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Since industrial fluidized-bed reactors typically operate with polydispersed particles, the
ability to approximate such reactors as the superposition of corresponding monodispersed
fluidized beds would greatly simplify their design and operation. To evaluate the validity
of superposition of monodispersed reactor behavior, we evaluate the effects of bidispersity
by comparing three-dimensional liquid-solid monodispersed and segregated bidipsersed
fluidized beds. Simulations were conducted using the immersed boundary method with
direct forcing in a periodic domain and with particle Reynolds numbers of 20–70 based
on the largest particle diameter. We show that the volume fraction, kinematic wave speed,
particle velocity fluctuations, and collisional and hydrodynamic stresses in the segregated
layers of a bidispersed fluidized bed can be well approximated by the corresponding
properties of a monodispersed fluidized bed. In the transition region between the layers,
only the volume fraction and collision stresses monotonically decrease with height. At low
Reynolds numbers, particle velocity fluctuations in the upper layers are the largest. As
the particle Reynolds number increases, particle velocity fluctuations in the transition and
lower layers become the largest sequentially. At intermediate particle Reynolds numbers,
the hydrodynamic stresses in the transition region are greater than those in the upper
and lower layers. As the particle Reynolds number increases, the difference between the
hydrodynamic stresses in the transition layer and the two layers become more significant.
This paper demonstrates that, despite the clear segregation into layers that behave, such as
monodispersed beds, the transition region is governed by complex bidispersed mechanisms
that cannot be explained in terms of the particle behavior in the segregated layers. Overall,
particle dynamics of the segregated layers in the bidispersed fluidized bed can be approx-
imated with the corresponding monodispersed layers. The result implies that industrial
applications, such as wastewater treatment performance in bidispersed or polydispersed
fluidized beds can be predicted with results from past numerical or experimental studies of
monodispersed fluidized beds.
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I. INTRODUCTION

Liquid-solid fluidization is found in many industrial systems, such as wastewater treatment and
chemical processes. In wastewater treatment, fluidized-bed reactors are widely used in treating both
industrial and domestic wastewater [1–3]. Traditional biological domestic wastewater treatment is
energy intensive [4], leading to the development of the Staged Anaerobic Fluidized-bed Membrane
Bioreactor (SAF-MBR) that reduces energy demand in wastewater treatment by recovering energy
in the form of methane [2,5,6]. In the SAF-MBR, wastewater is injected at the reactor bottom to
fluidize granular activated carbon (GAC) which is used to support the growth of micro-organisms.
Like many other fluidized beds, the nonuniformity of the GAC particles introduces more complexity
in the fluidized-bed hydrodynamics. The ability to predict the hydrodynamics of fluidized beds
used in wastewater treatment improves existing biological models for predicting and optimizing the
treatment performance.

Since the monodispersed spherical fluidized bed is the most simplified and idealized fluidized-
bed reactor, it has been studied extensively in the past [7–10]. Root-mean-square (rms) particle
velocity fluctuations have been found to vary from 10% to 170% of the upflow velocity [8,10–12].
A series of papers focus on establishing a relationship between the upflow velocity and volume
fraction. The most widely adopted relationship is based on the power-law model which can be
applied to both fluidization and sedimentation and is given by

u∗ = u0

wref
= k(1 − φ)n, (1)

where u0 is the superficial or upflow velocity of the fluidized bed, wref is the settling velocity of
a single particle in the domain of interest, k is a constant to correct for high volume fractions
[8,13–15], φ is the volume fraction, and n is the expansion or power-law exponent. Peak rms
fluctuations have been shown to occur at a volume fraction of 30% [10]. At this volume fraction,
the force on the particle transitions from collision to flow dominant [16].

Since monodispersed fluidized beds are not found in industrial applications, understanding the
effects of polydispersity is critical. The ability to approximate polydispersed fluidized beds as the
superposition of corresponding monodispersed fluidized beds would greatly simplify their design
and operation by enabling application of existing understanding of monodispersed fluidized beds for
which there is extensive literature [i.e., Eq. (1)]. A bidispersed liquid-solid fluidized bed represents
a level of complexity that is sufficient to understand the basic effects of multiple particle sizes yet
is not as computationally costly as a fully polydispersed system because particles with the smallest
diameter dictate the grid resolution. Nevertheless, the number of parameters increases substantially
in the study of a bidispersed bed. Because two interacting particles can have both different diameters
and densities, the following three different cases are possible: (1) the same diameter but different
density, (2) the same density but different diameter, and (3) different diameters and densities For
cases (1) and (2), particle segregation generally occurs whereby the large (dense) particles sink to the
bottom layer whereas the small (light) particles rise to the top layer. In a transition region between
the two layers, both particles coexist but tend to move in opposite directions and the thickness
of the transition region decreases with increasing particle diameter ratio or particle density ratio.
Complete segregation is assumed to occur when the particle diameter ratio is greater than two [13].
The height of the bidispersed fluidized bed is typically assumed to be the sum of the heights of the
two monodispersed fluidized-bed layers, and this has been shown to be quite accurate in sufficiently
large systems [13,17]. Nevertheless, a large body of work has been devoted to developing models to
predict the thickness of the transition region by solving the steady-state advection-diffusion equation
in the axial z direction of the bed for particle i = 1 of 2,

−Di
∂φi

∂z
= φiuseg,i, (2)

where Di is the dispersion coefficient, φi is the volume fraction, and useg,i is the segregation
velocity [18–20]. These papers demonstrate that the volume fraction of the layers in a segregated
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bidispersed fluidized bed can be approximated as a superposition of two monodispersed fluidized-
bed layers. However, the dispersion coefficient and segregation velocity needed to predict the
volume fraction are largely based on fitting and heuristics without quantification of the underlying
particle microstructure physics. In this paper, we study these physics to obtain a more quantitative
understanding of the processes affecting the transition region in a bidispersed fluidized bed.

