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This study concerns conformal invariance of certain statistics in 2d turbulence. Namely,
there exists numerical evidence by Bernard et al. [Nature Phys. 2, 124 (2006)], that the
zero-vorticity isolines x(l, t ) for the 2d Euler equation with an external force and a uniform
friction belong to the class of conformally invariant random curves. Based on this evidence,
the CG invariance was formally proven by Grebenev et al. [J. Phys. A: Math. Theor.
50, 435502 (2017)] by a Lie group analysis for the 1-point probability density function
(PDF) governed by the inviscid Lundgren-Monin-Novikov (LMN) equations for 2d vortic-
ity fields under the zero external force field. In this work we consider the first equation from
the LMN chain for 2d scalar fields under Gaussian white-in-time forcing and large-scale
friction. With this, the flow can be kept in a statistically steady state and the analysis is
performed for the stationary LMN. Specifically, for the inviscid case we prove the CG
invariance of the 1-point statistics of the zero-isolines x(l ) of a scalar field, i.e., the CG
invariance of the probability f1(x(l ), φ)dφ that a random curve x(l ) passes through the
point x with φ = 0 for l = l1. We show an example, where the proposed transformations
represent a change between PDF’s describing homogeneous and nonhomogeneous fields.
Possible implications of this result are discussed.

DOI: 10.1103/PhysRevFluids.6.084610

I. INTRODUCTION

Invariance under scaling transformations is a remarkable feature of the Navier-Stokes system in
2d . It is closely related to the concept of self-similarity which implies the investigated fields show
the same statistical properties at different scales. After a scale transformation, a scalar field �(x)
becomes λs�(λx), where λ is a scaling factor and s is a coefficient which in the first place is arbitrary
in the Navier-Stokes system if viscosity is neglected.

The presence of the inverse cascade in 2d turbulence allows to obtain a stationary state where
energy, injected at the forcing scale is transported towards larger scales where it is extracted by
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the large-scale friction. In this region of the spectral space, Kolmogorov’s scaling laws are satisfied
exactly. However, in many physical systems the existing scale invariance may be extended to the
conformal invariance [1], a scaling which depends on position x → λ(x). In the context of 2d tur-
bulence, such possibilty was first suggested by Polyakov [2]. The first example is the CG invariance
of the statistics of zero-vorticity isolines, based on the 2d Euler equation with an external Gaussian
white-in-time forcing on small scales and a uniform friction in a flow domain, see Refs. [3] and [4].
Therein the equations were solved on a torus with periodic boundary conditions and the system was
kept in a statistically stationary state. It was shown numerically that zero-vorticity isolines belong
to the class of conformally invariant curves that can be conformally mapped into a one-dimensional
Brownian walk called Schramm-Löwner evolution (SLEκ ) curves [5], with diffusion coefficient
κ = 6, where κ classifies the conformal invariant random curves. It is interesting that SLE6 first
appeared in the classical model of critical percolation and corresponds to a self-avoiding random
walk [6]. The second example refers to statistical properties of turbulent inverse cascades in a class
of models describing a scalar field transported by a two-dimensional flow; see Refs. [7,8]. These
works include several cases of physical models, such as surface quasigeostrophic (SQG) turbulence
which describes a rotating stably stratified fluid with a uniform potential vorticity, the asymptotic
case of the Hasegawa-Mima equation for drift waves in magnetized plasma [9], the Charney and
Oboukhov equation for waves in rotating fluids [10]. It was shown that the zero-isolines of the scalar
field are statistically equivalent to conformal invariant curves within the resolution of numerics. In
particular, the zero-temperature isolines in SQG model belong to the same universality class SLEκ

with κ = 4 at large scales (in the inverse cascade).
The exact mathematical result, as to whether the conformal invariance exists in the statistics

of two-dimensional turbulence, was first obtained in Ref. [11]. Therein we performed a Lie group
analysis of the first equation from the infinite Lundgren-Monin-Novikov (LMN) hierarchy for the
probability density functions (PDFs) of vorticity, with the assumptions of zero viscosity and forcing.
We proved that the CG is generally broken for the first LMN equation or the f1(x, ω, t )—equation,
apart from points x ∈ D ⊂ R2 on the associated characteristic with zero-vorticity or in general on
the level set {x ∈ R2 : ω = ω(x) = 0}. Notice that the characteristics of the LMN chain exhibit a
direct analogy to the Lagrangian description of turbulence [12] and the characteristic equations de-
scribe the dynamics of the statistics of a class of fluid particles moving in a conditional velocity field.
The Lagrangian point of view was further addressed in Ref. [13], where the CG invariance both for
the Lagrangian path and the 1-point PDF of vorticity, i.e., f1(x, ω, t ) taken along the zero-vorticity
characteristics was established. The CG invariance of the normalization and reduction properties,
the separation and coincidence properties of the PDFs were also proven. The above-mentioned
findings were expanded in Ref. [14] to a broader class of hydrodynamic models generalized to
large-scale friction for scalar fields. We proved that the zero-scalar characteristics of the equations
are conformally invariant in the presence of large-scale friction, while viscosity, in general, breaks
CG.

To link the results obtained in Refs. [11,13,14] with the results of Refs. [3,7], we presently
consider the first equation from the LMN chain for 2d scalar fields φ under Gaussian white-in-
time forcing and large-scale friction. With this, the system is kept in a statistically steady state
which leads to the stationary LMN equations. The invariance of such stationary setting with nonzero
forcing is considered for the first time in this work. Moreover, while our previous contributions were
focused on the Lie group analysis and infinitesimal forms of transformations, in the present paper
we consider their corresponding global forms. We are interested in the CG invariance of the 1-point
statistics of the zero-isolines x(l ) of scalar fields or the probability measure f1(x, φ)dφ calculated
on x(l ). To show the invariance we will use the group of transformations G which was derived in
Ref. [11] for the vorticity field and was generalized for scalar fields in Ref. [14]. The group G acts
conformally with respect to the spatial variable x and transforms invariantly only “a fragment” of
the first LMN equation, i.e., the f1(x, ω, t )|ω=0 equation.

