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A local artificial neural network (LANN) framework is developed for turbulence mod-
eling. The Reynolds-averaged Navier-Stokes (RANS) unclosed terms are reconstructed
by the artificial neural network based on the local coordinate system which is orthogonal
to the curved walls. We verify the proposed model in the flows over periodic hills. The
correlation coefficients of the RANS unclosed terms predicted by the LANN model can
be made larger than 0.96 in an a priori analysis, and the relative error of the unclosed
terms can be made smaller than 18%. In an a posteriori analysis, detailed comparisons
are made on the results of RANS simulations using the LANN, global artificial neural
network (GANN), Spalart-Allmaras (SA), and shear stress transport (SST) k-ω models.
It is shown that the LANN model performs better than the GANN, SA, and SST k-ω
models in the prediction of the average velocity, wall-shear stress, and average pressure,
which gives the results that are essentially indistinguishable from the direct numerical
simulation data. The LANN model trained at low Reynolds number, Re = 2800, can be
directly applied to the cases of high Reynolds numbers, Re = 5600, 10 595, 19 000, and
37 000, with accurate predictions. Furthermore, the LANN model is verified for flows over
periodic hills with varying slopes. These results suggest that the LANN framework has a
great potential to be applied to complex turbulent flows with curved walls.

DOI: 10.1103/PhysRevFluids.6.084612

I. INTRODUCTION

The Reynolds-averaged Navier-Stokes (RANS) simulation has been widely applied to study
complex turbulent flows in industrial applications, combustion, astrophysics, and engineering
problems for its low computing requirements [1–3], which can be derived by time averaging of
the Navier-Stokes equations [2]. Since the pioneering works of Reynolds by decomposing the
instantaneous quantity into its time-averaged and fluctuating quantities [4], a series of model-driven
approaches has been proposed to develop RANS models. These include the eddy viscosity models
[5,6], the Spalart-Allmaras model [7], the k-ε model [8–11], the k-ω model [12–14], the Reynolds
stress model (RSM) [15], etc. [2].

Recently, data-driven techniques have been incorporated into turbulence models [16–46]. The
discrepancies in the Reynolds stress anisotropy tensor are reconstructed by supervised learning [16].
Duraisamy et al. proposed a data-driven approach to the modeling of turbulence with enforcing
consistency between the data and the model [17,18]. Ling et al. developed the neural network
architectures embedded invariance properties in RANS simulations [22]. A physics-informed
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Bayesian framework for quantifying and reducing model-form uncertainties in RANS simulations
has been proposed by Xiao et al. [24]. Reynolds stress modeling discrepancies can be reconstructed
by a physics-informed machine-learning approach [27]. A physics-based implicit treatment was
proposed to model Reynolds stress by using machine-learning techniques [33]. Wu et al. proposed
a metric to quantitatively assess the conditioning of RANS equations with data-driven Reynolds
stress closures [36]. Furthermore, the recent progresses on data-driven turbulence models have been
summarized by Duraisamy et al. [41].

In this paper, we propose a local artificial neural network (LANN) framework for reconstructing
the RANS unclosed terms in the local coordinate system orthogonal to the curved wall. We find that
the Reynolds unclosed terms predicted by the LANN model exhibit high accuracy in the a priori
analysis for flows over periodic hills. We also study the accuracy of the proposed LANN model
in the a posteriori tests by examining the average velocity, wall-shear stress, and average pressure.
These tests suggest that the LANN model is a very attractive approach for developing models of
RANS unclosed terms in complex turbulent flows with curved walls.

This paper is organized as follows. Section II briefly describes the governing equations and
computational method. Section III discusses the direct numerical simulation (DNS) database of
compressible flows over periodic hills. Section IV introduces the LANN model for the reconstruc-
tion of RANS unclosed terms from the averaged flow fields. Section V presents both a priori and
a posteriori results of the LANN model. Some discussions on the proposed LANN models are
presented in Sec. VI. Conclusions are drawn in Sec. VII.

II. GOVERNING EQUATIONS AND NUMERICAL METHOD

The dimensionless Navier-Stokes equations for compressible turbulence of ideal gas in the
conservation form are [47–51]

∂ρ

∂t
+ ∂ (ρu j )

∂x j
= 0, (1)

∂ (ρui )

∂t
+ ∂[ρuiu j + pδi j]

∂x j
= 1

Re

∂σi j

∂x j
, (2)

∂E
∂t

+ ∂[(E + p)u j]

∂x j
= 1

α

∂

∂x j

(
κ

∂T

∂x j

)
+ 1

Re

∂ (σi jui )

∂x j
, (3)

p = ρT/(γ Ma2), (4)

where ui is the ith velocity component (i = 1, 2, 3), p is the pressure, ρ is the density, and T is the
temperature. The viscous stress is defined by σi j = 2μSi j − 2

3μδi jSkk , where Si j = 1
2 (∂ui/∂x j +

∂uj/∂xi ) is the strain rate tensor. The molecular viscosity μ = T 3/2(1+S)

T +S (S = 110.4K/Tf ) is de-
termined from Sutherland’s law [52], and the thermal conductivity κ is then calculated from the
molecular viscosity with the constant Prandtl number assumption. The total energy per unit volume
E is defined by E = p

γ−1 + 1
2ρ(u ju j ).

