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Rough surfaces are common in engineering applications, where a priori estimations
of drag for a given flow are needed based on knowledge of the surface topography. It is
likely that length-scale information is required, in addition to standard statistical quantities
such as solidity or effective slope, root-mean-square height and skewness. In this work we
consider a set of rough surfaces that are derived from a physical scan of a grid-blasted
rough surface. Different surfaces are generated by applying Fourier band-pass filters to
the surface scan, including complementary cases, for example, where a midrange of wave
numbers are included or excluded. This enables comparisons as to how the roughness
spectral content affects the mean flow and turbulence properties. In total, turbulent flow
over five surfaces with different wave-number spectra is investigated by direct numerical
simulation, with resulting variations in the roughness function of over a factor of 3. It is
found that, except for the low-pass filtered surface which has very small effective slope,
the roughness function scaled by the viscous proportion of total drag remains remarkably
constant, while the pressure counterpart is largest for high-pass filtered surfaces. Existing
correlations for the roughness function are found, at best, to reproduce only the quali-
tative effects, suggesting that the correlations would benefit from introducing additional
parameters to account for the wave-number spectrum of the rough surfaces. Besides the
friction effect, it is also of interest to determine the extent to which the turbulence in the
roughness layer is influenced by the spectral characteristics of the surface. The location of
the peak streamwise velocity fluctuations moves outwards in wall units as the roughness
function increases, whereas wall-normal and spanwise velocity fluctuations are found to
be insensitive to the surface filtering, down to a region below the maximum roughness
height. A trend towards spanwise organization of the mean flow is observed for low-pass
filtered surfaces, but otherwise the effect of the roughness wave-number spectrum appears
to vanish rapidly above the maximum roughness elevation. Instead, significant differences
are found in the profiles of the various dispersive stresses which are highly dependent on
(local) topographical features of the roughness; for some quantities differences between
surfaces persist well into the log layer.

DOI: 10.1103/PhysRevFluids.6.084606

I. INTRODUCTION

For many engineering applications, surface roughness represents a significant contribution to
hydrodynamic drag, which in turn translates into added challenges in defining tolerances for both
manufacturing and maintenance of surfaces for aero- and hydrodynamic applications. Ideally, one
would devise a correlation which translates a set of surface properties into the added drag caused

*f.alves-portela@soton.ac.uk

2469-990X/2021/6(8)/084606(27) 084606-1 ©2021 American Physical Society

https://orcid.org/0000-0002-4693-2378
https://orcid.org/0000-0002-3496-6036
https://orcid.org/0000-0002-5107-0944
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.084606&domain=pdf&date_stamp=2021-08-20
https://doi.org/10.1103/PhysRevFluids.6.084606


ALVES PORTELA, BUSSE, AND SANDHAM

by that surface for a given Reynolds number. In the present contribution we are concerned with one
aspect of this overall problem, namely how roughness features residing at different wave numbers
affect the flow over a surface. On the face of it, this overall task seems tenable since in the fully rough
regime the viscous contribution to the total drag is expected to be small and the friction coefficient
c f asymptotes to a constant, as identified on the classic Moody chart. The fully rough regime takes
place when the characteristic size of the roughness k is large with respect to δν , the viscous length
scale, which, for the flow to be fully turbulent, should be much smaller than δ, the outer length scale
of the flow: these conditions translate into sufficiently large friction Reynolds number Reτ = δ/δν

as well as sufficiently large roughness Reynolds number k+ = k/δν (the superscript + indicates
normalization in wall units).

The first condition (with regard to Reτ ) can be overcome, albeit at high computational cost, but
the imposition of large k+ is not so straightforward in the absence of a single length scale that
characterizes the roughness. This issue can be seen more clearly if instead of computing c f one
computes �U +, the difference in mean velocities between smooth and rough wall flows at the same
friction Reynolds number Reτ (see [1] for the derivation of the relationship between c f and �U +).
In the fully rough regime, when c f = const the roughness function is given by

�U + = 1

κ
log(k+) + const, (1)

where κ is the von Kármán constant and the additive constant is problem dependent (much the
same as the asymptotic value of c f ). Notice that obtaining the constant in Eq. (1) is equivalent to
determining ks, which is the average size of sand grain roughness in the experiments of Nikuradse
[2], which produces the same �U + as the surface under consideration. Presently, determining this
asymptotic behavior for a surface with arbitrary properties is possible only by direct measurements
from numerical or laboratory experiments [3].

There are several expressions available which correlate a set of surface properties with �U +,
ks or c f (see, e.g., [4–6]), and recent work by Jouybari et al. [7] tackles this problem by means of
machine learning algorithms. However, the applicability of these correlations is often called into
question when considering surfaces whose properties do not fall within the scope of those for which
the correlations were established in the first place.

On the one hand, the very nature of turbulent flows (and our lack of comprehensive turbulence
models) poses a challenge in understanding how such flows interact with surface roughness [8].
On the other hand, there is the challenge of establishing what should be the relevant descriptors
of a given surface (see, e.g., [6,9–11]). In a sense, these issues are addressed by extracting from
the numerous correlations available those surface properties which have been found to affect �U +
the most, such as (but not limited to) SSk and Sq (respectively, the skewness and root mean square
of a surface’s height map). Surfaces are then produced in which these properties are varied (see,
e.g., [12–15]), be it by considering naturally occurring surfaces or synthetic surfaces. The former
are usually characterized by continuous spectral content which decays with the second power
of the wave number [16,17]. In contrast, and by construction, synthetic surfaces allow for an
easier parametrization of surface properties in order to assess their effects on (or even control)
the turbulence [18].

The difficulties highlighted above provide a broad scope for physics-oriented studies of rough
wall turbulence. As highlighted by Flack [3], DNS has recently become a powerful tool, while
still limited to moderate Reτ (and more importantly, moderate k+). For relatively low values of
k+ (but not so low as the flow effectively “perceiving” the surface as being hydraulically smooth)
the flow is said to be in the transitionally rough regime and the dependency of �U + on k+ is
surface-dependent. Understanding the dominant physics in the transitionally rough regime is just as
relevant as determining the pertinent asymptotes in the fully rough regime [19–21].

The difficulty in obtaining suitable correlations may indicate that a more sophisticated view of
the wave-number spectrum of the surfaces is required. With this in mind the current study aims
to describe if (and how) different length scales embedded in the roughness may influence the
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overlaying turbulent flow. A scanned surface is used as the baseline case from which different
“synthetic” surfaces are obtained. This is achieved by Fourier transforming the baseline surface,
filtering out specific bands of wavelengths, and then transforming back to real space. The motivation
behind this is that, since the spectral content of the surface integrates to S2

q , the spectral filters can
be defined such that the resulting surfaces have prescribed Sq (effectively giving us control over at
least one surface property), with roughness features residing at different ranges in wave number.