To study the detailed hydrodynamics of a fluidized bed, there are both experimental and simu-
lation approaches. In addition to the obvious advantage of studying real reactors without the need
for models or simulations, the advantage of experiments is the ability to test a large number of
different particle parameters in a relatively short period of time. This approach has been widely
adopted to study macroscopic properties, such as modeling Ret and n [7,21] and understanding
the effect of particle properties on the collision pressure [22]. However, quantification of local
hydrodynamics and microstructure in a fluidized bed with experiments is difficult [8], most notably
because direct imaging of particles is only possible for dilute suspension [23,24]. In recent years,
high-fidelity particle-resolved simulations (PRS) have gained popularity as a reliable technique
to accurately resolve fluid-particle interactions. The approach is based on first principles and
approximations are only needed to model particle collisions. With PRS, because individual particle
information can be tracked over time, a more detailed examination of microstructure and local
hydrodynamics in a fluidized bed is possible. Recently, the PRS approach has been widely adopted
for a number of different problems, including extracting drag laws from arrays of particles [25–28]
and understanding the detailed physics of flow-particle interactions in fluidized beds and particle
suspensions [8–11,29–31].

In this paper, we present PRS results of liquid-solid monodispersed and segregated bidispersed
fluidized-bed reactors to gain a detailed understanding of the effects of bidispersivity on the particle
dynamics. A series of cases with different particle Reynolds numbers is studied, and the simulation
results are used to validate the assumption of approximating segregated fluidized beds as the
superposition of two monodispersed fluidized beds.

II. NUMERICAL METHODOLOGY AND SIMULATION SETUP

A. Equations and discretizations

The governing Navier-Stokes equations are solved in a three-dimensional rectangular domain
containing an array of spherical particles. A source term f IBM, based on the direct-forcing IBM
method is added to the incompressible Navier-Stokes equation to enforce no-slip boundary condi-
tions on the particle surfaces as

∂u
∂t

+ u · ∇u = −∇p + ν f ∇2u + f IBM, (3)

subject to continuity, ∇ · u = 0, where u is the velocity vector and p is the pressure normalized
by the fluid density ρ f . Equation (3) is solved on a uniform collocated Cartesian grid. Coupling
between the momentum and the pressure equations is achieved using the fractional-step method
proposed by Ref. [32]. The advection term is discretized with the explicit, three-step Runge-Kutta
scheme described in Ref. [33]. The viscous term is discretized with the implicit Crank-Nicolson
scheme to eliminate the associated stability constraint. The HYPRE library is used to solve the
linear systems arising from the implicit discretization of the viscous terms and the pressure-Poisson
equation [34,35]. To solve the interactions between the fluid and the particles, the direct forcing
approach first proposed by Ref. [36] and improved by Ref. [37] is adopted. Collision models [38,39]
are used to simulate particle-particle interactions when the separation distance between the particle
surfaces is less than two grid cells. A detailed description and validation of the method can be found
in Ref. [40].
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FIG. 1. The three-dimensional computational domain, showing the bidispersed fluidized bed and the
uniform inflow velocity profile. Particle positions are initialized with 1dp,1 spacing for the simulation with
Rep = 40 for FB-Bi-14.

B. Simulation setup

Three-dimensional simulations are conducted in the rectangular doubly periodic (x and y
directions) domain shown in Fig. 1. The particles have a constant density ρp = 1300 kg m−3.
Three different particle diameters dp,1, dp,2, and dp,3 are chosen based on the monodispersed
or bidispersed fluidized-bed configurations summarized in Table I. The fluid has density ρ f =
998.21 kg m−3 and kinematic viscosity ν f = 10−6 m2 s−1. The Cartesian grid spacing is uniform
and given by �x = �y = �z = h such that,

h = max(dp,1, dp,2, dp,3)

25.6
= min(dp,1, dp,2, dp,3)

18.3
, (4)

which is sufficient to resolve the flow-particle interactions as demonstrated by various authors
[36–38] and demonstrated with our code in Ref. [40]. The rectangular domain has a square
cross section Lx = Ly = 10dp,1 and a height Lz = 60dp,1, giving a three-dimensional grid with
256×256×1536 grid points. The time-step size �t is calculated based on the advection and
diffusion Courant number which are defined as Cadv = u0�t/h and Cdiff = ν f �t/h2, respectively,
and we ensure that Cmax = max(Cadv,Cdiff ) = 0.25 for the case with the largest flow rate. In the
simulations, the critical parameters are the particle diameter and the number of particles. Here, we
choose the largest particle diameter dp,1 = 0.002 mm to compare the results to the monodispersed
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TABLE I. Summary of number of particles used in the simulations. Np,mono = 2000 is used for all
monodispersed cases. Np,dp,2 and Np,dp,3 are calculated using Eq. (8) with respect to the upflow velocity. Particles
with diameter dp,1 = 2.0 mm, dp,2 = dp,1/1.2, and dp,3 = dp,1/1.4 are used. Results from FB-Mono-10 were
obtained from Ref. [16].

