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This work extends the framework of the partially averaged Navier-Stokes (PANS)
equations to variable-density flow, i.e., multimaterial and/or compressible mixing prob-
lems with density variations and production of turbulence kinetic energy by both shear
and buoyancy mechanisms. The proposed methodology is utilized to derive the PANS
BHR-LEVM closure. This includes a priori testing to analyze and develop guidelines
toward the efficient selection of the parameters controlling the physical resolution and,
consequently, the range of resolved scales of PANS. Two archetypal test-cases involving
transient turbulence, hydrodynamic instabilities, and coherent structures are used to illus-
trate the accuracy and potential of the method: the Taylor-Green vortex at Reynolds number
Re = 3000, and the Rayleigh-Taylor flow at Atwood number 0.5 and (Re)max ≈ 500.
These representative problems, for which turbulence is generated by shear and buoyancy
processes, constitute the initial validation space of the new model, and their results are
comprehensively discussed in two subsequent studies. The computations indicate that
PANS can accurately predict the selected flow problems, resolving only a fraction of
the scales of large-eddy simulation and direct numerical simulation strategies. The results
also reiterate that the physical resolution of the PANS model must guarantee that the key
instabilities and coherent structures of the flow are resolved. The remaining scales can be
modeled through an adequate turbulence scale-dependent closure.
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I. INTRODUCTION

The numerical prediction of variable-density (multimaterial and/or compressible) flows is crucial
to numerous applications of fundamental and applied fluid mechanics, e.g., scramjets, mixing
problems, oceanography, supernova explosions, and inertial confinement fusion. In addition to
the shear production mechanism of constant density turbulence, variable-density flows include
baroclinic production due to local mean density and pressure gradients. These flows are inherently
transient and also include complex physics involving dilatation effects, characteristic hydrodynamic
instabilities and coherent structures [1–6], and interactions between material and velocity fields. All
these aspects make modeling and simulation of variable-density flows rife with challenges.

Direct numerical simulation (DNS) is the ideal option for prediction of any continuum fluid flow
problem because it resolves all scales of motion. Large-eddy simulation (LES) [7], since it still
resolves most of the turbulence spectrum, is expected to lead to accurate representations of the flow
dynamics. Yet, such high-fidelity scale-resolving simulations (SRS) come with a computational
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expense that may be too prohibitive for practical applications. Also, selecting proper initial and
boundary conditions for DNS and LES of variable-density problems is difficult.

The Reynolds-averaged Navier-Stokes (RANS) equations [8–12] are an alternative formulation
to simulate practical flows of variable-density. In contrast to DNS and LES, RANS relies on a fully
statistical description of turbulence, in which all turbulence scales are modeled through a consti-
tutive relationship named turbulence closure [13–16]. This modeling strategy entails computation
of the mean and coherent fields [17,18], and, consequently, significantly reduces the computations’
cost. However, RANS closures are usually inaccurate, predicting many problems of interest in this
study.

The caveats of the former modeling strategies drove the emergence of a new paradigm of practical
SRS methods specially designed to predict complex flows efficiently. This class of models, named
bridging methods, was proposed by Germano [19,20] and Speziale [21] to seamlessly operate
between DNS and RANS, and only resolve the flow scales not amenable to modeling. The remaining
scales can be accurately represented through an adequate closure [22]. This strategy is responsible
for the potential efficiency (accuracy versus cost) of bridging methods, and it introduces the idea
of accuracy-on-demand. Very large-eddy simulation (VLES) [21], limited numerical scales (LNS)
[23], flow simulation methodology (FSM) [24], the partially integrated transport model (PITM)
[25,26], and partially averaged Navier-Stokes (PANS) equations [27] are examples of bridging
formulations.

Despite being widely used in many scientific areas, bridging models are still not common in the
variable-density flow community. There are three main factors contributing to this outcome:

(i) Complexity. bridging closures are typically based on one-point RANS models, which are
calibrated for total turbulent quantities. However, since bridging methods can operate at any range
of resolved scales, the inability to reliably estimate RANS variables may lead to calibration defi-
ciencies of the closure [28]. This is expected to be particularly relevant for low physical resolutions,
transient and transitional flows, and second-moment closures [13–15,29,30]. Further, the RANS
closures for variable-density flow possess terms to account for density variations that can be difficult
to extend to the bridging framework.

(ii) Physical resolution. Bridging models normally require a physical resolution parameter,
which determines the range of resolved scales and, consequently, the computational efficiency. This
parameter defines the fraction of the dependent quantities of the turbulence closure being modeled,
e.g., Reynolds-stress tensor, turbulence kinetic energy, dissipation, etc. Whereas excessively large
physical resolutions increase the simulations range of resolved scales and cost unnecessarily, low
values of such a parameter can lead to inaccurate computations. This makes the selection of the
physical resolution crucial to the accuracy of the simulations.

A closure for variable-density flow will rely on multiple model evolution equations [14,15].
This raises the question of how different modeled turbulence quantities behave with the physical
resolution. That is, what is the fraction of each dependent turbulence quantity being modeled for a
given range of resolved scales? VLES, LNS, and FSM formulations use a pragmatic approach in
which the magnitude of the Reynolds-stress tensor is scaled by a given factor. Despite being simple,
this strategy does not yield the correct fixed point behavior for the closure system [31]. PANS and
PITM, on the other hand, do not experience these issues since they use parameters to define the
modeled-to-total ratio of each turbulence-dependent quantity. Yet, these ratios need to be defined in
a physically consistent manner.

(iii) Commutation errors. SRS formulations are based upon the scale-invariance property of the
Navier-Stokes equations [19]. This property is responsible for the formal similarity between the
filtered Navier-Stokes and RANS equations, and it requires the implicit model filter operator to
commute with temporal and spatial differentiation [19]. If this condition does not hold, the filtered
Navier-Stokes equations have additional terms which are difficult to model and are often neglected.
This creates the so-called commutation error [32,33].

Most SRS computations are conducted with a spatially varying physical resolution to optimize
the use of the grid. Even for conventional LES models, this raises potential modeling issues (as
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shown in [32]). For bridging models, such as PANS, spatial variation of the resolution control
parameters leads to additional commutation terms [33], which can reach the magnitude of the
convective terms of the filtered Navier-Stokes equations. This is expected to be relevant for variable-
density turbulent flows due to their transient and transitional nature.

This work proposes a PANS bridging model specifically designed for variable-density turbulent
flow. Thus, the PANS framework of Girimaji [27] and Suman and Girimaji [34] is extended
to variable-density flow, and such a methodology is utilized to derive the PANS version of the
six-equation BHR-LEVM (linear eddy viscosity model) closure [29,35]. In addition, we perform
a priori testing to analyze and develop guidelines toward the efficient selection of the parameters
controlling the physical resolution of the PANS model. The accuracy and potential of the model is
evaluated through the prediction of two benchmark problems: the Taylor-Green vortex (TGV) [36]
at Reynolds number (Re) 3000 and initial Mach number (Ma) 0.28, and the Rayleigh-Taylor flow
[4,37] at Atwood number (At) 0.50, (Re)max ≈ 500, and Ma < 0.10. The first validation test-case
assesses the ability of PANS BHR-LEVM to predict the onset and development of turbulence in a
transient problem where turbulence is produced by shear processes. The second flow also includes
multi-material mixing and turbulence produced by buoyancy mechanisms. These two canonical
problems constitute the initial validation space [38,39] of the PANS BHR-LEVM model, and they
are comprehensively analyzed in two subsequent studies [40,41]. All simulations are conducted
at multiple physical resolutions to evaluate the effect of this parameter on the accuracy of the
simulations. Also, the physical resolution is set constant in space and time to prevent commutation
errors.

The remainder of this paper is structured as follows. Section II presents the derivation of the
governing equations of PANS BHR-LEVM. A consistent framework and nomenclature is defined.
Next, Sec. III analyzes the evolution of PANS turbulence-dependent quantities with the physical
resolution, and it proposes guidelines toward the efficient selection of the parameters controlling the
physical resolution of the model. Section IV describes the selected test-cases, while Sec. V discusses
the main results. Section VI concludes this paper with a summary of the major findings.

II. GOVERNING EQUATIONS

The partially averaged Navier-Stokes (PANS) equations are based upon the scale-invariance
property of the Navier-Stokes equations. This property has been demonstrated by Germano [19]
for incompressible flow, and extended to compressible flow by Suman and Girimaji [34]. To derive
the PANS equations for variable-density flow (multimaterial and/or compressible), let us start by
considering a general linear and constant preserving filtering operator 〈 · 〉,

〈�1 + �2〉 = 〈�1〉 + 〈�2〉, (1)

〈α�〉 = α〈�〉, (2)

where � is a generic variable, and α is a constant. This filter commutes with spatial and temporal
differentiation so that 〈

∂�

∂xi

〉
= ∂〈�〉

∂xi
,

〈
∂�

∂t

〉
= ∂〈�〉

∂t
, (3)

and it decomposes any instantaneous flow quantity � into a filtered (resolved), 〈�〉, and modeled
(unresolved), φ, component,

� ≡ 〈�〉 + φ. (4)

This decomposition can be extended to variable-density flow through the concept of Favre-averaging
[9–12],

� ≡ {�} + φ∗, (5)
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where {�} and φ∗ are the density-weighted filtered, {�} ≡ 〈ρ�〉/〈ρ〉, and modeled fluctuating,
φ∗ = � − {�}, components of �. In the limit of all turbulence scales being modeled, the former
decompositions are equivalent to Reynolds- [8] and Favre-averaging [9–12],

� = � + φ′, (6)

� = �̃ + φ′′, (7)

� and φ′ being the (time, ensemble, or spatial) averaged and turbulent components of �, whereas
�̃ and φ′′ are the density-weighted averaged and fluctuating counterparts of �.