In the present context, we shall refer to large- and small-scale features as the spectral content
residing at low and high wave numbers, respectively. This does not necessarily mean that the
features associated with those wavelengths represent larger displacements of the surface’s height
map, as would be the case when synthesizing surfaces using repeatable elements where large- and
small-scale usually refers to the typical size of the repeating element. Conversely, when elementary
geometries (such as cubes) are used to generate synthetic surfaces, one effectively adds small-scale
information, since sharp corners introduce spectral content at the very high wavelengths. This has
been found to have a negligible effect in the flow; in a study by Schultz and Flack [22], grit was
added to packed spheres with no substantial differences observed in the resulting flows (with and
without grit). Naturally occurring roughness, however, usually display continuous spectra [16], and
thus it is not clear if the aforementioned result is a consequence of the scale separation of the
roughness features.

Mejia-Alvarez and Christensen [23] generated reduced order models of a highly heterogeneous
rough surface and found that, while the finest details of the surface (in the sense of high order
modes) had little effect on the flow, it was still necessary to preserve a range of features beyond the
dominant one in order to reproduce the same flow statistics as for the full representation of the rough
surface. At the other end of the spectrum, Barros et al. [15] highlights how large-scale features (here
in the sense of small wavelength spectral content) do not contribute significantly to the added drag
and may in fact postpone the onset of the fully rough regime. They produced three approximately
Gaussian surfaces with different spectral slopes and then applied high-pass filters to those surfaces
finding that surfaces with steeper slopes produced the least drag.

With the present study we aim to bring together some of the aforementioned results by studying
the flow over surfaces corresponding to different spectral regions of a grit-blasted surface. Flow vi-
sualization and analysis of two-point correlations reveal how different scales contribute to different
flow features present in the original surface. The baseline surface in question has been extensively
studied, and its roughness function �U + was found to closely follow that of Nikuradse-type
roughness [24].

Specific questions we aim to address are whether existing correlations can predict the roughness
function for these surfaces, to which extent is the turbulence influenced by the surface topography,
and whether any of the surfaces give rise to specific structures in the mean flow and the turbulence.

In Sec. II we start by describing how the surfaces used in this study were produced and some of
their properties, along with the numerical setup used for the simulations. The flow field is then
characterized extensively in Sec. III, in terms of temporal and spatial statistics as well, and a
discussion on the effects of roughness on the turbulent velocity two-point correlations. We finish
in Sec. IV with a summary of our results.

II. METHODOLOGY

A. Surface selection

In the present work, five distinct surfaces were studied: one baseline (B) and four filtered surfaces
(L, M, H, and E). The baseline surface was obtained from a standard roughness comparator for
a grit-blasted surface supplied by Rubert & Co. Ltd, UK. This is the same grit-blasted surface
used in previous work by some of the authors (see, e.g., [20,25]). A subsection of the scan was
selected following the procedure outlined in Thakkar [24], which was then treated as periodic along
both directions. To ensure the resulting surface had broad spectral content, the stream- (�x) and
spanwise (�y) dimensions of the subsection were chosen to be, respectively, 10δ by 5δ, with δ the
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FIG. 1. Left: height maps; center: power spectral densities (logarithmic scale, arbitrary units); right:
autocorrelation function (black and white lines indicate levels of 0.2 and 0, respectively). From top to bottom:
B, L, M, H, and E.

half-channel height, roughly twice the size used in Refs. [20,25]. Subsequently, a low-pass filter
was applied with kcδ = 6 (i.e., kc�x = 60), where kc is the cutoff wave number. This allowed us
to create a smoothly varying, stream- and spanwise periodic surface that retained a broad range
of spectral content from the original scan [26]. The height map, associated power spectral density
and autocorrelation function of surface B are shown on the top row of Fig. 1. The power spectral
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FIG. 2. Compensated angle-averaged radial spectra (left) and autocorrelation functions (right). B: ;
L: ; M: ; H: ; E: .

density of the height map is approximately isotropically distributed in wave-number space with no
clear peaks found; the 2D-autocorrelation function confirms that this is indeed the case for length
scales up to ∼0.4δ since there is little dependence of the 2D-autocorrelation function on the angle
arctan(ry/rx ), where r is the separation vector.

Once surface B was produced, the filtered surfaces were obtained by applying different low-
pass, high-pass, band-pass, and band-stop filters to it and then reconstructing the associated height
maps. The height maps, spectra, and autocorrelation functions of the filtered surfaces are also shown
in Fig. 1. The filters applied were isotropic with two cutoff wave numbers defined such that the
weighted areas of the resulting three sections were equal. Those three filtered sections are associated
with surfaces L (low-pass), M (band-pass), and H (high-pass), while E was produced by applying a
band stop filter at the intermediate wave numbers. Thus, the spectra of surfaces L, M, and H as well
as the spectra of surfaces M and E are complementary, between them resulting in the spectrum of
surface B. The mean square height S2

q of surfaces L, M, and H is, by design, the same and equal to a
third of S2

q for surface B. Notice that the slight anisotropy identified in the autocorrelation function
of B (top right panel of Fig. 1) is more evident for surfaces L and E (see rightmost panels on second
and fifth rows of Fig. 1).

For many naturally occurring rough surfaces their spectra exhibit common properties making it
a useful quantity in describing the length scales of the roughness features [16]. The spectral content
of the original surface decreases with growing k =

√
k2

x + k2
y , making it effectively smooth at large

k. The spectra in Fig. 1 clearly show how the roughness features of the reconstructed surfaces reside
at isolated wave-number bands. Conversely, the 2D autocorrelation function (which is simply the
inverse Fourier transform of the spectrum) is a helpful tool in identifying surface anisotropy [27];
e.g., if features such as valleys/peaks at a given distance occur predominantly at specific orientations
from each other, the correlation function will exhibit local maxima at that specific orientation and
scale of the separation vector r. As mentioned above, the autocorrelation functions for surfaces B, L,
and E shown in Fig. 1 show signs of large-scale anisotropy: e.g., the valleys and peaks ∼0.9δ apart
are roughly arranged at 45◦ angles. This interpretation of the spectra and autocorrelation function
is complemented by their angle averaged counterparts shown in Fig. 2. The compensated angle
averaged radial spectra show how the spectra of surfaces L, M, and H integrate to the same S2

q ,
whereas the angle-averaged autocorrelation functions of the reconstructed surfaces reveal how the
features at each wave number contribute to small- or large-scale (de)correlation. The angle-averaged
autocorrelation functions of the reconstructed surfaces develop clear local maxima and minima since
the reconstruction after filtering propagates the spectral content throughout the whole domain of
reconstruction.
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FIG. 3. Probability density (left) and cumulative distribution (right) functions for each surface. B: ;
L: ; M: ; H: ; E: .

The height distributions of the various surfaces are shown in Fig. 3. Both surfaces B and E
have distinctively negatively skewed pdfs, likely to be a result of local features, visible in Fig. 1
around x ∼ 0δ, y ∼ 4δ or x ∼ 9δ, y ∼ 3δ. Similar features can be observed for surface L, although
its height distribution is less skewed: instead, the height distribution is not very smooth for h ≈ 0.
The height distributions of surfaces M and L are quite similar, despite their textures being notably
distinct (as seen in Fig. 1). Figure 3 also shows the cumulative distribution function (cdf) for each
surface; the effect of skewness is not so clear for these curves (approximately symmetric about
h = 0) suggesting that apart from a few very deep valleys (for surfaces B, L, and E) peaks and
valleys are equally prevalent. The cdfs of surfaces L, M, and H are practically indistinguishable
and more “concentrated” around h = 0 as expected from the narrower tails of the associated height
distributions. The surfaces with broader spectral content display more extreme values of h, as seen
by contrasting the cdfs of E, B, and the remaining surfaces.