The hydrodynamic and thermodynamic variables in Eqs. (1)–(4) are normalized by a set of
reference variables: the reference velocity Uf , temperature Tf , length L f , density ρ f , energy per
unit volume ρ f U 2

f , viscosity μ f , thermal conductivity κ f , and pressure p f = ρ f U 2
f . There are three

reference governing parameters: the reference Reynolds number, Re ≡ ρ f Uf L f /μ f , the reference
Mach number, Ma = Uf /c f , and the reference Prandtl number, Pr ≡ μ f Cp/κ f . The speed of sound
is defined by c f ≡ √

γ RTf , where γ ≡ Cp/Cv is the ratio of specific heat at constant pressure Cp

to that at constant volume Cv and is assumed to be equal to 1.4. Moreover, R ≡ Cp − Cv is the
specific gas constant. The parameter Pr is assumed to be equal to 0.7. The parameter α is given by
α ≡ Pr Re(γ − 1)Ma2.

The RANS equations govern the dynamics of the mean scales, which can be obtained by
projecting the physical variables into the time-averaged variables by a Reynolds operation f̄ (x) =

084612-2



ARTIFICIAL NEURAL NETWORK APPROACH FOR …

limTR→∞ 1
TR

∫ t0+TR

t0
f (x, t ) dt , where f̄ denotes a time-averaged variable and TR is the integration

time[4]. Favre filtering (mass-weighted filtering, f̃ = ρ f /ρ̄) [53] is used to avoid additional RANS
unclosed terms and simplify the treatments in the equation of conservation of mass in compressible
flows. The Favre average obeys the following decomposition rules: f = f̄ + f ′ and f = f̃ + f ′′.

The dimensionless compressible governing equations for the time-averaged variables can be
expressed as follows:

∂ρ̄

∂t
+ ∂ (ρ̄ũ j )

∂x j
= 0, (5)

∂ (ρ̄ũi )

∂t
+ ∂ (ρ̄ũiũ j + p̄δi j )

∂x j
− 1

Re

∂σ̃i j

∂x j
= ∂τi j

∂x j
, (6)

∂ Ẽ
∂t

+ ∂[(Ẽ + p̄)ũ j]

∂x j
− 1

Re

∂ (σ̃i j ũi )

∂x j
− 1

α

∂

∂x j

(
κ̃

T̃

x j

)
= ∂CpQi

∂xi
+ ∂Ji

∂xi
, (7)

p̄ = ρ̄T̃ /(γ Ma2), (8)

where the time-averaged total energy Ẽ is defined by Ẽ = p̄
γ−1 + 1

2 ρ̄(ũ j ũ j ), the time-averaged

viscous stress is σ̃i j = 2μ̃S̃i j − 2
3 μ̃δi j S̃kk , where S̃i j = 1

2 (∂ ũi/∂x j + ∂ ũ j/∂xi ), and μ̃ is calculated
from Sutherland’s law.

The RANS unclosed terms appearing on the right-hand sides of Eqs. (5)–(8) are defined as

τi j = −ρ̄ũ′′
i u′′

j , Qj = −ρ̄˜u′′
j T

′′, (9)

where τi j is the Reynolds stress, Qj is the turbulent heat flux, and Ji is the triple correlation term
Ji = − 1

2 ρ̄(ũ ju jui − ũ ju j ũi ) ≈ τi j ũ j [54,55].
In this paper, we model the Reynolds stress τi j and turbulent heat flux Qj , and neglect other un-

closed terms. Meanwhile, we assume that the kinematic viscosity satisfies the following condition:

σi j = 2ρν(Si j − 1
3δi jSkk ) = 2ρ̄ν(S̃i j − 1

3δi j S̃kk ), where ν is the kinematic viscosity, and the term
1

Re
∂σi j−σ̃i j

∂x j
would not appear in the filtered momentum equation.

III. DNS DATABASE OF COMPRESSIBLE TURBULENCE

The DNS data of the compressible flows over the periodic hills (the baseline geometry of a
periodic hill is depicted by piecewise cubic polynomials [56,57]) are obtained from direct numerical
simulation with the high-order finite difference Navier-Stokes solver OpenCFD-SC [48,58]. A
sixth-order compact finite difference scheme is used for space discretization and a third-order
Runge-Kutta scheme is used for time integration [48,59]. No-slip velocity and adiabatic conditions
are imposed on the upper and lower walls for the velocity and temperature, respectively. We im-
plement periodic boundary conditions in the streamwise x and spanwise z directions. A body-fitted
curvilinear grid system is used in all of the simulations [60]. The flows are driven by a body force
F (t ) in the streamwise direction, which is a function of time only, and maintainthat the average
mass flux remains constant at every time step [50,61]: ∂

∂t

∫
vol ρu dv = 0.

The periodic hill channel flow configuration is shown in Fig. 1 [50,51,57,61–63]. The lengths
are nondimensionalized by the height of the hill, h. The dimensionless computational domain
is (0, Lx ) × 0, Ly × (0, Lz ), where Lx = 9, Ly = 3.035, and Lz = 4.5. The cross-section Reynolds
number over the hill crest is defined as ReS = ∫

S (ρu1)|x=0dSh/(
∫

S dSμwall ), where h is the hill
height. The volumetric Reynolds number is Rev = ∫

V ρu1dV h/(
∫

V dV μwall ). A relationship be-
tween ReS and Rev is Rev = 0.72ReS[55,61]. The wall temperature is fixed at 300 K. We present the
DNS results at the Reynolds number Re ranging from 2800 to 10 595 and Mach number Ma = 0.2
( Ma = ∫

S (u1)|x=0dS/(
∫

S dScwall )) with the grid resolution of 256 × 129 × 128.
The instantaneous streamwise velocity field at z = 0 is shown in Fig. 2(a). The flow field is

divided into two regions: the reverse flow with u1 < 0 and the forward flow with u1 > 0. Meanwhile,
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FIG. 1. The configuration of the flow over a periodic hill: every fourth curvilinear grid line is shown.

the statistical average quantities are obtained by averaging the quantities in the spanwise direction
and temporally for 200 flow-through times. The contour of the mean streamwise velocity and the
streamlines are displayed in Fig. 2(b). Back-flow and separation occur behind the first hill. The
separation and reattachment points are xsep = 0.227 and xreatt = 5.34, respectively [50,61,62].

