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Large-scale flow driven by turbulently generated internal gravity waves
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The generation of large-scale flows by stochastically excited internal gravity waves
remains largely unexplored despite numerous applications in geophysical and astrophys-
ical contexts. Here, we investigate this problem experimentally in a cylindrical annulus
geometry. Our working fluid is made of two layers. In the top, fresh water layer, turbulence
is generated by 12 jets with an oscillating flow rate. Those turbulent fluctuations impinge
the interface with the bottom, linearly stratified, salt water layer, where they excite internal
gravity waves which propagate, damp viscously, and generate a mean azimuthal flow. The
jet structure, wave spectra, and mean-flow properties are addressed using particle image
velocimetry. Our measurements validate quantitatively the transfer of momentum from
the waves to the mean flow through the wave associated Reynolds stress, as previously
validated for a monochromatic forcing. In addition, wave energy decays through time,
likely because of the mixing at the interface between the two layers, and the driven mean
flow accordingly decreases and eventually vanishes. This has up to now prevented the
observation of quasibiennial-oscillation-like reversals in our system.

DOI: 10.1103/PhysRevFluids.6.084801

I. INTRODUCTION

The emergence of large-scale dynamics from small-scale fluctuations is a quite studied topic
in geophysics and astrophysics; see, e.g., the formation of zonal jets on gaseous planets [1,2] or
the zonal wind oscillations observed on Earth’s, Saturn’s and Jupiter’s atmospheres [3–5]. In those
cases, the large-scale dynamics is driven by momentum exchanges with the small-scale fluctuations.
To investigate some aspects of planet stratospheres and star radiative layers, the forcing induced by
internal gravity waves is especially relevant to study. A single internal gravity wave propagating
through a fluid can force a mean flow [6–11], similarly to the more known example of acoustic
streaming [12]. In addition, internal gravity waves have the specific property of being antidiffusive
[13]: they reinforce the mean flow that propagates in the same direction, and accentuate velocity
gradients. The most striking manifestation of this process is indubitably the quasibiennial oscillation
(QBO) [3], an oscillation of stratospheric zonal winds observed in the Earth’s atmosphere, from
westward to eastward flow, with a mean period of 28 months.

The QBO mechanism was first theoretically developed by Holton and Lindzen [14,15]. A model
focusing only on forcing by internal gravity waves was later introduced and validated experimentally
by Plumb and McEwan [16,17]. This model is based on a monochromatic, standing forcing,
with two internal gravity waves propagating in the same vertical direction, but with opposite
horizontal velocities. Theory predictions accord remarkably well with experimental results, which
were recently extended to longer durations and to a larger parameter space [18]. Yet, the forcing
in this theory and its experimental realization is idealized and cannot compare to the stochastic
forcing observed in the Earth’s atmosphere [19]. Two-dimensional direct numerical simulations
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have recently shown that mean-flow reversals can also emerge from convectively generated internal
gravity waves [20]. In addition, a stochastic one-dimensional model expanding upon the original
Plumb’s model [16] has shown that, surprisingly, increasing stochasticity in the forcing reinforces
the regime of regular oscillations [21]. But to the best of our knowledge, experiments have until
now stayed in the monochromatic, standing, laminar limit [8,10,17,18].

To complement the observational, numerical, and theoretical evidences of the possibility of large-
scale flow emergence from stochastically generated internal gravity waves, we experimentally tackle
this topic in a setup close to the original Plumb’s QBO experiment [17] and present our results
in this paper. Section II introduces the setup and the theoretical model. Section III then presents
and discusses the experimental results. Lastly, Sec. IV summarizes our main conclusions and lists
possible improvements for future works.

II. MODEL, SETUP, AND METHODS

A. Theoretical model for internal gravity wave streaming

The theoretical model initiated by [16] is briefly introduced here to provide the basic knowledge
for understanding the underlying physical mechanisms as well as the experimental geometry and
results. Interested readers should refer to [18,22] for more details.