Thakkar et al. [5] reported the various properties given in Table I as those which influence
the roughness function and turbulent kinetic energy the most (see [9,11] for a discussion on the
relevance of various properties in describing rough surfaces). Sq, SSk , and Sku are the root mean
square, skewness, and kurtosis of the surface height distribution, respectively. Sz,max is the difference
in heights between the highest peak and the deepest valley, whereas Sz,5×5 is obtained by dividing
the surface into five by five tiles (of equal size) and averaging the Sz,max for each tile (equivalently
for Sz,10×10). The stream- and spanwise correlation lengths Lcorr

x and Lcorr
y , respectively, are defined

in Thakkar et al. [5] as the separations at which the autocorrelation function crosses the level of
0.2 along the rx and ry axes, respectively. Finally, the effective slopes ESx and ESy are the average
absolute values of the gradients in the stream- and spanwise directions, respectively, of the height

TABLE I. Properties of the baseline and filtered surfaces. Sz,max: maximum peak-to-valley height; Sz,5×5:
mean peak-to-valley height (5 by 5 tiling)); Sz,10×10: mean peak-to-valley height (10 by 10 tiling)); Sq:
root-mean-square height; SSk : skewness of the height distribution; SKu: kurtosis of the height distribution; Lx:
streamwise correlation length; Ly: spanwise correlation length; ESx: streamwise effective slope; ESy: spanwise
effective slope.

Surface Sz,max/δ Sz,5×5/δ Sz,10×10/δ Sq/δ SSk SKu Lcorr
x /δ Lcorr

y /δ ESx ESy

B ( ) 0.32 0.213 0.166 0.0362 –0.49 3.71 0.21 0.21 0.27 0.27
L ( ) 0.14 0.090 0.066 0.0212 –0.39 3.05 0.42 0.38 0.06 0.07
M ( ) 0.18 0.113 0.091 0.0209 –0.03 3.75 0.18 0.20 0.13 0.12
H ( ) 0.24 0.146 0.116 0.0206 –0.07 4.04 0.10 0.10 0.24 0.24
E ( ) 0.28 0.175 0.138 0.0295 –0.31 3.35 0.39 0.27 0.25 0.25
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map h. Notice that ESx is equal to twice the frontal solidity σ (the ratio between the total frontal
area of the roughness elements and the plan-form area).

As can be seen from Fig. 1, retaining the low wave-number content of the surface does not
immediately translate into retaining the tallest features of the roughness. Instead, it is the width
of and distance between features such as valleys and peaks that changes with the filtering. This is
reflected on the growing σ (and thus ESx) when the bandpass filter is moved from low to high wave
numbers, as seen in Table I, whereas the frontal solidity of surface E is only marginally larger than
that of surface H.

Similarly, we can notice that, despite surfaces L, M, and H all having practically identical Sq (by
design equal to ∼1/

√
3Sq,B), both Sz,5×5 and Sz,max increase when the bandpass filter is moved to

higher wave numbers. Surface E, on the other hand, corresponds to the superposition of surfaces L
and H, and thus its Sq is

√
2/3 that of B. Contrasting the surfaces in terms of both Sz,5×5 and Sz,max

is not straightforward since, as suggested by Thomas [9], these parameters are likely to be more
influenced by localized features as can, for example, be observed for surface L compared to H.

This observation becomes clearer when comparing the different values of SSk shown in Table I.
As noted already with regard to Fig. 3, SSk is close to zero for M and H but negative for the
remaining surfaces (between ∼ − 0.3 and ∼ − 0.4), due to the presence of deep valleys (which
appear occasionally throughout the surface). Those two surfaces (M and H) also display larger SKu

than surface L, which, as seen in Fig. 3 has a flatter “top” than M and H.
Even though surface B is approximately isotropic, the extent to which that property is preserved

after filtering varies between the surfaces (recall the filters themselves are isotropic as well). This
is another reflection of the (localized) deep valleys observed at x ∼ 0δ, y ∼ 4δ and x ∼ 9δ, y ∼ 3δ

in Fig. 1; however, even though the same features can be found in surface B (see Fig. 1), both its
correlation lengths are almost identical. This is more significant for surface E, which has Lcorr

x >

Lcorr
y , but may also be identified in the autocorrelation map of surface L in Fig. 1 for r =

√
r2

x + r2
y >

0.5δ.
When filtering the baseline surface, the effective slopes ESx and ESy (as well as σ ) increase as

the filter is moved towards higher wave numbers. The distributions of ESx and ESy were found to
be practically indistinguishable for surfaces B, H, and E, since ESx and ESy result mostly from the
high wave-number content. No particular prevalence of positive/negative effective slopes was found
for any of the surfaces considered, with the distributions for surfaces B, M, H, and E being slightly
leptokurtic whereas that of L had kurtosis close to 3. Notice also that adding the spectral content of
H to that of L (which results in surface E) results in a surface with much higher frontal solidity than
that of surface L. This is in contrast to the work of Barros et al. [15] where the small-scale roughness
was added to packed spheres, which are already characterized by large σ . Finally, it is important to
note that all surfaces (especially surface L) exhibit ESx < 0.35, the threshold for waviness effects
below which �U + increases monotonically with ESx (see, e.g., [28]).

As seen in Table I, the blockages based on Sz,max or Sz,5×5 associated with the different surfaces
are considerably larger than the value of 1/40δ recommended by Jiménez [29]. A blockage study
carried out by Thakkar [24] on a subsection of the same surface scan used here revealed little
sensitivity of the flow to blockages based on Sz,5×5 up to ∼0.17δ. In their case, the dimensions of
the subsections used to compute Sz,5×5 were smaller than here, since the domain size (5δ by 2.5δ)
was significantly smaller. Accounting for that difference by computing Sz,10×10 (defined as Sz,5×5

by splitting the surface into 10 by 10 tiles) yields, as seen in Table I, mean peak-to-valley heights
comparable to the Sz,5×5 reported by Thakkar [24].

B. Numerical setup

The Navier-Stokes equations were discretized on a staggered-grid using a finite differences code
and integrated in time using a Adams-Bashforth method. Both spatial and time discretizations are
second-order accurate.
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An iterative version (see [26]) of the embedded boundary method developed by Yang and Balaras
[30] is used to impose the no-slip and impermeability conditions on the different surfaces. The
roughness is imposed on both (top and bottom) sides of the channel, with the height map mirrored
with respect to the channel center plane and shifted by half the domain sizes in the stream- and
spanwise directions, respectively.

The grids used were uniform in the stream- and spanwise directions. The grid was uniform across
the roughness layer and then stretched above using a hyperbolic tangent function. For the rough
wall cases, the grid resolution was approximately ∼4δν in the stream- and spanwise directions,
whereas the smallest and largest grid spacings in the wall-normal directions were of 2/3δν and
∼4δν , respectively. A time step of 10−4δ/uτ was found to yield sufficiently small CFL numbers
(below 0.5) to ensure stability of all simulations.