The comparison of the mean streamwise and normal velocities ũ1 and ũ2 at 11 stations x = 0,
0.5, 1, 2, 3, 4, 5, 6, 7, 8, and 8.5 for Reynolds numbers Re = 2800, 5600, and 10 595 are shown
in Fig. 3. ũ1 and ũ2 computed from the present simulations are in excellent agreement with the
DNS results of Breuer et al. [50,62]. Figure 4 shows the Favre-averaged Reynolds stresses ρu′′

1u′′
1

and ρu′′
1u′′

2 at Re = 2800. It can be seen that the solved ρu′′
1u′′

1 and ρu′′
1u′′

2 by present simulation
agree well with the results of Breuer et al. [50,62]. Furthermore, the averaged pressure distribution
p̄ − p̄ave ( p̄ave = 1

Lx

∫ Lx

0 p̄ dx) along the lower wall is shown in Fig. 5. The pressure from the present
simulation is close to the previous DNS [62]. These comparisons validate the accuracy of the present
direct numerical simulations.

IV. THE STRUCTURE OF THE LANN MODEL

A fully connected artificial neural network (ANN) is used to reconstruct the nonlinear relation
between average input features and RANS unclosed terms τi j and Qj . The network structure of the
ANN is shown in Fig. 6 [64–66]. Neurons in layer l of ANN receive signals X l−1

j from layer l − 1
and process them with a series of linear or nonlinear mathematical operations, and then send signals
X l

i to neurons in layer l + 1 [67–69]. The transfer function is calculated as

X l
i = σ

(
sl

i + bl
i

)
, (10)

sl
i =

∑
j

W l
i jX

l−1
j , (11)

where W l
i j , bl

i , and σ are the weight, bias parameter, and activation function, respectively. We train
the ANN to update the weights and bias parameters so that the final output X O approximates well
the RANS unclosed terms τi j and Qj . Five ANNs are trained to predict each independent component
of τi j and Qj separately.

FIG. 2. Contours of the streamwise velocity field at Re = 2800: (a) the instantaneous streamwise velocity
field in the (x-y) plane at z = 0 and (b) the mean streamwise velocity ũ1 and the streamlines.
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FIG. 3. Profiles of the mean streamwise and normal velocities, ũ1 and ũ2, at different stations x = 0, 0.5,
1, 2, 3, 4, 5, 6, 7, 8, and 8.5 with Re = 2800, 5600, and 10 595: (a) ũ1 at Re = 2800, (b) ũ2 at Re = 2800, (c)
ũ1 at Re = 5600, and (d) ũ1 at Re = 10 595.

In this research, the fully connected ANN contains four layers of neurons (M : 64 : 32 : 1)
between the set of inputs and targets. The input layer has M neurons, while the output layer
consists of a single neuron. Two hidden layers are activated by the Leaky-Relu activation

FIG. 4. Profiles of the Favre-averaged Reynolds stresses ρu′′
1u′′

1 and ρu′
1u′

2 at different stations with Re =
2800.
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FIG. 5. The averaged pressure distribution p̄ − p̄ave along the lower wall for Re = 2800.

function:

σ (a) =
{

a if a > 0

0.2a if a � 0.
(12)

Meanwhile, linear activation σ (a) = a is used to the output layer. The loss function is defined by
the difference between the output X O and the RANS unclosed terms from DNS (〈(X O − τi j )2〉 or
〈(X O − Qj )2〉), where 〈 〉 represents the average over the entire domain [64]. The loss function is
minimized by the back-propagation method with Adam optimizer (learning rate is 0.001) [70].

The proper choice of input variables for flows over periodic hills with varying slopes is important
for the present ANN architecture to model the Reynolds stress τi j and the turbulent heat flux Qj

accurately. As shown in the previous work [41], the first-order derivatives of averaged velocities
have been used to establish a functional relation between { ∂ ũi

∂x j
, d} (d is the nearest distance from the

walls) and the RANS unclosed terms [41].
In the RANS simulations of flows over periodic hills with varying slopes, the RANS unclosed

terms have been predicted by machine-learning models, where the input features contain the first-
order derivatives of the mean velocity and temperature in the global reference frame [41]. Because
the angle between the local wall-normal direction and the global y direction varies with the spatial
position, it is difficult to extend the trained machine-learning model to flows over periodic hills with
varying slopes in the global reference frame, which makes it useless for other flows with general
boundaries. In order to optimize the input features while maintaining accuracy and generality, we
proposed the LANN model, which reconstructs the nonlinear function of the input features and
RANS unclosed terms τi j and Qj in the local coordinate system orthogonal to the nearest wall

FIG. 6. Schematic diagram of the ANN’s structure.
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FIG. 7. Transformation between the global and local reference frames in the flow over a periodic hill.

