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Attraction and repulsion between objects in a granular flow
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The objective of this work is the understanding of lift forces exerted on two side-by-side
intruders within a granular flow that is uniform upstream. To this end, we have performed
experiments that reveal long-range attraction and repulsion depending on flow velocity and
the distance between intruders. We found an interesting correlation between the asymmetry
of flow velocity around the obstacles and the lift force, although the understanding of
this correlation rests as an open question for future work. Additionally, a hydrodynamic
model based on kinetic theory for inelastic particles was solved numerically. The model
reproduces remarkably well the general qualitative features of the experiments which
shows that the system behaves similarly to a pair of hot intruders immersed in a liquid of
temperature-dependent viscosity. However, quantitative discrepancies suggest that better
constitutive relations are needed.

DOI: 10.1103/PhysRevFluids.6.084303

I. INTRODUCTION

This work was motivated by a setup well used to explore hydrodynamic interactions between
particles, drops, and bubbles in a fluid flow. [1]. Typically, the intruders are placed side by side in a
uniform flow [see Fig. 1(b) for a schematic representation of the setup]. However, to the best of our
knowledge, it has not been used before in the case of the flow of granular material. Only recently,
our group performed numerical simulations using such a configuration [2].

For a steady viscous flow, at moderate Reynolds numbers (Re), a repulsive interaction is
observed between objects placed side-by-side if they are close enough to each other [3]. The
interaction changes sign and becomes a weak attraction as objects move apart. As Re decreases,
repulsion increases, and you need to move them farther apart to observe an attractive interaction.
This attraction grows weaker as Re tends to zero, and the flow approaches the Stokes limit.
This behavior indicates that the attractive interaction is originated from the inertia of the fluid
(a Bernoulli effect), and therefore accentuated at larger Re, while viscosity governs repulsive
forces [4].

In the case of intruders in a granular flow, drag has received more attention than lift. It appears
that at slow flows, drag is independent of the granular media velocity, while it is proportional to the
square of this speed if the granular media is moving fast [5–8]. Nonetheless, intruders in a granular
flow do experience long range interactions, for example, in segregation processes [9–16]. Attraction
and repulsion has been observed between objects placed side-by-side within granular flows, and in
some cases it has been suggested that some of these forces follow Bernoulli equation for irrotational
fluids [14,16,17].
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FIG. 1. (a) Schematic representation of the experimental setup. Big, thick polycarbonate sheets placed
face-to-face, 1.3 cm apart from each other form a quasi-two-dimensional container. The container is filled
with tapioca seeds of diameter d = 0.33 ± 0.02 cm and density ρt ≈ 2.7 g/cm3. (b) Two cylindrical obstacles
of diameter D = 1.5 cm are placed side-by-side between the walls of the container without touching them,
55 cm above the bottom. The gap between the cylinders Xsep can be varied, and the cylinders are attached to
force gauges that allow measuring the vertical, FDrag, and horizontal, FLift, forces on them. (c) The angle of
tilted sticks placed at the bottom of the container controls mass flow out of the system. (d) Front view of the
intruders immersed in the granular medium before the flow begins. See Supplemental Material [24] for more
details.

Inspired by experiments of Pacheco-Vázquez and Ruiz-Suárez [16], Solano-Altamirano et al.
[18] performed granular experiments and 2D simulations where a group of massive intruders
fall and penetrate an extremely lightweight granular media in the presence of gravity. It was
found that repulsion depended on jamming, and attraction seemed to be a Bernoulli-like effect.
Unfortunately, intruders’ relative speed and the dependence of the dynamics on depth and time
made the interactions too complicated and difficult to understand.

To overcome these complications, López de la Cruz and Caballero-Robledo [2] decided to work
numerically with a pair of fixed circular intruders immersed on a 2D granular flow driven by gravity,
the setup of the present work. Their findings revealed remarkable features about the intruders’ inter-
actions. In the search for a Bernoulli-like effect, they tried to correlate the lift force and the difference
in grains’ average speed on both sides of the intruder. Surprisingly, the best correlation resulted
when averages where taken, not at both sides of the intruders’ equator (considering the equator on
the line between the intruders’ centers), but at 45 degrees above the equator in the upstream direction
(see Fig. 3). Additionally, the lift seemed to depend on the speed square difference divided by the
upstream granular speed to the power of 3/2, an unexpected feature. The authors concluded that the
origin of the attractive lift did not seem to be a Bernoulli-like effect and suggested using Coulomb’s
theory for passive failure [19] to describe the system. Alternatively, an extension of kinetic theory
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to dense granular flows [20], or local rheology based on the nondimensional shear rate I [21] could
also be apt.