The smooth wall reference data was obtained separately to the present study on a domain of 8δ

by 4δ with a resolution of ∼5δν in the stream- and spanwise directions, and the wall normal grid
spacing was varied between 0.5δν and 4δν .

The flow is driven by adding a constant pressure gradient 	 to the streamwise momentum balance
equation equal to

	 = −u2
τ

δ
, (2)

which sets the friction Reynolds number to Reτ = uτ δ

ν
, with uτ being the friction velocity for smooth

wall turbulent channel flow. In this work Reτ = 395.
Statistics were collected over a period of about 30δ/uτ from previously obtained fully developed

conditions for each of the surfaces. The different flow properties were then decomposed into their
mean and fluctuating components, such that for a given variable φ one has the usual Reynolds
decomposition

φ(x, t ) = φ(x) + φ′(x, t ), (3)

where φ(x) is the time average at a point x in 3D space

φ(x) = 1

T

∫ T

0
φ(x, t ) dt . (4)

In fully developed turbulent channel with smooth walls, homogeneity implies φ(x) = φ(z). This
is not the case once rough walls are introduced, and thus time averages are dependent on spatial
coordinates other than the wall normal distance. This spatial dependence of time-averaged quantities
is captured by the dispersive component

φ̃(z) = φ(x) − 〈φ〉(z). (5)

The dispersive component φ̃ characterizes the spatial fluctuations about the doubly (time and
space) averaged 〈φ〉(z). The spatial averages are taken as

〈φ〉(z, t ) = 1

A f (z)

∫ �y

0

∫ �x

0
φ(x, t )ψ (x) dx dy, (6)

where ψ (x) = 1 within the fluid volume and ψ (x) = 0 otherwise [A f (z) is the total area of fluid at
a given height]. Spatial averages defined through Eq. (6) are called intrinsic averages, in contrast to
superficial averages which make no distinction between fluid and solid volumes (as such, they differ
only within the roughness layer); see Schmid et al. [31] for a more extensive discussion.
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TABLE II. Coefficients in Eq. (7) for nega-
tively, neutrally, and positively skewed surfaces
(from [34]).

Eq. (7) SSk < 0 SSk ≈ 0 SSk > 0

A 2.73 2.11 2.48
B −0.45 0 2.24
C 2 n/a 1

III. RESULTS

A. Roughness function

The roughness functions for each surface are shown in Table III along with estimates derived
from three different correlations given by Flack and Schultz [4], Thakkar et al. [5], and De Marchis
et al. [32].

Flack and Schultz [4] provide an expression for the equivalent sand grain roughness height of the
form

ks = ASq(C + SSk )B, (7)

where the coefficients A, B, and C depend on the skewness as given in Table II. For the purposes
of choosing the coefficients in Table II surfaces M and H were assumed to have nominally zero
skewness. In Refs. [4,33] it is cautioned that Eq. (7) may not suitable for surfaces in the “wavy”
regime which they define as those with ESx � 0.35.

Recall from the discussion below Eq. (1) that knowledge of ks for a given surface allows one
to estimate �U + exclusively in the fully rough regime, unless the transitionally rough behavior of
�U + = f (ks) is known a priori. In the present case, Thakkar et al. [25] reported that Sz,5×5/ks ≈ 0.8
for a surface extracted from the same grit blasted scan used here; more importantly, they also report
a Nikuradse-like behavior in the transitionally rough regime for that surface.

The second correlation used is that given by Thakkar et al. [5] for the roughness function which
reads

�U + = 1.4699

{
log(σ )

[
1 + 0.08 log

( Lcorr
x

Sz,5×5

)(
4

Sq

Sz,5×5

)−0.44

e−0.074SSk

]}
+ 8.0394, (8)

which is applicable in the transitionally rough regime. It should be noted that Eq. (8) was developed
for a single friction Reynolds number Reτ = 180, and all surfaces used in that study had the same
Sz,5×5 (i.e., S+

z,5×5 was the same for all surfaces).

TABLE III. Roughness function and estimates
from correlations given by Eqs. (7) and (8)
adapted here by assuming all surfaces follow a
Nikuradse-like �U + curve given by Cebeci and
Bradshaw [35] (see p. 179).

Surface �U + Eq. (7) Eq. (8) Eq. (9)

B 6.9 5.2 6.8 8.5
L 2.2 3.4 3.8 0.9
M 4.1 3.2 5.5 4.8
H 5.5 3.1 6.7 7.9
E 6.1 4.3 6.7 8.1
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The third correlation used is that proposed by De Marchis et al. [32]

�U + = 1

κ
log

(
ES2

x

) + B + C, (9)

where the fitting constants B = 6.5 and C = 8.5. The correlation above was proposed for the range
of effective slopes 0.05 � ESx < 0.35, which excludes what De Marchis et al. [32] call the rough
region in regard to waviness effects. The data used to fit Eq. (9) suggest �U + saturates at ∼9.8 for
ESx > 0.35.

As Eqs. (7) and (8) cannot be directly applied to the surfaces considered here, they were adapted
by assuming all five surfaces exhibit the same transitionally rough behavior as Nikuradse’s sand
grain roughness: this is a rather strong assumption (in particular for surfaces L, M, and H). The
purpose of this exercise, in particular for the filtered surfaces, is not to predict the exact values of
�U +, but rather to see if the empirical correlations discussed above are successful in picking up
differences in �U + between different surfaces.

Table III compares the actual values of the roughness functions for the individual surfaces with
those predicted by Eqs. (7) to (9). Equation (7) appears to correctly contrast the surfaces in terms
of Sq; it does not, however, distinguish between surfaces L, M, and E. While this may be due to
our assumption that all surfaces are Nikuradse-like, Eq. (7) still underpredicts �U + for the baseline
surface (for which that assumption is justified, as shown in [25]). The estimate given by Eq. (8)
for surface B is the most accurate, which is perhaps not so surprising as it included a very similar
surface in the data set used for establishing that fit. Equation (9) correctly ranks the surfaces in
terms of �U +, but it overestimates the roughness function for all surfaces but L, for which is
underestimates �U +.

Both Eqs. (8) and (9) correctly predict that surface L should have the smallest value of �U +
among the five surfaces considered, whereas Eq. (7) suggests it should actually be surface H, which
exhibits the smallest �U +.

The difference in values of �U + obtained for surfaces M and H is better captured by Eqs. (8) and
(9) since they differ only very little in terms of Sq and SSk [which are the only properties appearing
in Eq. (7)] highlighting the importance of accounting for surface texture, at least when considering
the transitionally rough regime.

Conversely, only Eqs. (7) and (9) correctly distinguish between surfaces H and E. However, both
correlations account for different parameters: for Eq. (7) the distinction between surfaces E and H
is made in terms of skewness, whereas for Eq. (9) it is due only to differences in effective slope.