We consider a two-dimensional (ex, ez) Cartesian domain, periodic along the horizontal x axis,
and filled with a stably stratified fluid of constant buoyancy frequency N , with gravity pointing
downward g = −gez. We decompose the velocity field as u = u + u′, where u = (u, 0) is the
horizontally averaged flow and u′ = (u′,w′) are the small-scale fluctuations, coming from internal
gravity waves in our framework. The time evolution of the horizontal mean-flow u is rigorously
described by

∂t u − ν∂zzu = −∂z(u′w′). (1)

The right-hand term in Eq. (1) is the z derivative of the Reynolds stress associated with the waves. It
illustrates that the attenuation of the wave flux F = u′w′ with respect to height forces the horizontal
mean flow. The expression for the wave flux F can be analytically derived for a single plane wave as
done thoroughly in [22], including an extensive description of the different underlying assumptions.
Simply reproducing here the final expression from [10] for illustration purposes relevant to our
setup, we have

F (z) = F (0)exp

(
− 1

d

∫ z

0

[
α

[1 − u(z′)/c]2 + 1 − α

[1 − u(z′)/c]4

]
dz′

)
, (2)

where

d = αkxc4

νN3
(3)

is the wave attenuation length in the weak dissipation limit [23] and in the absence of mean flow, and
α = νN2

νN2+γ c2 quantifies the relative influence of bulk viscosity ν in the wave damping process, which
also includes wall friction denoted by γ (see also [18]). c stands for the wave horizontal velocity
c = ω/kx, with ω the wave frequency (0 � ω � N) and kx its horizontal wave number, and F (0) is
the wave flux at the boundary of the stratified layer where the wave is generated. The main feature of
the forcing (2) is that because of the corrective factors in the integral, the effective wave attenuation
length is shorter when the wave characteristic velocity c is oriented in the same direction as the
mean-flow u, which is then more strongly reinforced by the momentum transfer from the damped
wave. For example, if the mean flow in the stratified layer is positive, waves with positive c velocity
attenuate within a shorter distance than waves with negative c velocity, which propagate further in
the domain.
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FIG. 1. Left: Schematic of the cylindrical annulus geometry. Turbulence in the top layer is generated by
12 jets emerging from the red and blue holes. Waves are generated at the interface between the turbulent and
stratified layers and an azimuthal mean flow is observed. The positions of the green laser sheet and cameras for
particle image velocimetry (PIV) are also pictured. The figure is not to scale. Right: Top photography of the
setup and injection plate. The flow from the two pumps is divided into 12 pipes directed to the nozzle exits at
the top of the tank. The dotted blue (respectively, thick red) pipes are connected to the blue (respectively, red)
holes at the top of the tank in the left panel.

B. Tank description

The working tank has a concentric double cylinder geometry (see left panel of Fig. 1) and is
reminiscent of the tank used in the celebrated experiment of Plumb and McEwan [17], later extended
by Semin et al. [18]. Neglecting the curvature of the double cylinder as well as radial motions, this
geometry is equivalent to the two-dimensional (2D) Cartesian periodic model described above, with
the azimuthal eθ direction being equivalent to the horizontal periodic ex direction of the model. The
cylinders are 60 cm high and have diameters of d1 = 20 cm (respectively, d2 = 40 cm) for the inner
(respectively, outer) cylinder. For practical reasons (e.g., optical distortions), the cylinders are placed
into a rectangular tank whose dimensions are 50 × 50 × 75 cm3. All the different volumes (inside
the inner cylinder, the working region between the two cylinders, and outside the outer cylinder) are
connected at the top and bottom by small holes that allow water to circulate freely.

A depth of 45 cm from the bottom of the tank is filled with a linear gradient of salty water
using the double-bucket technique [24]. Above this stratified layer stands a 25-cm-high layer of
homogeneous fresh water. A circular plate with 12 holes regularly distributed azimuthally is located
10 cm below the free surface. One of every two holes is connected to a first pump, and the remaining
six holes are connected to a second pump, as pictured in the right panel of Fig. 1. The pumps take
water from the top of the tank, outside the outer cylinder, in order to avoid any perturbation on the
dynamics of interest.