We show that with the use of conformal invariance some statistics of anisotropic field can be
determined based on solution of the LMN for the isotropic case. This is another new contribution of
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the present paper. As our considerations are restricted to the first LMN equation, the 2-point PDF
which enters this equation, should be treated as an a priori determined probability density.

In the following Sec. II equations governing the 2d turbulent flow are introduced. Next, in Sec. III
the classical scaling invariance is discussed. Its extension towards conformal invariance is presented
in Sec. IV. In Sec. IV A we consider the first equation of the inviscid LMN chain for scalar fields
under a white-in-time forcing term with the Gaussian statistics to link it to the inverse cascade
template [8]. We demonstrate that the group G transforms this equation invariantly, too. Then we
prove the invariance of the probability measure under the conformal transformations of D. In section
IV B, we show that, as in the case of the characteristic lines (see Ref. [14]), the CG invariance of the
1-point statistics of the zero-isolines of scalar fields is broken if the viscous term is included into
the equation. An example of transformation is introduced in Sec. V. A discussion and summary of
results are given in Sec. VI.

II. GOVERNING EQUATIONS

We consider a class of hydrodynamic models in 2d for a scalar variable �(x, t ), governed by the
following equation

∂�

∂t
+ u · ∇ � = ν∇2� − α� + L(x, t ), (1)

where ν denotes molecular viscosity or diffusivity, α is the Ekman friction coefficient with the
dimension 1/τ where τ is a timescale and L(x, t ) is a white-in-time random Gaussian forcing term
with nonzero second-order cumulants

〈L(x, t )L(x′, t ′)〉 = 2Q(x, x′)δ(t − t ′), (2)

where δ is the Dirac δ function. The term −α� in Eq. (1) represents the frictional damping, respon-
sible for the removal of energy at large scales. For instance, relevant to geophysical applications is
the rotating flow subject to the Ekman friction. For a single scalar field, the form of the friction is
the same as given in Eq. (1); see Ref. [15].

As in Ref. [8], we assume that the components of the velocity field u = (u, v) read

u(x, t ) = β

∫
dx′�(x′, t )

(y − y′)
|x − x′|m , (3)

v(x, t ) = −β

∫
dx′�(x′, t )

(x − x′)
|x − x′|m , (4)

where β is a specific model constant, which can be set to 1 by rescaling of the system and m > 1
is an integer. Different values of m correspond to different physical models, that is, for m = 2,
the scalar � is a vorticity in 2d turbulence, for m = 3, Eqs. (1), (3), and (4) describe the surface
quasi-geostrophic model, with the variable � being a temperature, finally m = 6 is the asymptotic
limit of an equation which describes large-scale flows of a rotating shallow fluid flow [10] or a
certain regime of plasma flows [9].

In the present work we will focus on the statistical approach and instead of the instantaneous
scalar �(x, t ) we will rather consider its probability density function. The following notation will
be used: the components of the position vector x are x = (x, y). The sample space variable of a
scalar field at the point x is denoted by φ. If 2-point statistics are considered, the second point
will be denoted as x′ = (x′, y′) and the corresponding sample space variable of the scalar will be
denoted by φ′. The transport equation for the 1-point pdf f1(x, φ, t ) was derived in Ref. [16], see
also Ref. [17], and can be written as

∂ f1(x, φ, t )

∂t
+ ∇x · [〈u(x)|x, φ〉 f1(x, φ, t )] = F , (5)
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where 〈u(x)|x, φ〉 is the conditional velocity field with components [17]

〈u(x, t )|x, φ, t〉 = −
∫

dx′dφ′φ′ y − y′

|x − x′|m f2(φ, x, φ′, x′, t ) f −1
1 (x, φ, t ), (6)

〈v(x, t )|x, φ, t〉 =
∫

dx′dφ′φ′ x − x′

|x − x′|m f2(φ, x, φ′, x′, t ) f −1
1 (x, φ, t ). (7)

The random forcing, large-scale friction, and viscous transport are encoded in the term F in Eq. (5)

F = α
∂

∂φ
(φ f1) − ν

∂

∂φ

(∫
dφ′

∫
dx′δ(x − x′)φ′	2

x′ f2

)
+ Q(x, x)

∂2 f1

∂φ2
, (8)

where Q(x, x) is the amplitude of the forcing which was calculated from the 2-point correlation
function Q(x, x′), see Eq. (2), by setting x′ = x. In the case of isotropic forcing, Q is a function of
the relative distance between the points Q(|x − x′|), hence, after setting x′ = x we obtain Q(0).

Equation (5) is coupled with the normalisation formulas, the separation and coincidence equa-
tions [17]: ∫

dφ f1 = 1,

∫
dφ′ f2(x, φ, x′, φ′, t ) = f1(φ, x, t ), (9)

lim
|x−x′|→∞

f2(x, φ, x′, φ′, t ) = f1(x, φ, t ) f1(x′, φ′, t ), (10)

lim
|x−x′|→0

f2 = δ(φ − φ′) f1. (11)

Even in the absence of viscosity, that is, setting ν = 0 in Eq. (8) the system can reach a
statistically stationary state, in which the statistics are independent of time. In such a case, the
energy injected by the forcing at scale l f is transported in the inverse cascade towards large scales
L � l f and extracted due to the nonzero friction α [18].

III. CLASSICAL SCALING INVARIANCE

It is known that the transport Eq. (1) is invariant under a set of symmetry transformations, that
is, such transformations of dependent and independent variables which do not change the functional
form of the equation. The full set of symmetries of 2d Navier-Stokes equations was derived in
Ref. [19]. We will not consider this full set in detail, but we will rather focus on the scaling
symmetry. Its possible extension towards conformal transformation under certain conditions will
be discussed in the following section.