Some of the differences highlighted above are likely to be due to a number of factors. Mainly,
Eq. (7) was developed for surfaces with ESx > 0.35, whereas in the so-called “wavy” regime (i.e.,
for smaller ESx) the roughness function increases monotonically with ESx [28,36] as in Eq. (9).
While Eq. (8) accounts for this by including solidity σ , our assumption regarding sand grain-like
behavior of �U + in the transitionally rough regime is hardly justified, especially for surface L.
Conversely, the correlation given by Eq. (9) accounts only for effective slope (or solidity) effects,
by disregarding other properties of the surface it is unable to predict the correct values of �U + but
becomes quite useful in determining which surfaces exhibit the largest/smallest �U + relative to
the others. Recent work by Nugroho et al. [37] suggests that wavy surfaces can exhibit non-k-type
roughness functions [when �U + no longer depends on k as in Eq. (1)]. This can be particularly
relevant for surface L whose largest streamwise wavelength is of the same order as δ (see center
panel on second row of Fig. 1) since Eqs. (7) to (9) were developed for k-type roughness.

To complement the analysis above, we compute the viscous ( fv) and pressure ( fp) components
of the total drag as in Busse et al. [20] and use this to rescale �U + as shown in Fig. 4. The higher
the dominant wave number of the roughness, the higher is the pressure contribution to the total
drag exerted by the surface, as seen by contrasting surfaces L, M, and H. Notice also how surfaces
E and H are practically indistinguishable in terms of fv/	 and fp/	, even though E results from
the superposition of L and H. The same figure also shows �U + scaled by fv/	 and fp/	. Notice
that while �U + fv/	 is significant for all surfaces, it is the dominant contribution to �U + for
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FIG. 4. Viscous ( fv) and pressure drag ( fp) in proportion to the driving pressure gradient 	 on the left and
multiplied by �U + on the right.

surfaces L and M. Figure 4 shows how the differences in �U + between the different surfaces
are mostly due to varying the pressure contribution. In fact, all surfaces see practically the same
�U + fv/	 ≈ 2.8 apart from surface L (for which �U + < 2.8). Further to this, it is interesting
to note that simply summing the pressure contributions to �U + from filtered surfaces is not too
far from the value of �U + fp/	 experienced by the surface resulting from their superposition: for
example, adding �U + fp/	 for M and E yields 4.8, which is not too far from �U + fp/	 = 4.2
obtained for surface B.

None of the correlations considered here explicitly distinguishes between viscous and pressure
contributions. Equation (7) was developed for the fully rough regime, where fviscous/	 ∼ 0, whereas
Eqs. (8) and (9) were obtained by fitting �U + to a range of surface properties. The present
results highlight how a distinction between viscous and pressure contribution may be warranted
in developing new correlations, especially if these are to be applicable to the transitionally rough
regime, since the dependence of viscous and pressure drag on a given surface property is unlikely
to be the same.

B. Mean flow and dispersive stresses

Plotting the mean velocity deficit in outer units (see Fig. 5) reveals that outer layer similarity
is observed for all the surfaces studied here as the profiles U + − U +

c of each surface and the
smooth wall counterpart collapse for z � 0.05δ, where Uc is the mean velocity at the centerline.
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FIG. 5. Mean velocity deficit profiles with wall distance in outer units. Smooth: ; B: ; L: ;
M: ; H: ; E: .
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FIG. 6. Mean streamwise velocity profiles with wall distance in inner units. The inset shows the mean
velocity profiles within the roughness canopy relative to the height of the smallest and tallest element. The
filled circles mark the crest of each surface. Smooth: ; B: ; L: ; M: ; H: ; E: .

The implication is that roughness effects, insofar as the mean velocity is concerned, appear to be
restricted to the near wall region.

Indeed, plotting the mean velocity profiles with wall distance in inner units (see Fig. 6) illustrates
how the various profiles exhibit a vertical shift of �U + (given in Table III) with respect to the
smooth counterpart for wall distances well within the log layer. The tallest crest of each surface is
marked on each profile and this is found to be located further within the log layer for surfaces that
retain high wave-number content. This observation suggests the roughness Reynolds number k+ is
determined mostly by the small-scale content of the surface, echoing the findings of Barros et al.
[15] that one can reduce waviness effects by filtering out the low wave-number content of a given
surface.

Furthermore, the inset in Fig. 6 shows the mean velocity profiles within the roughness canopy
with the height z scaled to the dimensions of the roughness. One should expect the near wall region
to be governed mostly by viscous effects. Interestingly, the profiles of U + for surfaces B, M, H, and
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FIG. 7. Streamwise component of the dispersive stress tensor. The inset shows the same profiles with wall
distance relative to the roughness height. B: ; L: ; M: ; H: ; E: .
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FIG. 8. Dispersive streamwise velocity contours at z = hmax in color scale (transparency varies linearly
from ũ = 0 up to half-way to each extreme of the scale) overlaid on the surface height map in gray scale.

E are fairly close to each other for z − hmin � 0.8Sz,max. These surfaces all displayed roughly the
same viscous drag (recall Fig. 4), substantially larger than that of surface L which, in turn, exhibits
larger momentum within its canopy. The negative values of U + for surfaces B, M, H, and E indicate
that flow separates over the deepest valleys, suggesting that skimming is more significant for those
surfaces than surface L. Notice, however, that skimming was still observed over some valleys of
surface L (not included for brevity).

In order to assess the degree of heterogeneity imposed by the surfaces, one can look at dispersive
averages, as discussed already in relation to Eqs. (3) and (5). We shall focus only on those quantities
which are not expected to vanish (above the roughness canopy) due to the statistical reflection
symmetry of the channel. These are the dispersive stresses 〈ũ2〉+, 〈ṽ2〉+, 〈w̃2〉+ and 〈ũw̃〉+ as well
as the dispersive pressure magnitude 〈p̃2〉+.

Focusing first on the streamwise component of the dispersive stresses, shown in Fig. 7, we find
that the location at which 〈ũ2〉 peaks seems to be determined mostly by the high wave-number
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FIG. 9. Spanwise component of the dispersive stress tensor. The inset shows the same profiles with wall
distance relative to the roughness height. B: ; L: ; M: ; H: ; E: .

content of the surface, since surfaces B, E, and H (whose spectra overlap at high wave numbers)
see the profile of 〈ũ2〉+ peak at about (z − hmin)/Sz,max ≈ 0.65. Conversely, the peak magnitude of
〈ũ2〉+ seems to depend on the wavy nature of the surface, as this increases when the dominant wave
number of the surface decreases (e.g., contrasting surfaces L, M, and H); furthermore, notice that
the peak magnitude of 〈ũ2〉+ is slightly larger for surface E than for surface B.

These observations are better illustrated through Fig. 8, where the dispersive streamwise velocity
component is shown at the height of the tallest crest for each surface. Figure 8 suggests there are two
main contributions to 〈ũ2〉+: streamwise organized pathways created by strong wakes developing
downstream of protruding roughness elements and spanwise organized high-momentum regions
over the crests of some roughness elements. For surfaces L and M, regions of positive ũ+ develop
display spanwise organization above some of the roughness crests (this is particularly clear for
surface L) which is likely to be a consequence of the fluid riding the crests, instead of forming
shear layers due to separation (i.e., the flow accelerates over the crests but does not separate). The
replacement of small by large-scale features seems to easily overcome this (as the flow is more
likely to separate), as observed by comparing ũ+ for surfaces B, L, and E. Notice that even though
〈ũ2〉+ is relatively small at z = hmax, ũ+ can be of the same order as U + in the vicinity of some
roughness elements.