The application of such filtering operators to the conservation equations for mass, momentum,
total energy, and fluid species [42,43] leads to the filtered or partially averaged form of the Navier-
Stokes equations for variable-density flow [19,27,34,40],

∂〈ρ〉
∂t

+ ∂ (〈ρ〉{Vi})

∂xi
= 0, (8)

∂ (〈ρ〉{Vi})

∂t
+ ∂ (〈ρ〉{Vj}{Vi})

∂x j
= −∂〈P〉

∂xi
+ ∂〈σi j〉

∂x j

+ ∂[〈ρ〉τ 1(Vi,Vj )]

∂x j
+ 〈ρ〉gi, (9)

∂ (〈ρ〉{E})

∂t
+ ∂ (〈ρ〉{E}{Vj})

∂x j
= −∂[〈ρ〉τ 1(Vj, E )]

∂x j

−∂ ({Vj}〈P〉)

∂x j
− ∂τ 2(Vj, P)

∂x j

+ ∂ ({Vi}〈σi j〉)

∂x j
+ ∂τ 2(Vi, σi j )

∂x j

− ∂
〈
qc

j

〉
∂x j

− ∂
〈
qh

j

〉
∂x j

(10)

∂ (〈ρ〉{cn})

∂t
+ ∂ (〈ρ〉{cn}{Vj})

∂x j
= −∂〈Jn

j 〉
∂x j

. (11)

Here, t is the time, xi are the coordinates of a Cartesian system, ρ is the fluid density, Vi are
the Cartesian velocity components, P is the pressure, σi j is the viscous-stress tensor assuming
Newtonian fluid,

〈σi j〉 = 2μ

(
{Si j} − 2

3

∂{Vk}
∂xk

δi j

)
, (12)

{Si j} is the resolved strain-rate tensor,

{Si j} = 1

2

(
∂{Vi}
∂x j

+ ∂{Vj}
∂xi

)
, (13)

μ is the fluid’s dynamic viscosity, δi j is the Kronecker delta, gi is the gravitational acceleration
vector, E = 1

2V 2
i + e is the total energy of the fluid, e is the internal energy, cn is the mass

concentration of material n, qc is the conductive heat flux, qd is the interdiffusional enthalpy flux,
and Jn is the mass fraction diffusivity flux of material n. Also, τ 1(�i,� j ) and τ 2(�i,� j ) are
generalized central second moments which account for the effect of the modeled turbulence in the
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resolved flow field. Expressing the PANS equations in terms of generalized central second moments
[19] guarantees scale-invariance. Such tensors are formally defined as [19,34]

τ 1(�i,� j ) ≡ {�i� j} − {�i}{� j}, (14)

τ 2(�i,� j ) ≡ 〈�i� j〉 − {�i}〈� j〉. (15)

In Eqs. (8)–(11), the pressure is calculated assuming a thermally perfect gas (P = ρRT ). Thus, its
resolved component is given by [34]

〈P〉 = (γ − 1)〈ρ〉
(

{E} − {Vk}{Vk}
2

− ku

)
, (16)

where T is the temperature, γ is the ratio between specific heats, and ku is the unresolved or modeled
specific turbulence kinetic energy.

The generalized central second moments and fluxes present in the PANS equations need model-
ing to close the resultant system of equations. In the present work, this is accomplished through the
Boussinesq approximation [44],

τ 1(Vi,Vj ) = 2νu{Si j} − 2
3 kuδi j, (17)

and the relationships given in [13,29,30,34]. These lead to the partially averaged form of the energy
and fluid species equations,

∂ (〈ρ〉{E})

∂t
+ ∂ (〈ρ〉{E}{Vj})

∂x j

= −∂ ({Vj}〈P〉)

∂x j
+ ∂ ({Vi}〈σi j〉)

∂x j
+ ∂[〈ρ〉{Vi}τ 1(Vi,Vj )]

∂x j
+ ∂

∂x j

[(
μ + μu

σk

)∂ku

∂x j

]

− ∂

∂x j

[
cp

( μ

Pr
+ μu

Prt

)∂〈T 〉
∂x j

]
− ∂

∂x j

[
nt∑

n=1

hn
〈
Jn

j

〉]
, (18)

∂ (〈ρ〉{cn})

∂t
+ ∂ (〈ρ〉{cn}{Vj})

∂x j
= −∂

〈
Jn

j

〉
∂x j

= − ∂

∂x j

[
〈ρ〉

(
D + νu

σc

)∂{cn}
∂x j

]
, (19)

where νu = μu/〈ρ〉 is the kinematic turbulent viscosity of the unresolved scales, σk and σc are
turbulent diffusion coefficients, cv is the constant specific heat (ideal gas is assumed), Pr is the
Prandtl number, Prt is the turbulent Prandtl number defined as Prt = cvνu/κ , κ is the effec-
tive thermal conductivity, and hn is the enthalpy of material n. Throughout this manuscript, all
modeled/unresolved PANS and RANS turbulence quantities are denoted by the subscripts u and t,
respectively.

The relationships above create two additional turbulence quantities, ku and νu, that need model-
ing. This is accomplished through the BHR-LEVM [29,35] closure model, which is now derived for
PANS.

A. PANS BHR-LEVM closure

Most PANS closures are based on one-point, linear turbulent viscosity RANS closures. This
modeling strategy is chosen to balance sufficient complexity to accurately operate at any degree
of physical resolution with scale-aware minor modifications [45], without the loss of robustness
observed for full Reynolds-stress closures. For variable-density flow we choose the BHR model
originally proposed by Besnard et al. [13], in kt -St linear turbulent viscosity form found in [29,35].
The model requires transport equations for six turbulence-dependent variables: the turbulence
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TABLE I. Coefficients of BHR-LEVM closure [29].

c1 c2 c4 ca1 cb cμ σa σb σc σk σS

0.06 0.42 0.45 6.00 0.45 0.28 1.00 3.00 0.60 1.00 0.10

kinetic energy, kt , turbulence dissipation length-scale, St , velocity mass flux, ait ,

ait = ρ ′v′
i

ρ
, (20)

and density-specific volume correlation, bt ,

bt = −ρ ′(1/ρ)′. (21)

In Eqs. (20) and (21), the primes refer to the fluctuating component over the mean value so that these
quantities can be divided into a coherent and turbulent part [46]. For the bt equation, we use the
newer formulation of Schwarzkopf et al. [47]. The subscript t indicates a total turbulence quantity,
that is, the quantity predicted by the RANS model that includes the action of all the turbulent scales
of motion. The subscript u will be used for partial-averaged quantities, including only the unresolved
portion of the turbulent scales.

The RANS BHR-LEVM model used in this work calculates the total kinematic turbulent
viscosity as

νt = μt

ρ
= cμSt

√
kt , (22)

where cμ is a coefficient given in Table I, and St is the turbulence dissipation length-scale defined as

St = k3/2
t

εt
, (23)

and εt is the specific total turbulence dissipation. The turbulence quantities kt and St are obtained
from the following evolution equations:

∂ρkt

∂t
+ ∂ρktṼj

∂x j
= Pbt + Pst − ρ

k3/2
t

St
+ ∂

∂x j

(
ρνt

σk

∂kt

∂x j

)
, (24)

∂ρSt

∂t
+ ∂ρStṼj

∂x j
= St

kt

(
c4Pbt + c1Pst

) − ρc2

√
kt + ∂

∂x j

(
ρνt

σS

∂St

∂x j

)
, (25)

∂ρait

∂t
+ ∂ρait Ṽj

∂x j
= bt

∂P

∂xi
+ R1(Vi,Vj )

∂ρ

∂x j
+ ρ

∂ (ait a jt )

∂x j
− ca1ρait

√
kt

St

− ρa jt
∂V i

∂x j
+ ∂

∂x j

(
ρνt

σa

∂ait

∂x j

)
, (26)

∂ρbt

∂t
+ ∂ρbtṼj

∂x j
= 2ρa jt

∂bt

∂x j
− 2a jt (bt + 1)

∂ρ

∂x j
− cbρbt

√
kt

St
+ ρ2 ∂

∂x j

(
νt

ρσb

∂bt

∂x j

)
, (27)

where Pbt and Pst are the specific total production of turbulence kinetic energy by buoyancy and
shear mechanisms,

Pbt = a jt
∂P

∂x j
, (28)

Pst = −ρR1(Vi,Vj )
∂Ṽi

∂x j
, (29)
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R1(Vi,Vj ) is the Reynolds stress tensor [R1(Vi,Vj ) and τ 1(Vi,Vj ) are equivalent when all turbulence
scales are modeled], and c1, c2, c4, ca1 , cb, σk , σS , σa, and σb are coefficients of the original RANS
BHR-LEVM model, whose values are given in Table I.

