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We study a liquid-gas front propagation in a modulated Hele-Shaw cell by means of
multiphase computational fluid mechanics based on the three-dimensional Navier-Stokes
equations. In the simulations an obstacle that partially fills the gap is placed at the center
of the cell, and the liquid-gas interface is driven at a constant velocity. We study the
morphological differences between imbibition and drainage for a wide range of capillary
numbers, and explore how the wetting properties of the constriction affect the amount
of liquid that remains trapped in the draining process. We observe increasing remaining
volumes with increasing capillary number and decreasing contact angle. The present CFD
implementation for a single mesa defect provides insight into a wide number of practical
applications.
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I. INTRODUCTION

Two-phase fluid displacements in porous media have been extensively studied [1,2] to gain in-
sight into a broad variety of applications that involve interfacial problems, e.g., extraction, filtering,
chemical reaction, mass-transfer, and separation. The simplest system involves two immiscible
fluids, characterized by their viscosity and surface tension at their mutual interface. A remarkable
feature in such systems is the hysteresis appearing during repeated series of drainage-imbibition
processes. This is usually evidenced by pressure-saturation trajectories, which follow different paths
depending on the flow direction. Since this behavior does not relate to disorder [3], studying a single
mesa defect provides new insight for the collective, macroscale hysteresis [4].

In the confined geometry of a Hele-Shaw cell (two closely spaced parallel plates) the interfacial
dynamics depends both on the relative ability of the fluids to wet the walls of the cell and on their
viscosity contrast. We focus on the simplest case, where a viscous wetting fluid displaces a second
less-wetting and less-viscous fluid. In this imbibition process the viscosity contrast stabilizes the
interface and makes it effectively stiffer at increasing front velocities; in the opposite displacement
direction (drainage) the viscosity contrast makes the interface increasingly softer with velocity and
eventually unstable against the Saffman-Taylor viscous fingering instability. This simplest case
is essentially governed by the competition of viscous and capillary forces, as represented by a
dimensionless capillary number, Ca.
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Roughness and surface heterogeneities have an important effect on liquid spreading. In the
imperfect Hele-Shaw cell introduced by de Gennes [4], defects of either geometrical or chemical
origin deform the fluid-fluid interface and impact the interfacial dynamics. Several studies suggest
that the nonlocal nature of the interfacial dynamics and the presence of defects at the interface
can be employed to control interfacial stability [5–9]. While keeping the same fluid pair, the
instability is delayed by the effect of wetting and increasing the wettability of the invading fluid
stabilizes the invasion [9–11]. Similarly, gap-thickness modulations and localized gap-thickness
defects (constrictions and expansions) have been shown to produce controlled shape distortions of
stable fronts [12], as well as front pinning and front depinning (accompanied by abrupt capillary
jumps) across sharp-edged defects [3].

Beyond the quasistatic limit corresponding to Ca = 0, the interfacial dynamics in Hele-Shaw
cells with gap thickness fluctuations is nonlocal: it is governed by a stochastic integro-differential
equation for the gap-averaged front height, with different noise terms accounting respectively
for localized changes in capillary pressure, cell permeability, and local mass conservation, all of
them arising from the localized changes in gap thickness [13,14]. In this framework, addressing
large interfacial deformations and interface pinch-off seem to fall beyond the possibilities of most
analytical approaches. Instead, numerical approaches to the complete three-dimensional problem
look more suitable.

In this work we study liquid-gas front propagation in a modulated Hele-Shaw cell by means of
multiphase computational fluid mechanics based on the full three-dimensional multiphase Navier-
Stokes equations. We consider the scenario of a single mesa-shaped defect which modifies locally
the pressure and wettability. Our goal is characterizing the morphological differences between
imbibition and drainage for a wide range of capillary numbers, and exploring how the wetting
properties of a localized constriction influence the amount of liquid trapped in the course of
drainage. Our implementations can easily be extended to disordered media, where single defects
interact and collectively generate the pressure-saturation relationship.

The simulations provided here demonstrate the capabilities of the current multiphase fluid
dynamics methods for simulating the interfacial dynamics of fluid front propagation in quasi-two-
dimensional systems. Furthermore, we are able to examine the influence of the physical properties
of fluid arbitrarily, and alter the wettability of the cell, which has only recently been studied
experimentally and has not been fully explored [10,11]. The simulations provide us also with the
velocity field, which reveals the generation of streamline vortices during pinch-off.