Let us now consider the spanwise component of the dispersive stresses, shown in Fig. 9. With
the exception of surface L, the various profiles are not too dissimilar between them above the
roughness mean plane [i.e., (z − hmin)/Sz,max � 0.5], as seen in the inset of that same figure. 〈ṽ2〉+
can be thought of as characterizing how frequently the mean flow circumvents features within
the roughness canopy (see, for example, Fig. 10), which is likely to be the reason why surface
L displays the smallest peak (since for that surface the spacing between features is the largest). The
substantially larger peak magnitude of 〈ṽ2〉+ for surface M reinforces this idea, since it features
a region of densely packed peaks and valleys (practically connected between each other) in the
vicinity of x ≈ 9δ (see Fig. 1). It was found that for surface M the largest absolute values of 〈ṽ〉+
did indeed occur in this region (not shown for brevity).

At first sight, the wall-normal component of the dispersive stresses (〈w̃2〉+) seems to vary more
significantly between the different surfaces than the stream- and spanwise components, as seen in
Fig. 11. Surface L appears as the outlier, with a single peak occurring at a height just below its tallest
crest, whereas for surfaces B, M, and H more peaks can be found below the surface’s midplanes.
Those peaks (at z < 0) are the net result of intricate flow features, such as recirculation pockets, due
to either flow separation or fluid trapped within valleys (recall from the inset of Fig. 6 that surface
L exhibits very little mean reversed flow within the roughness sublayer), ejections downstream of
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FIG. 10. Illustration stream lines associated with the mean velocity field for surface H in the vicinity of a
roughness element. The brightness and opacity of the streamlines increases with distance to the wall.

protracted obstacles as well as the vertical displacement due to fluid riding the crests over roughness
features with relatively low slopes. These are all illustrated in Fig. 10 where streamlines for the mean
velocity are plotted in the vicinity of a particular feature of surface H.

In wall units, the outermost peak of 〈w̃2〉+ is relatively close for all surfaces considered here,
varying between z+ ≈ 16 and z+ ≈ 22 for surfaces H and B, respectively. However, relative to
Sz,max, this peak is actually close to the average height of the crests for each surface (computed as
the mean height of all local maxima of each height map), suggesting this is a reflection of the flow
being displaced vertically from within the roughness sublayer.

We now focus on the off-diagonal component of the dispersive stresses 〈ũw̃〉+ as shown in
Fig. 12, which is associated with the vertical transport of mean momentum as a result of heterogene-
ity in the roughness. Notice that while the other components (not shown for brevity) are nonzero
within the roughness sublayer, statistical reflection symmetry means that 〈ũṽ〉+ and 〈ṽw̃〉+ become
zero for z > hmax. Conversely, Fig. 12 shows how this is not the case for 〈ũw̃〉+, which remains
non-negligible deep into the core of the flow (although, as will be seen below, considerably smaller
than its turbulent counterpart).

Surface L appears again as a clear outlier as it is the only surface studied here for which the peak
magnitude of −〈ũw̃〉+ is negative. Nevertheless, for surface L, −〈ũw̃〉+ does become positive just
above the roughness crest (as shown by the inset of Fig. 12) and then decreases with increasing
z, in line with the remaining surfaces, but always smaller in magnitude. Furthermore, the profile
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FIG. 11. Wall-normal component of the dispersive stress tensor. The inset shows the same profiles with
wall distance relative to the roughness height. B: ; L: ; M: ; H: ; E: .
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FIG. 12. Off-diagonal 〈ũw̃〉+ component of the dispersive stress tensor. The inset shows the same profiles
with wall distance relative to the roughness height. B: ; L: ; M: ; H: ; E: .

of −〈ũw̃〉+ for surface M displays a local minimum roughly at the same distance (relative to the
roughness height) as for surface L. As discussed for Fig. 8, these two surfaces are the only ones for
which waviness effects are clearly visible (more so for surface L than for surface M). This property
of the flow translates into a negative contribution to −〈ũw̃〉+ since the flow is displaced upwards
and accelerates on the windward side of the roughness element and conversely decelerates as it
is pushed downwards on the leeward side. These differences suggest that small-scale features in
the roughness are responsible for the bulk of vertical mean momentum transport (mostly into the
canopy, as a consequence of separation and recirculation) associated with the dispersive stresses,
whereas the waviness of the mean flow, when present, counteracts this effect.

We conclude this section by looking at the profiles of the dispersive pressure intensity 〈p̃2〉+ on
Fig. 13. While this quantity is not often discussed (as it is difficult to obtain experimentally), it is of
interest, for example, in the context of deformable surfaces, as it represents local aerodynamic forces
interacting with the surface, and rheological flows, where it is associated with particle stratification
[38].

Interestingly, it is surface L which exhibits the largest dispersive pressure magnitude even at
heights deep in the log region. This is in spite of this surface having the smallest contribution from
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FIG. 13. Dispersive pressure intensity. The inset shows the same profiles with wall distance relative to the
roughness height. B: ; L: ; M: ; H: ; E: .
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FIG. 14. Streamwise component of the turbulent Reynolds stress tensor. The filled circles mark the crest of
each surface. Smooth: ; B: ; L: ; M: ; H: ; E: .

pressure to the total drag (recall Fig. 4). As will be seen below, 〈p̃2〉+ is actually comparable in
magnitude to its turbulent counterpart, especially within the roughness layer. Below the surfaces’
mean planes, 〈p̃2〉+ increases monotonically since the mean flow is mostly stagnant at the deepest
valleys of the roughness.

C. Turbulence statistics

We now turn our attention to the turbulent statistics associated with each surface. In Figs. 14 to
17 the various profiles for the different components of the Reynolds stress tensor are shown. For
wall distances well within the log layer no significant differences are observed between the various
profiles.

At a first glance, Fig. 14 shows that surfaces whose spectral content resides predominately at
higher wave numbers and have higher Sq yield lower peak magnitudes of 〈u′2〉+ (with its location
at higher z+), in line with the functional dependence of the turbulent kinetic energy on ESy and Sq

given by Thakkar et al. [5]. They can be compared with Figs. 15 and 16 in which the spanwise
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FIG. 15. Spanwise component of the turbulent Reynolds stress tensor. The filled circles mark the crest of
each surface. Smooth: ; B: ; L: ; M: ; H: ; E: .
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FIG. 16. Wall-normal component of the turbulent Reynolds stress tensor. The filled circles mark the crest
of each surface. Smooth: ; B: ; L: ; M: ; H: ; E: .

and wall-normal components of the Reynolds stress tensor (〈v′2〉+ and 〈w′2〉+ respectively) differ
almost exclusively below the surfaces’ mean planes (i.e., for z < 0).