Equations (24)–(27) have been designed to operate exclusively with RANS variables: Reynolds
averaged, �, density-weighted averaged, �̃, and total turbulence, �t , quantities. We now derive
their PANS counterpart by extending the framework proposed by Girimaji [27] to variable-density
flow. To this end, the parameters fφ defining the ratios of modeled-to-total specific turbulence
kinetic energy, fk , dissipation length-scale, fS , mass flux velocity, fai , and density-specific volume
correlation, fb,

fk ≡ ku

kt
, fS ≡ Su

St
, fai ≡ aiu

ait

, fb ≡ bu

bt
, (30)

need to be included in Eqs. (24)–(27). These define the physical resolution and, as such, the fraction
of the dependent quantities of the turbulent closure being modeled. Also, they enable the closure
to operate at any range of resolved scales, i.e., from RANS ( fφ = 1), where turbulence is fully
represented by the closure so that τ 1(Vi,Vj ) = R1(Vi,Vj ), to DNS ( fφ = 0, no closure), where
turbulence is fully resolved so that τ 1(Vi,Vj ) = 0. fS can also be calculated as a function of fk

and fε,

fS ≡ Su

St
=

(
k3/2

u

εu

)(
εt

k3/2
t

)
= f 3/2

k

fε
, (31)

where fε is the ratio of modeled-to-total specific turbulence dissipation. Since fε is physically more
intuitive than fS , the evolution equations for ku, Su, aiu , and bu are derived in terms of fk , fε, fai ,
and fb.

1. ku evolution equation

It has been demonstrated by Girimaji [27] and Suman and Girimaji [34] that the scale-invariant
form of the ku equation can be written as

∂〈ρ〉ku

∂t
+ ∂〈ρ〉ku{Vj}

∂x j
= Pbu + Psu − Eu + Tu, (32)

where Pbu and Psu are the production of ku by buoyancy and shear mechanisms,

Pbu = a ju
∂〈P〉
∂x j

, (33)

Psu = −〈ρ〉τ 1(Vi,Vj )
∂{Vi}
∂x j

, (34)

and Eu = 〈ρ〉εu and Tu represent the dissipation and transport of modeled turbulence kinetic energy.
For constant fk , differentiation commutes in time and space and so it possible to establish a
relationship between the equations for ku (PANS) and kt (RANS),

∂ρku

∂t
+ ∂ρkuṼj

∂x j
= fk

[
∂ρkt

∂t
+ ∂ρktṼj

∂x j

]
. (35)

Since PANS calculates filtered or partially averaged dependent variables, the former relationship
can be rewritten as follows:

∂ρku

∂t
+ ∂ρku{Vj}

∂x j
= fk

[
∂ρkt

∂t
+ ∂ρktṼj

∂x j

]
+ ∂

∂x j
[kuρ({Vj} − Ṽj )]. (36)
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Next, replacing the term between brackets by the right-hand side of Eq. (24) and introducing the
parameter fρ = 〈ρ〉/ρ leads to

∂〈ρ〉ku

∂t
+ ∂〈ρ〉ku{Vj}

∂x j
= fρ fk

[
Pbt + Pst − Et + Tt

] + ∂

∂x j
[ku〈ρ〉({Vj} − Ṽj )], (37)

and applying self-similarity considerations to the left-hand side, the following relation is obtained:

Pbu + Psu − Eu + Tu = fρ fk
[
Pbt + Pst − Et + Tt

] + ∂

∂x j
[ku〈ρ〉({Vj} − Ṽj )]. (38)

This equation shows the formal similarity between PANS (left-hand side) and RANS (right-hand
side) production, dissipation, and transport terms. Hence, it is possible to relate the source and sink
(local processes) and transport terms as follows:

Pbu + Psu − Eu = fρ fk
[
Pbt + Pst − Et

]
, (39a)

Tu = fρ fkTt + ∂

∂x j
[ku〈ρ〉({Vj} − Ṽj )]. (39b)

Now, we define the weighting functions ωs and ωb,

ωs = Psu

Pbu + Psu

, (40)

ωb = Pbu

Pbu + Psu

, (41)

which define the relative weight of the shear, ωs, and buoyancy, ωb, mechanisms to the total
production of specific turbulence kinetic energy. Thus, their sum is equal to unity, ωs + ωb = 1.
Using fk , fε and these weighting functions, we can rewrite Eq. (39a),

Pbu + Psu − Euωs − Euωb = fk

[
fρ

(
Pbt + Pst

) − ωs
Eu

fε
− ωb

Eu

fε

]
, (42)

and obtain the relationships

fρPbt = Pbu

fk
− ωbEu

(
1

fk
− 1

fε

)
, (43)

fρPst = Psu

fk
− ωsEu

(
1

fk
− 1

fε

)
. (44)

The former relations are used to derive the evolution equation for Su. On the other hand, the transport
terms of the ku and kt equations can be related as follows:

Tu = fρ fk[Tt ] + ∂

∂x j
[ku〈ρ〉({Vj} − Ṽj )]

= fρ fk

[
∂

∂x j

(
ρνt

σk

∂kt

∂x j

)]
+ ∂

∂x j
[ku〈ρ〉({Vj} − Ṽj )]

= ∂

∂x j

( 〈ρ〉νu

σk

fε
f 2
k

∂ku

∂x j

)
+ ∂

∂x j
[ku〈ρ〉({Vj} − Ṽj )], (45)

where νu = cμSu
√

ku. Using scaling arguments, Girimaji [27] showed that

∂

∂x j
[ku〈ρ〉({Vj} − Ṽj )] ≈ 0, (46)

leading to the so-called zero-transport model (ZTM). The accuracy of this model has been confirmed
in the recent study of Tazraei and Girimaji [48]. Also, it is important to highlight that the velocity
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difference term tends to zero in the limit of fk = 0.00 and 1.00 since

ku = 0 at fk = 0.0, {Vj} − Ṽj = 0 at fk = 1.0. (47)

The derivation of the evolution equation for ku concludes by combining Eqs. (37), (45), and (46).
This leads to its final form,

∂〈ρ〉ku

∂t
+ ∂〈ρ〉ku{Vj}

∂x j
= Pbu + Psu − Eu + ∂

∂x j

( 〈ρ〉νu

σk

fε
f 2
k

∂ku

∂x j

)
, (48)

where

Eu = 〈ρ〉εu = 〈ρ〉k3/2
u

Su
. (49)

We recall that the derivation of Eq. (48) assumes that fk and fε are constant. If this property does
not hold, the model’s derivation needs to consider additional terms [33] and the modeled-to-total
ratio of density, fρ . Despite being commonly neglected, this requirement holds for any bridging and
hybrid formulation.

2. Su evolution equation

The derivation of the evolution equation for Su is similar to that for ku. From fS , it is possible to
establish the following relationship between the evolution equations for Su (PANS) and St (RANS):

∂ρSu

∂t
+ ∂ρSuṼj

∂x j
= fS

[
∂ρSt

∂t
+ ∂ρStṼj

∂x j

]
, (50)

which can be rewritten as

∂〈ρ〉Su

∂t
+ ∂〈ρ〉Su{Vj}

∂x j
≈ fρ fS

[
∂ρSt

∂t
+ ∂ρStṼj

∂x j

]
, (51)

using the zero transport model [27]. Now, we replace the material derivative of St by the right-hand
side of Eq. (25),

∂〈ρ〉Su

∂t
+ ∂〈ρ〉Su{Vj}

∂x j
= fρ fS

St

kt

(
c4Pbt + c1Pst

) − fρ fSc2ρ
√

kt + fρ fS
∂

∂x j

(
ρνt

σS

∂St

∂x j

)
. (52)

Using the parameters fk and fε, the definition of fS , and relationships (43) and (44), we obtain

∂〈ρ〉Su

∂t
+ ∂〈ρ〉Su{Vj}

∂x j
= ∂

∂x j

( 〈ρ〉νu

σS

fε
f 2
k

∂Su

∂x j

)
− c2

fk

fε
〈ρ〉

√
ku

+ Su

ku
c4 fk

(Pbu

fk
− ωb〈ρ〉k3/2

u

Su

[
1

fk
− 1

fε

])

+ Su

ku
c1 fk

(Psu

fk
− ωs〈ρ〉k3/2

u

Su

[
1

fk
− 1

fε

])
. (53)

This equation can be rearranged by introducing the coefficient c∗
2,

∂〈ρ〉Su

∂t
+ ∂〈ρ〉Su{Vj}

∂x j
= ∂

∂x j

( 〈ρ〉νu

σS

fε
f 2
k

∂Su

∂x j

)
− c∗

2〈ρ〉
√

ku + Su

ku

(
c4Pbu + c1Psu

)
, (54)

c∗
2 = c2

fk

fε
+ (c4ωb + c1ωs)

(
1 − fk

fε

)
. (55)
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3. aui evolution equation

The production terms of ku and Su in PANS BHR-LEVM closure require the calculation of the
velocity mass flux, ai, which is obtained from an additional evolution equation. The derivation of
the PANS equation for ai starts by establishing the following relationship:

∂ρaiu

∂t
+ ∂ρaiuṼj

∂x j
= fai

[
∂ρait

∂t
+ ∂ρait Ṽj

∂x j

]
. (56)

Following the approach used for the ku and Su equations, the left-hand side of Eq. (56) can be
approximated as

∂〈ρ〉aiu

∂t
+ ∂〈ρ〉aiu{Vj}

∂x j
≈ fρ fai

[
∂ρait

∂t
+ ∂ρait Ṽj

∂x j

]
, (57)

using the zero transport model [27]. Next, we replace the right-hand side of this equation by that of
Eq. (26),

∂〈ρ〉aiu

∂t
+ ∂〈ρ〉aiu{Vj}

∂x j
= fρ fai

[
bt

∂P

∂xi
+ R1(Vi,Vj )

∂ρ

∂x j
− ρa jt

∂V i

∂x j
+ ρ

∂ (ait a jt )

∂x j

− ca1ρait

√
kt

St
+ ∂

∂x j

(
ρνt

σa

∂ait

∂x j

)]
. (58)