The remainder of the paper is organized as follows. The theoretical framework and the numerical
procedure are presented in Sec. II. The numerical model is compared with well-known experimental
results in Sec. III. We perform a systematic study of the impact of wetting properties of fluid-fluid
invasion and the capillary number in Sec. IV. Discussions are presented in Sec. V and VI, and the
main conclusions drawn in Sec. VII.

II. THEORETICAL FRAMEWORK AND NUMERICAL PROCEDURE

We use a square Hele-Shaw cell of size Lx × Ly = 63 × 63 mm and gap thickness Lz = 0.3 mm,
as shown in Fig. 1. The gap modulation consists of a square patch of size lx × ly = 3 × 3 mm and
height lz = 0.06 mm placed at the middle of the bottom plate, so that the gap thickness on top of
the modulation takes the value h = Lz − lz. We consider a two-phase displacement, in which the
initial interface is flat and the front velocity imposed at the inlet is V∞ = (0,V∞, 0). First, a viscous
fluid with dynamic viscosity μ invades the Hele-Shaw cell at constant velocity through the inlet
located at one side, simultaneously displacing the air inside the cell [Fig. 1(a)]. Once the front
has propagated sufficiently far past the obstacle, we reverse the direction of the flow, draining the
viscous fluid from the cell at a constant velocity V∞ = (0,−V∞, 0) [Fig. 1(b)]. The cell is tilted at
an angle 0◦ � β � 90◦ with respect to the direction of gravity g [Fig. 1(c)].

We perform full 3D numerical simulations of the physical system in Fig. 1 solving the multiphase
Navier-Stokes equations employing the volume of fluid approach. The problem is implemented
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FIG. 1. Sketch of the problem: a modulated Hele-Shaw cell with a localized obstacle in the middle
(constriction, black square). Two stages are shown: (a) first, the cell is filled with a viscous fluid (blue) at
constant displacement velocity V∞. (b) Once the obstacle is completely covered with the imbibed fluid, the
flow direction is reversed at the same magnitude −V∞. (c) Side view: cell of gap thickness Lz modulated by
an obstacle of height lz. The imbibed liquid forms a contact angle θt and θb with the top and bottom plates,
respectively.

in the OpenFOAM software package [15] and solved using interFoam [16], extensively used
for multiphase simulations [16–18]. This numerical solver is suitable to address large interfacial
deformation and topology changes of the fluid-fluid interface. The governing flow equations consist
of the mass balance equations and the full Navier-Stokes equations including the interface force
term fγ defined as

fγ = γ κ∇α, (1)

where α is the liquid fraction, γ the surface tension. and κ the local interfacial curvature determined
by

κ = −∇ · n = −∇ ·
( ∇α

|∇α|
)

. (2)

Wettability effects are included in the model through the contact angle θ ,

n = nw cos θ + tw sin θ, (3)

where nw and tw are the unit vector normal and tangent to the wall, respectively [17].
The density ρ and viscosity μ fields are defined as

ρ = ρlα + ρg(1 − α), (4)

μ = μlα + μg(1 − α), (5)

where (ρl , μl ) and (ρg, μg) are constants in each phase (liquid and gas). The two fluids are
considered to be Newtonian, immiscible, incompressible, and isothermal. In the volume-of-fluid
method, the liquid fraction α varies smoothly between 0 and 1, and from mass conservation and
Eq. (4), it evolves according to

∂α

∂t
+ ∇ · (αv) = 0. (6)
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TABLE I. Relevant physical parameters used in the simulations. The dynamic viscosity is μ = ρν. The oil
parameters correspond to Rhodorsil Oils 47 V 10 and 50 [12,19,20].

Fluid ν [mm2/s] γ [mN/m] ρ [kg/m3]

Water 1 70.7 1000
Ether 0.42 16.6 710
Ethanol 1.5 21.6 780
Oil 2 10 20.1 959
Oil 1 50 20.7 1000
Air 14.8 1

In interFoam solver, the phase is limited using the Multidimensional Universal Limiter with Explicit
Solution (MULES) and, due to the presence of sharp gradients of α in the interfacial region, an
additional convective term is added in Eq. (6) to mitigate the effects of numerical diffusion [16].