FB-Mono-12 FB-Bi-12 FB-Mono-14 FB-Bi-14 FB-Mono-10

u0 (m s−1) Np,mono Np,dp,1 Np,dp,2 Np,mono Np,dp,1 Np,dp,3 Np,mono

0.010 2000 1000 1607 2000 1000 2376 2000
0.015 2000 1000 1565 2000 1000 2247 2000
0.020 2000 1000 1518 2000 1000 2106 2000
0.025 2000 1000 1465 2000 1000 1943 2000
0.030 2000 1000 1401 2000 1000 1749 2000
0.035 2000 1000 1321 2000 1000 2509 2000

simulations of Ref. [16], whereas dp,2 and dp,3 are calculated based on assuming

dp,1 = 1.2dp,2 = 1.4dp,3. (5)

The choice of the diameter ratio is designed to minimize the computational cost (that scales with
the diameter ratio) whereas ensuring bidispersed behavior. For the monodispersed simulations, the
number of particles Np,mono = 2000 is used to ensure a sufficient fluidized bed height to obtain
accurate statistics. For the bidispersed simulations, the number of particles Np,bi varies from case to
case and is defined as

Np,bi = Np,dp,1 + Np,dp, j , (6)

where j = 2 or 3, Np,dp,1 and Np,dp, j are the number of particles with particle diameter dp,1 and dp, j ,
respectively. To ensure a fluidized-bed height that is sufficiently high to obtain good statistics, the
bidispersed fluidized-bed height Lbi is kept the same as the monodispersed fluidized-bed height.
Defining the monodispersed bed height determined by Ref. [16] as Lmono,dp,1 , we require

Lbi = Lmono,dp,1 = 2Lbi,dp, j = 2Lbi,dp,1 . (7)

Given Lmono,dp,1 , Np,mono, dp,1, and dp, j , if we assume the number of particles in the lower layer is
Np,dp,1 = 1000, then the number of particles in the upper layer is given by

Np,dp, j = LxLyLbi,dp, j φ

Vp,dp, j

, (8)

where Vp,dp, j = πd3
p, j/6 is the volume of a particle with diameter dp, j and φ can be estimated

with Eq. (1). Table I summarizes the number of particles used in each simulation such that the
largest number of particles used is Np,bi = 3376. This represents a good balance between ensuring
a sufficient fluidized bed height whereas minimizing the number of particles, which significantly
increase the computational cost.

In this paper, in addition to the particle diameter ratio, the second parameter of interest is the
particle Reynolds number. For a monodispersed fluidized bed, the particle Reynolds number is
defined as Rep,i = u0dp,i/ν f where i = 1, 2, or 3. For a bidispersed fluidized bed, two-particle
Reynolds numbers Rep,1 and Rep, j are defined based on the two-particle diameters dp,1 and dp, j

where j = 2 or 3. In order to maintain the same flow rate as the monodispersed simulations, we
vary Rep,1. In total, six simulations were conducted with 0.010 m s−1 � u0 � 0.035 m s−1, giving
20 � Rep,1 � 70 for each configuration summarized in Table I, giving a total of 24 simulations. For
all cases, the pressure is specified at the top boundary as p = 0, whereas a uniform inflow velocity
of u0 is specified at the bottom boundary.
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FIG. 2. Time series of the ensemble settling velocity 〈wp〉∗ normalized by u0 for Rep,1 = 40 for all cases
simulated except FB-Mono-10.

Simulations are initialized with a uniform array of particles, and the flow is started from rest.
The upflow velocity leads to expansion of the bed and random motion of the particles until statistical
equilibrium is reached at which time the dynamics are independent of the initial particle distribution
and the total average drag force is in balance with the submerged weight of the particles. To
understand the time evolution of particle variables and assess statistical equilibrium, we define the
naive ensemble-average operator in which data for all particles are used as

〈{·}〉∗ = 1

Np

Np∑
n=1

{·}n, (9)

where Np is the total number of particles in the simulation and we monitor the ensemble-average
vertical particle velocity 〈wp〉∗. Here, we define a turnover time τT = dp,max/u0, and statistical
equilibrium is achieved after 30τT that is indicated by 〈wp〉∗ fluctuating about zero. Figure 2
shows 〈wp〉∗ as a function of maximum turnover time τT for different configurations with the same
Rep,1 = 40. The 〈wp〉∗ of both monodispersed and bidispersed fluidized bed converges to zero,
indicating statistical equilibrium. Here, we define the time-averaging operator,

{·} = 1

tmax − ti

∫ tmax

ti

{·}dt, (10)

where ti = t0 + 30τT and t0 is the spin-up time needed for the flow to reach statistical equilibrium.

III. RESULTS

A. Distribution of volume fraction in the bidispersed fluidized bed

Many researchers have reported that segregated bidispersed fluidized beds consist of three dif-
ferent regions (lower, transition, and upper layer) [13,19,20]. The volume fraction of the lower and
upper layers can be approximated with the corresponding values for a monodispersed fluidized bed.
To validate the volume fraction distribution of the segregated bidispersed fluidized bed, we compute
the instantaneous Eulerian volume fraction φ(x, t ) following the procedure in Ref. [16]. We compute
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FIG. 3. Horizontally and time-averaged volume fraction 〈φ〉∗
xy as a function of normalized vertical position

z/dp,1 for different particle Reynolds numbers Rep,1. (a) FB-Mono-12. (b) FB-Bi-12. (c) FB-Mono-14. (d) FB-
Bi-14.

the volume fraction as a function of vertical position by applying the Eulerian horizontal-averaging
operator,

〈{·}〉∗xy = 1

NxNy

NxNy∑
i, j=1

{·}i j . (11)

Figure 3 shows 〈φ〉∗xy(z) as a function of z/dp,1 for different Rep,1’s. Qualitatively, the 〈φ〉∗xy(z) of
FB-Mono-12 and FB-Mono-14 approximately match the corresponding upper layers in FB-Bi-12
and FB-Bi-14. For quantitative comparison, we compute the vertically averaged (z) volume fraction
〈〈φ〉∗xy〉z by excluding the boundaries. To do so, we define a modified Eulerian vertical-averaging
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operator,

〈{·}〉z = 1

N∗
z

zt /h∑
k=zb/h

{·}k, (12)

where zb and zt are the bottom and top of the homogeneous fluidized-bed layers, respectively, and
N∗

z = (zt − zb)/h is the number of grid points in the z direction bounded by zb and zt . Homogeneous
refers to the region of the fluidized bed that is not affected by the boundaries. In what follows,
〈〈φ〉∗xy〉z ≡ 〈φ〉 will be assumed unless otherwise indicated.