The final step to derive the aui equation is to express the right-hand side of Eq. (58) in terms of
filtered and unresolved quantities. This can be accomplished through the parameters fk , fε, fai , fb,
and key closure simplifications,

fρ fai bt
∂P

∂xi
≈ fai

bu

fb

∂〈P〉
∂xi

, (59)

fρ fai R
1(Vi,Vj )

∂ρ

∂x j
≈ fai

fk
τ 1(Vi,Vj )

∂〈ρ〉
∂x j

, (60)

fρ faiρa jt
∂V i

∂x j
= fai

fa j

〈ρ〉a ju
∂V i

∂x j

= fai

fa j

〈ρ〉a ju

[
∂〈Vi〉
∂x j

+
(

∂V i

∂x j
− ∂〈Vi〉

∂x j

)]

= fai

fa j

〈ρ〉a ju
∂〈Vi〉
∂x j

(ZTM),

(61)

fρ faiρ
∂
(
ait a jt

)
∂x j

= 〈ρ〉
fa j

∂
(
aiu a ju

)
∂x j

, (62)

fρ fai ca1ρait

√
kt

St
= ca1〈ρ〉aiu

√
ku

Su

fk

fε
, (63)

fρ fai

∂

∂x j

(
ρνt

σa

∂ait

∂x j

)
= ∂

∂x j

( 〈ρ〉νu

σa

fε
f 2
k

∂aiu

∂x j

)
. (64)

These six terms allow us to rearrange Eq. (58) and obtain its final form,

∂〈ρ〉aiu

∂t
+ ∂〈ρ〉aiu{Vj}

∂x j
= fai

bu

fb

∂〈P〉
∂xi

+ fai

fk
τ 1(Vi,Vj )

∂〈ρ〉
∂x j

− fai

fa j

〈ρ〉a ju
∂〈Vi〉
∂x j

+ 〈ρ〉
fa j

∂
(
aiu a ju

)
∂x j

− ca1〈ρ〉aiu

√
ku

Su

fk

fε
+ ∂

∂x j

( 〈ρ〉νu

σa

fε
f 2
k

∂aiu

∂x j

)
. (65)
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4. bu evolution equation

The derivation of PANS BHR-LEVM closure concludes with the evolution equation for the un-
resolved density-specific volume correlation, bu. Once again, we start by establishing the following
relationship using the parameter fb:

∂ρbu

∂t
+ ∂ρbuṼj

∂x j
= fb

[
∂ρbt

∂t
+ ∂ρbtṼj

∂x j

]
, (66)

which, using the ZTM model [27], can be simplified as follows:

∂〈ρ〉bu

∂t
+ ∂〈ρ〉bu{Vj}

∂x j
≈ fρ fb

[
∂ρbt

∂t
+ ∂ρbtṼj

∂x j

]
. (67)

Replacing the term between brackets by the right-hand side of Eq. (27),

∂〈ρ〉bu

∂t
+ ∂〈ρ〉bu{Vj}

∂x j
= fρ fb

[
2ρa jt

∂bt

∂x j
− 2a jt (bt + 1)

∂ρ

∂x j
− cbρbt

√
kt

St
+ fbρ

2 ∂

∂x j

(
νt

ρσb

∂bt

∂x j

)]
,

(68)

and converting total to partial quantities using fφ , we get the final form of the bu equation,

∂〈ρ〉bu

∂t
+ ∂〈ρ〉bu{Vj}

∂x j
= 2〈ρ〉a ju

fa j

∂bu

∂x j
− 2

a ju

fa j

(bu + fb)
∂〈ρ〉
∂x j

− cb〈ρ〉bu
fk

fε

√
ku

Su

+〈ρ〉2 ∂

∂x j

(
νu

〈ρ〉σb

fε
f 2
k

∂bu

∂x j

)
. (69)

Thus, the PANS BHR-LEVM closure is composed by Eqs. (48), (54), (65), and (69). Note that the
PANS BHR-LEVM closure recovers its original RANS form when all fφ are equal to unity.

III. FILTER CONTROL PARAMETER

The efficiency of bridging and hybrid formulations is determined by the degree of physical
resolution. As the model resolves a wider range of flow scales, both the cost and accuracy of the
simulations are expected to grow. Whereas excessive physical resolution reduces the computational
efficiency by increasing the cost without commensurate improvement in accuracy, insufficient res-
olution can compromise accuracy by precluding the model from resolving the scales not amenable
to modeling [22,40,49,50]. Hence, the success of such SRS methods is dictated by the parameters
controlling their physical resolution.

As discussed in [40], there are three main factors to consider when determining the physical
resolution needed for a given model, flow configuration, and quantities of interest:

(i) The length- and timescales that need to be resolved.
(ii) The smallest flow scales that the selected spatiotemporal grid resolution and numerical setup

can accurately resolve.
(iii) The effect of the physical resolution on the dependent variables of the turbulence closure.
The authors have recently investigated the first point through the analysis of flows around

cylinders and the Taylor-Green vortex [22,40,49,50]. These studies have shown that the accurate
prediction of these complex problems is determined by the mathematical model’s ability to resolve
the instabilities and coherent structures governing the flow physics. This flow physics is dominated
by nonlocal effects, which most one-point closures cannot represent accurately. Thus, accurate
computations of such problems require resolving the Kelvin-Helmholtz rollers observed in flows
past cylinders in the subcritical regime [51,52], and the vortex-reconnection process of the TGV.
The remaining flow scales can be accurately modeled through an adequate turbulence closure model.
These studies also illustrate the importance of understanding the flow physics and its main features
to select the physical resolution and obtain high-fidelity solutions.
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FIG. 1. Ratio between the minimum spatial grid resolution needed for computations at a given fk and
( fk )ref = 0.10, r� [40].

The second aspect is ideally addressed through verification exercises [38,39,53]. We have illus-
trated the crucial role of verification of RANS and SRS predictions in [40,45,50,54,55]. It is possible
to obtain a reasonable a priori estimate of the maximum physical resolution that a given grid can
support and, conversely, the dependency of the grid requirements from the physical resolution.
Irrespective of the numerical scheme, using Kolmogorov arguments, and assuming high-Re flow
( fε = 1.0), it is possible to obtain an expression to estimate the smallest value of fk that a spatial
grid resolution can accurately resolve [40],

fk �
(

1

cμ

)1/2(
�

k1.5
t /εt

)2/3

. (70)

This expression can be rearranged to provide the ratio between the smallest grid size for two values
of fk ,

r� = � fk

�( fk )ref

=
(

fk

( fk )ref

)3/2

, (71)

where � is the grid resolution or size, and the subscript “ref” denotes a reference fk ( fkref > 0). This
expression enables the evaluation of the relative evolution of � with the physical resolution. Note
that it is possible to use different arguments and expressions to perform this simple, a priori, and
qualitative assessment of the impact of fk on the grid requirements of the model.

Figure 1 depicts the evolution of � with fk relative to the case ( fk )ref = 0.10. The results show
the close dependence between the grid and physical ( fk) resolutions. As fk increases, the minimum
grid resolution coarsens as (10 fk )1.5. Considering the cases of fk = 0.25 and 0.40, this represents
reducing the grid resolution requirements by a factor of 4 and 8 when compared to the case at fk =
0.10. Since SRS computations are inherently three-dimensional and unsteady, Fig. 1 confirms the
potential of bridging methods to predict complex flows efficiently. It also emphasizes the importance
of selecting an adequate physical resolution for a given problem and quantities of interest.

The third factor is caused by the fact that an SRS model’s physical resolution does not affect
all turbulence-dependent quantities equally, i.e., a given range of resolved scales does not lead to
equal ratios modeled-to-total for all dependent variables of the closure model. For instance, it is not
expected that the turbulence kinetic energy and dissipation possess similar spectral signatures in a
fully developed turbulent flow [56,57]. This has been recently addressed in Pereira et al. [40]. We
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(a) FHIT - V1(x) (b) HVDT - ρ(x, to)

FIG. 2. FHIT and HVDT DNS velocity and density (t = 0) flow fields.

emphasize that despite most SRS models neglecting this aspect, PANS can consider the spectral
signature of each dependent quantity of the closure through fφ . This benefit comes at the expense
of having to determine the other control parameters in such a manner that consistency between the
various physical processes can be preserved.

The PANS BHR-LEVM model relies on fk , fε, fai , and fb to set the physical resolution. The
parameter fk can be either set constant [27,54,58,59] or dynamically [58,60–62] in space and time.
Although the second approach may enhance the simulation’s efficiency, we choose using constant
values of fk to prevent commutation errors [32,33] and enable robust verification and validation
exercises where one can evaluate numerical and modeling errors separately to avoid possible error
canceling [63]. Regarding fε, this parameter is commonly defined constant and equal to 1. This
modeling assumption stems from the fact that most turbulence dissipation in high-Re flows occurs at
the smallest scales [56,57]. For this reason, fε = 1.00 is often used in practical PANS simulations.
The validity of this option has been recently confirmed by the authors [40], and it is discussed
in Sec. III A 1. The remaining parameters, fai and fb, have never been used before and so their
definition needs to be investigated; see Sec. III A 2.