This configuration generates a turbulent layer through the interaction of the 12 jets. The pump
flow rates are modulated sinusoidally, with a period of T = 20 s and a phase lag between the two
pumps of ϕ = 180◦, hence a typical forcing wavelength λ = 16 cm (the holes are equally spaced
on a d = 30-cm-diameter circle). These parameters allow us to impose a large-scale modulation in
the turbulent layer which has similar properties as the harmonic forcing in the experiment of [18],
in terms of period and wave number. Thus, the forcing for the internal gravity waves consists in a
large-scale modulation that forces waves at an imposed and controlled frequency, superimposed to
smaller and faster fluctuations resulting from the turbulent cascade of energy from the jets. Doing
so, we reproduce the forcing of [17,18] which succeeded in driving a large-scale, reversing flow,
and we investigate the additional effects of small-scale turbulence.

After filling the tank, the density is measured every 5 cm within the stratified layer using an
electronic densimeter Anton Paar DMA 35. The density profile shown in Fig. 2 is as expected
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FIG. 2. Left: Density profile taken before an experiment. In our convention, z = 0 is the bottom of the
stratified layer camera field, so the interface is initially located at z = 27 cm, with a homogeneous layer of
fresh water above and a constant N = 0.21 Hz stratified layer below. Right: Interface position over time during
an experiment. At t = 45 min, the refilling process is started.

linear, with a constant buoyancy frequency

N = 1

2π

√
−g

ρ0

∂ρ

∂z
= 0.21 Hz. (4)

In Fig. 2, as in all the following, the coordinate origin (x = 0, z = 0) is located at the bottom left
corner of the field visualized by our stratified layer camera (see next section). This origin is located
18 cm above the tank bottom, hence the interface between the stratified and homogeneous layers is
located initially at z = 27 cm, and the jets emerge from z = 42 cm.

The major issue of our setup is the mixing occurring at the interface. The turbulence in the
upper layer entrains and mixes salty fluid at the top of the stratified layer, resulting in a slow depth
decrease over time (see, e.g., [25]). This is quite problematic since wave-driven flows emerge over
similar long timescales, and both effects can significantly interact. To avoid any height variation of
the stratified layer, salty fluid is constantly poured at the bottom of the tank during the experiment
using the double-bucket technique, following the original idea of Semin et al. [18]. An imposed flow
rate of about 0.45 L min−1 balances the mixing rate at the interface, so that the interface stays at the
same location over time. The corresponding typical vertical velocity is about 3 × 10−5 m s−1, which
remains small compared to any other relevant velocity in the system. Fresh water is also pumped out
of the tank at the top to keep the total volume constant. With this process, we manage to maintain a
constant depth for the interface, as displayed in the right panel of Fig. 2. We see that the interface
position initially reaches lower and lower location, until the refilling process starts at time t = 45
min: the interface then slightly rises and finally stabilizes for t > 60 min at z = 21 cm.

C. Measurements

To quantify the flow in the tank, we perform particle image velocimetry (PIV). The tank is
seeded with silver-coated particles of diameter 10 μm and density ρp = 1040 kg m−3. The tank
is illuminated with a 532-nm, 1-W continuous laser. The laser plane is vertical and tangent to the
virtual cylinder of diameter (d1 + d2)/2 = 30 cm, i.e., it is located in the middle of the gap between
the two cylinders, as pictured in the left panel of Fig. 1. Because of the very different amplitudes
of the turbulent and stratified flows, two cameras are used to measure the velocity. A Nikon D5500
films the turbulent layer at 60 fps with a resolution of 720 × 1280 pixels over a 11 × 20 cm2 domain.
A Point Grey camera films the stratified layer at 2 fps with a resolution of 2048 × 2448 pixels
over a 20 × 23 cm2 domain. Acquired images are processed with DPIVSoft2010 [26] with 32 × 32
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FIG. 3. Left: Instantaneous velocity field in the turbulent layer. One jet is present in the camera view field.
Right: Time-averaged signal over a 2-min acquisition time.

pixel interrogation areas and 50% overlapping. Entrainment of salty fluid at the interface blurs the
acquired images and the PIV algorithm cannot compute the corresponding velocity vectors close to
the interface. The velocities at the exit of the jets and down to ∼5 cm are also not accessible because
of too large vertical velocities relative to the selected frame rate.