At the beginning let us consider the following set of new variables, denoted by the symbol ∗

x∗ = λx, t∗ = ζ t, �∗ = λs�, u∗ = λs+3−mu, (12)

where λ, ζ ∈ R+, and s ∈ R are arbitrary constants and the form of the transformed velocity u∗ is
determined by Eqs. (3) and (4). We can also include transformations of friction and forcing into the
analysis, by treating α and L as free parameters of the equation. In such a case, we deal with the
equivalence transformations [20] of the equation in a given class, which is a change of variables that
maps the equation into another equation in the same class, rather than the symmetry transformations.
Let us set

α∗ = ζ−1α, L∗ = λ2s+2−mL. (13)

We will next write Eq. (1) in the new variables, first for the zero-viscosity case ν = 0:

∂�∗

∂t∗ + u∗ · ∇∗ �∗ = −α∗�∗ + L∗(x∗, t∗). (14)
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Substituting Eqs. (12) and (13) into Eq. (14) we obtain

λs

ζ

∂�

∂t
+ λ2s+2−mu · ∇ � = −λs

ζ
α� + λ2s+2−mL(x, t ). (15)

This equation will reduce to Eq. (1), written in the original “old” variables x, t , u, φ, α, L provided
that ζ = λ−s−2+m. It is to note that the coefficient s remains arbitrary. With this the scaling group
Eq. (12) is formally specified and constitutes a two-parameter group.

However, if now viscosity is taken into account, then we have

λ2s+2−m

(
∂�

∂t
+ u · ∇ �

)
= λs−2ν∇2� + λ2s+2−m[−α� + L(x, t )], (16)

and invariance is obtained upon setting s − 2 = 2s + 2 − m, hence, s = m − 4, which results in

λm−6 ∂�

∂t
+ λm−6u · ∇ � = λm−6ν	∗�∗ − λm−6α� + λm−6L(x, t ). (17)

After dividing both sides by λm−6 this equation will reduce to Eq. (1) written in the “old” variables.
As it is seen, the presence of viscosity restricts the value of the coefficient s and formally Eq. (17)
only admits a one-parameter group.

This scaling symmetry is also “transferred” to equations describing the statistics of Eq. (1) and
the PDF Eq. (5); see also Ref. [21]. In this case we will consider the following transformations of
the independent variables:

x∗ = λx, x′∗ = λx′, t∗ = λ2t, φ∗ = λm−4φ, φ′∗ = λm−4φ′, (18)

whereas the PDF functions will be transformed as

f ∗
1 (x∗, φ∗, t∗) = 1

λm−4
f1(x, φ, t ), f ∗

2 (x∗, φ∗, x′∗, φ′∗, t∗) = 1

λ2m−8
f2(x, φ, x′, φ′, t ). (19)

The above form assures the invariance of the probability measures

f ∗
1 dφ∗ = 1

λm−4
λm−4 f1dφ = f1dφ, f ∗

2 dφ∗dφ′∗ = f2dφdφ′.

Moreover, the transport Eq. (5) is invariant under the change of variables Eqs. (18) and (19),
provided that

α∗ = λ−2α, Q∗ = λ2m−10Q. (20)

After introducing Eqs. (18)–(20) into Eq. (5) written for the new variables, we find each term in this
equation is multiplied by λ2−m. Hence, after dividing both sides by this factor the original equation
written in the “old” variables is obtained.

This scaling invariance has some important implications. For example, once the solution of
Eq. (5) in the original variables is known, the statistics of the rescaled field and ∂ f ∗

1 /∂t∗ are also
determined, as

∂ f ∗
1

∂t∗ = λ2−m ∂ f1

∂t
.

The transformed PDF f ∗
1 describes 1-point statistics of the transformed (rescaled) field. However,

the structure of the field remains the same after the transformation. In particular, if the scalar field is
isotropic, the transformed field is also structured as such. We will further argue that this is not
necessarily the case of conformal transformations, where, under certain conditions, solution of
Eq. (5) for a homogeneous field could determine solution for an inhomogeneous one, only after
proper rescaling of the variables. That is to say, without the need of solving the equation for the
transformed field.
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FIG. 1. Left plot: Two intersecting curves. Right plot: Conformal transformation of the curves.

IV. CONFORMAL INVARIANCE OF THE 1-POINT STATISTICS OF THE ZERO-ISOLINES

The conformal invariance is often understood as a generalisation of the scaling invariance, such
that the coefficients in Eqs. (18) are not constants any more, but become functions of space. In
particular,

x∗ = λ(x), (21)

where λ(x) is a vector with components λ = (X ,Y ), such that the following Cauchy-Riemann
conditions are satisfied:

∂X
∂x

= ∂Y
∂y

,
∂X
∂y

= −∂Y
∂x

. (22)

Equations (22) assure that the transformation is angle-preserving. Note that with ∂X /∂x = const
and ∂X /∂y = 0, Eq. (21) reduces to the classical scaling. The case ∂X /∂y = const corresponds
to scaling and rotation transformation. Finally, the general case of nonconstant gradients ∂X /∂x
and/or ∂X /∂y allow to rescale the space by a factor that depends on the position. A nontrivial
example of a conformal transformation reads

x∗ = X (x, y, a) = x + a(x2 + y2)

1 + 2ax + a2(x2 + y2)
, (23)

y∗ = Y (x, y, a) = y

1 + 2ax + a2(x2 + y2)
, (24)

where a is an arbitrary constant. Figure 1 presents two intersecting curves and their conformal
transformation. Note that the angle between the curves at their intersection point remains unchanged
after the transformation.

In this work we will be particularly interested in the statistics of zero-lines x(l ) of the scalar fields
� and invariance of their probability measure f1(x, φ)dφ|φ=0 for x ∈ x(l ), under the transformations
of the curve x(l ), as there is numerical evidence which indicate that such lines, which are boundaries
of large clusters, are conformally invariant [3,7]. We call the measure conformally invariant if it is
invariant with respect to a conformal transformation F : D → D∗, that is, μD(x) = μD∗ (λ(x)), see,
e.g., Ref. [4].