The remainder of this section addresses the specification of the parameters fφ in PANS BHR-
LEVM, in a manner that is consistent with the implicit-filter corresponding to fk . Unfortunately,
canonical turbulence theories cannot be used for this purpose. Instead, this objective is accomplished
through a priori testing, in which the parameters fφ are calculated at successively smaller physical
resolutions—from fk = 0.00 to 1.00. The selected canonical flows are the forced homogeneous
isotropic turbulence (FHIT) of Silva et al. [64] at Taylor Reynolds numbers Reλ = 140 and 300,
and the buoyancy-driven homogeneous variable-density turbulence (HVDT [65–68]) of Aslangil
et al. [69,70] at At = 0.75. These flow problems have been simulated by means of DNS in a cubical
domain of length 2π , and their streamwise velocity (FHIT) and density (HVDT) fields are depicted
in Fig. 2. All computations were performed in a 10243 mesh, except the FHIT at Reλ = 140, which
used a 5123 grid. The comprehensive description of these data sets is given in [64,67–70].

The ratios modeled-to-total, fφ , of the dependent quantities of PANS BHR-LEVM at a distinct
filter’s cutoff are computed as follows. The DNS flow fields are filtered using the operator [71,72]

〈�〉(x) =
∫ +�/2

−�/2

∫ +�/2

−�/2

∫ +�/2

−�/2
�(x) G�(x − x′)dx′, (72)
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(a) n = 1 (b) n = 17 (c) n = 33

(d) n = 69 (e) n = 199 (f) n = 349

FIG. 3. Evolution of x1-component of the FHIT velocity field with the relative filter length size, n = �/�η.

where bold symbols denote vectors, � is the filter’s width, and G� is the kernel of the filtering
operator. Here, we use a box filter so that

G�(x − x′) =
{
�−1 , |x − x′| < 0.5�,

0 otherwise.
(73)

Figure 3 illustrates the effect of varying this operator filter’s width on the velocity field of the
FHIT flow. As the filter’s width increases, the magnitude of the filtered turbulent velocity field
asymptotes to zero, and its gradients get smoother. This is the reasoning for the cost reduction
observed from DNS to RANS [45]. It is important to note that the shape of the filter implied by the
PANS decomposition is not known, however the utilization of a box filter is not expected to alter
the conclusions of this class of studies [73–75] (see Sec. III A 2 for HVDT). This idea is confirmed
by comparing our HVDT results with those of Saenz et al. [76] obtained with a Gaussian filter.
Both studies lead to similar qualitative conclusions. In contrast, cutoff filters are not suitable for
this exercise since practical SRS computations do not rely on such operators [73,77]. It is also
generally accepted that the box filtering operator is the closest approach to the implicit filtering
of finite-difference and finite-volume discretization schemes utilized in engineering computations
[72,78,79]. For all these reasons, the use of a box filter operator is not expected to affect the
qualitative conclusions of the present analysis.

For any given filter { · } or 〈 · 〉 chosen, the unresolved dependent variables of the BHR-LEVM
closure are calculated from relations (14) and (15) [19,34,80],

ku = 0.5({ViVi} − {Vi}{Vi}), (74)

εu = ν

({
∂Vi

∂x j

∂Vi

∂x j

}
−

{
∂Vi

∂x j

}{
∂Vi

∂x j

})
, (75)
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(a) fk(n) (b) fε(n)

FIG. 4. Variation of fk and fε with the relative filter size, n, at Reλ = 140 and 300.

aiu = 〈ρ ′v′
i〉 − 〈ρ ′〉〈v′

i〉
〈ρ〉 , (76)

bu = 〈ρ ′〉〈(1/ρ)′〉 − 1. (77)

It is crucial to emphasize that ρ ′ and v′
i in Eqs. (76) and (77) consider the fluctuating component of

the density and velocity fields, i.e., these quantities can comprise both the coherent and stochastic
fields [17,18]. Yet, the stochastic field is expected to be the main contributor to aui and bu at late
times when the flow exhibits fully developed and high-intensity turbulence features. The quantities
given by relations (74)–(77) are calculated with n = �/�η up to 349, where �η is the grid size used
in the DNS simulations. Note that due to the objective and computational cost of these exercises,
only the FHIT case at Reλ = 140 is filtered until fk ≈ 1. This study is performed with the code used
in [45,55].

The outcome of the a priori exercises is now discussed in Sec. III A. However, before presenting
the results, note that the FHIT problem is an archetypal problem widely utilized to investigate the
dynamics and modeling of fully developed incompressible turbulence. For this reason, we use this
flow to analyze the dependence of fk and fε on the range of resolved scales [40]. On the other hand,
the HVDT flow is a canonical problem used to study the fundamental physics and modeling of
variable-density flow. Hence, we use the HVDT case to investigate the evolution of fk , fai , and fb

with the physical resolution.

A. A priori testing results

1. Forced homogeneous isotropic turbulence

Figure 4 presents the variation of fk and fε with the relative filter size, n = �/�η. n indicates
how large the filter size is when compared to DNS resolution (so n = 1 is DNS). As expected, the
fk (n) results indicate that most turbulence kinetic energy is contained at the largest flow scales.
This behavior gets more pronounced with increasing Reλ. It is observed that to filter only 20% of
the total turbulence kinetic energy, we need n = 29 (Reλ = 140) and 49 (Reλ = 300). This clearly
illustrates the potential of bridging models to efficiently compute complex flow problems. Also,
note that bridging models are usually not used at fk < 0.20 (LES range [56]). Regarding fε, the
results of Fig. 4 confirm that most turbulence dissipation occurs at the smallest scales and, as such,
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FIG. 5. fε as a function of fk at Reλ = 140 and 300.

fε grows significantly more rapidly than fk with n. The data show fε = 0.22 (Reλ = 140) and 0.34
(Reλ = 300) for n = 5, and fε > 0.99 for n = 199 and both Reynolds numbers.

Next, Fig. 5 presents fε as a function of fk . The results indicate that fε is only weakly dependent
on fk at coarser fk values. At fk = 0.20, fε = 0.87 for Reλ = 140 and fε = 0.93 for Reλ = 300.
Considering that practical simulations of turbulence are expected to operate at fk � 0.20 due to
the inherent cost and availability of LES formulations, Fig. 5 confirms that fε = 1.00 is a good
assumption for practical PANS computations.

2. Homogeneous variable-density turbulence

The HVDT is a transient flow and, as such, the a priori tests are conducted at the three distinct and
representative times shown in Fig. 6: at t1 = 1.8, the flow is in the so-called explosive growth regime
[70] and the kinetic energy of the system is rapidly increasing through the conversion of potential
into kinetic energy. As shown in Fig. 6(a), the flow does not exhibit small-scale turbulence, and the
two fluids (ρ1 = 7.0 and ρ2 = 1.0) are mostly unmixed. At t2 = 2.8, the flow kinetic energy grows,
reaching close to its peak. This leads to flow regions characterized by small-scale turbulence, where
the two fluids mix. Finally, t3 = 4.8 is just after the fast decay regime where the kinetic energy
decays rapidly. Turbulence is the major component of the kinetic energy, and the flow exhibits
high-intensity and fully developed turbulence features. This enhances mixing [compare Figs. 6(b)
and 6(c)]. A comprehensive description of this flow is given in Aslangil et al. [69,70]. It is important
to emphasize that the transient nature of the HVDT flow and the overlap between coherent and
turbulent wavelengths/frequencies hamper a priori exercises of this class of flows. Nonetheless,
these studies still provide valuable information about the flow physics and evolution fφ with the
filter size.

Figures 7 and 8 present the variation of fk , fa, and fb with the relative filter size, and the energy
spectra of kt , at , and bt for the unfiltered fields. Due to the HVDT flow properties, the quantities a2

and a3 are equal to zero, so we consider fa = fa1 . The results for fk (n) indicate that before the peak
of kt (t = t1), most of the kinetic energy is contained in the largest coherent flow scales (blobs of
laminar fluid). For this reason, fk does not exceed 0.38 when n = 99. As the flow and turbulence
field develop, t = t2, kt increases to a value close to its maximum, altering the spectral properties of
the kinetic energy field. In addition to the conversion of potential into kinetic energy, the energy of
the largest scales is transferred to the smallest ones, widening the spectra so that larger fractions of kt

are modeled for the same n. At later times, t = t3, when the flow exhibits high-intensity turbulence
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(a) t = t1

(b) t = t2

(c) t = t3

FIG. 6. Density field of HVDT flow at distinct times: before (t1), at (t2), and after (t3) the peak of kinetic
energy. 084602-17
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(a) fk(n)

(b) fa(n)

(c) fb(n)

FIG. 7. Variation of fk , fa, and fb with the relative filter size, n, at distinct times.
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(a) E(k)

(b) E(a)

(c) E(b)

FIG. 8. Energy spectra of kt , at , and bt at distinct times.
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and mixing, fk (n) exhibits a slight reduction. This stems from the dissipation of kt at the smallest
scales.

Turning our attention to fa(n), the results indicate that the evolution of this quantity with the
filter width at t = t1 and t2 is nearly identical. This shows that the morphological flow changes
occurring at these early instants significantly affect the turbulence kinetic energy but not the velocity
fluctuations uncorrelated with the density field [Figs. 8(b) and 8(c)]. The data of Fig. 7(b) also
indicate that approximately 60% of the energy of a at these instants is contained in the smallest
flow scales, n = 99. At t = t3, the values of fa are reduced approximately 50% . Note that this is
when the flow exhibits high-intensity turbulence, a more homogeneous mixture, and diminishing
influence of the coherent field (Fig. 7).

The variation of fb with n shows that the magnitude of this quantity increases from t = t1 to
t2, reaching values of 0.63 at t = t1 and 0.77 at t2. Such results indicate that the density-specific
volume correlation is dominated by the smallest wavelengths at these early stages. The observed
high-intensity turbulence and enhanced mixing at t = t3 leads to a significant reduction of fb. For
n � 99, fb does not exceed 0.50.