as shown in Fig. 7. The LANN model guarantees that the nearest distance between the present
point and the wall (d) can be measured along the η direction of the local coordinate system, which
is general for flows over periodic hills with varying slopes. A set of input variables and output
variables of different ANNs is shown in Table I. As shown in Fig. 6, the input and output features
XI (x, y), XO(x, y) in the global reference frame are transformed to XI (ξ, η), XO(ξ, η) in the local
reference frame for flows over periodic hills:( ∂ ũξ

∂ξ

∂ ũξ

∂η
∂ ũη

∂ξ

∂ ũη

∂η

)
= A

(
∂ ũx
∂x

∂ ũx
∂y

∂ ũy

∂x
∂ ũy

∂y

)
AT , (13)(

∂T̃

∂ξ

∂T̃

∂η

)
=

(
∂T̃

∂x

∂T̃

∂y

)
AT , (14)(

τξξ τξη

τηξ τηη

)
= A

(
τxx τxy

τyx τyy

)
AT , (15)

(QξT QηT ) = (QxT QyT )AT , (16)

where A = (sin(θ ) − cos(θ )
cos(θ ) sin(θ ) ), cos(θ ) = �x

r , sin(θ ) = �y
r , and r =

√
�x2 + �y2.

In order to increase the robustness of the ANN training, the first-order derivatives of the mean
velocity and temperature in XI are normalized by their root mean square (rms) values, which is
similar to the previous data-driven strategies [20,24,27,30,66,69]:

ZI = XI/X rms
I . (17)

Besides, we suppress overfitting with a cross validation. The performance of the model is
estimated by the test data. In this research, the inputs and outputs of the LANN model are the
mean flow features and the RANS unclosed terms τi j, Qj , respectively, which are obtained from the
DNS data. The three-dimensional (3D) DNS data are generated using 256 × 129 × 128 degrees of
freedom while the two-dimensional (2D) RANS is performed at the grid resolutions of 256 × 129
and 128 × 65. Finally, the network is trained by the Adam algorithm [70] with early stopping (if
validation errors did not decrease or improve for 10 epochs, the training would exit with the best
model corresponding to the lowest validation loss until then) [65]. The learning rate and batch size

TABLE I. Set of inputs and outputs for the ANNs.

ANN Inputs Outputs

ANN1
∂ ũξ

∂ξ
,

∂ ũξ

∂η
,

∂ ũη

∂ξ
,

∂ ũη

∂η
, ρ̄, d, μ̄ τξξ , τξη, τηξ , τηη

ANN2
∂ ũξ

∂ξ
,

∂ ũξ

∂η
,

∂ ũη

∂ξ
,

∂ ũη

∂η
, ∂T̃

∂ξ
, ∂T̃

∂η
, ρ̄, d, μ̄ Qξ , Qη
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FIG. 8. Learning curves of the proposed LANN model of the unclosed Reynolds stress τξξ : (a) standard
axes and (b) semilogarithmic axes.

of the ANN are 0.001 and 1000, respectively. The total data for ANN training are 32 639 grid points
at Re = 2800; 70% of data are for training, and the remaining 30% are for testing. The training and
testing losses show similar behavior and correlate closely after 100 global iterations as shown in
Fig. 8, which implies that the learning process is reasonable.

V. TEST RESULTS OF THE LANN MODEL

In this section, we conduct both a priori and a posteriori tests to evaluate the performance of
the LANN model for flows over periodic hills. In the a priori tests, the turbulence models are
directly computed from the DNS data as functions of the Reynolds averaged gradients of velocity
and temperature. The turbulence models’ performance is evaluated by comparing the Reynolds
stress and turbulent heat flux with the corresponding unclosed terms extracted from DNS. In the a
posteriori tests, the RANS simulation results by using different RANS models are compared with
the true unclosed terms computed from the DNS. The LANN model trained at Re = 2800 is used
to produce reliable and repeatable predictions at Re = 2800, 5600, 10 595, 19 000, and 37 000. We
calculated the correlation coefficients and relative errors of the predicted RANS unclosed terms τi j

and Qj in the a priori test. In the a posteriori test, results of the RANS simulations with the LANN
model are compared with the Spalart-Allmaras (SA) and shear stress transport (SST) k-ω models
and the DNS database. It is shown that the RANS simulations with the proposed LANN model can
predict the statistics of the averaged DNS data with high accuracy.

A. A priori tests

We evaluate the performance of the LANN model by calculating the correlation coefficient C(R)
and the relative error Er (R) of τi j and Qj . C(R) and Er (R) are defined, respectively, by

C(R) = 〈(R − 〈R〉)(Rmodel − 〈Rmodel〉)〉
(〈(R − 〈R〉)2〉〈(Rmodel − 〈Rmodel〉)2〉)1/2

, (18)

Er (R) =
√

〈(R − Rmodel )2〉√
〈R2〉

, (19)

where 〈·〉 denotes averaging over the volume. Table II shows the correlation coefficients and relative
errors of τξη and Qξ in the local reference frame for the LANN model in both training and testing
sets at Re = 2800. The difference between the results of training and testing sets is small, which
implies that the training process of ANN is not overfitting. The correlation coefficients are larger
than 0.96, and the relative errors are less than 0.18 for the LANN model.
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TABLE II. Correlation coefficient (C) and relative error (Er) of τξξ , τξη, τηη, QξT , and QηT for the LANN
model in the local reference frame at Re = 2800.