We consider the group of transformations G which was derived by the Lie group analysis in
Ref. [11] for the vorticity field and was generalized for scalar fields in Ref. [14]. This analysis
was performed for the so-called infinitesimal forms of transformations. In this work we will only
consider the transformations in their equivalent global forms [14], i.e.,

x∗ = X (x, y, a), y∗ = Y (x, y, a), (25)

x′∗ = X (x, y, a) + γ 1/3(x)

[
(x′ − x)

∂X
∂x

+ (y′ − y)
∂X
∂y

]
, (26)
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y′∗ = Y (x, y, a) + γ 1/3(x)

[
(x′ − x)

∂Y
∂x

+ (y′ − y)
∂Y
∂y

]
, (27)

φ∗ = γ −1(x)φ, (28)

φ′∗ = γ −m/6(x)φ′, (29)

f ∗
1 = γ (x) f1, (30)

f ∗
2 = γ (6+m)/6(x) f2. (31)

Here,

γ (x) =
[(

∂X
∂x

)2

+
(

∂X
∂y

)2]−1

=
[(

∂Y
∂x

)2

+
(

∂Y
∂y

)2]−1

, (32)

where X (x, y, a) and Y (x, y, a) are conjugate harmonic functions [11] which satisfy the Cauchy-
Riemann conditions Eq. (22). It is often more convenient to consider the transformations in the
complex plane, where F (z, a) = X (x, y, a) + iY (x, y, a) is a conformal mapping of the variable
z = x + iy. G acts as the conformal group on a domain D ⊂ R2. The transformation of Q∗(x∗, x∗)
is to be determined later.

It will be shown in the following that after introducing Eqs. (25)–(31) into the first LMN Eq. (5)
written in the new variables

∂ f ∗
1 (x∗, φ∗, t∗)

∂t∗ + ∇∗
x∗ · [〈u∗(x∗)|x∗, φ∗〉 f ∗

1 (x∗, φ∗, t∗)] = F∗(x∗, φ∗, t∗), (33)

we will obtain

∂ f1(x, φ, t )

∂t
+ ∇x · [〈u(x)|x, φ〉 f1(x, φ, t )] = F (x, φ, t ) + G(x, φ, t ), (34)

where G is a function (to be determined later), such that

G(x, 0, t ) = 0. (35)

Equality (35) implies that after setting φ = 0 in Eq. (34), that is, if the evolution equation for
f ∗
1 (0, x∗, t∗) is to be considered, one obtains the invariance, as in such a case from Eq. (34), the

first LMN Eq. (5) for φ = 0 is recovered

∂ f1(x, φ, t )
∣∣
φ=0

∂t
+ ∇x · [〈u(x)|x, φ〉 f1(x, φ, t )]

∣∣
φ=0 = F (x, 0, t ). (36)

This means exactly that once ∂ f1(0, x, t )/∂t is known, the solution for ∂ f ∗
1 (0, x∗, t∗)/∂t∗ is also

determined, although it is not necessarily so for arbitrary φ �= 0.
We will also show an example of the original and the transformed PDF’s f1 and f2, related

by Eqs. (30) and (31) for φ = 0, which satisfy the normalization, separation, and coincidence
conditions Eqs. (9)–(11).

To prove the invariance of Eq. (5) for φ = 0 we will first determine how different terms will be
transformed after introducing Eqs. (25)–(31). With Eqs. (25)–(27) we have

|x∗ − x′∗| = γ −1/6(x)|x − x′|. (37)

To transform the integrals Eqs. (6) and (7) we first note that

− y∗ − y′∗

|x∗ − x′∗|m = γ (m+2)/6

[
∂X
∂x

(
− y − y′

|x − x′|m
)

+ ∂X
∂y

(
x − x′

|x − x′|m
)]

, (38)
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x∗ − x′∗

|x∗ − x′∗|m = γ (m+2)/6

[
−∂X

∂y

(
− y − y′

|x − x′|m
)

+ ∂X
∂x

(
x − x′

|x − x′|m
)]

, (39)

where we also used the Cauchy-Riemann conditions Eq. (22). After calculating the determinant of
the Jacobi matrix the following transformed increment from the integrals Eqs. (6) and (7) is derived
(see Appendix A):

dx′∗dy′∗dφ′∗ = dx′dy′dφ′[γ (x, y)]−(m+2)/6.

Substituting also the transformed PDFs Eqs. (30) and (31) into Eqs. (6) and (7) written for the new
variables we obtain the transformed conditional velocity components as functions of the original
variables (x, φ, t ), i.e.,

〈u∗(x∗, t∗)|x∗, φ∗, t∗〉 f ∗
1 = γ (x)

[
∂X
∂x

〈u(x, t )|x, φ, t〉 + ∂X
∂y

〈v(x, t )|x, φ, t〉
]

f1, (40)

〈v∗(x∗, t∗)|x∗, φ∗, t∗〉 f ∗
1 = γ (x)

[
−∂X

∂y
〈u(x, t )|x, φ, t〉 + ∂X

∂x
〈v(x, t )|x, φ, t〉

]
f1. (41)

Finally, the transformed divergence ∇∗
x∗ applied to an arbitrary vector function H(x, φ, t ) reads

∇∗
x∗ · H = γ (x)

[
∂X
∂x

∂
∂x + ∂X

∂y
∂
∂y + φ

(
∂X
∂x

∂ ln γ

∂x + ∂X
∂y

∂ ln γ

∂y

)
∂
∂φ

∂X
∂x

∂
∂y − ∂X

∂y
∂
∂x + φ

(
∂X
∂x

∂ ln γ

∂y − ∂X
∂y

∂ ln γ

∂x

)
∂
∂φ

]
· H(x, φ, t ). (42)

We will first assume that F = 0 in Eq. (5). The case F �= 0 will be considered in detail in the
following subsections. Calculation of the divergence ∇∗

x∗ · (〈u∗|φ∗, x∗, t∗〉 f ∗
1 ) is tedious, although

straightforward, and is presented in Appendix B. We only note that we make use of the fact that X
and Y are harmonic functions, what follows from the Cauchy-Riemann conditions Eq. (22):

∂2X
∂x2

+ ∂2X
∂y2

= 0,
∂2Y
∂x2

+ ∂2Y
∂y2

= 0.