As for the FHIT case, Fig. 7 illustrates the potential of bridging models to compute complex
flow problems efficiently. Considering fk , the data indicate that simulations at fk = 0.50 and 0.25
(t = t3) can run on grid resolutions 89 and 33 times coarser (in each direction) than those required
by DNS. This constitutes a significant cost reduction.

Finally, Fig. 9 depicts the variation of fa and fb as a function of fk . The results show that the
ratio fa/ fk gets smaller in time, and fa ≈ fk/2 at t = t3 (the instant when the flow is characterized
by high-intensity turbulence). In contrast, fb has a small temporal dependence until t2, and fb > fk .
Such a behavior is not observed at t = t3, where fb ≈ fk . We attribute this result to the breakdown
into turbulence and dissipation of the coherent field.

3. Parameter selection

The above a priori tests have been conducted to help us determine the parameters fφ of PANS
BHR-LEVM, and to propose guidelines toward their efficient selection. Nevertheless, we reiterate
that the present paper’s primary objectives are to extend PANS methodology to variable-density
flow and provide the resulting PANS BHR-LEVM model’s initial validation space. Closures using
different dependent variables may require similar studies to define fφ (only k and ε tend to be used
in most closures [14,81,82]).

The FHIT results have shown that prescribing fε = 1.00 is a good strategy because most
dissipation occurs at the smallest flow scales. These are usually modeled in practical PANS
computations ( fk � 0.20). Although fk and fε can get closer in transient and/or transitional flows,
the results available in the extensive PANS literature have shown that this approach is still good
[27,40,48,49,54,58,59,61,83–85]. In these cases, the resulting modeling shortcomings need to be
compensated by slighter finer values of fk . Referring to fa and fb, selecting these parameters is more
complex and has never been done before. Our a priori tests suggest setting fa = fk/2 and fb = fk

at late times when turbulence is closer to fully developed, and the coherent field has a diminishing
impact on the flow dynamics. However, note that these quantities are inherently time-dependent
and contain a meaningful coherent component at early times. Once again, these calibration issues
can be overcome through a proper selection of fφ , and slightly lower values of fk . Although often
neglected, it is crucial to emphasize that these issues are common to most SRS models.

Considering the previous points and the results of the a priori tests, the present simulations utilize
one of the following strategies to define fk , fε, fa ( fa = fai ), and fb:

(i) Upon inspection of the governing equations of the PANS BHR-LEVM closure, it is possible
to infer that fk and fε are the major influence on the production of modeled turbulent kinetic energy
by shear and buoyancy effects (ku and Su equations), and, consequently, on the modeled turbulent
stresses. Thus, we prescribe fk , define fε = 1.00 based on the outcome of the a priori exercises, and
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(a) fa(fk)

(b) fb(fk)

FIG. 9. Variation of fa and fb with fk at distinct times.

set the remaining parameters equal to 1. We expect this approach to be more robust and general so
it can be applied to most flows. Yet, it might require slightly smaller values of fk to compensate for
possible calibration deficits.

(ii) Disregard the contribution of the density fluctuations to the specification of fa and fb

[Eqs. (20), (21), and (30)] by assuming that the coherent field is the main contributor to the
magnitude of aiu and bu. This makes fa only dependent on the velocity field so that fa ≈ √

fk and
fb ≈ 1.00. fε is set equal to 1 based on the a priori results.

(iii) Based on the outcome of the a priori exercises of the FHIT and HVDT, set fa ≈ fk/2,
fε = 1.00, and fb ≈ fk . This strategy is optimized for the HVDT type of flows, and best suited for
instants characterized by fully developed turbulence.

These approaches are summarized in Table II and tested in Sec. V B. Note that for S3, the values
of fa are rounded to the closest upper multiple of 0.05. In the remainder of this paper, we use fk to
refer to the physical resolution of the model. Nonetheless, we stress that each fk has a corresponding
fε, fa, and fb given in Table II.
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TABLE II. Modeled-to-total ratios, fφ , used in the RT PANS computations at 0.00 < fk < 1.00.

fk 0.25 0.35 0.50

fε 1.00 1.00 1.00
S1 fa 1.00 1.00 1.00

fb 1.00 1.00 1.00

fε 1.00 1.00 1.00
S2 fa 0.50 0.59 0.71

fb 1.00 1.00 1.00

fε 1.00 1.00 1.00
S3 fa 0.15 0.20 0.25

fb 0.25 0.35 0.50

IV. FLOWS AND SIMULATION DETAILS

A. Taylor-Green vortex

The Taylor-Green vortex flow [36] is a canonical test case used to investigate the modeling and
simulation of onset, development, and decay of turbulence [40,86–100]. The flow is initially char-
acterized by multiple laminar, well-characterized, and single-mode vortices. These are illustrated in
Fig. 10, and defined by [36,87]

V1(x, to) = Vo sin(x1) cos(x2) cos(x3), (78)

V2(x, to) = −Vo cos(x1) sin(x2) cos(x3), (79)

V3(x, to) = 0, (80)

FIG. 10. Vortical structures present in the Taylor-Green vortex flow at t = 0. Structures defined by the
isosurfaces of the vorticity x3 component.

084602-22



PARTIALLY AVERAGED NAVIER-STOKES CLOSURE …

FIG. 11. Density field of the Rayleigh-Taylor flow at t = 0.

where Vo is the initial velocity magnitude. The corresponding pressure field is obtained from solving
the Poisson equation,

P(x, to) = Po + ρoV 2
o

16
[2 + cos (2x3)][cos (2x1) + cos (2x2)], (81)

where Po and ρo are the pressure and density at t = 0. The vortical structures of Fig. 10 interact
and evolve in time, and vortex stretching processes generate vortex-sheets that gradually get closer.
Afterward, these vortex-sheets roll up and reconnect [86,101], leading to the onset of turbulence
and subsequent intensification of vorticity. The coherent structures break down and high-intensity
turbulence appears. Finally, the turbulence kinetic energy dissipates rapidly by the action of viscous
effects.

The analyzed TGV flow is characterized by a Reynolds number Re ≡ ρLoVo/μ = 3000 [87,89]
and an initial Mach number Mao = 0.28. Such a Mao leads to maximum instantaneous and averaged
(L1 norm) variations of ρ smaller than 11.0% and 1.4% of ρo for fk = 0.00, respectively. The
computational domain of this problem is a cube with length equal to L = 2πLo. Periodic boundary
conditions are applied on all boundaries. The initial thermodynamic and flow properties are the
following: Vo = 104 cm/s, Lo = 1.00 cm, ρo = 1.178 × 10−3 g/cm3, Po = 105 Pa, μ = 3.927 ×
10−3 g/(cm s), heat capacity ratio γ = 1.40, ko = 10−7 cm2/s2, and So = 6.136 × 10−3 cm.

B. Rayleigh-Taylor flow

The RT flow [3,4] is a benchmark problem of variable-density turbulent mixing, which has
been intensely studied through numerous numerical experiments [102–111]. Its importance to the
variable-density flow community motivated diverse validation initiatives such as the Alpha-Group
collaboration [103].

The flow is initially characterized by a perturbed interface separating two fluids of different
densities, Fig. 11. These materials are at rest, and the dense fluid, ρh, is on top of the light medium,
ρl . The Atwood number of the flow is defined as At ≡ (ρh − ρl )/(ρh + ρl ). After this instant, the
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(a) Wave-number space (b) Physical space

FIG. 12. Initial perturbations at the interface (x2 = 0) in wave-number (modes) and physical space.

heavy fluid starts accelerating downward by the action of gravity, whereas the light material moves
upward. The interface perturbations create a misalignment between the density gradient and the
pressure, which induces the RT instability. The resulting upward-moving structures, named bubbles,
are the penetration of heavy fluid into the light medium, and, conversely, downward-moving spikes
are the penetration of light fluid into the heavy medium. The shearing motion on the edges of these
coherent structures triggers a Kelvin-Helmholtz instability, leading to the onset and development of
turbulence. As a result, the mixing rate of the two materials and the mixing-layer width increase.
The temporal evolution of the RT flow comprises a linear (laminar flow) and a nonlinear (laminar,
transitional, and turbulent flow) regime. A comprehensive description of the flow is given by Sharp
[112], Zhou [81,82], and Boffeta and Mazzino [113].

The flow configuration analyzed here is based on the DNS of Livescu et al. [114] at At = 0.5. The
computational domain is a rectangular prism defined in a Cartesian coordinate system (x1, x2, x3),
Fig. 11. Its cross-section is L = 2π cm wide, and the height is 3L to ensure a negligible influence
of the vertical boundaries on the simulations during the simulated time T = 25 time-units [time
normalized by t∗ = √

(L/(32gAt)) [114]]. The bulk Reynolds number defined as Re ≡ hḣ/ν can
reach Re ≈ 500 for the current settings (h and ḣ are the mixing-layer height and its temporal
derivative). Periodic boundary conditions are applied on the lateral walls and reflective conditions
on the vertical boundaries, x2 = ±1.5L. The domain height and simulation time guarantee that the
simulations are not disturbed by the latter boundary condition.