For FB-Mono-12 and FB-Mono-14, we define zb and zt following the procedure in Ref. [16] by
excluding the values near the top and bottom of the fluidized bed. For FB-Bi-12 and FB-Bi-14, the
fluidized beds consist of three regions with a total of four boundaries (two for each segregated layer).
In the transition region, the lower layer 〈φ〉 decreases monotonically from the lower to the upper
layer 〈φ〉 as shown in Figs. 3(b) and 3(d). To define the boundaries of each region, we construct
probability density functions (PDF) based on the particle vertical position with respect to particle
diameter as

Pα (z) = 1

Nt

Nt∑
t=1

Np∑
i=1

[
1zl <zt

p,i<zu

(
zt

p,i

)][
1dp,i=dp, j (dp,i )

]
, (13)

where zp,i is the vertical position of the ith particle, zl and zu denote the lower and upper edges of
the equally spaced bins having a width of 0.5dp,1, Np is the total number of particles in the fluidized
bed, 1zl <zt

p,i<zu
(zt

p,i ) is the indicator function,

1zl <zt
p,i<zu

(
zt

p,i

){1, zl < zt
p,i < zu,

0, otherwise,
(14)

that determines whether particle i is located in the bin bounded by zl and zu, and 1dp,i=dp, j (dp,i ) is the
indicator function,

1dp,i=dp, j (dp,i )

{
1, dp,i = dp, j,

0, otherwise, (15)

to include particles with diameter dp, j . Figure 4 shows the PDF of the particle vertical position for
case FB-Bi-12 with Rep,1 = 40. We define the top of the lower layer as

zt,lower = arg min
[
Pdp,1 (z)/Pdp, j (z) − ζthresh

]
, (16)

and the bottom of the upper layer as

zb,upper = arg min
[
Pdp, j (z)/Pdp,1 (z) − ζthresh

]
, (17)

where ζthresh = 100 is an arbitrary threshold ratio to be set a priori. Large ζthresh will result in a more
monodispersedlike segregated layer that leads to a larger transition region and smaller segregated
region. Table II summarizes zt,lower and zb,upper for FB-Bi-12 and FB-Bi-14. With the boundaries
defined in this way, we can compute 〈φ〉 for each segregated layer in cases FB-Bi-12 and FB-Bi-14.

Figure 5 shows the fit of 1 − 〈φ〉 as a function of Rep,1 for different regions. Each bidispersed flu-
idized bed can fit two different lines for the upper and lower layers, resulting in a total of seven fitted
lines (only three can be seen in the figure due to overlap). Overall, FB-Mono-12 [16] overlaps with
the lower layer of FB-Bi-12 and FB-Bi-14 whereas FB-Mono-12 and FB-Mono-14 overlaps with the
corresponding upper layer of FB-Bi-12 and FB-Bi-14. This shows that the volume fractions in the
different layers of a segregated bidispersed fluidized bed can be approximated accurately with those
of a monodispersed fluidized bed. Table III summarizes the fitted n that are closer to the predicted
n by Ref. [21] and fitted k that is in the same range as reported by various authors [8,10]. Overall,
n and k obtained from the monodispersed fluidized bed and corresponding layers in the bidispersed
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FIG. 4. PDF of particle vertical positions for the two-particle diameters in the case with Rep,1 = 40 for
FB-Bi-12.

fluidized bed are indistinguishable, further demonstrating the accuracy of approximating the volume
fraction in each segregated layer as that in a monodispersed layer without boundary effects.

B. Kinematic wave speed

In the previous section, the fluidized bed is characterized by the volume fraction and the particle
Reynolds number. However, the volume fraction fluctuates about a mean value which exhibits
alternating regions of low and high volume fractions, resulting in waves [41–43]. Comparison
between the wave speed of segregated bidispersed and monodispersed fluidized beds will further
validate the assumption of approximating segregated bidispersed fluidized beds as a superposition
of two monodispersed fluidized beds.

Based on the classification of fluidization by Refs. [41,42], the cases simulated in this paper are
classified as unstable fluidization that is characterized by persistent particle velocity fluctuations.
Figure 14(a) shows a typical volume fraction fluctuation φ′ = 〈φ〉xy − 〈φ〉 plot in two-dimensional
space-time. Qualitatively, propagating waves are indicated by regions of porosity that are periodic

TABLE II. Summary of the top boundary of lower layer zt,lower and the bottom boundary of upper layer
zb,upper in the bidispersed fluidized bed. The transition region is defined as the difference between zt,lower and
zb,upper.

FB-Bi-12 FB-Bi-14

u0 (m s−1) zt,lower/dp,1 zb,upper/dp,1 zt,lower/dp,1 zb,upper/dp,1

0.010 8.44 12.7 9.35 25.9
0.015 8.74 16.3 11.2 22.0
0.020 11.5 17.5 12.7 19.3
0.025 13.3 22.0 14.5 16.6
0.030 15.4 23.8 17.2 14.2
0.035 18.4 27.7 20.5 11.8
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FIG. 5. Porosity 1 − 〈φ〉 as a function of Rep,1 for the simulated monodispersed and bidispersed cases. The
lines were constructed based on fitting to the power-law equation (1).

in space and time. However, due to the random noise, extracting wave speeds from Fig. 14(a) is
difficult. In Appendix B, wave speeds estimated with three different approaches are compared,
namely, (1) naive, (2) two-dimensional autocorrelation, and (3) the dispersion relationship. The
results indicate that the autocorrelation approach is the most accurate and is adopted in this paper.