The momentum equation

ρ
Dv
Dt

= −∇p + ∇ · [μ(∇v + ∇vT )
] + ρg + fγ (7)

is solved via a Pressure Implicit with Splitting of Operators (PISO) iteration procedure with
nCorrectors (the number of times the algorithm solves the pressure and momentum corrector at
each step) equal to 4. The time derivative is solved by an Euler scheme, momentum and mass
flux by the Gauss upwind scheme. The system of differential equations is solved using the PCG
linear solver with DIC preconditioning, with an absolute tolerance of 10−10. In order to keep
sharp interfaces, the cAlpha parameter controlling the interface compression is set to 1. Finally,
the parameter nAlphaCorr specifying the number of times the alpha field is solved within a time
step here equals 3.

The computational domain consists of half Hele-Shaw cell (see Fig. 1) with symmetric boundary
condition in the x-axis. The rest of the boundary conditions are no-slip at all walls, constant velocity
V∞ at the inlet, and zero pressure at the outlet. A constant contact angle is used as wetting boundary
condition for either θt or θb, and the wettabilities of the cell and obstacle are defined in terms of
the contact angles θh and θo, respectively. Values θ = 0◦ (θ = 90◦) correspond to perfect wetting
(superhydrophobic behavior) of the invading fluid, respectively. The rest of the simulated liquid
parameters vary according to Table I, which are the most common in practical applications. Under
these conditions the capillary number is 2.8 × 10−6 � Ca � 4.8 × 10−4 and the Reynolds number
is 0.0012 � Re � 0.14.

After a convergence study, we find that using 158 760 mesh elements allows us to reach accurate
solutions and reasonable computation times. It is worth pointing out that all the implicit interface
capturing methods are susceptible to generation of unphysical flow at the interface only due to
numerical reasons [21]. However, Harvie et al. [22] have shown that the generation of spurious
currents is only secondary for moving interface, even though the following time step criterion is
applied [16,23]:


t � max(10τμ, 0.1τγ), (8)

where

τμ = μ
x

γ
, τγ =

√
ρ
x3

γ
(9)

are the viscous and capillary time scales, respectively, and 
x the cell size. Table II shows the
maximum time step we used for each liquid to avoid the spurious currents in the simulations.
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TABLE II. Characteristic timescales and maximum time step for each liquids in Table I with 
x = 0.25 mm.

Fluid τμ [μs] τγ [μs] max(10τμ, 0.1τγ ) [μs]

Water 3.5 470.1 47.01
Ether 4.5 817.5 81.75
Ethanol 13.5 751.2 135.4
Oil 2 119.3 863.4 1192.8
Oil 1 603.9 868.8 6038.6

III. QUALITATIVE COMPARISON WITH EXPERIMENTS

In this section we compare the efficiency of the solver with theoretical and experimental results
on the well-known Saffman-Taylor instability. We consider the full-wetting case in which both
contact angles θh = θo = 0◦ and the fluid-fluid pair is oil 1-air.

Figure 2(a) shows the position of the interface at different times during imbibition (left)
and drainage (right) displacements for the velocity V∞ = 0.2 mm/s (capillary number Ca =

μV∞/γ � 5 × 10−4) and β = 0◦. During the imbibition stage the cell gets filled uniformly by oil,
the interface remains flat and it is only slightly modulated during the transition over the obstacle.
Furthermore, the final interface configuration shows no signs of the presence of the obstacle, nicely
following recent experimental observations [3]. On the contrary, two distinct aspects manifest during
drainage. A Saffman-Taylor viscous fingering instability takes place, as known to occur when a more
viscous fluid is displaced by a less viscous one in a horizontal cell. In addition, the interface pins
at a point P1 (see Fig. 1) on the obstacle and at the cell walls, whereas the rest of the interface
continues retreating. As a result, some of the liquid remains on top of the obstacle, and the interface
is squeezed by the surrounding air until it pinches off.

FIG. 2. Snapshots of the simulation for oil 1 (red), θh = θo = 0◦, β = 0◦ and (a) V∞ = 0.2 mm/s (Ca
= 4.83 × 10−4) and (b) V∞ = 0.6 mm/s (Ca = 1.449 × 10−3). In this complete-wetting case, the instabilities
at the front appear more easily as the front velocity increases.