The final result reads

∇∗
x∗ · [〈u∗(x∗, t∗)|x∗, φ∗, t∗〉 f ∗

1 ] = γ (x)∇x · [〈u(x, t )|x, φ, t〉 f1] + G(x, φ, t ), (43)

where

G(x, φ, t ) = φ

γ (x)

[
∂γ

∂x

∂〈u(x, t )|x, φ, t〉 f1

∂φ
+ ∂γ

∂y

∂〈v(x, t )|x, φ, t〉 f1

∂φ

]
. (44)

Introducing Eqs. (43) and (44) into the LMN equation written in the new variables, see Eq. (33),
we find, for φ = 0, that G = 0 follows and the LHS transforms as LHS → LHS∗ such that LHS∗ =
γ (x)LHS, hence we have

γ (x)
∂ f1(x, φ, t )

∣∣
φ=0

∂t
+ γ (x)∇x · [〈u(x)|x, φ〉 f1(x, φ, t )]

∣∣
φ=0 = 0, (45)

which reduces to Eq. (36) for zero-friction, zero forcing, and zero-viscosity.

A. CG invariance for nonzero friction and forcing

We now consider the stationary form of Eq. (5) with nonzero friction and forcing terms. We will
set, for the time being, ν = 0. Then, the transformed form of this equation reads

∇∗
x∗ · [〈u∗(x∗)|x∗, φ∗〉 f ∗

1 (x∗, φ∗, t∗)] = α
∂

∂φ∗ (φ∗ f ∗
1 ) + Q∗(x∗, x∗)

∂2 f ∗
1

∂φ∗2
. (46)
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For the transformations described by Eqs. (28) and (30), we have

∂

∂φ∗ = γ (x)
∂

∂φ
,

∂2

∂φ∗2
= γ 2(x)

∂2

∂φ2

and φ∗ f ∗
1 = φ f1, hence

F∗ = γ (x)α
∂

∂φ
(φ f1) + Q∗(x∗, x∗)γ 3(x)

∂2 f1

∂φ2
. (47)

The amplitude Q(x, x) is transformed under the actions of G. In such a case, we deal with the
equivalence transformations [20]. We recall that after the transformation the LHS of the LMN
equation scales as γ (x)LHS; see Eq. (45). The same will be true for the RHS provided that

Q∗(x∗, x∗) = γ −2(x)Q(x, x). (48)

Since γ −2(x) is a positive number, then Q∗ looks like an amplitude of the transformed forcing term.
Therefore the forcing term L scales as L∗ = γ −1(x)L.

With this the transformed LMN Eq. (46), calculated at φ∗ = 0, in the original variables reads

γ (x)∇x · [〈u(x)|x, φ〉 f1(x, φ, t )]
∣∣
φ=0 = γ (x)α

∂

∂φ
(φ f1)

∣∣∣
φ=0

+ γ (x)Q
∂2 f1

∂φ2

∣∣∣
φ=0

. (49)

Hence, after dividing both sides by γ (x) �= 0, the original Eq. (5) for ν = 0, evaluated at φ = 0 is
obtained.

In particular, the stationary form of Eq. (5) is invariantly transformed and holds at x∗ = x∗(l∗
1 )

after the transformation, where x∗(l∗) is the transformed zero-isoline x(l ). The invariance of the
probability measure f1dφ, i.e., that the zero-isoline x(l ) passes through the point x, for l = l1
follows from Eqs. (28) and (30):

f ∗
1 (x∗(l∗

1 ), φ∗)dφ∗
∣∣∣
φ∗=0

= f1[(x(l1), φ)]dφ

∣∣∣
φ=0

, (50)

which present the value at φ = 0. Hence, we proved the CG invariance of the stationary 1-point
statistics of the zero-isoline x(l ) of a scalar field in an inviscid flow.

B. CG invariance is broken for the viscous flow

In this section, we consider Eq. (5) in the presence of a nonzero viscosity. The following calcu-
lations are analogous to those presented in Ref. [14] for the characteristic equations. Considering a
nonzero viscosity F is extended to Eq. (8). The second RHS term in Eq. (8) contributes to the direct
cascade and removes energy at small scales due to viscosity. This term can also be reformulated as
follows:

M = ν
∂

∂φ

(∫
dφ′

∫
dx′δ(x − x′)φ′�x′ f2

)
= ν lim

|x′−x|→0

∂

∂φ

∫
dφ′φ′�x′ f2.

To determine M∗, we first note that from Eq. (29) the infinitesimal dφ′∗ is transformed according
to

dφ′∗ = γ −m/6(x)dφ′ (51)

and the transformed module |x∗ − x′∗| is rescaled by the factor γ −1/6(x) as given in Eq. (37). Hence,
if |x∗ − x′∗| → 0, then we get that |x − x′| → 0. Further, using the definition Eqs. (26) and (27), we
find

∇∗
x′∗ = γ 2/3(x)

[
∂X
∂x

∂
∂x + ∂X

∂y
∂
∂y

∂X
∂x

∂
∂y − ∂X

∂y
∂
∂x

]
, (52)
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hence the Laplacian operator �∗
x′∗ reads

�∗
x′∗ = γ 4/3(x)

[(
∂X
∂x

)2

+
(

∂X
∂y

)2]
�x′ = γ 1/3(x)�x′ , (53)

where we used Eq. (32). Substituting all the above transformed terms into formula for M∗ and using
Eqs. (28), (29), and (31), we obtain