More recently, Dhiman et al. [17] performed numerical simulations of two spheres moving
horizontally side-by-side in a box with periodic boundary conditions in the direction of the
displacement. The lift force measured as a function of the separation between intruders and as a
function of displacement velocity behaved similarly to the lift force reported in by López de la Cruz
and Caballero-Robledo [2]. Moreover, the authors managed to qualitatively reproduce the lift force
as a function of the intruders’ separation. They do this by modeling a pressure on the intruders
proportional to the difference of the local squared velocity at a contact point and the squared bulk
flow velocity, but only if the contact point was part of a force chain. The authors rationalize such a
model as Bernoulli’s principle integrated with force chains. Unfortunately, they only test the model
at a single value of the velocity, so it is not possible to know how it behaves at larger or lower
velocities, which makes it challenging to evaluate the pertinence of interpreting the model as a
Bernoulli effect.

Asking if a Bernoulli-like effect governs the interaction between intruders in a granular flow is
equivalent to asking how much does the granular flow behaves like a fluid. We have seen that the
behavior is not the same as in a viscous fluid, but it has been proposed by Seguin et al. [20] that it
could be equivalent to hot intruders immersed in a model viscous fluid whose viscosity is sensitive
to temperature variations [22,23]. The authors support this idea with experiments of a cylinder
penetrating vertically in a static granular bed.

In this work, we present for the first time experimental results of long-range interactions between
two objects placed side-by-side and immersed in a gravity-driven granular flow. We found the
same attractive and repulsive regimes previously reported using numerical simulations. Specifically,
attractive interaction increases as the upstream flow velocity decreases, contrary to what is observed
in Newtonian fluid; and the intruders separation where the transition from repulsion to attraction is
observed in a granular flow decreases (and seems to converge) as the upstream velocity decreases,
as opposed to what is observed in a Newtonian fluid. Additionally, we found numerically that the
forces computed with the model proposed by Seguin et al. [20] follow the trends observed in the
granular experiment. It is remarkable that the continuum model, although only qualitatively, can
reproduce features of the interaction that are completely different to those observed in a Newtonian
fluid.

II. EXPERIMENTAL SETUP

The experimental setup (see Fig. 1) consists of a 125 × 50 × 1.3 cm3 container made of 2.54 cm
thick polycarbonate sheets. The container is placed vertically and filled with dry tapioca seeds
(diameter d = 0.33 ± 0.02 cm and density ρt ≈ 2.7 g/cm3). Inclined plastic sticks placed at the
bottom impede the free flow of the grains out of the container, imposing a constant discharge mass
flow rate and, consequently, a constant flow velocity of grains inside the container. By varying the
angle of the sticks, the flow velocity can be controlled (see Fig. S1 of the Supplemental Material
[24] and Ref. [25]).

The tapioca seeds are poured into the container using a hopper placed at the top while a
polycarbonate bar blocks the exit at the bottom. Six kilograms of seeds is enough to fill the box
and part of the hopper. At the time t = 0, the bar at the bottom is removed, and the discharge of
the tapioca begins. The tapioca falls into a second container placed on a weight scale, which allows
monitoring the amount of discharged mass as a function of time [25].

Two cylindrical plastic obstacles of diameter D = 1.5 cm and 1.1 cm in length are placed side-
by-side between the walls of the container without touching them at the height of 55 cm from the
bottom. Thin (∼3 mm), long screws which pass through small (∼5 mm) holes in the polycarbonate
sheets without touching them (see Fig. S2 of the Supplemental Material [24]) put the obstacles in
place. The size of the gap between the cylinders, Xsep, can be varied thanks to a set of small holes
placed all along the width of the polycarbonate sheet. We put thin adhesive tape on the inner part
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of the container to close unused holes in a given experiment such that the flow of the grains is not
affected by the holes.

