component. The
largest difference occurs for density properties as the phase in the wall-normal direction along the
resolvent response modes are shifted, creating structures that are more detached from the wall.
Similarly, the density POD modes and the correlations shift farther away from the wall for higher
values of Riτ .

FIG. 8. Two-dimensional slices of response mode shapes for (kx, kz ) = (π/2, 3π ) at a critical-layer lo-
cation of y+ = 30 for (a) Riτ = 0, (b) 18, and (c) 100. Red and blue contours represent positive and negative
fluctuations, respectively. The contour levels are scaled by the maximum of each mode component. The dashed
black line in each subplot is the location of the critical layer where c = u(y+ = 30).
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FIG. 9. POD modes corresponding to (kx, kz ) = (π/2, 3π ) for (a) Riτ = 0, (b) 18, and (c) 100. The
horizontal dashed line is y+ = 30.

We plot the resolvent response modes (Fig. 8) and the POD modes (Fig. 9) for the wavenumbers
and wave speed corresponding to E2. The results are similar to that of E1, since the velocity response
modes do not vary significantly across Riτ , but a difference is observed in the density modes as
a phase change along y. The POD modes for density are both wall-detached in the Riτ = 0 and
Riτ = 100 case, although the center of the density POD modes for the Riτ = 100 case lies farther
away from the wall.

The biggest difference in the resolvent response modes for the different Richardson numbers
can be seen for the wavenumber and wave speed corresponding to E3. We plot the resolvent
response modes (Fig. 10) and the POD modes (Fig. 11) for the wavenumbers and wave speed
corresponding to E3. Here all resolvent modes show significant differences in the stratified case
compared to the unstratified case. In particular, the backwards tilting of the velocity modes and
the phase difference across y of the density mode are pronounced. These phenomena occur in the

FIG. 10. Two-dimensional slices of response mode shapes for (kx, kz ) = (π/2, 2π ) at a critical-layer
location of y+ = 100 for (a) Riτ = 0, (b) 18, and (c) 100. Red and blue contours represent positive and negative
fluctuations, respectively. The contour levels are scaled by the maximum of each mode component. The dashed
black line in each subplot is the location of the critical layer where c = u(y+ = 100).
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FIG. 11. POD modes corresponding to (kx, kz ) = (π/2, 2π ) for (a) Riτ = 0, (b) 18, and (c) 100. The
horizontal dashed line is y+ = 100.

POD modes as well. There is noticeable backwards tilting in the all three velocity components with
particularly noticeable changes in the wall-normal POD mode and shift in the density POD modes
in the Riτ = 100 case compared to the neutrally stratified case. The biggest differences come in
the form of the wall-normal and density models because they are coupled through the Richardson
number in the stratified Navier-Stokes equations.

2. Spanwise-constant mode S1

As stratification is increased the low-rank behavior of the resolvent operator shifts from
moderate-to-large streamwise wavelengths to moderate-to-large spanwise wavelengths (Fig. 2).
Here we explore the amplitude and structure of the S1 mode combination given in Table II.

First, we observe the leading response mode and forcing amplitudes in Fig. 12. We see that
increasing the stratification decreases the streamwise and density response mode amplitude signif-
icantly. Interestingly, the streamwise response now has a double-peaked structure and the density
response does not; this is opposite to the mode shapes observed for the E3 mode at y+ = 100

FIG. 12. Amplitudes of the leading resolvent response modes for the (a) streamwise velocity and (b) den-
sity, and leading forcing mode for the (c) wall-normal velocity for Riτ = 0, 10, 18, 60, 100 (darker to lighter)
at c = ū(y+ = 100) (dotted line) for wave parameters corresponding to S1, respectively. The subscripts u and
ρ indicate the corresponding components of the resolvent response mode, and the subscript v indicates the
component of the forcing mode.
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FIG. 13. Two-dimensional slices of response mode shapes the long-in-spanwise mode (S1) where
(kx, kz ) = (π/2, π/20) at a critical-layer location of y+ = 100 for (a) Riτ = 0, (b) 18, and (c) 100. Red and
blue contours represent positive and negative fluctuations, respectively. The contour levels are scaled by the
maximum of each mode component. The dashed black line in each subplot is the location of the critical layer
where c = u(y+ = 100).

in Fig. 4. For the S1 mode, the amplitude of the wall-normal forcing component is reduced with
stratification and is significantly lower than the E3 wall-normal forcing amplitude shown in Fig. 4(c).

The two-dimensional resolvent response mode and POD modes for S1 are shown in Figs. 13
and 14, respectively. Here all resolvent modes show differences in the stratified case compared to
the unstratified case. In particular, the backwards tilting of the streamwise and wall-normal velocity
modes. The spanwise and density components become more localized to the critical layer at y+ =
100. The POD modes also show the backward tilt in the streamwise and wall-normal component.
The biggest difference between the POD and resolvent modes occur in the density component. The
density POD mode gets further from the wall with stratification and is centered above the critical
layer.