III. RESULTS

A. Jet structure

This paper thoroughly describes a set of experiments where the flow rate Q oscillates between
1 and 2 L min−1. Maximum recorded velocities at about 5 cm below the injection holes coherently
reach 15 cm s−1. With holes diameter d = 1 cm, a lower bound estimate of the jet Reynolds number
is Re ∼ 1500 and the jets are weakly turbulent. An instantaneous field is displayed in the left panel
of Fig. 3 and shows the structure of the jet at a given time. The flow is directed downward and
is deflected horizontally due to the stratified layer at z ∼ 21 cm. In the stratified layer (z < 21
cm), the fluid seems motionless: velocities are actually much smaller and are studied using the
second camera, as described in the next section. In the jet, small vortices are also observed, being
transported by the downward jet flow. The right panel shows a time-averaged field over a 2-min
window. The time-averaged jet shares similar characteristics with the instantaneous one. Only the
small vortices are filtered out.

Its is important to remember that the jet is not continuously blowing at a constant flow rate, but
it is modulated by a sinusoidal shape as illustrated in the left panel of Fig. 4. The vertical velocity
observed at a single point is shown in the right panel of Fig. 4. The imposed period T = 20 s can
be noticed, with vertical velocities oscillating between ∼0 cm s−1 and ∼ − 6 cm s−1. Small positive
velocities are sometimes reached and are due to the influence of the adjacent jets. When the flow
rate of the jet within the camera frame is at its minimum, the two adjacent jets are at their maximum
flow rate and create an upward return flow at the location chosen to plot the velocity signal shown
here.

The time-averaged velocity field is shown in the right panel of Fig. 3. From that mean profile,
we extract the vertical velocity at several heights and we plot these horizontal profiles in Fig. 5.
Going deeper into the tank, the jet velocity decreases and its radius increases, always maintaining
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FIG. 4. Left: Flow rate of the two pumps due to the imposed sinusoidal modulation. Right: Observed
vertical velocity at a single point located at x = 10 cm and z = 27 cm (see Fig. 3). One can notice the imposed
period T = 20 s.

its mostly Gaussian shape. Another feature of this figure is that the x position of the maximum
velocity slightly shifts to the right as the jet goes deeper into the layer, as highlighted by the red line.
When the jet gets closer to the interface, the maximum position shifts back to its initial position.
Yet, one can also observe that the Gaussian profile of the jet is still skewed towards positive x. We
explain these effects by a large-scale circulation taking place in the turbulent layer. This large-scale
flow is present in every single experiment performed, and is always directed in the same direction,
i.e., in the positive x direction. Despite our efforts and careful checking of the horizontality of our
injection plate and perpendicularity of all the nozzles, we did not manage to remove this large-scale
contribution from our turbulent layer. Yet, its amplitude (∼0.1 cm s−1) is relatively small compared
to the vertical velocities involved (a few cm s−1). The influence of this large-scale circulation is only
to slightly deviate the jets towards positive x at intermediate depths, as pictured in Fig. 5.

Figure 6 shows the vertically and time-averaged power spectral density (PSD) with respect to
the horizontal wave number kx (left panel) and to the frequency f (right panel). The PSD with
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FIG. 5. Horizontal profiles of vertical velocities taken from the time-averaged velocity field displayed in
Fig. 3. The colors indicate the z position, with dark purple located at the top of the jet and yellow located just
below the interface. xjet is the center of the injection hole. The red line shows the location of maximum velocity
for each height.
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FIG. 6. Left: Power spectral density of the horizontal (blue) and vertical (red) velocities as a function of
the horizontal wave number kx . Different slopes characterizing the spectrum for turbulent jets are displayed
in a dashed line [27]. Right: Power spectral density of the horizontal (blue) and vertical (red) velocities as a
function of the frequency f . The dashed line shows the −5/3 slope for reference. The vertical dashed line
indicates the frequency of the forcing f = 1/T = 5 × 10−2 Hz.

respect to kx is computed from PSDs at each time and each depth in the turbulent layer and then
vertically and time averaged. The mean PSD shares similar slopes with turbulent jets described
in [27], respectively corresponding to an energy cascade dominated by inertial transfers at small
kx (slope −5/3) and by viscous effects at large kx (slope −7), separated by a transition zone with a
slope −3 tentatively related by [27] to local two-dimensional effects. The averaged PSD with respect
to f peaks at f = 5 × 10−2 Hz, which corresponds to the T = 20 s period imposed to the jets. The
energy then decreases for f > 5 × 10−2 Hz with a slope close to −5/3, presumably corresponding
to the advection of the inertial range of the turbulent spectrum by the jet mean flow.