Reference [44] relates volume fraction to wave speed with

c = knφ(1 − φ)n−1wref , (18)

where c is the wave speed and other variables are consistent with Eq. (1). Figures 6(a)–6(c) show
the wave speeds computed with different particle diameters using the autocorrelation approach and
model [Eq. (18)]. Overall, the computed wave speeds are very similar to the wave speeds computed
with the model. Interestingly, the wave speed in the different layers in the FB-Bi-12 and FB-Bi-14
cases agree with the corresponding monodispersed fluidized-bed cases even though the boundary
conditions on each segregated layer in cases FB-Bi-12 and FB-Bi-14 are different. For illustration,
case FB-Mono-12 is prescribed with a uniform inflow profile whereas the upper layer of case FB-
Bi-12 is subjected to the nonuniform flow at the transition region. This shows that the wave speed
is controlled by the particle properties and local porosity rather than the inflow.

TABLE III. Summary of fitted n and k with respect to each monodispersed fluidized bed and segregated
layers in the bidispersed fluidized bed. All coefficients of determination R2 for these fits are 1. nzaki and nga are
calculated using Refs. [7,21] respectively.

dp,1 dp,2 dp,3

Parameters FB-Mono-10 FB-Bi-12 FB-Bi-14 FB-Mono-12 FB-Bi-12 FB-Mono-14 FB-Bi-14

n 2.81 2.83 2.81 3.00 2.99 3.15 3.14
k 0.71 0.72 0.72 0.74 0.74 0.76 0.76
nga 2.89 2.95 3.02
nzaki 2.61 2.71 2.80
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FIG. 6. Wave speed based on the autocorrelation as a function of Rep,1 for (a) dp,1, (b) dp,2, and (c) dp,3.

C. Velocity fluctuations

To understand the effect of particle velocity fluctuations in a segregated bidispersed fluidized
bed, we compute the root-mean-square velocity,

urms,α = √〈u′
αu′

α〉, (19)

where u′
α = uα − 〈u〉α is the particle velocity fluctuation and α = x, y or z. In a suspended particle

system, Ref. [23] discovered that particle velocity fluctuations depend on the domain size for
min(Lx, Ly, Lb) < 10dp,maxφ

−1/3 and otherwise scale as 2wtφ
1/3. By simulating Stokes sedimenta-

tion, Ref. [45] demonstrated that the dependence on the domain size exists with periodic horizontal
and nonperiodic z-direction boundaries. Figure 7 shows the particle velocity fluctuations u′

α for case
FB-Mono-12 as a function of the normalized bed height for Rep,1 = 30 and 60. Particle velocity
fluctuations initially increase at a higher rate as Lb increases. When Lb is sufficiently large (above
the black line), the increase in particle velocity fluctuations is less significant. Since the heights of
the segregated layers in cases FB-Bi-12 and FB-Bi-14 are less than the critical height 10dp,maxφ

−1/3,
they differ from the height of the corresponding monodispersed fluidized bed. Therefore, particle

FIG. 7. Particle velocity fluctuations as a function of the fluidized-bed height Lb for case FB-Mono-12 with
(a) Rep,1 = 30 and (b) Rep,1 = 60.
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FIG. 8. Normalized particle velocity fluctuations as a function of Rep,1 for (a) dp,1/dp,2 = 1.2 and
dp,1/dp,3 = 1.4 and 1 − 〈φ〉 for (c) dp,1/dp,2 = 1.2 and (d) dp,1/dp,3 = 1.4.

velocity fluctuations in the monodispersed fluidized bed are calculated with particles located below
the desired height to eliminate the effect of Lb on particle velocity fluctuations. Figures 8(a) and 8(b)
show the normalized particle velocity fluctuations as a function of Rep,1. With the same bed height,
the normalized particle velocity fluctuations for cases FB-Mono-10, FB-Mono-12, and FB-Mono-14
are nearly identical to those of the corresponding layers in the bidispersed fluidized-bed cases.
At low Reynolds numbers (Rep,1 � 40), the upper segregated layer has the largest normalized
particle velocity fluctuations, followed by the transition and lower layers. As the Reynolds number
increases, particle velocity fluctuations in the transition layer become greater than those of the upper
segregated layer. For Rep,dp,1 > 60, the particle velocity fluctuations in the transition layer are the
highest, followed by the lower and upper layers. The trends in Fig. 8 indicate that the normalized
particle velocity fluctuations of the lower layers will eventually become the largest. This observation
is due to the different particle properties and volume fraction operating at a common Rep,1, resulting
in different porosity due to different particle properties. To eliminate this effect, Figs. 8(c) and
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8(d) show the normalized particle velocity fluctuations as a function of the porosity 1 − 〈φ〉. The
normalized particle velocity fluctuations are expected to be zero for both a single-particle (φ ≈ 0)
and a packed bed (φ ≈ 0.6), resulting in a maximum value at an intermediate porosity. The upper
segregated layer has consistently higher normalized particle velocity fluctuations than the lower
segregated layer at the same porosity due to the decreasing particle cluster lifespan with increasing
Archimedes number [40], which is defined as

Ar = g(s − 1)d3
p,i

ν2
f

, (20)

where i = 1, 2 or 3, dp,i is the diameter of particle i, g is the gravitational acceleration, and
s = ρp/ρ f is the particle-fluid density ratio. According to Ref. [40], particles are more likely to
form long-lived clusters for particles with lower Ar due to ineffective collisions that are unlikely
to break particle clusters formed by wake entrainment. With more long-lived clusters, particles
experience appreciable acceleration as a cluster resulting in more significant normalized particle
velocity fluctuations. Despite higher particle velocity fluctuations for lower Ar, we would like
to point out that Fig. 8 resembles more realistic fluidized-bed operation. With a common upflow
velocity, particles with different Ar’s cannot be operated at the same porosity. To optimize reactor
mixing that is likely to coincide with the peak in particle velocity fluctuations [16], both layers must
be considered separately.