Each cylindrical intruder is attached to a pair of force gauges (microload cell, 0–780 g, CZL616C,
Phidgets Inc.) connected in series. The cylinder is connected to the gauge, which measures the
horizontal (lift) force. The cylinder and the lift force gauge are attached to the vertical (drag) force
gauge. All the system is fixed to an external aluminum support (see Fig. S2 of the Supplemental
Material [24]). The cylindrical intruders and adapters for attaching the force gauges were designed
and printed in a 3D printer (Replicator 2, MakerBot). 9V alkaline batteries power the force gauges,
and the output voltage signal is read by an analog input card (9205 on cDAQ-9184, National
Instruments) connected to the force gauges through a four-input PhidgetBridge circuit. All the
system is connected to a physical ground to minimize the noise. Data acquisition is controlled
through LabView (National Instruments) programs written by us. We calibrated the force gauges by
attaching masses of known weight to them with the setup empty of grains.

Strong electrostatic forces are generated on the system due to the friction between grains and
the polycarbonate walls during flow. These forces are eliminated by spraying an off-the-shelf
antielectrostatic substance (antistatic screen cleaner, OfficeMax) on the polycarbonate sheets before
assembling the container. During the experiments, the spray is distributed among all surfaces
(tapioca seeds and walls) without affecting the flow of grains or the measured forces. After ten
experiments, the antielectrostatic effect vanishes, and the system must be disassembled to respray
the substance.

The flow of grains around the obstacles is filmed with a high-speed camera (Lightning RDT Plus)
placed 30 cm away from the setup acquiring 512 × 512 pixels images at a rate of 250 frames per
second. The movies are then analyzed using the particle image velocimetry (PIV)-ImageJ plugin,
which measures the displacement of objects within a pair of images from the cross-correlation of
subregions of the pictures. We work with subregions of 8 × 8 pixels, which have approximately the
size of a single tapioca bead. From each consecutive pair of images, a velocity vector is obtained
for each subregion. By averaging in time the velocity vectors on each region, the averaged velocity
field of the flow of beads that are next to the front wall is obtained (see Fig. S4 of the Supplemental
Material [24]). A granular temperature field is defined as the variance of the velocity on each
subregion.

III. RESULTS AND DISCUSSION

Figure 2 shows the experimental results of the average lift force measured for different flow
velocities, U∞, and obstacles separations, Xsep. In the inset of Fig. 2(a), it is shown the raw data of
the lift force as a function of time for a case of attractive lift. The signal is extremely noisy, and the
force can have both positive (repulsion) and negative (attraction) values, but the smoothed signal
shows that, on average, the net lift force is attractive [in previous simulations [18] we showed that
the trajectory of a particle free to move through a granular medium is determined by the average of
extremely fluctuating signals like the one shown in the inset of Fig. 2(a)]. The initial time t = 0 s
corresponds to the moment when the bottom of the container opens, and the grains begin to flow. In
this particular case, the force is constant and negative (attractive) for t < 0 s. This corresponds to
the jammed state of the system that results from pouring the grains into the container. But in each
experiment, the value of this initial force is different, and it can be repulsive, attractive or zero. It
would be interesting to study this force in more detail. For t > 0 s, after a small transient, the force
enters into a stationary state. It is in this state that we compute the average forces of the main plots
in Fig. 2. The error bars of these data are obtained from the error of the mean of the force signals
of both intruders and three repetitions of each experiment. At the end of the experiment, the force
gradually diminishes, signaling the emptying of the container. When the container is empty, the
measured force is zero. An interesting feature that our setup allows to study, but we have not done
yet, is the possible correlations between the lift force experienced by both intruders simultaneously.
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FIG. 2. (a) Mean value of the lift force as a function of the size of the gap between the intruders Xsep.
Flift > 0 means repulsion and Flift < 0 attraction. Inset (a): Raw and smoothed data of the lift force as a function
of time are plotted together for the left intruder for U∞ = 9.37 cm/s and Xsep = 3R. The stationary state from
which the mean force is calculated is clearly identified. (b) The same data as in panel (a) but presented as a
function of the upstream flow velocity U∞. The main plots include error bars, but for most of the points they
are of the order of the size of the markers.

For the moment, we present in Fig. S4 of the Supplemental Material [24], the lift force as a function
of time for both intruders.