C τξξ τξη τηη Qξ Qη

Train 0.967 0.992 0.993 0.980 0.986
Test 0.966 0.992 0.993 0.979 0.987

Er τξξ τξη τηη QξT QηT

Train 0.140 0.111 0.082 0.177 0.164
Test 0.141 0.110 0.084 0.181 0.162

Eddy viscosity turbulence models have been widely used for aeronautical, meteorological, and
other applications [2]. The Boussinesq hypothesis is applied to establish the relation between RANS
unclosed terms and the first-order derivatives of mean velocity and temperature [5]. The traceless
part of the Reynolds stress τi j is proportional to the product of the mean strain rate tensor S̃i j and
the eddy viscosity μt . The Reynolds stress τi j and turbulent heat flux Qj are [7] τi j = μtαi j =
−μt (2S̃i j − 2

3
∂ ũk
∂xk

), Qj = μQβ j = −Cpμt

PrT

∂T̃
∂x j

, where αi j = −2(S̃i j − 1
3

∂ ũk
∂xk

), β j = − ∂T̃
∂x j

. The optimal

eddy viscosities (OEVs) are defined as μt = τi jαi j

αi jαi j
, μQ = Qjβ j

β jβ j
, which can minimize the discrepancy

between the Reynolds stress τi j (or turbulent heat flux Qj) and αi j (or β j) [33].

FIG. 9. The contours of the Reynolds stress components τ11, τ12 and turbulent heat flux Q1 predicted by
different turbulence models at Re = 2800 with a grid resolution of 256 × 129 and Lx = 9.0. The rows show
the predictions of the OEV, GANN, LANN, and SLANN models. The true DNS results are shown in the top
row for comparison.
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FIG. 10. The contours of the Reynolds shear stress τ12 of different turbulence models at Re = 2800 with a
grid resolution of 256 × 129 and Lx = 9.0: (a) DNS, (b) SA model, (c) SST k-ω model, (d) GANN model, (e)
LANN model, and (f) SLANN model.

In order to analyze the impact of the local reference frame vs the global reference frame on
the results, the ANN trained in the global reference frame is abbreviated as GANN. The a priori
results of different models are shown in Fig. 9. The OEV model cannot accurately reconstruct
the Reynolds stress and turbulent heat flux. The GANN, LANN, and simultaneous local artificial
neural network (SLANN) [the ANN with four (or two) outputs to represent and train all components

FIG. 11. The contours of the Reynolds shear stress error δτ12 of different turbulence models at Re = 2800
with a grid resolution of 256 × 129 and Lx = 9.0: (a) SA model, (b) SST k-ω model, (c) GANN model,
(d) LANN model, and (e) SLANN model.
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�

FIG. 12. Mean streamwise velocity ũ1 profiles predicted by different turbulence models at Re = 2800 with
a grid resolution of 256 × 129 and Lx = 9.0.

τ11, τ12, τ21, τ22 (or Q1, Q2) simultaneously] models can predict the Reynolds stress and turbulent
heat flux well, which are similar to the results of the DNS. In particular, although the magnitude of
the turbulent heat flux is very small and can be ignored at this low-speed flow, it can be predicted
by the GANN and LANN models well.

B. A posteriori tests

We evaluate the performance of the LANN model for flows over periodic hills with varying
slopes at Re = 2800, 5600, 10 595, 19 000, and 37 000. Furthermore, in order to show that the
LANN model can be applied to flows over periodic hills with varying slopes, a posteriori studies
of the LANN model applied to flow over periodic hills with the total horizontal length of the
domain Lx = 3.858α + 5.142, where α = 1.5, were conducted [71]. Here, α controls the width
of the hill, and the length of the flat section between the hills is 5.142, which is kept constant.
The two-dimensional Reynolds-averaged Navier-Stokes equations are solved with the finite volume
solver OpenCFD-EC developed by Li et al. [72,73]. The spatial gradients are calculated with a
second-order accurate discretization. The temporal advancement of the equations is achieved using
an implicit lower-upper symmetric Gauss-Seidel (LU-SGS) method. The flow is set to be periodic

FIG. 13. The iteration of the rms residuals for the continuity and momentum equations for the LANN,
LANN-1, and LANN-2 models at Re = 2800 with a grid resolution of 256 × 129 and Lx = 9.0: (a) continuity
equation (ρ̄) and (b) momentum equation (ũ1).
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FIG. 14. The contours of the mean streamwise velocity ũ1 of different turbulence models at Re = 2800
with a grid resolution of 256 × 129 and Lx = 9.0: (a) DNS, (b) SA model, (c) SST k-ω model, (d) LANN
model, (e) LANN-1 model, and (f) LANN-2 model.

in the streamwise direction. No-slip and adiabatic conditions are set at walls for the velocity and
temperature, respectively.