The location of the interface between the two fluids is perturbed by

hp(x1, x3) =
∑
n,m

cos
[
2π

(
n

x1

L
+ r1

)]

cos
[
2π

(
m

x3

L
+ r3

)]
. (82)

These perturbations possess wavelengths ranging from modes 30 to 34 (30 �
√

n2 + m2 � 34), and
amplitudes with standard-deviation not exceeding 0.04L [99,106], Fig. 12. Note that m and n are
selected to include the most unstable mode of the linearized problem [114,115]. In Eq. (82), r1 and r3

are random numbers between 0 and 1. The numerical experiments rely on the ideal-gas equation of
state, and the initial temperature is set to maintain the flow Ma < 0.10 and guarantee incompressible
flow. The initial thermodynamic and flow properties are defined as follows: μl = 0.002 g/(cm s),
μh = 0.006 g/(cm s), ρl = 1.0 g/cm3, ρh = 3.0 g/cm3, γl = γh = 1.40, g = −980 cm/s2, ko =
10−6 cm2/s2, So = 10−6 cm, and Schmidt and Prandtl numbers are set equal to 1.
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C. Numerical settings

All calculations are conducted with the flow solver xRAGE [116]. This code utilizes a finite
volume approach to solve the compressible and multimaterial conservation equations for mass,
momentum, energy, and species concentration. The resulting system of governing equations is
resolved [117] through the Harten–Lax–van Leer–Contact [118] Riemann solver using a direc-
tionally unsplit strategy, direct remap, parabolic reconstruction [119], and the low Mach number
correction proposed by Thornber et al. [120]. The equations are discretized with second-order
accurate methods: the spatial discretization is based on a Godunov scheme, whereas the temporal
discretization relies on an explicit Runge-Kutta scheme known as Heun’s method. The time-step,
�t , is defined by prescribing the maximum instantaneous CFL number,

�t = �x × CFL

3(|V | + c)
, (83)

where c is the speed of sound, and �x is the grid cell size. The CFL is set equal to 0.45 for the
TGV and 0.50 for the RT. The code can utilize an Adaptive Mesh Refinement (AMR) algorithm
for following waves, especially shock-waves and contact discontinuities. This option is not used in
the work to prevent hanging-nodes [121], and the simulations use orthogonal uniform hexahedral
grids. For the TGV, these have 5123 elements for simulations at fk � 0.25, and 10243 cells for
computations at fk = 0.00. This option keeps the numerical accuracy of computations at different
fk uniform [40]. On the other hand, the RT uses a mesh with 2562 × 768 cells [41].

xRAGE models miscible material interfaces and high convection-driven flows with a van-Leer
limiter [123], without artificial viscosity, and no material interface treatments [124,125]. The solver
uses the assumption that cells containing more than one material are in pressure and temperature
equilibrium as a mixed cell closure. The effective kinematic viscosity in multimaterial problems
[100] is defined as

ν =
nt∑

n=1

νn fn, (84)

where n is the material index, nt is the number of materials, and fn is the volume fraction of material
n. For the RT flow, the diffusivity D and thermal conductivity κ are defined by imposing Schmidt
(Sc ≡ ν/D) and Prandtl (Pr ≡ cpμ/κ) numbers equal to 1.

The RT computations test all three strategies for setting the parameters fφ given is Sec. III A 3.
For the TGV simulations, where there are no aiu and bu equations, the three strategies are equivalent.

V. RESULTS AND DISCUSSION

This section summarizes the TGV and RT results to illustrate the accuracy and potential of the
proposed variable-density PANS formulation. Additional details of the TGV results are given in
Pereira et al. [40]. More detailed analysis of the RT will be the subject of a subsequent manuscript
[41]. Apart from two- and three-dimensional field plots, all results have been spatially averaged.

A. Taylor-Green vortex

As previously mentioned, the TGV initially features the laminar, single-mode, and well-defined
vortical structures depicted in Fig. 10. Immediately after t = 0, these coherent structures start inter-
acting and deforming, leading to vortex-stretching processes that generate the pairs of long sheetlike
vortices observed in Fig. 13 at t = 3.0. Between t = 3.0 and 7.0, these structures get closer and
undergo a complex vortex-reconnection mechanism [40,87,101] between pairs of counter-rotating
vortices, Fig. 13(b). This triggers the onset of the turbulence at t ≈ 7.0. Figure 13(c) shows the bursts
of small turbulence scales at this instant. Afterward, turbulence further develops and eventually
decays. This is illustrated in Figs. 13(d)–13(f). Considering the flow evolution, the physics of the
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(a) t = 3.0 (b) t = 5.0 (c) t = 7.0

(d) t = 9.0 (e) t = 12.0 (f) t = 20.0

FIG. 13. Temporal evolution of the coherent and turbulent structures of the TGV predicted with fk = 0.00
[40]. Vortical structures identified with the λ2 criterion [122].

first nine time-units is expected to pose the greatest challenges to modeling and simulation of the
TGV flow.

Figure 14 presents the temporal evolution of the total kinetic energy, k, predicted by PANS BHR-
LEVM at different degrees of physical resolution, fk . Note that k comprises a resolved, kr , and

FIG. 14. Temporal evolution of the total kinetic energy, k, for predictions at different fk .
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FIG. 15. Temporal evolution of the total kinetic energy dissipation, ε (s−1), for predictions at different fk .

unresolved, ku, component,

k = kr + ku, (85)

which are obtained from the resolved velocity field and the turbulence closure, respectively. It is
important to stress that the resolved component of k comprises a nonturbulent [46] and turbulent
component, while the unresolved part entails the turbulent fraction of k being modeled. The
results indicate that k is initially nearly constant, and independent of fk until t = tc ≈ 6.0. At
this instant, in which the flow undergoes vortex-reconnection processes, the simulations become
strongly dependent on fk . This result allows us to categorize the simulations into high- (HPR,
fk < 0.50) and low- (LPR, fk � 0.50) physical resolution. The data show that LPR simulations
lead to a pronounced nonphysical decay of k. As discussed later, this is caused by a rapid increase
and overprediction of the modeled turbulent stresses. In contrast, HPR computations exhibit smaller
energy decay rates and, as such, larger values of k at late times. Yet, the most significant result of
Fig. 14 is that the solutions converge upon physical resolution refinement ( fk → 0). It also shows
that all HPR solutions are in good agreement. This behavior is particularly evident until t = 10.

Next, Fig. 15 depicts the temporal evolution of the dissipation of total kinetic energy, ε,

ε = −dk

dt
, (86)

and compares the results against the DNS of Brachet et al. [87] at Ma = 0 (DNS1) and Drikakis
et al. [89] at Ma = 0.28 (DNS2). The results exhibit similar tendencies to those of k. Until t =
tc, all simulations are independent of the physical resolution and in excellent agreement with the
reference DNS solutions. After this instant, the computations become closely dependent on fk ,
but their solutions converge toward the reference DNS data upon physical resolution refinement,
fk → 0. Most notably, it is once again possible to distinguish between HPR and LPR computations.
The first show a diminishing dependence on fk , and a good agreement with the reference numerical
experiments [87,89]. Considering the cases at fk � 0.25, the maximum values of ε at 8.8 � t � 9.3
range from 0.145 to 0.146, whereas the DNS studies report values between 0.143 and 0.153. The
largest discrepancies between HPR and DNS computations occur at late times. These are likely
caused by numerical uncertainty and compressibility effects [40,126].

On the other hand, LPR computations lead to large discrepancies compared to the reference DNS
studies. The peak of dissipation occurs prematurely, and its magnitude is clearly overpredicted.
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FIG. 16. Temporal evolution of the ratio modeled-to-total kinetic energy, ku/k, for predictions at different fk .

As for k, the differences grow as the physical resolution coarsens, fk → 1.0. For instance, the
magnitude of the dissipation peak can reach 0.218 ( fk = 1.00), exceeding the value reported by
the reference DNS studies by more than 50%. Also, the dissipation peak occurs at t ≈ 8 instead of
between t = 9 and 9.3 [87,89].

The results of Figs. 14 and 15 suggest that LPR simulations prematurely predict the onset of
turbulence, overpredicting the unresolved turbulent stress tensor. This would explain the rapid decay
of k observed in Fig. 14. These ideas are supported by the ratio of unresolved-to-total kinetic energy,
ku/k, depicted in Fig. 16. The data indicate that ku/k is negligible and independent of fk until
t = tc. After this instant, ku/k grows considerably, and its magnitude becomes closely dependent
on fk . Also, it is visible that the growth of ku/k starts earlier and it is more rapid for simulations
at fk = 1.00 than at fk = 0.25. For example, ku/k predicted at t = 20 and fk = 1.00 is six times
larger than that at fk = 0.25. Considering the results for ε, this shows that simulations at fk = 1.00
overpredict the turbulent stresses. We emphasize that transient flows are highly sensitive to history
effects, and high-resolution PANS simulations showing fk ≈ ( fk )e = ku/ku( fk=1.00) would indicate
that the RANS closure can accurately represent the mean-flow field of the selected problem. This is
often observed in statistically steady flows.

It is also interesting to note that ku/k only starts growing rapidly at t � 7.0 for HPR simulations.
As shown in Fig. 13, this corresponds to the instant when the onset of turbulence is expected to
occur [87]. Hence, we can infer that LPR simulations misrepresent the onset of turbulence due to the
overprediction of the unresolved turbulent stress tensor, leading to a poor prediction of the vortex-
reconnection process and consequent premature onset of turbulence. This is illustrated in Fig. 17,
which depicts the coherent and turbulent flow structures predicted at t = 6.5 at representative values
of fk . The plots show that the LPR simulation ( fk = 1.00) dissipates the laminar coherent structures
involved in the vortex-reconnection processes. This is caused by the overprediction of turbulence
since νt [see Eq. (17)] can exceed its laminar counterpart by a factor of 30. This does not occur at
fk = 0.35 (highest HPR fk ) nor at fk = 0.00. A comprehensive assessment of this flow is given in
[40].