The fact that roughness effects are mostly restricted to the streamwise fluctuations is potentially
quite interesting as the total amount of energy available to feed the turbulent motions is smaller for
larger �U +, as noted by Kuwata and Kawaguchi [12] and Thakkar et al. [5], who reported similar
results for DNS of channel flow over a variety of rough surfaces. Antonia and Krogstad [39] found
that roughness actually enhances the wall normal turbulent fluctuations (in a turbulent boundary
layer), whereas the present results show this to be barely noticeable only for surfaces B and M; this
may be a consequence of Reτ being kept constant between smooth and rough conditions (for the
present study), whereas Antonia and Krogstad [39] compared flows at equivalent Taylor Reynolds
numbers Reλ.

Figure 17 shows how the profiles of −〈u′w′〉+ which are practically indistinguishable between
the different surfaces for heights well within the log layer. Above the roughness canopy, the
differences between the rough and smooth wall profiles is made up by the dispersive stresses
analyzed in the previous section. The various profiles see their peak magnitudes decrease with
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FIG. 17. Off-diagonal component of the Reynolds stress tensor. The filled circles mark the crest of each
surface. Smooth: ; B: ; L: ; M: ; H: ; E: .
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FIG. 18. Turbulent kinetic energy contours in color scale overlaid on the surface height map in gray scale
(only half of the streamwise extent of the domain is shown).

increasing Sq but they are always lower than the smooth wall counterpart. Interestingly, the profiles
for surfaces M and H are practically indistinguishable throughout, meaning that surface texture
may have little effect on the off-diagonal component of the Reynolds stress tensor. Thus, Fig. 17
suggests that the turbulence above the roughness canopy is rather resilient to the presence of the
roughness, which in turn means—for the surfaces studied here—that while the self-generation
cycle of the turbulence is affected by the presence of roughness, it is unable to distinguish between
the various “types” of roughness. It is important to note that for the rough surfaces, the 1/Reτ

slope of the off-diagonal stresses is recovered by combining the turbulent and dispersive stresses
(i.e., −〈u′w′〉+ − 〈ũw̃〉+).

Even though no substantial differences are observed for the various components of the Reynolds
stress tensor, they are far from being homogeneously distributed in space. This is illustrated in
Fig. 18, where it can be seen that the spatial distribution of turbulent kinetic energy k′ = (u′2 + v′2 +
w′2)/2 is rather heterogeneous (a similar picture holds for the individual contributions). As seen in
Fig. 18, large amounts of k′ appear concentrated at the crests of roughness elements, likely as a
consequence of shear layers forming in these regions. However, even though the roughness appears
to promote production of k′, it is also responsible for transport through the dispersive velocity. Jelly
and Busse [40] carried out a quadrant analysis and found that the dispersive stresses were mostly
associated with ejection- and sweep-like events. Having computed the joint probability function
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FIG. 19. Mean fluctuating pressure intensity profiles. The filled circles mark the crest of each surface.
Smooth: ; B: ; L: ; M: ; H: ; E: .

from the spatial distributions of ũk′ and w̃k′ (representing transport of turbulent kinetic energy by
dispersive stresses) it was found that these were mostly dominated by ũk′ > 0, w̃k′ < 0 events,
although not so clearly for surface L.

Finally, we show in Fig. 19 the profiles for the variance of the fluctuating pressure 〈p′2〉+. Once
again, the most substantial differences are found within the roughness layer, with the rough profiles
approaching the smooth wall counterpart gradually with increasing z. Only small differences are
observed above the roughness canopies, as found also by Chan et al. [41], which completely subside

above k+ ≈ 150. Panton et al. [42] argue that for smooth wall bounded turbulent flows 〈p′2〉+ is
Reτ -independent for z+ > 200, which the present results suggest to be the case also for rough wall
turbulence.

Bhaganagar et al. [43] argued that the presence of roughness elements should lead to both an

increase in pressure drag as well as pressure fluctuations. While 〈p′2〉+ is always larger for the
rough cases than for the smooth wall flow, the present results show no clear correlation between
these profiles and the pressure contribution to the total drag (recall Fig. 4). All surfaces exhibit a
local peak at z+ ≈ 25 but the negatively skewed surfaces (B, L, and E) also show substantially larger
pressure fluctuations within the roughness layer.

D. Effect of roughness on turbulent structures

In this section we will consider how the rough surfaces influence the structure of the turbulence
by looking at the two-point correlation

ρφ (r) = 〈φ(x)φ(x + r)〉√
〈φ(x)2〉〈φ(x + r)2〉

, (10)

where the intrinsic averaging (indicated by angled brackets) is applied only when both points x and
x + r are located within the fluid; i.e., in Eq. (6) the integrand now features ψ (x)ψ (x + r) and A f (z)
in that equation is adapted accordingly.

As was seen in the previous sections, even though most of the turbulence intensity appears
concentrated around local features of the roughness, i.e., regions where dispersive stresses are also
large, the diagonal components of the Reynolds stress tensor are rather resilient to the presence of

roughness (with the exception of 〈u′2〉+).
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FIG. 20. ρ(rx, ry = 0) (right) and ρ(rx = 0, ry ) (right) at z+ = 0 (z+ = 0.25 for the smooth case), from top
to bottom u, v, and w. Smooth: ; B: ; L: ; M: ; H: ; E: .

Figures 20 and 21 show the autocorrelation functions of each velocity component at z+ = 0
(for the smooth wall case this is actually the first grid point above the wall) and z+ = 60 which is
just above the tallest element of surface B (which has the largest hmax overall). In general, as for
the one-point statistics analyzed above, the more significant differences between the various cases
are restricted to the near wall region where the roughness appears to modify both the small- and
large-scale structure of the turbulence. At z+ = 60, only slight differences between the different
cases can be observed, and they appear to be restricted to large-scale effects only, with the various
curves collapsing onto the smooth wall counterpart for small r =

√
r2

x + r2
y . With the exception

of ρu(rx ), for which collapse is observed for only very small r � 0.05δ the remaining correlation
functions collapse for r � 0.1δ [whereas ρw(ry) shows no difference between the smooth and rough
cases at all r].

The autocorrelation functions are a helpful tool in assessing the dimensions of naturally occurring
streaks [ρu(rx ) and ρu(ry)] and streamwise vortices [ρv (rx ), ρv (ry) and ρw(ry)] in the turbulence.
Shear layers emanating from the crests of roughness elements are expected to influence mostly
ρu(rx ) and ρw(rx ).

Similar to the results of Bhaganagar et al. [44], we find that ρu,v (rx ) are always smaller for
the rough wall cases than for the smooth wall counterpart, suggesting a more efficient break-up of
streaks and streamwise vortices by the rough surfaces. The break-up of streamwise vortices explains
why the negative peaks of ρv,w(ry) are smaller in magnitude for the rough wall cases than for the
smooth wall case. This effect is more pronounced for surfaces with larger Sq, as seen in the center-
and bottom-right panels of Fig. 20.
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FIG. 21. ρ(rx, ry = 0) (right) and ρ(rx = 0, ry ) (right) at z+ = 60, from top to bottom u, v, and w. Smooth:
; B: ; L: ; M: ; H: ; E: .