The SA model solves a transport equation for νt ; the eddy viscosity can be calculated from

μt = ρνt fν1. (20)

The governing equation for the intermediate variable νt is [7]

∂νt

∂t
+ ∂

∂x j
(νt ũ j ) = cb1Stνt + 1

σ

[
∂

∂x j

(
(ν̃ + νt )

∂νt

∂x j

)
+ cb2

∂νt

∂x j

∂νt

∂x j

]
− cw1 fw

(
νt

d

)2

, (21)

where St = � + νt
k2d2 fν2, fν1 = χ3

χ3+c3
ν1

, fν2 = 1 − χ

1+χ/ fν1
, χ = ρνt

μ
, fw = g[ 1+C6

w3

g6+C6
w3

]1/6, g = r +
Cw2(r6 − r), r = νt

St k2d2 , � is the magnitude of the vorticity vector, and d is the nearest distance from
the walls. Meanwhile, the model coefficients in the SA model are σ = 2/3, Cb1 = 0.1355, Cb2 =
0.622, κ = 0.41, Cw1 = cb1

κ2 + (1 + Cb2)/σ , Cw2 = 0.3, Cw3 = 2, Cν1 = 7.1, and Cw1 = Cb1/k2 +
(1 + Cb2)/σ . The periodic boundary condition is applied in the streamwise x direction for νt .
νwall

t = 0 is imposed on the upper and lower wall boundaries.
The Menter SST k-ω model is a two-equation eddy-viscosity model, which has been widely used

in the aerodynamic applications for its robustness and prediction of flow separation [12,74,75]. The
eddy viscosity of the SST k-ω model is given by

μt = a1ρk

max(a1ω, f2ω)/Re
. (22)

The governing equations for the turbulent kinetic energy k and specific dissipation rate ω are
[12,74,75]

∂ρk

∂t
+ ∂

∂x j
(ρkũ j ) = 1

Re

∂

∂x j

[
(μL + σkμT )

∂k

∂x j

]
+ 1

Re
Pk − Reβ∗ρωk, (23)
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FIG. 15. The contours of the mean streamwise velocity error δũ1 of different turbulence models at Re =
2800 with a grid resolution of 256 × 129 and Lx = 9.0: (a) SA model, (b) SST k-ω model, (c) LANN model,
(d) LANN-1 model, and (e) LANN-2 model.

∂ρω

∂t
+ ∂

∂x j
(ρωũ j ) = 1

Re

∂

∂x j

[
(μL + σωμT )

∂ω

∂x j

]
+ 1

Re
Pω − 1

Re
2(1 − f1)

ρσω2

ω

∂k

∂x j

∂ω

∂x j
, (24)

where Pk = μt�
2, Pω = Cωρ�2, a1 = 0.31, and β∗ = 0.09. The model coefficients σK , σω, β, and

Cω in the SST k-ω model are obtained by blending the coefficients of the k-ω model (φ1) with
those of the transformed k-ε model (φ2). The corresponding relation is φ = f1φ1 + (1 − f1)φ2.
The function f1 is given by f1 = tanh(arg4

1), arg1 = min[max(�1, �3), �2], �1 = 1
Re2

500μL

ρωd2 , �2 =
4ρσω2k

CDKωd2 , �3 = 1
Re

√
k

0.09ωd , CDKω = max(2 ρσω2

ω
∂k
∂x j

∂ω
∂x j

, 10−20). The auxiliary function f2 is defined as

f2 = tanh(arg2
2), where arg2 = max(2�3, �1). Meanwhile, the coefficients of the k-ω model are

given by σK1 = 0.85, σω1 = 0.5, β1 = 0.075, and Cω1 = 0.533; the coefficients of the k-ε model
are defined as σK2 = 1.0, σω2 = 0.856, β2 = 0.0828, and Cω2 = 0.440.

FIG. 16. Mean streamwise velocity ũ1 profiles predicted by the LANN models with different initial
conditions at Re = 2800 with a grid resolution of 256 × 129 and Lx = 9.0.
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FIG. 17. The iteration of the mean velocity error at the point (x, y) = (0.5, 1.2) for the SA, SST k-ω,
LANN, LANN-1, and LANN-2 models at Re = 2800 with a grid resolution of 256 × 129 and Lx = 9.0: (a)
δũ1 and (b) |δũ1|/ũDNS

1 .

Figures 10 and 11 show the Reynolds stress τ12 and its error δτ12 (δτ12 = τDNS
12 − τmodel

12 )
predicted by different turbulence models in the a posteriori test. Both the SA and SST k-ω models
predict τ12 poorly. Meanwhile, τ12 predicted by the GANN model is much smaller than the result
of the DNS near the lower wall. The LANN and SLANN models predict τ12 closer to the DNS.
Furthermore, the mean streamwise velocity ũ1 predicted by different turbulence models at 11
locations is shown in Fig. 12. The gray vertical line at x = 9 means the right boundary of the
computational domain. The abscissa is x + ũ1, which is plotted from zero to 10 to show the change
of x + ũ1. Due to numerical instability, the GANN model cannot predict the mean streamwise
velocity ũ1 well. Both the SA and SST k-ω models show similar characteristics. ũ1 predicted by
the SA and SST k-ω models are obviously smaller than that of the DNS data near the second hill.
The LANN and SLANN models can accurately predict ũ1 near the upper and lower walls, which
are consistent with the results of Figs. 10 and 11.