In summary, the results indicate that the proposed PANS BHR-LEVM model can accurately
predict the shear driven TGV flow using fk < 0.50. At such values of fk , the computations exhibit
a relatively small dependence on the physical resolution and are able to resolve the phenomena
not amenable to straightforward closure modeling. Next, we evaluate the performance of the model
predicting the buoyancy-driven RT flow.
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(a) fk = 0.00

(b) fk = 0.35

(c) fk = 1.00

FIG. 17. Temporal evolution of the coherent and turbulent structures of the TGV at t = 6.5 predicted with
different fk [40]. Vortical structures identified with the λ2 criterion [122].

B. Rayleigh-Taylor

The present RT flow is initialized with the perturbed interface shown in Figs. 12 and 18(a).
Immediately after this instant, the two fluids accelerate, and the interface perturbations create
a misalignment between the density gradient and the pressure. This leads to the generation of
coherent structures called spikes and bubbles [81,82] with the mushroomlike shape illustrated in
Figs. 18(c)–18(e) and 19(a) at t � 2.5. During this period, the flow is laminar, and it is in the
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(a) t = 0.0 (b) t = 1.0 (c) t = 1.5

(d) t = 2.0 (e) t = 2.5 (f) t = 3.0

(g) t = 3.5 (h) t = 4.0 (i) t = 5.0

FIG. 18. Temporal evolution of the RT density field predicted at early flow stages using fk = 0.00
(2D plane).

so-called linear regime [81,82]. In the following instants, Figs. 18(f)–18(i) and 19(b)–19(d), the
mixing-layer continues growing, and the initially linear structure and the Kelvin-Helmholtz sec-
ondary instability will eventually trigger the onset and development of turbulence. This phenomenon
increases the mixing rate and enhances the mixture homogeneity, occurring in the nonlinear regime
[81,82]. It is particularly pronounced at t = 20.0 [Fig. 19(d)]. As in the TGV case, the onset and
development of turbulence is expected to pose major challenges to modeling and simulation of the
RT problem.

To evaluate the accuracy of the PANS BHR-LEVM model, Figs. 20 and 21 depict the evolution
of the mixing-layer height, h, and density field, χ , predicted at different fk . Also, the simulations
test the three strategies proposed in Sec. III A 3 to define the relationship between the parameters fφ
( fk , fε, fa, and fb). Here, the quantity χ used to analyze the density field is defined as

χ = ρ − ρl

ρh − ρl
. (87)
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(a) t = 2.5 (b) t = 5.0 (c) t = 10.0 (d) t = 20.0

FIG. 19. Temporal evolution of the RT density field predicted with fk = 0.00.

The mixing-layer width h is defined as the distance between the locations χ̄ = 0.05 and 0.95, where
here the bar indicates a planar average normal to gravity. Both h and x2 are normalized by L. Since
the physics and statistics of RT flow are highly dependent on initial conditions and settings, we use
the solutions obtained at fk = 0.00 as a reference.

Figure 20 indicates that the simulations are closely dependent on the value of fk , and they
converge upon this parameter’s refinement (except S3), fk → 0.00. Comparing the solution at
fk = 0.00 against that at fk = 1.00 shows that the second case leads to a significantly thicker
mixing-layer at late times, and a shorter linear region (t < 2). Once again, this result suggests that
the simulation at fk = 1.00 prematurely predicts the onset of turbulence by overpredicting the total
turbulent stresses. The refinement of fk improves the simulations by reducing the discrepancies
against the reference solution ( fk = 0.00). Also, Fig. 20 illustrates that all solutions at fk � 0.25
are in good agreement.

The exceptions are the simulations using S3. The data indicate that this approach leads to poorer
results than the remaining strategies, which do not improve for fk � 0.35 (recall that fk = 0.00 does
not use a turbulence closure). This outcome stems from the fully developed turbulence assumption
embedded in this strategy, which is not verified at early flow stages. As comprehensively discussed
in [41], S3 leads to an inconsistent definition of fφ at early flow stages and, consequently, to
large modeling errors and numerical robustness issues. The latter increase upon grid resolution
refinement. This result illustrates the importance of a precise and robust selection of fφ . Regarding
the remaining strategies, S2 leads to the smallest comparison errors between simulations ( fk > 0)
and the reference solution.

Figure 21 shows how the density field evolves in time and space with fk . For conciseness, we only
show three representative cases: fk = 0.00, 0.25 (S2), and 1.00. The remaining cases are in line with
the results of Fig. 20. As for the quantity h, the results show distributions of χ quite similar between
solutions obtained at fk � 0.25. In contrast, those obtained from simulations at fk = 1.00 exhibit
linear and smoother profiles. This behavior stems from the shortcomings of one-point closures to
fully model ( fk = 1.00) transient turbulence and the fact that this modeling strategy does not resolve
turbulence (lower numerical requirements).

Next, Fig. 22 presents the evolution of the maximum planar (x1 − x3) averaged value of νu

obtained at different physical resolutions. Note that νu is utilized here to evaluate how the unresolved
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(a) S1.

(b) S2.

(c) S3.

FIG. 20. Temporal evolution of the mixing-layer height, h, predicted with different fk and Si.
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(a) fk = 0.00.

(b) fk = 0.25 using S1.

(c) fk = 1.00.

FIG. 21. Temporal evolution of the density field, χ , predicted with different fk .
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(a) S1.

(b) S2.

(c) S3.

FIG. 22. Temporal evolution of the ratio νu/ν predicted with different fk and Si.
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(a) fk = 0.25 and S1. (b) fk = 0.25 and S2. (c) fk = 1.00.

FIG. 23. RT structures at t = 2.5 predicted with fk = 0.25 (S1 and S2) and 1.00. Vortical structures
identified through the density field (2D plane).

turbulent stresses evolve with fk [see Eq. (17)]. Also, it is important to emphasize that ratios νu/ν

exceeding O(1) are usually attributed to turbulence effects. As expected, the results show that νu/ν

decreases with fk . Considering t = 25, νu/ν reduces from 20 736.6 at fk = 1.00 to 1376.0 (S1),
407.8 (S2), and 5634.4 (S3) at fk = 0.25. The large values obtained with S3 at the smallest fk are
caused by the aforementioned consistency issues selecting fφ with this strategy. These results also
show that the strategy used to define the relationship between the different fφ has an important
impact on the magnitude of νu and, consequently, τ 1(Vi,Vj ).

However, the most significant result in Fig. 22 is the fact that νu/ν does not exceed 5.7 for
fk = 0.25 (S1 and S2) and t � 4 (linear regime and laminar flow), whereas this quantity exceeds
173.7 for fk = 1.00. Such a result indicates that the simulation with fk = 1.00 leads to a premature
onset of turbulence. On the other hand, PANS at fk = 0.25 can capture the coherent structures
that are subsequently involved in the onset and development of turbulence. This outcome explains
the results of Figs. 20 and 21 and can be seen in Fig. 23, in which the flow coherent structures
are depicted for fk = 0.25 (S1 and S2) and 1.00 at t = 2.5. Compared to Fig. 18, the results
show that simulations at fk = 1.00 dissipate the laminar coherent structures. This is caused by the
overprediction of turbulence, i.e., the magnitude of νt or τ 1(Vi,Vj ). In clear contrast, simulations
at fk = 0.25 can accurately predict these coherent structures, this being the reason for the good
agreement between simulations at fk � 0.25 (S1 and S2). Hence, the RT computations reinforce
the importance of resolving the flow phenomena not amenable to modeling to obtain efficient
high-fidelity simulations [22].

Overall, the results have shown that the PANS BHR-LEVM model can predict the current RT
flow accurately using sufficiently small values of fk . Regarding the strategies to prescribe fφ , S2

leads to the lowest values of νu, allowing the utilization of larger fk than S1. S3 causes consistency
issues between the different fφ due to the fully developed turbulence assumption. A comprehensive
analysis of this problem is given in a subsequent paper.

VI. CONCLUSIONS

We extended the framework of the PANS model to variable-density flow, i.e., multi-material
and/or compressible mixing problems including density fluctuations and production of turbulence
kinetic energy by shear and buoyancy mechanisms. The framework was utilized to derive the
PANS version of the k-S-ai-b equation BHR-LEVM closure. The parameters defining the physical
resolution of the model ( fk , fε, fa, and fb) have been studied through a priori testing. Three strategies
are proposed to set these parameters as a function of fk: (i) define fε = fai = fb = 1.0; (ii) prescribe
fai = √

fk and fε = fb = 1.0; and (iii) set fε = 1.0, fa = 0.5 fk , and fb = fk . The first two strategies
lead to high-fidelity simulations, whereas the third leads to consistency issues between different
fφ . Thus, S1 and, in particular, S2 seem better approaches to select fφ . Future studies will further
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investigate these strategies. The initial validation space of the PANS BHR-LEVM model comprises
the TGV at Re = 3000 and the RT at At = 0.5 and (Re)max ≈ 500 flows. The results are promising
and confirm the ability of the model to calculate these representative flows accurately. Hence,
this initial validation space and the theoretical justification demonstrate the new methodology’s
potential to predict complex problems of variable-density flow. Nevertheless, subsequent studies
will be needed to study and extend the validation space of the model further. Finally, all simulations
indicate the importance of resolving the phenomena not amenable to modeling by the closure. This
dictates the required physical resolution to obtain high-fidelity simulations.
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