084305-5



JONATAN R. MAC INTYRE et al.

FIG. 3. Volume of liquid that remains on top of the obstacle V as function of β for oil 1 and V∞ = 0.2
mm/s (Ca = 4.83 × 10−4). As the tilt angle increases, the volume decreases. The interface remains flat after
passing the obstacle when β is above the critical angle βc. Thumbnail pictures show snapshots of the simulation
at two times during the drainage stage for β = 6◦(< βc ) and β = 60◦(>βc ).

Figure 2(b) shows the result of the simulation for the inlet velocity V∞ = 0.6 mm/s (Ca � 1.5 ×
10−3). This leaves the interface pinning at P1 unchanged, while the fingering instability is more
pronounced at higher driving velocity, as expected. In this case the interface is not squeezed around
the obstacle and breaks up only when parts of it reach the inlet.

The amount of fluid remaining on top of the obstacle V changes with the inlet velocity V∞.
A thin coating layer of liquid remains on the cell plates, whose thickness increases with V∞. The
presence of thin film layers covering the cell walls during the drainage stage has been experimentally
observed by Liu and coauthors [24].

Assuming that the obstacle acts only as a local perturbation to the interface, we may confirm
that the instability observed here is indeed viscous fingering by comparing the observed number of
fingers to that expected to appear during drainage, computed by following Park and Homsy [25,26].
By applying linear stability analysis to the flat interface, the most unstable mode has a dimensionless
wave number given by

k̂m =
√

4V∞(μl − μg)

γ

L2
x

L2
z

. (10)

Now, when V∞ increases, the distance between fingers decreases. This prediction aligns with the
results of our simulations, shown in Fig. 2.

Tilting the Hele-Shaw cell an angle β adds an effective gravity force. This force can be large
enough to suppress the viscous fingering instability, and then all the liquid remaining on the sides
of the cell is drained. In addition, the amount of liquid remaining on top of the obstacle decreases
(see Fig. 3), as one might expect due to the additional body force moving the fluid. We can estimate
the critical angle βc for which the fingering disappears as [3,14]

βc = arcsin

(
12


μV∞
h2g
ρ

)
, (11)

where 
μ = μl − μg and 
ρ = ρl − ρg. For a Hele-Shaw cell of gap thickness h = 0.46 mm, the
critical angle is βc � 3◦, which is smaller than the angle used by Planet et al. [3] in their experiments
to prevent viscous finger formation in drainage.
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FIG. 4. Snapshots during the drainage stage for oil 1-air and V∞ = 0.2 mm/s (Ca = 4.83 × 10−4). Here a
Hele-Shaw cell under complete wetting conditions on the walls θh = 0◦ is used, but the contact angle imposed
at the obstacle wall is (a) θo = 10◦ and (b) θo = 30◦.

IV. PARTIALLY WETTING OBSTACLE

We consider now the scenario where the obstacle is only partially wetting, θo �= 0, and the
cell remains completely wetting, θh = 0. Now the pressure around the obstacle slightly changes
according to Eq. (2) and, depending on the value of θo, the interface may or may not be pinned
on it. In the case of oil 1-air and θo > 20◦, the interface experiences smooth corrugations at the
obstacle, but the front does not get pinned. Figure 4 shows a comparison of two cases, for θo = 10◦
and θo = 30◦. Note that the perturbation at the interface is stronger than in the fully wetting
case.

Replacing the oil with water makes the interface more curved, but the amount of liquid that
remains trapped on top of the obstacle during the liquid retraction (drainage) still depends on the
contact angle θo. In Fig. 5 we show snapshots of the simulation at different times during the injection
(left column) and withdrawal (right column) of water in the cell for selected cases having different
contact angles (a) θo = 45◦ and (b) θo = 60◦. As the contact angle θo increases, the volume of liquid
remaining on top of the obstacle V decreases until it reaches zero. When that occurs, the shape of
the interface in the retraction phase (drainage) behaves similarly to the injection phase (imbibition),
where after surpassing the obstacle the interface is no longer affected by it. Furthermore, we note
that the injection phase is less influenced by the change in the contact angle, complying with the
fact that the interface is stiffer in that particular direction of flow.
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FIG. 5. Snapshots of the simulation for water-air (Ca = 2.8 × 10−6), and θo = 45◦ (a) and θo = 60◦ (b).
The obstacle is represented by the gray square. In the drainage stage a small volume of water remains on top
of the obstacle for θo = 45◦.