The behavior of the lift force as a function of U∞ and Xsep confirms what has been reported
previously from numerical simulations [2,17], namely, that at a given separation of the obstacles,
there can be attraction or repulsion between them depending on the flow velocity. If the obstacles
are close, or the flow velocity is large, then repulsion is favored. In contrast, low flow velocities
and moderate obstacles’ separations enhance the attraction. The maximum attraction measured
corresponds to a separation between obstacles equal to the diameter of an obstacle, i.e., Xsep = 2R.
Interestingly, the attractive regime does not depend on flow velocity for U∞ < 5 cm/s, which seems
to be an indication that the system is in a quasistatic regime. However, one would then expect that
repulsion would not depend on velocity either, which is not the case. Therefore, the nature of the
mechanisms responsible for attraction and repulsion seem to be different.

Dense granular flows present different regimes which can be characterized by the Froude number
Fr [8] or by the Inertia number I [21] (see the Supplemental Material [24] for the definition and
estimation of the values of these two parameters in our experiments). When flow velocity is much
smaller than rearrangements at the level of particles, the system is in a quasistatic regime, where
forces do not depend on flow velocity (Fr < 0.1 or I → 0 [26]). At large flow velocities (Fr > 10
or I � 1), the system is in a rapid, dilute regime where forces change as the square of the velocity.
In between, the system is in an intermediate regime where both gravity and inertia effects have
comparable contributions [8,21]. Depending on the value of U∞, in our experiments 0.03 < Fr <

1.2 and 0.01 < I < 0.4. Interestingly, the transition form quasistatic to intermediate regime at Fr =
0.1 in our system corresponds to U∞ ≈ 4 cm/s. This transition can be clearly observed in Fig. 2(b),
confirming that our system is in quasistatic regime for the lowest flow velocities.

An interesting question is the extent of the long-range interaction between the obstacles. In other
words, at what separation do the obstacles do not see each other anymore. Figure 2 shows that
this also depends both on the separation of obstacles and flow velocity. For small separations, the
interaction between obstacles is strong, even at slow flow. In the quasistatic regime (U∞ < 5 cm/s),
Fig. 2(a) shows that the range of interaction goes from zero up to somewhere between Xsep = 7R
and 8R. At larger velocities, the range of interaction depends on the flow velocity. For the largest
separations that we tested, the obstacles do not see each other at small flow velocities. Then, at
larger velocities, there is attraction and, finally, repulsion at the most substantial flow velocities.
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The maximum flow velocity curve in Fig. 2(a) suggests that at larger separations, the lift force
would probably decay to zero at around Xsep ≈ 15R without presenting an attractive regime, but this
rests as speculation that we need to corroborate.

The drag force was measured using force gauges connected in series with the gauges for the lift
force and the obstacles. Figure S3 of the Supplemental Material [24] shows the results. We did not
find any apparent systematic behavior of the drag force as a function of obstacle separation or flow
velocity. This result is at odds with the simulations previously reported [2,17], where the drag on
a single obstacle is more extensive than when another obstacle is in proximity. This discrepancy
between simulations and experiments should be further investigated. However, we suspect that
connecting the force gauges in series in our experiments was not the right choice because the point
of application of the force was too far from the measurement point, adding a nonnegligible torque
and probably producing elastic deformations of the setup that interfere with the force measurement.
For this reason, we think that our drag measurements are probably not precise enough and must be
verified. This problem does not seem to have affected measurements of the lift, probably because
the magnitude of the force in this direction is smaller. We noticed this unexpected behavior of the
drag force only once the whole series of experiments were finished. In a future work we will study
the drag force using a single gauge.