B. Stratified layer

Images taken from the second, slow frame rate camera, allow us to describe the internal gravity
wave field and the mean-flow properties.

1. Internal gravity waves

The left panel of Fig. 7 shows an instantaneous velocity field. Maximum velocities in the
stratified layer are approximately 3 mm s−1, i.e., 50 times smaller than the maximum velocities in the
upper layer. Horizontal and vertical motions observed in Fig. 7 are the signature of the turbulently
generated internal gravity waves. Above z = 20 cm, the motions of the turbulent layer are too fast for
the camera acquisition rate and result in false vectors computed by the PIV algorithm. A temporal
signal of the vertical velocity w taken at x = 10 cm and z = 16.5 cm is shown in the top right
panel. The oscillating behavior of w is obviously noticeable. However, the forcing period T = 20
s does not particularly stand out. This suggests that the waves are generated over a large range of
frequencies, as expected. The bottom right panel shows the time evolution of the vertical velocity w

along the x axis at z = 16.5 cm. Oscillations are observed along the whole x axis and are identified
as internal gravity waves by comparing the observed signal to the theoretical polarization relation in
Fig. 8. The forcing period T = 20 s is more noticeable here, but it is still superimposed with shorter
period waves.

To describe more precisely the wave pattern, we compute horizontally averaged power spectra
density of the horizontal and vertical velocities at the height z = 16.5 cm. PSDs are computed at
each x location from a 1-h signal and then horizontally averaged. The top left panel of Fig. 8 shows
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FIG. 7. Left: Instantaneous field in the stratified layer. Top right: 5-min vertical velocity signal at the
location x = 10 cm, z = 16.5 cm, pictured by the red cross in the left panel. Bottom right: Spatiotemporal
diagram showing the vertical velocity w along the x axis at z = 16.5 cm from a 150-s signal.

the PSD of the horizontal velocity u. A significant amount of energy is present at low frequencies.
This is the signature of a large-scale, horizontal flow which will be described later. The energy drops
at f ∼ 10−3 Hz. Then the energy increases again from f = 10−2 Hz to f ∼ 10−1 Hz, with a marked
cutoff at f = 2.1 × 10−1 Hz, corresponding to the buoyancy frequency N . High-energy peaks are
also observed. The first one at f = 5 × 10−2 Hz corresponds to the forcing frequency 1/T . Follow-
ing peaks are harmonics of the forcing frequency. The PSD of the vertical velocity w is displayed
in the top right panel of Fig. 8 and shares with the PSD of u the increasing energy and marked
peaks starting at f = 1/T , and the cutoff at f = 2.1 × 10−1 Hz. It is, however, significantly less
energetic at low frequencies f < 10−3 Hz. The remaining low velocity at low frequency is related
to the continuous refilling process. The bottom panel of Fig. 8 shows the ratio PSD(u)/PSD(w) in
black and the polarization relation of linear internal gravity waves (u/w)2 = (N/ω)2 − 1 in red. We
see a good agreement between the two curves in the range 1/T � f � N , showing that oscillating
motions at these frequencies are essentially internal gravity waves, contrary to motions at lower
frequencies. This is further confirmed by the good quantitative agreement between the measured
PSDs and the PSDs derived from the other velocity component combined with the polarization
relation, shown as gray dashed lines in the top panels of Fig. 8.