With the exception of surface H, the average spanwise distance between streaks remains un-
affected by the roughness (see top-right panel in Fig. 20). This is likely to be a consequence of
streaks conforming to repeating patterns in the roughness: since surface H retains only the high
wave-number content of the original scan, the (statistical) arrangement between peaks and valleys
is propagated throughout the reconstructed surface (at wave numbers below the filter width). As
seen in Fig. 2, the autocorrelation functions of surfaces M and H display peaks at r ≈ 0.4δ and
r ≈ 0.6δ, respectively, indicative of spanwise arrangement of peaks and troughs. However, surface
H also has the smallest spanwise correlation length Lcorr

y = 0.1δ (recall Table I). One can postulate
that the streaks conform to the relatively narrow space between spanwise arrangements of peaks and
troughs only if their spacing is narrower than the natural spacing between streaks.

We now briefly consider the streamwise autocorrelation function of the wall normal velocity on
the bottom-left panel of Fig. 20. Interestingly, no difference is observed between surface L and the
smooth wall case, in spite of the corresponding fluctuation intensities being substantially different,
as seen in Fig. 16. As mentioned above, ρw(rx ) [together with ρu(rx )] is mostly affected by shear
layers forming at the crests of the roughness roughness elements.

All the differences discussed above relate to the surface’s midplanes, and they were found to
subside outside the roughness sublayer as seen in Fig. 21. Indeed, as the wall distance increases all
the autocorrelation functions collapse at small r, suggesting the small-scale turbulence is no longer
influenced by the different surfaces. The small differences that are observed in Fig. 21 are at large
r and are clear only for ρu,w(rx ). These differences are larger for the surfaces with larger Sz,max

suggesting they are due to the relative distance to the surfaces’ crests at z+ = 60 being different.
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FIG. 22. Cross-correlation between k′ and ũ as a function of height and streamwise separation. The
horizontal dashed line indicates the height of the largest peak, the green line indicates the contour level
of zero.

Bhaganagar et al. [44] carried out a similar analysis as above but concluded instead that the
roughness was able to modify the outer layer of the flow. However, it is likely that their observations
are a consequence of the asymmetry introduced by only one of the channel’s sides being rough (and
the other smooth). Indeed, Wu and Christensen [45] also found no significant difference between the
smooth and rough wall cases at heights just above the roughness canopy. Even though our results
for ρw(rx ) are similar to those of Wu and Christensen [45], they find that for their surface (which is
in the fully rough regime), ρu(rx ) is actually enhanced with respect to the smooth case. They explain
such differences on the basis of the roughness interfering with the formation of hairpin vortices.

Mejia-Alvarez and Christensen [46] computed two-point correlations within a low-momentum
pathway (LMP) first identified by Barros and Christensen [47]. They observed enhanced correlation
for v′ (as well as for correlations between different velocity components, which we do not discuss
here). LMPs are characterized by negative dispersive streamwise velocity, and they appear to
correspond to regions in the flow where k′ is large in magnitude. In Fig. 22 we show that this negative
correlation between k′ and ũ is observed for all surfaces investigated here above the roughness
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canopy and extending up to the centerline of the channel. Conditioning the autocorrelation functions
on both points lying within an LMP resulted in correlation functions very similar to those shown in
Fig. 21, with ρv (rx ) for the rough cases remaining below that of the smooth case. This is in contrast
to Mejia-Alvarez and Christensen [46], who observed an enhancement of ρv (rx ).

As remarked by Barros and Christensen [47], it is likely that LMPs are associated with naturally
occurring low-momentum regions in wall turbulence which become “locked” in space (rather
than meander). Recalling Figs. 8 and 18, one can postulate that the LMPs arise from the spatial
synchronization of low momentum streaks with strong wakes in the near wall region. These wakes
are also regions of intense turbulence activity, and thus it is inevitable that some of k′ which is lifted
away from the surface remains “trapped” within the LMP [46,47]. The present results suggest that
this effect (introduced by the presence of the rough surface) is mainly a consequence of mean-flow
heterogeneity, rather than the modification of the turbulence itself since no particular length scales
are being excited/destroyed, especially away from the wall.

As a side note, there seems to be little to no effect of surface anisotropy identified in Fig. 1 for
surfaces L and E on the anisotropy of the turbulence at any height: i.e., no clear imprint of surface
anisotropy was found on the 2D maps of ρ(rx, ry) (not shown for brevity). While this suggests
that surface anisotropy may influence mostly the mean flow, it is important to note that within the
roughness sublayer turbulence activity takes place at much smaller length scales than those at which
surface anisotropy is evident (here usually r � 0.4δ).

IV. CONCLUSION

The flow over five distinct rough surfaces has been analyzed in terms of the mean flow structure
and turbulence statistics. The resulting (filtered) surfaces span a wide breadth of surface properties
known to influence the overall drag resulting from the rough surface.

The surfaces were produced by filtering out different wave-number content of an actual surface
scan (the baseline case). The four filtered surfaces were reconstructed by splitting the spectra of
the original scan into three regions of equal area and reconstructing the surfaces associated with
the low-, mid-, and high-wave-number content, as well as a fourth surface which excludes the mid-
wave-number content of the original scan.

At most, existing correlations were able to predict the relative significance of each surface’s
roughness function �U +. Even taking into account the restrictive assumptions that were made
in this analysis, these results suggest that the spectral distribution of a rough surface needs to be
incorporated into such correlations. Although the obtained values for �U + vary broadly between
the different surfaces, the same quantity scaled with the proportion of viscous forces exerted by
the surface was found to be approximately the same (∼2.7) for all surfaces except for the low-pass
surface (for which �U + < 2.7), suggesting that it may be useful to treat the viscous and pressure
contributions separately (e.g., as done in [48,49]) when constructing improved correlations.

The profiles of the different dispersive stresses are found to be highly dependent on surface
topography and strongly affected by dominant features found in the surfaces. These could be local
arrangements of valleys within which the mean flow is deflected or the presence of steep features
(e.g., a tall peak downstream of a deep valley) which give rise to intricate flow structures in the
mean flow field. The dispersive shear 〈ũw̃〉+ was found to change sign within the roughness canopy
for the low-pass surface, which was also found to be in the so-called waviness regime. Interestingly,
large values of the dispersive pressure intensity are found for the low-pass surface, extending up
into the log layer.

The substantially different mean flow associated with each surface was found to influence the
turbulence only in the immediate vicinity of the roughness canopy. In fact, other than for the
streamwise component, no significant differences were found for the various intensities of turbulent
velocity. Within the roughness canopy, high speed streaks are broken in the streamwise direction
by the roughness features but their spanwise arrangement is rather resilient. However, the spacing
between the streaks for the high-pass surface was found to be smaller (∼0.1δ) than for the other
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cases (∼0.15δ), which is likely due to this being the only surface with spanwise correlation length
(Lcorr

y = 0.1δ) smaller than the natural spanwise spacing of those streaks. Above the roughness
canopy it is mostly the streamwise structure of the turbulence which is affected by the roughness,
which is likely to be due to shear layers emanating from the crests of protruding features in the
surface.

The resilience of the turbulence above the roughness canopy has been a theme of this study.
However, the challenge remains of representing the drag implications of a wide range of flow
features within the canopy in terms of surface parameters.

The statistics presented in this work are available on the University of Southampton
repository [50].
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