In this research, the RANS solver with the SA model was employed to reach convergence,
and the simulation with the LANN model was also performed to reach a convergent state. In
order to study the impact of the initialization and the residual behavior of the LANN model,
two more initializations are considered, which use the following fields as initial flow fields: (1)
the convergent flow field with the SST k-ω model, and (2) ρ̄ = 1.0, ũ1 = 0.72, and T̃ = 1.0,
which are abbreviated as the LANN-1 and LANN-2 models, respectively. The rms residuals of
the RANS solver with different models are shown in Fig. 13, and they converge to less than
3 × 10−6 for the continuity equation (ρ̄) and to less than 2 × 10−5 for the momentum equation
(ũ1) [22]. Furthermore, Figures 14 and 15 show the contours of the mean streamwise velocity ũ1

and its error δũ1 = ũDNS
1 − ũmodel

1 predicted by different turbulence models. The LANN models
with different initial conditions show similar characteristics, which perform better than the SA
and SST k-ω models. As shown in Figs. 16 and 12, the mean stream velocity profiles predicted

FIG. 18. Grid spacing in wall units along the bottom wall of RANS simulations with the SA, SST k-ω, and
LANN models at Re = 2800 with a grid resolution of 256 × 129 and Lx = 9.0.
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FIG. 19. Hill flow contours of the mean streamwise velocity ũ and the streamlines at Re = 2800 with a
grid resolution of 256 × 129 and Lx = 9.0: (a) SA model, (b) SST k-ω model, and (c) LANN model.

by the LANN models are closer to the DNS result than the SA and SST k-ω models. The
iterative behavior of the velocity error δũ1 at the point (x, y) = (0.5, 1.2) near the separation
region is shown in Fig. 17. The velocity error δũ1 converges after the desired number of iterations,
which implies that the RANS simulations are reasonable. The velocity error δũ1 predicted by the
LANN models is one order of magnitude smaller than that predicted by the SA and SST k-ω
models. These results show that the LANN models with different initialization are convergent and
consistent.

Both a priori and a posteriori tests of the SLANN model and the LANN model are shown in
Figs. 9–12. The predictions by the LANN model are similar to those of the SLANN model. Thus,

FIG. 20. Profiles of the averaged wall shear stress τ̃w and the averaged pressure distribution p̄ at Re = 2800
with a grid resolution of 256 × 129 and Lx = 9.0: (a) τ̃w and (b) p̄.
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FIG. 21. Mean streamwise velocity ũ1 profiles with a grid resolution of 256 × 129 and Lx = 9.0: (a) Re =
2800, (b) Re = 5600, and (c) Re = 10 595.

the LANN model can give reasonable results. Different from the work of Ling et al. by incorporating
invariances into their relationship between velocity gradient and Reynolds stress [22], the impact
of density, viscosity, and the nearest distance from the walls, d , are considered in this work, and
it is hard to incorporate invariances directly into their relationship between inputs and outputs. We
train τi j and Qj separately where no physical constraint is added to the ANN training, although it is
important to train all outputs simultaneously with some physical constraints to ensure the physical
realizability of τi j and Qj for the ANN model. We will focus on the ANN models with some physical
constraints in the next step.

The performances of the LANN model are evaluated by calculating the average velocity, wall-
shear stress, and average pressure. The variations of the grid spacing in wall units in the x and y
directions along the bottom wall for RANS simulations with the SA, SST k-ω, and LANN models
are shown in Fig. 18. The maximum grid spacings in the x and y directions are located at the
downstream wall due to a large increase in the friction velocity in this region. Figure 19 shows the
mean streamwise velocity contours and the streamlines from RANS simulations with the SA, SST
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TABLE III. Relative error (Er) of ũ1 for different models at Re = 2800 and y = 2.5 with the grid resolution
of 256 × 129.

Er\x 0 0.5 1 2 3 4 5 6 7 8 8.5

SA 0.035 0.030 0.026 0.020 0.026 0.039 0.054 0.061 0.061 0.050 0.044
SST k-ω 0.018 0.014 0.010 0.005 0.012 0.028 0.043 0.050 0.046 0.033 0.027
LANN 0.015 0.018 0.021 0.032 0.032 0.029 0.025 0.022 0.019 0.015 0.014

k-ω, and LANN models. The separation and reattachment points are at xsep = 0.316, 0.318, 0.346
and xreatt = 7.70, 7.15, 4.80 for the SA, SST k-ω, and LANN models, respectively. The separation
point at xsep = 0.316 predicted by the SA model is slightly closer to the DNS result (xsep = 0.227).
The reattachment point at xreatt = 4.80 predicted by the LANN model is much closer to the DNS
result (xreatt = 5.34).

Figure 20(a) shows the distribution of the averaged wall shear stress τ̃w along the lower wall at
Re = 2800 (τ̃w = 1

Re
∂ ũξ

∂η
, where ũξ is the flow velocity parallel to the wall and η is the distance to the

wall). τ̃w predicted by the LANN, SA, and SST k-ω models show similar behaviors as the DNS data.
The peak of the profile of τ̃w is recovered more accurately by the LANN model than the SA and
SST k-ω models. The averaged pressure along the lower wall at Re = 2800 is shown in Fig. 20(b).
The mean pressure predicted by the LANN model is closer to the DNS data than that predicted by
the SA and SST k-ω models in the range 1 � x � 8. We compare the mean streamwise velocity ũ1

at 11 locations in Fig. 21. The SA, SST k-ω, and LANN models accurately predict ũ1 near the upper
wall. The RANS simulation with the SA and SST k-ω models do a poor job near the lower wall,
especially behind the separation. In contrast, ũ1 predicted by the RANS simulation with the LANN
model are in good agreement with the DNS data at all locations, suggesting that the LANN model
can predict the mean streamwise velocity ũ1 of flows over periodic hills accurately. Furthermore,
the performance of the LANN model trained at Re = 2800 is examined by predicting the mean
streamwise velocity ũ1 profile for flows over periodic hills with higher Reynolds numbers Re =
5600 and 10 595. We display the mean streamwise velocities ũ1 of DNS and RANS simulations
with the SA, SST k-ω, and LANN models at Re = 5600 and 10 595 in Figs. 21(b) and 21(c). One
can see that some errors occur near the lower and upper walls in the predicted ũ1 by the SA and SST
k-ω models. In contrast, the results of the LANN model are very close to those of the DNS. Table III
shows relative errors of ũ1 for different models at Re = 2800 and y = 2.5. The relative errors of the
LANN model are smaller than 0.03 for all the points.