The z dependence of the wave energy has been investigated. Figure 9 shows the horizontally
averaged PSD of the horizontal velocity u (top panel) and vertical velocity w (bottom panel),
computed at each height: it confirms the main conclusions above. A lot of energy is present at
low frequencies for the horizontal velocity, over the whole tank depth. The forcing frequency and
harmonics are visible along the whole depth for both velocity components, and the energy is cut off
at N = 2.1 × 10−1 Hz. Almost no energy is seen at any height for 2 × 10−3 Hz < f < 8 × 10−3 Hz,
and only a small amount of energy is then seen up to the excitation frequency 1/T . The velocity
signal is thus composed of a slow, mean horizontal flow, superimposed to internal waves with
frequency 1/T � f � N .
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FIG. 8. Left: PSD of the horizontal velocity u computed at z = 16.5 cm for each horizontal location and
then horizontally averaged. The red dashed line shows the buoyancy frequency N = 0.21 Hz and the gray
dashed curve shows the theoretical spectra computed from the polarization relation and the experimental
spectra of w: PSD(uth ) = PSD(w)[(N/ω)2 − 1]. Right: Same for the vertical velocity w. Bottom: The ratio
PSD(u)/PSD(w) is plotted in black. The polarization relation of internal gravity waves (u/w)2 = (N/ω)2 − 1
is plotted in red. All PSDs are computed between t = 300 s and t = 3500 s.

One could have expected a stronger frequency dependence of the wave attenuation with depth,
as predicted from Eq. (3) which indicates an attenuation depth scaling in frequency with a power
4, and as seen, for example, in [23] for a convective excitation. Indeed, the dispersion relation
links the pulsation of the wave with its angle of propagation ω/N = cos(θ ). θ is the angle between
gravity and the group velocity direction (perpendicular to the wave vector). For low (respectively,
close to N) frequency waves, θ → π/2 (respectively, θ → 0) and therefore the energy propagates
almost perpendicular to the gravity, i.e., horizontally (respectively, vertically). Therefore, we expect
frequencies close to N to propagate deeper than frequencies small compared to N . This dependence
of the attenuation on the wave frequency is not clearly visible here and most of the waves seem to
reach the bottom of the measurement window. Actually, the attenuation length depends on frequency
but also on the horizontal wave number kx, and there is no reason to assume that waves at different
frequencies have the same kx (as opposed to the convective excitation studied in [23]). On the
contrary, with a Kolmogorov-like description of the jet turbulence, one would expect f ∝ k2/3

x [28]:
from Eq. (3), this would lead to a dependence of the attenuation depth in f −1/2 considering only
bulk viscosity. This effect combined with the influence of wall friction explains the rather weak
dependency of the attenuation length upon the wave frequency observed in the PSDs presented in
Fig. 9. Note also that Eq. (3) is valid for a two-dimensional plane wave in the weak propagation
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FIG. 9. PSDs of the horizontal velocity u (top) and of the vertical velocity w (bottom) with respect to
frequency and height. The buoyancy frequency N is shown by the gray vertical line. The PSDs are computed
between t = 300 s and t = 3500 s.

limit only, and hence does not account for the full dissipation (see discussion in [23]) nor for the
specific cylindrical shell geometry of our system (see Appendix B of [17]). In any case, the depth
profile of the integrated energy for the wave part of the spectrum 1/T � f � N , shown in Fig. 10,
confirms some wave damping with depth, which, as we show in the next paragraph, is at the origin
of the measured, horizontal mean flow. Additionally, one can notice the small depth dependency of
the signal forced at the main forcing frequency 1/T and its harmonics, which exhibit the presence
of nodes and antinodes: we have thus excited global modes of the system, which according to (1)
do not contribute significantly to large-scale flow forcing.

2. Large-scale flow

We argue that the energy present at low frequencies in the PSD of the horizontal velocity u
(Fig. 9) is the signature of a slowly evolving, horizontal large-scale flow in the stratified layer.
Window time averaging over 500 s and horizontally averaging over the whole field-of-view allow
us to estimate the horizontal mean-flow u, whose time evolution along the z axis is plotted in the left
panel of figure 11. At early times, only a small negative flow is observed. Quickly, this negative flow
expands deeper, and velocities reach a higher magnitude while a positive flow appears just below the
interface. This positive velocity layer is 1 cm thick. The negative layer is thicker but does not reach
the bottom of the tank. As mentioned before, the interface reaches lower positions with time at early
stages, until we start the refilling process (here at t ∼ 2200 s); then the interface location stabilizes.
Over an hour of observation, the mean flow does not evolve much and stays in the configuration
described above, characterized by a strong shear between the two opposite layers. While the thin,
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FIG. 10. PSD integrated between the forcing frequency 1/T and the buoyancy frequency N as a function
of depth, for the horizontal (blue) and vertical (red) velocities.

positive velocity layer might be driven by viscous coupling with the observed, residual mean flow in
the turbulent layer (see Sec. III A), another driving mechanism is necessary for explaining the strong
negative mean flow, which cannot be viscously driven nor related to some passive return flow, since
this negative flow is stronger in magnitude and deeper than the positive one. We demonstrate now
that it is related to a momentum transfer from the waves, following the mean-flow equation (1).