In a previous work by our group [2] we performed Discrete Soft Element simulations in a system
similar to the one studied here and we found a strong correlation between the lift force and the
quantity

�〈v〉2 = 〈v(out)〉2 − 〈v(in)〉2, (1)

where 〈v(in)〉 and 〈v(out)〉 are the average velocities of grains in the regions “in” and “out” of
the gap between intruders and above them [see Fig. 3(c) for the definition of these regions]. We
perform the same analysis here to verify that such correlation is also observed in the experiments.
Figures 3(a) and 3(b) show examples of the average velocity field obtained from particle image
velocimetry applied to the movies of the experiments. From these kind of velocity fields, we
computed the quantity �〈v〉2 defined in Eq. (1) using the regions “in” and “out” defined in Fig. 3(c).
Similarly to what we found in our previous simulations, the best correlation with the lift force is
obtained when �〈v〉2 is divided by U 3/2

∞ , which can be verified by comparing Figs. 3(d) and 2(b) or,
equivalently, from the excellent linear relationship observed between these quantities [see Fig. 3(e)].
The value of the exponent of U∞ was found empirically (see Fig. S6 of the Supplemental Material
[24] to see the comparison with other exponents) and, since we do not have any model to explain
this scaling, we report this value as approximate, pending its exact determination for future works.

In the numerical simulations that we reported previously [2], we found a linear relation between
the lift force and the “in” and “out” velocity difference divided by U 3/2

∞ , from which the following
equation was proposed (Eq. (6.1) in Ref. [2]):

〈Flift〉 = fsim(μeff )
ξsimSρsimφ�〈v〉2

Fr3/2 + F(0,sim), (2)

where S is the projected area of the intruder, ρsim is the density of the granular material of the
simulations, φ is the packing fraction and Fr is the Froude number (expressing flow velocity U∞ as
the Froude number has been shown to be pertinent for objects immersed in granular flows where
gravity plays an important role [8]). fsim(μeff ) and F(0,sim) are the slope and the intercept that result
from a linear regression to the data. fsim(μeff ) is an unknown function of the friction coefficient μeff,
and F(0,sim) is an attractive force observed when �〈v〉2 = 0. ξsim in Eq. (2) is a geometric factor
which we could determine in the simulations by systematic variations of the width L of the system,
the height h of the column above the obstacles, the diameter d of the particles, and the diameter D
of the obstacles. For the two-dimensional simulations, ξsim is given by

ξsim =
(

h

D

)( L

D

)(D

d

)1/2

. (3)
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FIG. 3. (a) Attractive (U∞ = 15.9 cm/s and Xsep = 5R) and (b) repulsive (U∞ = 27.7 cm/s and Xsep = 5R)
typical velocity fields obtained by applying particle image velocimetry (PIV) to the movies of the experiments
(see Fig. S5 of the Supplemental Material [24] for an explanation of the procedure). (c) Schematic representa-
tions of the regions where the grains velocities were measured to compute the quantity �〈v〉2 defined in Eq. (1).
(d) �〈v〉2 was computed from the velocity fields of the experiments and it was found that, when divided by
U 3/2

∞ , its behavior was very similar to the behavior of the lift force shown in Fig. 2(b). (e) A good linear relation
with a correlation coefficient of r2 = 0.9826 is obtained when 〈Flift〉 is plotted as a function of �〈v〉2/U 3/2

∞ .

In our experiments, we cannot determine the form of this geometrical factor because we have not yet
varied these quantities Nevertheless, we can attempt to adapt Eq. (3) to our experimental system. The
equation needs to be recast because there is a crucial difference between the simulations, that were
two-dimensional, and the three-dimensional experiments. This difference makes the pressure around
the obstacles to behave differently in the two systems. In the simulations, the pressure is a linear
function of the height of the granular column above the obstacles, i.e., it behaves hydrostatically.
In contrast, in the experiments, we expect the pressure at the level of the obstacles to be insensitive
to the height of the granular column above them because the front and back walls would carry the
weight of the column. This phenomenon is known as the Janssen effect. In essence, the pressure
at the bottom as a function of the height of a granular column behaves hydrostatically for small
heights, but it eventually saturates to a constant value. The height at which the pressure saturates is
comparable to the horizontal size of the column. Therefore, in our experiments we expect that the
pressure saturates at a height similar to w, the gap between the front and back walls, which is much
smaller than the lateral size L of the container. Then, the geometrical factor ξsim that was determined
in the simulations from dimensional analysis should be adapted to the experimental system as

ξ =
(w

D

)( L

D

)(D

d

)1/2

. (4)

Noteworthy, the lateral walls in the experiments are much farther away from the intruders than in
the simulations, therefore, it would not be surprising that the linear dependence on L would not be
valid in our experimental setup.
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Based on the linear growth observed in Fig. 3(e), we expect Eq. (2) to have the same form in our
experiments as in the simulations, namely,