D. Autocorrelation and self-diffusivity

In this section, we compute the integral timescale and self-diffusivity for different regions in the
bidispersed fluidized bed and compare them to the corresponding monodispersed fluidized bed. As
defined by Refs. [9,10,46], the autocorrelation function is given by

Rαα (τ ) = 〈u′
α (t0)u′

α (t0 + τ )〉
〈[u′

α (t0)]2〉 , (21)

where τ is the given time lag and α = x, y, or z. Following the procedure to quantify the errors
in computing the integral timescale due to finite simulation time in Ref. [16], we compute the
approximate integral timescale as

E(Tα,cal ) = 1

Nτ − Nτ,thresh

Nτ∑
i=Nτ,thresh

T i
α,cal, (22)

STD.(Tα,cal ) =
√
E

(
T 2

α,cal

) − E(Tα,cal )2, (23)

where Nτ = t/τT and Nτ,thresh is the threshold time needed to reach statistical equilibrium and the
calculated integral timescale with Nτ is defined as

T Nτ

α,cal =
∫ t f

0
Rαα (τ )dτ. (24)

Figure 9(a) shows the effects of Nτ on the computed integral timescale for the entire fluidized
bed. For each respective fluidized-bed height, Tα,cal initially increases as Nτ increases and fluctuates
about a mean value after Nτ ≈ 10, demonstrating that the computed integral timescale has converged
in time. The fluctuations are likely due to the presence of waves in the fluidized bed which produce
alternating positive and negative autocorrelations [9,16]. We also compute Tα,cal as a function of
Lb by considering particles that are located in the desired range of the fluidized bed for 99% of
the simulated duration. As shown in Fig. 9(b), E(Tα,cal ) converges as Lb/dp,1 increases. After Lb >

Lb,crit , the integral timescale is independent of the fluidized-bed height. Since Lb < Lb,crit for cases
FB-Bi-12 and FB-Bi-14, we adopt a similar approach as Sec. III C by computing a reduced Lb for
the monodispersed simulations (cases FB-Mono-12 and FB-Mono-14). As shown in Fig. 10, the
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FIG. 9. Calculated integral timescale as a function of (a) simulated duration Nτ and (b) fluidized-bed height
Lb/dp,1 for case FB-Mono-12 with Rep,1 = 40.

integral timescale for the bidispersed cases are on the same order of magnitude as the truncated
monodispersed integral timescales. The nonmonotonic behavior is due to the error associated with
Lb < Lb,crit . Since the main focus is not on the absolute magnitude but on the relative magnitude
between the monodispersed and bidispersed fluidized beds, approximating the segregated layers in
bidispersed fluidized beds with corresponding monodispersed fluidized beds is still valid.

Following Refs. [9,46], the self-diffusivity is defined as

DNτ

α,cal =
∫ t f

0
Rαα (τ )〈[u′

α (t0)]2〉dτ. (25)

Similar to the integral timescale, the self-diffusivity initially depends on Lb until Lb > Lb,crit (not
shown). Therefore, to compare to the bidispersed cases, we compute the truncated self-diffusivity

FIG. 10. Expected integral timescale as a function of Rep,1 for (a) dp,1/dp,2 = 1.2 and dp,1/dp,3 = 1.4.
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FIG. 11. Self-diffusivity as a function of Rep,1 for (a) dp,1/dp,2 = 1.2 and (b) dp,1/dp,3 = 1.4.

for the monodispersed cases. Figure 11 shows that the self-diffusivity of the bidispersed cases is
comparable to the self-diffusivity of the monodispersed cases, indicating the validity of character-
izing bidispersed fluidized beds using properties of the corresponding monodispersed layers.

E. Particle-particle and fluid-particle interactions

Reference [16] showed that the dominant mechanism inducing particle velocity fluctuations
shifts from collisions to hydrodynamic forces as the particle Reynolds number increases. Following
the approach outlined in Ref. [16], we compute the normal contact stress σcol, normal lubrication
stress σlub and hydrodynamic stresses σhydro in the bidispersed fluidized bed. Figure 12 shows

FIG. 12. Normal contact stress and hydrodynamic stress as a function of vertical position for dp,1/dp,3 =
1.40 and with (a) Re1,p = 20 and (b) Re1,p = 70. Solid lines correspond to bidispersed fluidized-bed layers,
and dotted lines correspond to monodispersed layers.
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the magnitude of each stress as a function of vertical position for Rep,1 = 20 and 70 for cases
FB-Bi-14, FB-Mono-10 and FB-Mono-14. For the range of Reynolds number simulated, lubrication
stresses are negligible (not shown). At low Reynolds numbers for the bidispersed simulation, the
normal contact stress smoothly transitions from a high value in the lower layer to a lower value
in the upper layer because of the reduced likelihood of collisions in the higher-porosity upper
layer. The collision stresses in the upper and lower layers are roughly equal to the stresses in
the corresponding monodispersed cases, and the hydrodynamic stresses are negligible due to the
low upflow velocity. At high Reynolds numbers, similar trends are observed in which the normal
contact stress decreases monotonically to zero moving from the lower to the upper layers. Unlike
the collision stress, however, the hydrodynamic stress peaks in the transition region rather than
monotonically decreasing from the lower to the upper layers. In the transition region at higher
Reynolds numbers, more vigorous velocity fluctuations are induced when large particles coexist
with small particles because small particles are strongly affected by the wakes of the large particles,
thus, leading to a peak in the hydrodynamic stress in the transition region.