To quantitatively confirm this, the forcing term −∂z(u′w′) is computed from our experimental
data, and is time averaged over an hour in order to improve the signal-to-noise ratio. Time averaging
can be performed here because the mean flow does not evolve much over an hour as seen in the left
panel of Fig. 11. The time-averaged wave forcing term profile −∂z(u′w′) is compared in the right
panel of Fig. 11 to the viscous dissipation term of the mean flow ν∂zzu. Both equilibrate closely, as
expected from Eq. (1) at steady state.

One could also wonder whether the mean flow is somehow connected to our refilling process.
However, it turns out that (i) in Fig. 11, the same mean flow appears and persists without any
noticeable change before and after the start of the refilling, here at time t = 2200 s, and that (ii)
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FIG. 11. Left: Horizontal mean-flow u evolution over time. The interface is located at z ∼ 21 cm. Right:
Vertical, time-averaged profiles of the mean-flow viscous dissipation ν∂zzu in gray and of the Reynolds stress
forcing term −∂z(u′w′) in purple.
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FIG. 12. Top: PSD of the horizontal velocity u (left) and corresponding time evolution of the horizontal
mean-flow u (right) during 1 h continuing the acquisition shown in Figs. 9 and 11. Bottom: PSD of the
horizontal velocity u (left) and corresponding time evolution of the horizontal mean-flow u (right) during
1 h continuing the acquisition shown in the upper panels.

other experiments without using refilling (not shown here) exhibit the same mean flow and temporal
evolution.

The long-time evolution of the wave generation and mean-flow dynamics is looked at in Fig. 12,
showing the PSD of the horizontal velocity and the time evolution of its horizontal mean u for
several time windows for a total experiment time of 5 h. One sees that the wave energy becomes
weaker and weaker with time: there is less and less signal in the range 1/T � f � N . The frequency
peaks characterizing the forcing ( f = 1/T = 5 × 10−2 Hz and harmonics) are still highly visible,
as well as the low frequency fluctuations associated with the mean flow, yet over a decreasing
depth. The mean-flow evolution shows that its positive part close to the interface persists over the
whole acquisition time, while the negative part located below slowly vanishes. Eventually, only the
positive flow close to the interface remains. We argue that, over time, less and less energy goes into
the waves; therefore the negative mean flow which is wave driven, slowly vanishes. The positive
part of the mean flow is probably viscously driven by the large-scale circulation observed in the
turbulent layer.

To explain the decay in wave energy over time, we advance the issue of entrainment and mixing at
the interface. Even if the refilling process allows one to maintain the interface at a fixed location, the
entrainment still occurs and creates an increasing density jump between the turbulent and stratified
layers. Indeed, in our setup, the jets very quickly rip some fluid away from the top of the stratified
layer and mix it within the turbulent layer, without modifying the underlying linear density profile.
The density of the turbulent layer increases slightly (the eroded salty water is diluted over the whole
top layer), while the density at the top of the stratified layer becomes larger and larger: a step appears
and grows in the density profile. Diffusion would tend to erase that step, but for salt, the diffusion is
very slow and since the jets continuously entrain salty water at the top of the stratified layer, diffusion
does not act fast enough to smooth that profile. The density profile is not discontinuous, but the
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transition height remains negligible compared to the turbulent and stratified layer depths. Then, this
density jump acts like a barrier: the interface becomes “stiffer,” and less energy is transferred into
the waves. Only the main excitation at the forcing frequency 1/T and harmonics persist, yet with
decreasing amplitude (see Fig. 12 bottom). But this modal excitation does not force any large-scale
flow, since the mode amplitude does not exhibit any depth dependence.