The generality of the LANN model is examined by plotting the mean streamwise velocity ũ1

profiles for flows over periodic hills on coarser grids and in a different computational domain (the
detailed information about the new Lx can be given with Lx = 3.858α + 5.142, where α = 1.5) [71].
The mean streamwise velocity ũ1 profiles for Re = 2800, 5600, and 10 595 with a grid resolution
of 128 × 65 are shown in Fig. 22. Values of ũ1 predicted by the LANN model are much closer
to those of DNS, compared to those predicted by the SA and SST k-ω models. Furthermore, we
evaluated the performance of the LANN model against the experimental results by Rapp et al. at
Re = 19 000 and 37 000 [76]. As shown in Fig. 23, compared with the results from the experiments
[76], the mean streamwise velocity ũ1 from the LANN model matches better than those from the
SA model. Finally, Fig. 24 shows the mean streamwise velocity ũ1 for flow over periodic hills with
a total horizontal length of Lx = 10.929 (α = 1.5). The results from the LANN model show good
agreement with the DNS results, which are better than those obtained with the SA and SST k-ω
models under the same grid resolutions.
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FIG. 22. Mean streamwise velocity ũ1 profiles with a grid resolution of 128 × 65 and Lx = 9.0: (a) Re =
2800, (b) Re = 5600, and (c) Re = 10595.

VI. DISCUSSION

The flow over a periodic hill is one of the standard examples for developing new turbulence
models of RANS [41], which includes the separation, recirculation, and reattachment. One impor-
tant characteristic of RANS models is that the RANS unclosed terms are very complex in turbulence
near the boundary. It is hard to reconstruct the RANS unclosed terms accurately and stably near a
wall, which depend strongly on the distance to the walls [7,41]. Due to the irregular and diverse
nature of turbulence, it is difficult to explicitly derive the dependence of RANS unclosed terms on
the mean flow properties with analytical methods. The advantage of the LANN model in the local
reference frame is that the η axis of the local coordinate system is orthogonal to the nearer wall
and the nearest distance from the walls, d , can be measured along the coordinate axis η, which is
general and versatile for complex wall conditions. In this research, it has been demonstrated that the
LANN method is a powerful tool which can efficiently learn the high-dimensional and nonlinear
relations between the RANS unclosed terms and the mean flow fields for flows over periodic hills
with varying slopes. In this work, the Reynolds stress and turbulence heat flux are trained without

084612-18



ARTIFICIAL NEURAL NETWORK APPROACH FOR …

FIG. 23. Mean streamwise velocity ũ1 profiles with a grid resolution of 256 × 129 and Lx = 9.0; dotted
curves denotes experiments of Rapp and Manhart [76]: (a) Re = 19 000 and (b) Re = 37 000.

FIG. 24. Mean streamwise velocity ũ1 profiles at Re = 2800 with Lx = 10.929 (α = 1.5): (a) grid resolu-
tion of 128 × 65 and (b) grid resolution of 256 × 129.
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guaranteeing the symmetric and Galilean invariant. It is important to train all components with
symmetric properties and physical realizability for future ANN models. We will follow the works
of Pope and Ling et al. to incorporate invariances into the relationship between velocity gradient
and Reynolds stress in the local reference frame [22,77]. The effects of more complex boundary
conditions on the RANS simulations of wall-bounded turbulent flows will be modeled with the
LANN framework in a follow-up study.

VII. CONCLUSIONS

In this work, we proposed a framework of LANN for the RANS unclosed terms in RANS sim-
ulations of compressible turbulence. The proposed LANN model depends on the local coordinate
system orthogonal to the wall for flows over periodic hills. In the a priori test, the correlation
coefficients are larger than 0.96 and the relative errors are smaller than 18% for the LANN model. In
an a posteriori analysis, we compare the performances of the LANN model with those of the GANN,
SA, and SST k-ω models in the predictions of the average velocity, wall-shear stress, and average
pressure in flows over periodic hills with varying slopes α = 1 and 1.5. There are non-negligible
errors between the mean velocities predicted by the GANN, SA, and SST k-ω models and the
results of DNS near the walls, especially in the region right behind the separation. In contrast,
the LANN model predicts the mean velocity accurately, and it also reconstructs the mean pressure
closer to those of the DNS than those with the SA and SST k-ω models at Reynolds numbers
Re = 2800, 5600, 10 595, 19 000, and 37 000. In addition, the mean velocity in flows over periodic
hills with longer horizontal width Lx = 10.929 (α = 1.5) predicted by the LANN model is in well
agreement with that of the DNS. The above comparison showed that the LANN model outperformed
the GANN, SA, and SST k-ω models in the flows over periodic hills.

The LANN model should also be very useful to wall-bounded turbulent flows with curved
walls. There are several issues that need further exploration: the physical relationship between
averaged flow fields and the RANS unclosed terms, the hyperparameter space, the symmetry and
interpretation of the neural network models, the nonlocality characteristics of the RANS dynamics,
and applications in more complex flows.
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