Figure 6 shows the corresponding evolution of the front for (a) ether and (b) ethanol with θo =
45◦. As soon as the interface makes contact with the obstacle during drainage, at point P1 (see Fig. 1),
the pinning force on the interface produced by the obstacle competes with the weakly restoring force
of the interface, giving rise to the break-up of the interface below the obstacle close to point P2.

Interestingly, when the capillary number increases significantly the behavior of the interface
changes completely. Figure 7 shows the interface evolution for an oil-air interface with the oil
contact angles set to (a) θ = 45◦ and (b) θ = 60◦. During imbibition, the interface behavior is
independent of the contact angle θo. The formation of viscous fingers in drainage, however, makes
the velocity of the fluid at the lateral walls to slow down abruptly and the interface to pin at point P1

of the obstacle. The rest of the interface keeps advancing and begins to curve, but in contrast with
the previous liquids there is no pinch-off until the interface finally reaches the inlet boundary. At
that moment the break-up takes place and the liquid starts to relax slowly over the obstacle until it
reaches a symmetric shape just as in the cases discussed earlier [Fig. 7(a)]. When the contact angle
θo is larger, the interface does not pin at the obstacle, but instead carries on moving at a velocity
different than the rest of the interface. Finally, when the interface reaches the boundary it breaks up
and a droplet of liquid remains inside the cell, but it is not placed over the obstacle, as shown in
Fig. 7(b).

V. PINCH-OFF AND REMAINING VOLUME

The simulations show that the pinch-off process depends on the wettability conditions, gap
modulation and capillary number. In addition, we see that before the breaking of the interface the
fluid is squeezed out from the neck, while the interface retracts. The condition for pinch-off to take
place is that the time invested by the interface at the obstacle to travel before the neck collapses is
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FIG. 6. Snapshots of the simulation for (a) ether (Ca = 3.59 × 10−6) and (b) ethanol (Ca = 1.08 × 10−5)
for θo = 45◦. The volume of liquid that remains over the obstacle is (a) 2.84 mm3 and (b) 4.06 mm3.

larger than the time required for the neck to pinch-off. If we consider a thin film of thickness xn

(neck width), it is easy to see that the pinch-off time is τp ∼ μxn/γ .
The amount of volume that remains on top of the obstacle V is related with the neck width xn

and slightly changes with the contact angle θo. To include the different liquids used here, we define
the capillary number

Ca∗ =
(

Lx

lx

)2 12V∞(μl − μg)

γ cos θo
, (12)

and measure the volume V and neck width xn. Figure 8 summarizes how the dimensionless volume
V/(lxx2

n ) changes with the obstacle wettability properties through the capillary number defined by
Eq. (12).

VI. TRANSITION FROM NO BREAKUP TO BREAKUP

The imbibition of a high-viscosity fluid in a Hele-Shaw cell filled with a less viscous fluid
shows that the interface is morphologically stable, and no significant changes modify its shape.
More interesting is the drainage displacement, where eventually the retracting liquid front remains
pinned on the obstacle until pinch-off occurs. Further insight about this process can be gained from
Fig. 9(a), which shows a simulation image of the necking process leading to interface break-up in
the case of retraction of ethanol. The displayed velocity field shows the fluid squeezing out from
the neck to the obstacle, while the interface retracts. Once the interface reaches the obstacle, a
recirculation zone is created. The interface pushes the recirculation zone along the cell as it advances
towards the inlet. In contrast to the case of ethanol, Fig. 9(b) shows that the size of the recirculation
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FIG. 7. Snapshots of the simulation for oil 1 (Ca = 4.83 × 10−4) and (a) θo = 45◦ and (b) θo = 60◦. During
drainage, the interface breaks up when it reaches the inlet boundary (t = 360 s). The volume of liquid that
remains over the obstacle is 1.78 mm3 in case (a).

zone for retracting oil increases. Due to this, the width of the neck close to the obstacle does not
shrink, and therefore no pinch-off is observed.