The decrease of excitation efficiency when the interface density jump increases is easily under-
standable when accounting for the so-called “mechanical oscillator” excitation mechanism [29],
where overshooting drafts from the turbulence deflect the interface and trigger internal gravity
waves. In the presence of a density jump at the interface, part of the available energy is indeed
consumed for compensating the related potential energy, and wave energy accordingly decreases.
The decrease of excitation efficiency is less obvious when accounting for direct wave excitation from
the Reynolds stress associated to the turbulent fluctuations [28], which seems to be the dominant
mechanism when looking at self-consistent, two-layer, convective/stably stratified systems [23].
In this case, it was shown theoretically that the wave excitation is most efficient for very smooth
interfaces, which gives an upper bound on the wave flux [28]. However, it was also noticed
that precise results depend on the specific shape of the density profile. We are not aware of any
systematic experimental or numerical quantification of the energy transfer at the interface between
a homogeneous fluid layer and a linearly stratified layer separated by a density jump (see, however,
the recent work [30] in the close context of two layers with different stratification): this should be
the focus of future work.

IV. CONCLUSION

In the present study, we manage to drive, in the stratified layer of our configuration, a horizontal
mean flow from turbulently generated internal gravity waves. This mean flow is divided into a thin
upper part, confined close to the interface with the turbulent layer and going in the +x direction, and
a deep lower part going in the −x direction. This −x directed flow is indubitably due to wave forcing
through the vertical derivative of wave Reynolds stress. It slowly vanishes over time, concomitantly
with the decrease in excited wave energy, presumably because of the building of a density jump at
the interface.

Despite the fact that the observed flow is driven by internal gravity waves, the oscillating feature
of the QBO was not recovered in our experiment. Several explanations can be advanced to explain
this. First, in all performed experiments, the flow generated in the jet layer was always positive:
this highlights a symmetry breaking in our setup, which must nevertheless be very small since it
resisted all our careful investigations. Secondly, the decay in wave energy over time takes place
over similar timescales as potential reversal period in similar flows (i.e., typically 5000 s in [17]). It
is thus possible that the wave forcing becomes too small before it could drive any reversal. Finally,
in the theoretical model, the attenuation lengths of the waves are considered small compared to the
domain height. This is obviously not the case in our experiment, where some waves rebound at the
bottom of the stratified layer, especially those forming modes of high-energy peaks at f = 5 × 10−2

Hz and harmonics. The mean flow driven by upward propagating, reflected waves might negatively
interact with the one driven by downward propagating waves. We briefly addressed this issue in
2D direct numerical simulations with an ad hoc stochastic wave maker, and no-slip conditions at
the upper and lower boundaries, using the Dedalus solver [31] (see details in [32]): it turns out
that when waves have attenuation length larger than the domain height, a stationary mean flow is
indeed observed, as illustrated in the left panel of Fig. 13. The observed mean flow is characterized
by two layers with opposite directions and a strong shear located at z = 0.025, similar to the one
observed in Fig. 11. For comparison, the mean flow obtained for a higher domain is shown in the
right panel. The oscillating pattern of QBO appears, showing that the vertical extent of the domain
is of importance for generating wave-driven flows. This now demands systematic investigation.

To sum up, improving our experimental setup to observe QBO from stochastic forcing necessi-
tates one to (i) increase wave dissipation and (ii) to limit interface mixing. Solutions to access shorter
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FIG. 13. Left: Horizontal mean-flow u evolution over time in the stratified layer, obtained from 2D direct
numerical simulation with an ad hoc stochastic wave maker. The domain height is small compared to the
attenuation length of the generated waves. Right: Same for a domain ten times higher. In both cases, the
domain is 2D, periodic along the x axis. The buoyancy frequency is constant. Waves with random phases are
forced at the top boundary by setting velocity and buoyancy perturbations.

attenuation lengths are to increase N , to decrease kx, and/or to work with a much higher tank/with
a thinner shell/with a larger viscosity fluid (yet remaining turbulent in the upper layer). Solutions
to limit mixing imply some type of physical barrier; but those would cancel the wave excitation by
turbulent Reynolds stress, which is arguably the dominant mechanism in natural systems [23,28].
Then, jet turbulence may not be the most suited option to stochastically generate internal gravity
waves over a long time, and a generating mechanism inspired from [17] but adapted in order to
generate polychromatic waves may be a more reliable option for better control of the excitation
spectrum.
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