M∗ = ν lim
|x′∗−x∗|→0

∂

∂φ∗

∫
dφ′∗φ′∗�∗

x′∗ f ∗
2 = νγ (14−m)/6 lim

|x′−x|→0

∂

∂φ

∫
dφ′φ′�x′ f2. (54)

Apparently, Eq. (54) or M∗ scales differently than the LHS of Eq. (33) with M∗ = γ (14−m)/6(x)M
and, hence, viscosity is symmetry breaking with respect to the CG, except m = 8. The same result
was obtained in Ref. [14] in the case of the characteristic lines. We suspect that this could be the
reason why the CG was not observed at small scale turbulence in the previous studies [3,4,7,8], as
it seems that m = 8 does not correspond to any known physical model. This situation is somehow
analogous to that presented in Sec. III, for the classical scaling, where the presence of nonzero
viscosity determined the coefficient s in Eqs. (12). Apparently, in case of CG viscous term also
restricts the power coefficient to the only possible value with m = 8.

V. EXAMPLE OF TRANSFORMATION OF PDF’s

In this section we will consider an example of PDF’s transformed according to Eqs. (30) and
(31). This example describes transformation of a PDF of a homogeneous field to the PDF of a
nonhomogeneous field, both calculated at φ = 0. The aim of this example is to demonstrate how
the proposed transformations could potentially be used for predictions of turbulence statistics in 2d .

We will consider a possibly simple, analytical form of the PDF to perform further calculations.
A good candidate for the 2-point PDF is the bivariate Gaussian function, which was also considered
in Ref. [22] as a simple model of 2d turbulence, which correctly reproduces some gross statistical
features of the field, although it fails to model the energy transfer across scales. Analysis of real,
numerical or experimental data of 2d turbulence is left for further work. The 2-point bivariate
Gaussian PDF reads

f2(x, φ, x′, φ′) = 1

2πσ (x)σ (x′)
√

1−ρ2
exp

[
− 1

2(1−ρ2)

(
φ2

σ 2(x)
−2ρ

φφ′

σ (x)σ (x′)
+ φ′2

σ 2(x′)

)]
, (55)

where ρ(x, x′) is a correlation function, which equals 1 if fluctuations at the two points are perfectly
correlated and 0 if they are statistically independent. Here, σ (x) stands for the standard deviation of
the fluctuations of φ at point x. The PDF which enters the LMN equation calculated at φ = 0 reads

f2(x, 0, x′, φ′) = 1

2πσ (x)σ (x′)
√

1−ρ2
exp

[
− 1

2(1−ρ2)

(
φ′2

σ 2(x′)

)]
. (56)

We assume the following, simplified form of the correlation function:

ρ2(x, x′) =
{

1 − |x−x′|n
σ 2(x)σ 2(x′ ) if |x−x′|n

σ 2(x)σ 2(x′ ) < 1,

0 otherwise,

where the power n is so far unspecified.
The Gaussian 1-point PDF f1 is obtained from Eq. (55) after integrating over the sample space

φ′,

f1 =
∫

f2dφ′ = 1√
2πσ (x)

exp

(
− φ2

σ 2(x)

)
. (57)
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As the standard deviation σ (x) is not constant, Eq. (55) is a 2-point PDF of a nonhomogeneous
field.

Let us now consider the following, homogeneous PDF f ∗
2 , in the transformed variables which

depends on the distance |x∗ − x′∗| but not x∗ and x′∗ separately,

f ∗
2 (x∗, φ∗, x′∗, φ′∗) = 1

2π
√

1−ρ∗2
exp

[
− 1

2(1−ρ∗2)
(φ∗2−2ρ∗φ∗φ′∗+φ′∗2)

]
, (58)

where σ = 1 and

ρ∗2(x∗, x′∗) =
{

1 − |x∗ − x′∗|n if |x∗ − x′∗|n < 1,

0 otherwise.

Analogous to Eq. (56), at φ∗ = 0 we have

f ∗
2 (x∗, 0, x′∗, φ′∗) = 1

2π
√

1−ρ∗2
exp

[
− φ′∗2

2(1−ρ∗2)

]
, (59)

and, after integrating over φ′∗ we obtain the 1-point PDF:

f ∗
1 =

∫
f ∗
2 dφ′∗ = 1√

2π
exp(−φ∗2). (60)

For such a homogeneous form of 2-point PDF, the second, integral term in Eq. (5) equals zero,
hence, the condition F = 0 defines the stationary situation.

We note that both, f2 and f ∗
2 , as classical bivariate Gaussian functions, satisfy properties of

2-point PDF’s Eqs. (9) and (11). They are normalized, moreover at |x − x′| → 0, f2 = f1δ(φ − φ′)
and at |x − x′| → ∞, f2 = f1(x, φ) f1(x′, φ′).

We now introduce transformation of variables, as defined by Eqs. (25)–(30) and assume that

σ (x) = γ (x)

is described by Eq. (32). Hence, from Eq. (28) φ∗ = φ/γ (x). Substituting to Eq. (60) and comparing
with Eq. (57) we obtain

f ∗
1 = 1√

2π
exp

(
− φ2

γ 2(x)

)
= γ (x) f1, (61)

which is exactly the transformation Eq. (30). We also have, from Eq. (29), that φ′∗ = φ′/γ (x)m/6.
Moreover, the global form of the transformation of |x∗ − x′∗|, cf. Eq. (37), reads |x − x′| = |x∗ −
x′∗|/γ (x)1/6. With this, the 2-point correlation function ρ∗ transforms as follows:

ρ∗2 =
{

1 − |x − x′|n/γ n/6(x) if |x − x′|n/γ n/6(x) < 1,

0 otherwise.