Figure 13 shows that the collision stresses decrease monotonically from the lower to the upper
layers for all cases, indicating a strong dependence of the collision stress on the Archimedes number
in each layer. In addition, the collision stresses in the lower and upper layers of the bidispersed
fluidized-bed match those of the corresponding monodispersed fluidized bed. This shows that
collision stresses in the bidispersed fluidized bed can be approximated as those in the monodispersed
fluidized bed. However, because the hydrodynamic stress is a weaker function of the Archimedes
number in each layer but a strong function of particle Reynolds number, the hydrodynamic stresses
in the transition region are greater than those in the lower and upper layers in the bidispersed
fluidized bed. Nevertheless, this analysis demonstrates that both collision and hydrodynamic stresses
in the lower and upper layers of a segregated bidispersed fluidized bed can be approximated by the
corresponding values in a monodispersed fluidized bed.

IV. CONCLUSION

We utilized PRS to compare the effects of the particle Reynolds number and bidispersity on
both macroscopic and microscopic behavior of a fluidized bed in a three-dimensional domain.
The particle Reynolds number was varied by varying the flow rate suspending particles in the
axial direction. Analysis of various statistics provided detailed comparison between monodispersed
and bidispersed fluidized beds. We have validated the assumption in approximating the volume
fraction of segregated bidispersed fluidized bed with the volume fraction of two corresponding
monodispersed fluidized beds. Fitting the porosity 1 − 〈φ〉 to Rep,1 further confirms that each
segregated layer in the bidispersed fluidized bed behaves like a monodispersed fluidized bed and
can be calculated using a power-law relationship. To understand the effects of wave speed in the
monodispersed and bidispersed fluidized beds, we filter out random noise in the volume fraction
fluctuation using a low-pass filter and approximate the wave speed using three different approaches.
As compared to the corresponding monodispersed fluidized bed with uniform inflow conditions,
the upper layer of a bidispersed fluidized bed has an equivalent nonuniform flow conditions due
to the transition layer. For a inflow-dominated wave speed, the wave speed of the upper layer of
the bidispersed fluidized bed is expected to differ from that of the corresponding monodispersed
fluidized bed. Results show that the nonuniform flow that fluidizes the upper layer of a bidispersed
fluidized bed does not result in a different wave speed. This reveals that the wave speed is instead
controlled by the local porosity rather than the inflow conditions. As the fluid flows through the voids
between particles, inflow conditions are no longer important in determining the wave speed of the
volume fraction fluctuations. Within the computed uncertainty bounds, the wave speed in each layer
in the bidispersed fluidized bed agrees with the wave speed in the corresponding monodispersed
fluidized bed.

Examination of particle velocity fluctuations shows that they are a strong function of the
fluidized-bed height until the fluidized-bed height is greater than the critical bed height 10dpφ

−1/3.
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FIG. 13. The computed normal contact stress and hydrodynamic stress as a function Reynolds number
Rep,1. (a) Normal contact stress for dp,1/dp,2 = 1.2. (b) Hydrodynamic stress for dp,1/dp,2 = 1.2. (a) Normal
contact stress for dp,1/dp,3 = 1.4. (a) Hydrodynamic stress for dp,1/dp,3 = 1.4.

Due to limitations related to computational cost, the heights of the lower and upper layers of
the bidispersed fluidized bed are less than the critical bed height. Therefore, we compute the
particle velocity fluctuations of the monodispersed fluidized beds with bed heights equivalent to
the corresponding upper and lower layers of the bidispersed fluidized beds. By computing particle
velocity fluctuations in the monodispersed fluidized bed with equivalent heights, we have shown
that the particle velocity fluctuations in the bidispersed fluidized bed match those of the corre-
sponding monodispersed fluidized bed. Similarly, the convergence of the integral timescales and
self-diffusivity are affected by both the fluidized-bed height and simulated duration until a critical
bed height and sufficient long simulated duration are attained. Results show that the simulated
duration of both the monodispersed and bidispersed fluidized beds is sufficient. However, the bed
heights of the upper and lower layers are insufficient to obtain converged statistics. In order to
compare with the corresponding monodispersed fluidized beds, we compute the integral timescale
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of the monodispersed fluidized beds with an equivalent bed height to the corresponding upper
and lower layers in the bidispersed fluidized beds. Using this approach, we confirmed that both
self-diffusivity and integral timescales in the bidispersed fluidized bed can be approximated by their
corresponding values for a monodispersed fluidized bed.

By quantifying the lubrication, collision, and hydrodynamic stresses, we showed that collision
stresses are a strong function of both Archimedes number and particle Reynolds number, while
hydrodynamic stresses depend more strongly on the particle Reynolds number. Furthermore, the
collision stress in the bidispersed fluidized bed decreases monotonically from the lower to the
upper layer whereas the hydrodynamic stress has a peak in the transition region at a high Reynolds
number. This points out the need to develop models that can accurately capture this observations.
Nevertheless, the magnitude of collision and hydrodynamic stresses in the segregated layers of the
bidispersed fluidized bed are very similar to those in the corresponding monodispersed fluidized
bed.

The results clearly indicate that both macroscopic and microscopic properties of a monodispersed
fluidized bed can be transferred to a segregated bidispersed liquid-solid fluidized bed. However, in
the transition region, whereas the volume fraction and collision stresses are always bounded by
values in the lower and upper layers, the particle velocity fluctuations and hydrodynamic stresses
are not always monotonically decreasing with height. This shows that the properties of the transition
region cannot be approximated as simple averages of those properties in the segregated layers.
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APPENDIX A: SIMULATION SETUP OF A FLUIDIZED BED

For the simulation of FB-Mono-10 [16], three-dimensional simulations are conducted with Np =
2000 particles in a rectangular domain. The particles have an Archimedes number Ar = 23 600. The
grid spacing is uniform in the x, y, and z directions, and the grid resolution is given by �x = �y =
�z = h = dp/25.6. The rectangular domain has cross-sectional dimension Lx = Ly = 10dp, and
its length is Lz = 60dp with 256×256×1536 grid points. The time-step size is �t = 1.5×10−4 s,
resulting in a maximum advection Courant number of 0.5 for the six cases simulated. The cases
are run with periodicity in the x and y directions. The pressure is specified at the top boundary as
p = 0, whereas at the bottom boundary the inflow velocity is specified as uniform and given by
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FIG. 14. Volume fraction fluctuation φ′ as a function of time t and vertical position z at Rep = 60 in the
lower layer for case FB-Bi-12. (a) Unfiltered φ′, (b) reconstructed low-pass filtered φ′.