FIG. 14. POD modes corresponding to (kx, kz ) = (π/2, 0) for (a) Riτ = 0, (b) 18, and (c) 100. The
horizontal dashed line is y+ = 100.
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C. Energy balance at selected scales

Finally, we study the energy budget terms for the turbulent kinetic energy of the stratified channel.
We define the production, transport, viscous diffusion/dissipation, buoyancy flux, and pressure-
strain budget terms in the resolvent formulation [66,87] as

Ptot(y) = R

[
−∂u

∂y

∑
j

∫ ∞

−∞
σ 2

j χ
2
j (ψ̂

∗
j,uψ̂ j,v ) dk

]
, (17a)

Ttot(y) = R

[
−

∑
j

∑
i

∫ ∞

−∞
σ jχ jχi(φ̂

∗
i,uψ̂ j,u + φ̂

∗
i,vψ̂ j,v + φ̂

∗
i,wψ̂ j,w ) dk

]
, (17b)

Vtot(y) = R

[
1

Reτ

∑
j

∫ ∞

−∞
σ 2

j χ
2
j (ψ̂

∗
j,u�̂ψ̂ j,u + ψ̂

∗
j,v�̂ψ̂ j,v + ψ̂

∗
j,w�̂ψ̂ j,w ) dk

]
, (17c)

Btot(y) = R

[
−Riτ

∑
j

∫ ∞

−∞
σ 2

j χ
2
j (ψ̂

∗
j,vψ̂ j,ρ ) dk

]
, (17d)

�tot(y) = R

[
−

∑
j

∫ ∞

−∞
σ 2

j χ
2
j Dy(ψ̂

∗
j,pψ̂ j,v ) dk

]
, (17e)

where χ j , σ j , ψ̂ j , and φ̂ j are functions of k and the subscripts u, v,w, and ρ indicate the corre-
sponding components of the response or forcing mode. To get a global sense of the energy balance,
the equations above are integrated over all wavenumber triplets. Here we will examine only the
principal resolvent mode contribution to the local components of the total budgets for particular k,
defined as

P (y, k) = R

[
−∂u

∂y
σ 2

1 (ψ̂
∗
1,uψ̂1,v )

]
, (18a)

T (y, k) = R[−σ1(φ̂
∗
1,uψ̂1,u + φ̂

∗
1,vψ̂1,v + φ̂

∗
1,wψ̂1,w )], (18b)

V (y, k) = R

[
1

Reτ

σ 2
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∗
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∗
1,v�̂ψ̂1,v + ψ̂

∗
1,w�̂ψ̂1,w )

]
. (18c)

B(y, k) = R
[ − Riτ σ

2
1 (ψ̂

∗
1,vψ̂1,ρ )

]
, (18d)

�(y, k) = R
[ − σ 2

1 Dy(ψ̂
∗
1,pψ̂1,v )

]
. (18e)

The results for wavenumber combinations E1, E2, and E3 are shown in Fig. 15. Since the
wavenumber combinations E1, E2, and E3 are the most energetic at each wave speed, we predict
that the local components of the budget term should indicate the overall trend of the total budget
term at the corresponding wall-normal height. These quantities are compared to the energy budget
computed from the DNS, shown in Fig. 16. The trends observed in the energy budget computed
from the DNS are also recovered in the resolvent budgets. The production is mostly balanced by
viscous diffusion/dissipation and has larger magnitudes compared to the transport and pressure
strain (approximately 10% of the production term) or buoyancy flux (approximately 0.1%–1%,
depending on Riτ of the production term) terms. Comparing the quantities at the wall-normal
heights of interest, we see that at y+ = 15, there is little variation in the production and viscous
diffusion/dissipation terms in both DNS and resolvent modes. The difference in relative magnitude
over the various values of Riτ increases farther away from the wall, and at y+ = 100, the production
(and viscous diffusion/dissipation) of the Riτ = 100 case is half the production (and viscous
diffusion/dissipation) of the neutrally buoyant case in both the DNS and resolvent.
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FIG. 15. Energy budget terms (production, P; transport, T ; viscous diffusion/dissipation, V; buoyancy
flux, B; and pressure strain, �) computed from resolvent modes [Eqs. (18a)–(18e)] for wavenumbers given
by (a) E1 at c = u(y+ = 15), (b) E2 at c = u(y+ = 30), (c) E3, and (d) S1 at c = u(y+ = 100) for Riτ =
0, 10, 18, 60, 100 (darker to lighter).

For the S1 modes, the amplitudes of the production and viscous diffusion/dissipation terms are
significantly smaller than the E1, E2, and E3 wavenumber combinations. It is also evident that
production increases with stratification, and viscous diffusion/dissipation is almost entirely reduced.