To quantify the effect, we use the vorticity defined by

〈ωz〉 = 1




∫



ωz d
, (13)

where 
 is the volume occupied by the liquid. Figure 10 shows the vorticity for several cases as a
function of time. At early times, the vorticities behave smoothly, while at later times they present
huge variations. The transition between these two regimes corresponds to the instance when the
interface reaches the obstacle, i.e., the moment when the recirculation zone is generated (Fig. 9).

Two different aspects are interesting in the previous figure. First, the absolute value of the
vorticity increases with capillary number, which agrees with the pinch-off volume as described
above, whereas the contact angle at the obstacle does not modify the vorticity. Second, a significant
change appears when we move from a system where pinch-off does not occur to one where pinch-off
takes place around the obstacle. For instance, the vorticity for oil-air and θh �= 0 (Fig. 7) is one order
of magnitude bigger than the case with θh = 0 (Fig. 2).

VII. CONCLUSIONS

The present study considered the imbibition and drainage of liquid in a Hele-Shaw featuring a
single constriction, analyzed using multiphase computational fluid mechanics based on the three-
dimensional Navier-Stokes equations as implemented in the interFoam solver of the OpenFOAM
library. We have explored the dependence of wettability conditions and the capillary number
(2.8 × 10−6 � Ca � 4.8 × 10−4) using five different liquids. Our results show that these simulations
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FIG. 8. Variation of the dimensionless volume V/(lxx2
n ) with the contact angle θo using the modified

capillary number defined by Eq. (12).

are a useful tool to reproduce nontrivial behaviors arising from the interplay between viscous and
capillary forces.

During the first stage, the cell is filled by the more viscous fluid, which displaces air. We have
shown that during this imbibition stage the interface is stiff and no deformations are observed.
However, exception to this is observed at large obstacle contact angles, where complete imbibition
is no longer reached due to the obstacle-liquid repulsion.

An individual obstacle seems to not greatly affect the front, i.e., the front keeps straight after the
interface overtakes it. The permeability effect due to the gap thickness variation is well compensated
by the locally increased pressure difference atop of the obstacle, which pushes the interface ahead.
Therefore the reverse process, the drainage stage, reveals the true effect of the obstacle in the
hysteresis behavior.

During the drainage stage, the model reproduces the well-known undulations of the interface.
The fingering instability and the presence of the obstacle are decoupled: while the amplitude of the
instability increases as V∞ increases, the interface is always pinned at the obstacle. Additionally,
experiments have shown the suppression of the fingering instability due to gravity, and that these
undulations completely disappear at tilting angles above a critical one. We found that our simula-
tions including the effects of gravity reproduce this behavior very closely. Even the critical tilting
angle observed was rather close to its experimental predicted value.

The simulations allowed for a detailed analysis of the flow field. We observed that the presence
of the obstacle creates a recirculation of the velocity field. While the liquid is retracting, the amount
of recirculation around the obstacle is reduced and the recirculation zone is pushed to a small region.
Then, two different situations may arise: either the interface breaks up close to the obstacle, or it
breaks up at the inlet. Both situations depend on the capillary number and wettability conditions.

To conclude, an analysis of the stability of the front based on the restoring forces provided
by surface tension and gravity, the destabilizing force of the viscous pressure gradient, and the
geometry of the obstacle reveals the wettability conditions that give rise to pinch-off in the drainage
displacement. Therefore, the results shown here can be used to either avoid or control the motion
and stability of liquid fronts in microscale geometries, and may be useful also to understand more
complicated situations. Moreover the stability conditions can be used to design new platforms in
microfluidics for the manipulation of tiny liquid volumes, with tailored spatial covering.
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FIG. 9. Velocity field for (a) ethanol and (b) oil during the drainage phase for several times. The velocity
field at locations occupied by air is omitted from the plots for clarity. Here V∞ = 0.2 mm/s and θh = 45◦. Once
the interface reaches the obstacle, a recirculation zone is created.

FIG. 10. Component of vorticity 〈ωz〉 for several cases. As the capillary number increases, the vorticity
increases. The time t0 corresponds to the initial time of the drainage.
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Imbibition of yield stress and other complex fluids is an emerging topic in soft matter partially
due to its practical applications in oil recovery. This simulation method allows for a natural extension
of the tools to simulate non-Newtonian fluid front propagation in a Hele-Shaw cell and in porous
random media.
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