Ũ . The primary parameter of interest is the particle Reynolds-number Rep,1 = u0dp,1/ν f where the
average upflow velocity at the inlet u0 is varied to investigate Reynolds-number effects. A total of
six simulations were conducted with 0.010 � u0 � 0.035, giving 20 � Rep,1 � 70.

APPENDIX B: EVALUATION OF DIFFERENT APPROACHES IN COMPUTING WAVE SPEED

In this Appendix, we compare three different approaches which are as follows: (1) naive, (2)
autocorrelation, and (3) dispersion relation in computing wave speed from volume fraction. To
separate the wave motion from the random noise, we followed the procedure by Ref. [16] to
reconstruct φ(z, t ) into its low φk<kthresh (z, t ) and high φk�kthresh (z, t ) wave-number components using
Fourier transforms with cutoff wave-number kthresh. In this paper, kthresh = Lb/dp,1, where Lb is
the height of the monodispersed layer or each segregated layer in the bidispersed fluidized bed.
Figure 14(b) shows the reconstructed low wave-number φk<kthresh (z, t ) signal. Compared to
Fig. 14(a), the wavelike behavior is more distinct, and an approximate wave speed can be computed
based on the slope of the features on the z-t plane.

For the naive approach, we approximate the wave speed directly from Fig. 14(b) by computing
the average of z/t for t that results in the top five largest φk<kthresh (z, t )’s for each respective z. The
naive approach wave-speed cna is formally defined as

cna = 1

NkNi

Nk∑
k=1

Ni∑
i=1

zk

tk,i
, (B1)

where Ni = 5 is a constant that determines the number of values to be used for each z, Nk is the
number of grid points in the fluidized bed, zk is the vertical position, and tk is the value of t that
results in the top-Ni largest φk<kthresh (z, t ) at zk which is defined as

tk = arg max
ψ∈φk<kthresh (z,t ),|ψ |=Ni

∑
v∈ψ

v, (B2)

where |ψ | denotes the number of elements in ψ .
For the two-dimensional autocorrelation approach, we followed the procedure in

Ref. [43]. The space-time autocorrelation of φ′ is defined as 〈φ′(z + �z, t + �t )〉. By assuming
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FIG. 15. (a) Autocorrelation of the low-pass filtered volume fraction fluctuation φ′ as a function of time t
and vertical position z and (b) energy spectra of the reconstructed volume fraction fluctuation φ′ as a function
of wave-number k and frequency ω at Rep = 60 in the lower layer for case FB-Bi-12.

φ′(z, t ) = φ′(z − ct ) in the form of a propagating wave and wave-speed c = �z/�t , the
autocorrelation of φ′ is reduced to (φ′)2(z, t ), appearing as the maximum value in the autocorrelation
plot. The advantage of this approach is that the dominant wave will be amplified, hence, making
the wave-speed approximation more reliable. A detailed validation of this approach can be found in
Ref. [43]. Figure 15(a) shows a typical space-time autocorrelation plot of φ′. Although the wavelike
behavior is clearer when compared to Fig. 14(b), the wavelike bands in our simulations are not as
clear as those in Ref. [43]. A plausible explanation for this lack of obvious wavelike motion is the
method of forcing in our simulations. In Ref. [43], a triply periodic domain is used, and vertical
forcing is added directly to the flow to balance the weight of particles. Our simulations are doubly
periodic with inflow and outflow specified at the top and bottom boundaries, thus, representing
a more realistic and perhaps noisier result characterized by disturbances propagating through the
domain due to boundary effects. To approximate the autocorrelation wave-speed cauto, Eq. (B1) is
used by computing the ratio of z to t .

For the dispersion relationship approach, we construct the energy spectra of φ′ using the Fourier
transform to compare the energy spectra as a function of frequency ω and wave-number k and then
approximate the wave speed with c = ω/k. Figure 15(b) shows the energy spectra normalized by
the maximum value in two-dimensional k-ω space. (A peak is defined where the normalized energy
spectrum is greater than 0.8, and each peak represents a wave-speed ω/k). As shown in Fig. 15(a),
three peaks are observed that fall on the same line defined by ω = cFT k, indicating the dominance
of three different wave modes propagating at the same speed. The wave-speed cFT is approximated
by fitting the line defined by ω = cFT k to the three peaks.

Figure 16 shows the wave speed computed with different approaches for FB-Mono-12. Overall,
the wave speed derived from the autocorrelation function has the least uncertainty, indicated by
the smallest standard deviation. The naive approach gives results with similar averages but much
larger standard deviations. This is expected because of ineffective noise suppression as shown
in Fig. 14(b). Interestingly, the dispersion relationship approach gives almost identical results as
the autocorrelation approach. However, the main disadvantage of the dispersion relationship is the
need for a large domain. If the domain is small such that the wavelength of the wave is greater
than the fluidized-bed height, smeared peaks will be observed leading to inaccurate results. Since
the segregated bed height in cases FB-Bi-12 and FB-Bi-14 are smaller than the wavelength, the
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FIG. 16. Wave speed derived from different approaches as a function of Rep,1 for case FB-Mono-12.

dispersion relationship is less accurate for these cases. In the remainder of this paper, we adopt the
autocorrelation approach to compare wave speeds.
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