After introducing this into Eq. (59) we obtain

f ∗
2

∣∣
φ∗=0 = γ n/12(x)

2π |x − x′|n/2
exp

[
− γ (x)n/6

2|x − x′|n
φ′2

γ m/3(x)

]
. (62)

To obtain the proper scaling of the 2-point PDF, as defined in Eq. (31), we require the power
coefficient n/12 to be equal to (m + 6)/6, hence n = 2m + 12. For such a case we obtain

f ∗
2

∣∣
φ∗=0 = γ (m+6)/6(x)

2πγ (x′ )γ (x)

γ (x)γ (x′)
|x − x′|n/2︸ ︷︷ ︸

1/
√

1−ρ2

exp

⎡
⎢⎢⎢⎣− 1

2

γ 2(x)γ 2(x′)
|x − x′|n︸ ︷︷ ︸
1/(1−ρ2 )

φ′2
γ 2(x′ )

⎤
⎥⎥⎥⎦,
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where above we grouped some terms, divided and multiplied by γ (x) and γ (x′), where necessary.
The last step is to note that, according to the definition of ρ2 above, 1 − ρ2 = |x − x′|n/γ 2(x)γ 2(x′),
hence, Eq. (62) can be rewritten as

f ∗
2

∣∣
φ∗=0 = γ (m+6)/6(x)

2πγ (x)γ (x′)
√

1 − ρ2
exp

[
− 1

2(1 − ρ2)

φ′2

γ 2(x′)

]
= γ (m+6)/6(x) f2

∣∣
φ=0.

With this it follows that the transformation of f2, as given by Eq. (31), is realizable, provided
that the 2-point correlation has a specific form. We consider only the first LMN equation and f2

can be understood as an externally specified function. For example, for vorticity field m = 2, we
have n = 2m + 12 = 16. For such large power coefficients ρ is nearly constant for small |x − x′|
and next decreases fast to 0. It is somewhat akin to the correlation function of a flow composed
by statistically independent point vortices [23] provided that, in the numerical approximation, the
vorticity of a single vortex is constant within a small region |x − x′| < ε. In such a case we have
ρ = 1 for |x − x′| < ε and ρ = 0 otherwise. We considered here a particular, analytical example
of 2-point PDF in the form of bivariate Gaussian function. In real 2d turbulence f2 has a different
form and the corresponding 2-point PDF can also vary. Finally, we believe the above considerations
provide only one of infinity many possibilities and they could be extended to a more general form
of ρ, possibly in some approximate sense.

The conclusion that follows is that, for the given example, the first inviscid LMN Eq. (5) in
∗ variables, calculated for φ∗ = 0 transforms into inviscid LMN equation for a nonhomogeneous
field, calculated at φ = 0.

However, no conclusions can be drawn for f1(φ, x, t ) if φ �= 0, as CG invariance is broken for
such a case.

VI. CONCLUSIONS AND OUTLOOK

A question posed in Ref. [4] was whether the conformal invariance of statistics of the zero-scalar
isolines could be explained by symmetry analysis of the underlying equations. If this is the case,
it is worthwhile to consider the Lundgren-Monin-Novikov equations for the PDF of the scalar.
We considered the first equation from the infinite LMN hierarchy for a model with an arbitrary
coefficient m. The value m = 2 refers to vorticity field in 2d , m = 3 describes the SQG model, and
m = 6 corresponds to the large-scale flows in a rotating shallow fluid.

We investigated how this equation is transformed under the action of G derived in Refs. [11,14].
We then established that the CG invariance can be retained in the presence of large-scale friction
and forcing under the restriction φ = 0; however, it is broken if the viscous term is included into the
equation.

We presented an example of 1- and 2-point PDFs which transform according to Eqs. (25)–
(31). It represents a transition from PDF’s describing a homogeneous into PDF’s describing a
nonhomogeneous field, calculated at φ∗ = 0 and φ = 0, respectively. The 2-point PDF’s can be
treated as an external function entering the first LMN Eq. (5). Its form was specified a priori
as bivariate Gaussian, with prescribed 2-point correlation function. It follows from the proposed
transformations, that in the considered case, once solution for the homogeneous field is calculated,
its nonhomogeneous counterpart is also known at φ = 0. As it follows, the statistic which remains
invariant after the CG transformation is the 1-point probability measure of φ taking the value φ = 0,
or the probability that the zero-scalar isoline x(l ) passes through the selected point x.

In future, it remains to show the CG invariance of the n-point statistics of the zero-vorticity
isolines x(l ) by considering the n-point PDF fn(x(l1), φ = 0, . . . , x(ln), φn = 0) of the vorticity
field along a zero-vorticity random curve x(l ).
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APPENDIX A: JACOBI MATRIX

To transform the increment dx′∗dφ′∗ in the integrals Eqs. (6) and (7), according to relations
Eqs. (26), (27), and (29), we calculate the determinant of the Jacobi matrix,

detJ = γ 2/3

∣∣∣∣∣∣∣∣
∂X
∂x

∂X
∂y 0

∂Y
∂x

∂Y
∂y 0

0 0 γ −m/6

∣∣∣∣∣∣∣∣ = γ 2/3−m/6

[(
∂X
∂x

)2

+
(

∂Y
∂y

)2]
= γ −1/3−m/6, (A1)

where we also made use of the Cauchy-Riemann conditions, Eq. (22) and the definition of γ (x)
from Eq. (32).

APPENDIX B: DIVERGENCE

To calculate the divergence of the conditional velocity ∇∗
x∗ · [〈u∗(x∗, t∗)|x∗, φ∗, t∗〉 f ∗

1 ] introduc-
ing the form of transformed variables Eqs. (25)–(31) we apply the operator Eq. (42) to Eqs. (40)
and (41). Using the product rule we obtain

∇∗
x∗ · [〈u∗|x∗, φ∗, t∗〉 f ∗

1 ]

= γ

(
∂X
∂x

)2

[〈u|x, φ, t〉 f1]
∂γ

∂x
+ γ 2 ∂X

∂x
[〈u|x, φ, t〉 f1]

∂2X
∂x2 + γ 2

(
∂X
∂x

)2
∂[〈u|x, φ, t〉 f1]

∂x

+
��������������
γ

(
∂X
∂x

)(
∂X
∂y

)
[〈v|x, φ, t〉 f1]