Direct comparison of the integrated magnitudes is more difficult for the transport, pressure strain,
and buoyancy flux terms as they are not uniformly positive or negative. However, this indicates

FIG. 16. (Energy budget terms computed from the DNS for Riτ = 0, 10, 18, 60, 100 (darker to lighter).
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FIG. 17. (a) Resolvent (solid line) and DNS (dashed line) energy budget terms normalized by the respective
P (Riτ = 0, y+ = 30) as a function of Riτ for y+ = 30. (b) Resolvent (solid line) and DNS (dashed line) energy
budget terms normalized by the respective P (Riτ = 0, y+ = 30) as a function of y+ for Riτ = 0. Lines indicate
production (blue, circles), transport (red, diamonds), viscous diffusion/dissipation (green, crosses), buoyancy
flux (black, asterisks), and pressure strain (purple, triangles).

that, locally, buoyancy flux acts as an energy transfer term, much like the turbulent transport, as
the term adds energy in one wall-normal location and removes it from another. Because the DNS
energy budget is integrated for all spatiotemporal scales, it is impossible to deduce that the buoyance
flux term acts as a local energy transfer term from Fig. 16, which shows a net negative energy
balance from B at all wall-normal locations. In contrast, the resolvent buoyancy flux term indicates a
nonmonotonic distribution of energy in the wall-normal direction. Similar results could be obtained
through spatiotemporal deconstruction of the DNS energy budget term as in Ref. [88], but this
would require a time-resolved data set for a longer time domain. The resolvent turbulent transport
and pressure-strain terms stay relatively similar among different Riτ , as does the turbulent transport
and pressure-strain terms from DNS. The buoyancy flux is much more dependent on Riτ , with
variations becoming greater farther away from the wall in both the DNS and resolvent results.

These results can be better quantified by plotting the values at each wall-normal location
normalized by the production at y+ = 15 for the Riτ = 0 case for both the resolvent and the DNS
energy budgets, as shown in Fig. 17. This shows that the overall trend of the budget terms is
well captured by the resolvent budget terms, as a function of both friction Richardson number and
wall-normal location, with the exception of the transport term close to the wall. This discrepancy
may be attenuated by integrating over more wave speeds.

Note that the results are not expected to match that of DNS for all scales as the the energy
captured in the wall-parallel resolvent modes is known to be overpredicted and the energy captured
in the Reynolds stress and wall-normal resolvent modes underpredicted. This is a known issue
for the resolvent analysis in the primitive variables due to the competing mechanisms of the
Squire modes with the Orr-Sommerfeld modes [89,90]. Additionally, the underprediction of energy
captured in the Reynolds stress and wall-normal resolvent modes could explain the underprediction
of the transport term close to the wall. Crucially, though, the most energetic scale can reproduce the
integrated effect of all scales, which enables a quick predictive model of stratified boundary layers.
The discrepancy in the energy prediction between the resolvent model and DNS could be reconciled
by using nonlinear forcing terms computed from DNS as inputs to the resolvent model as shown in
Refs. [61,64].
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IV. CONCLUSIONS

The resolvent framework for the Navier-Stokes equations with the Boussinesq approximation
was applied to a stratified turbulent boundary layer. Computation of the leading resolvent modes
is more cost-effective than performing a full-scale simulation or experiment, while being able to
provide information on the flow. This quick model can provide meaningful insight into stratified
flows with only information about the mean profile and prior knowledge of energetic scales of
motion in the neutrally buoyant boundary layers.

The results show that despite using only a very limited range of representative scales, the
resolvent model was able to reproduce the relative magnitude of turbulence intensities and the
balance of the energy budget as well as provide meaningful analysis of structures in the flow. We
studied the amplitude of the resolvent response modes and two-dimensional slices of the mode
shapes of the rank-one approximation, which were then compared to the turbulence intensities and
the two-dimensional autocorrelation of the velocity and density fields of the DNS, respectively.
The resolvent response modes were able to predict the relative variation in turbulence intensities
as a function of wall-normal distance and Richardson number for the Riτ under consideration in
this study. The two-dimensional mode shapes also provided insight into how the autocorrelation
coefficient might shift as a function of Riτ . Finally, the energy budget terms for the turbulent kinetic
energy of the system were computed both using the rank-one approximation of the resolvent analysis
and the DNS data. Again, the resolvent energy budget predicts well the relative distribution of energy
between production, dissipation, transport, and buoyancy flux as a function of wall-normal distance
and Richardson number.

In the current study, the resolvent model was closed using mean velocity and density profiles
obtained from DNS and using the assumption of white-noise forcing. For full closure of the model
we would need to model the nonlinear forcing term or calculate it using data from simulations or
experiments. This was not explored in the present investigation but remains a topic of future work.
The computational cost of calculating the forcing and response modes at certain scales was on the
order of seconds on a laptop. Therefore, by obtaining only mean velocity and scalar profiles we
could generate a salient basis for a given stratified wall-bounded flow. The next steps involve using
in situ data to generate modes that are representative of flow phenomena observed in nature.
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