∂γ

∂x
+ γ 2 ∂X

∂x
[〈v|x, φ, t〉 f1]

∂2X
∂x∂y

+
��������������
γ 2

(
∂X
∂x

)(
∂X
∂y

)
∂[〈v|x, φ, t〉 f1]

∂x
+
��������������
γ

(
∂X
∂x

)(
∂X
∂y

)
[〈u|x, φ, t〉 f1]

∂γ

∂y

+ γ 2 ∂X
∂y

[〈u|x, φ, t〉 f1]
∂2X
∂x∂y

+
��������������
γ 2

(
∂X
∂x

)(
∂X
∂y

)
∂[〈u|x, φ, t〉 f1]

∂y

+
(

∂X
∂y

)2

[〈v|x, φ, t〉 f1]
∂γ

∂y
+ γ 2 ∂X

∂y
[〈v|x, φ, t〉 f1]

∂2X
∂y2 + γ 2

(
∂X
∂y

)2
∂[〈v|x, φ, t〉 f1]

∂x

−
��������������
γ

(
∂X
∂x

)(
∂X
∂y

)
[〈u|x, φ, t〉 f1]

∂γ

∂y
− γ 2 ∂X

∂x
[〈u|x, φ, t〉 f1]

∂2X
∂y2

−
��������������
γ 2

(
∂X
∂x

)(
∂X
∂y

)
∂[〈u|x, φ, t〉 f1]

∂y
+ γ

(
∂X
∂x

)2

[〈v|x, φ, t〉 f1]
∂γ

∂y

+ γ 2 ∂X
∂x

[〈v|x, φ, t〉 f1]
∂2X
∂x∂y

+ γ 2

(
∂X
∂x

)2
∂[〈v|x, φ, t〉 f1]

∂y

+ γ

(
∂X
∂y

)2

[〈u|x, φ, t〉 f1]
∂γ

∂x
+ γ 2 ∂X

∂y
[〈u|x, φ, t〉 f1]

∂2X
∂x∂y

+ γ 2

(
∂X
∂y

)2
∂[〈u|x, φ, t〉 f1]

∂x

−
��������������
γ

(
∂X
∂x

)(
∂X
∂y

)
[〈v|x, φ, t〉 f1]

∂γ

∂x
− γ 2 ∂X

∂y
[〈v|x, φ, t〉 f1]

∂2X
∂x2
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−
��������������
γ 2

(
∂X
∂x

)(
∂X
∂y

)
∂[〈v|x, φ, t〉 f1]

∂x
+ γφ

∂X
∂x

(
∂X
∂x

∂ ln γ

∂x
+
�����∂X
∂y

∂ ln γ

∂y

)
∂[〈u|x, φ, t〉 f1]

∂φ

+ γφ
∂X
∂y

(
�����∂X
∂x

∂ ln γ

∂x
+ ∂X

∂y

∂ ln γ

∂y

)
∂[〈v|x, φ, t〉 f1]

∂φ

− γφ
∂X
∂y

(
�����∂X
∂x

∂ ln γ

∂y
− ∂X

∂y

∂ ln γ

∂x

)
∂[〈u|x, φ, t〉 f1]

∂φ

+ γφ
∂X
∂x

(
∂X
∂x

∂ ln γ

∂y
−
�����∂X
∂y

∂ ln γ

∂x

)
∂[〈v|x, φ, t〉 f1]

∂φ
, (B1)

where the terms which cancel are struck through. Using the definition of γ (x), cf. Eq. (32), we can
further rewrite the first terms from lines 2, 3, 4, and 5 as

[〈u|x, φ, t〉 f1]
∂γ

∂x
+ [〈v|x, φ, t〉 f1]

∂γ

∂y
.

We next calculate derivatives of γ , using the definition Eq. (32). With this the above formula reads

−2γ 2[〈u|x, φ, t〉 f1]

(
∂X
∂x

∂2X
∂x2 + ∂X

∂y

∂2X
∂x∂y

)
− 2γ 2[〈v|x, φ, t〉 f1]

(
∂X
∂x

∂2X
∂x∂y

+ ∂X
∂y

∂2X
∂y2

)
.

Mixed derivatives will now cancel with the second terms in lines 3, 4, 7, and 8 from Eq. (B1). Terms
with ∂2X /∂x2 and ∂2X /∂y2 will be subtracted from second terms in lines 2 and 5 in Eq. (B1). In
this way all the first and second terms in lines 2–9 reduce to

−γ 2 ∂X
∂x

[〈u|x, φ, t〉 f1]

(
∂2X
∂x2 + ∂2X

∂y2

)
− γ 2 ∂X

∂y
[〈v|x, φ, t〉 f1]

(
∂2X
∂x2 + ∂2X

∂y2

)
= 0,

which equals zero due to the fact that X is a harmonic function. We are hence left with the third
terms in lines 2, 5, 7, and 8, which can be added and rewritten as

γ (x)
∂[〈u|x, φ, t〉 f1]

∂x
+ γ (x)

∂[〈v|x, φ, t〉 f1]

∂x
, (B2)

where we again made use of Eq. (32).
Finally, the remaining terms in lines 10–13 can be combined to give

φ
∂ ln γ

∂x

∂[〈u|x, φ, t〉 f1]

∂φ
+ φ

∂ ln γ

∂y

∂[〈v|x, φ, t〉 f1]

∂φ
.

With this, the transformed divergence of the conditional velocity reads

∇∗
x∗ · [〈u∗|x∗, φ∗, t∗〉 f ∗

1 ] = γ (x)
∂[〈u|x, φ, t〉 f1]

∂x
+ γ (x)

∂[〈v|x, φ, t〉 f1]

∂x

+ φ

γ (x)

{
∂γ

∂x

∂[〈u|x, φ, t〉 f1]

∂φ
+ ∂γ

∂y

∂[〈v|x, φ, t〉 f1]

∂φ

}
. (B3)
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