〈Flift〉 = f (μeff )
ξSρtφ�〈v〉2

Fr3/2 + F0, (5)

where Fr = U∞/
√

gw is the Froude number, ρt ≈ 2.7 g/cm3 is the density of tapioca, and S =
D × w is the effective surface of the obstacles. Here we consider the packing density to be constant,
φ = 0.6. Although we do not have experimental measurements of φ, simulations suggested that its
precise value did not play an important role in determining the value of the force. The nondimen-
sional parameter f (μeff ) is expected to be a function of the effective friction of the granular material,
defined as μeff = tan(θ ), where θ = 35◦ ± 5◦ is the angle of repose of tapioca. Data in Fig. 3(e) can
be plotted in the form of Eq. (5) and the values of f (μeff ) ≈ 0.02 and F0 ≈ −1200 dyn are obtained
from linear regression. F0 in Eq. (5) is the value of the lift force when �〈v〉2 = 0 and, similarly to
what we found in the simulations, it is attractive. The origin of this attractive force could be related
to differences of velocity fluctuations at both sides of the intruders as suggested in other works
[10,12,14]. It could also be an indication that the regions “in” and “out” where we are measuring
the velocity are not the most pertinent. This force is something that we plan to study in the future.
The magnitude of F0 in our experiments is 13 times the weight of a grain ρt gd3. Interestingly, in the
simulations this ratio was of the same order of magnitude, F(0,sim) was comparable to the weight of
20 grains, even though in the simulations we worked with a superlight granular material [16,18] with
a density 200 times smaller than the density of tapioca. In our experiments, the ratio μeff/ f (μeff ) has
a value between 30 and 40, while in the simulations it is approximately 10. This difference could
be related to the need of a different function of L in Eq. (4). These results suggest that Eq. (5) is
a good departure point to gain further insight into the mechanisms governing lift forces between
two objects immersed in a granular flow. Concerning the flow regime, the experiments allowed us
to explore a more extensive range of flow compared to the simulations. In terms of the Froude
number, the range of the simulations was 0.1 < Fr < 0.5, while the Inertia number had values in
the interval 0.04 < I < 0.14. Both ranges fall within the ranges of the experiments and suggest that
the simulations are mostly inside the intermediate regime.

Another interesting quantity to analyze in our system is vmp, the flow velocity at the middle point
between intruders. Figure 4 shows vmp as a function of the bulk velocity. There is an interesting
relationship between this graph and the attractive and repulsive regimes observed in Fig. 2(b): when
vmp increases together with U∞, there is attraction; in contrast, when U∞ increases but vmp remains
constant, there is repulsion. We also found this behavior in our previous simulations [2], where we
claim that the saturation of flow capacity in the gap between intruders is related to the jamming of
an excess of grains trying to flow through the gap, pushing the obstacles away from each other and
causing repulsion. Interestingly, whenever there is an attraction between the obstacles, vmp is larger
than the bulk velocity. However, there are cases of repulsion where this is also the case. See, for
example, the case of 15.9 cm/s and Xsep = 3R in Fig. 4. This feature is another indication that the
attractive force is not a Bernoulli-like effect.

Granular temperature

The granular temperature is defined as [23]

T (x, z) = mδv2, (6)

where δv2(x, z) = 〈(v(x, z, t ) − 〈v(x, z, t )〉)2〉 is the variance of the velocity of particles and m is
the mass of a single particle.

From particle image velocimetry, we can measure in our experiments the field map of the velocity
variance. Figure 5(a) shows an example of the fields from which we computed the velocity variance,
shown in Fig. 5(b). Figure 5(c) shows the velocity variance for different flow velocities along the
line that passes through the equator of the obstacles. Therefore, it is possible to measure the velocity
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FIG. 4. Flow velocity in the middle point between obstacles, vmp, plotted as a function of U∞. The dashed
line is the bulk flow velocity at the level of the equator of intruders.

FIG. 5. (a) Velocity field and (b) Velocity variance (granular temperature) of the experiment for a case of
attractive lift. (c) Velocity variance along the horizontal axis, which passes through the equator of intruders for
different flow velocities. Vertical lines signal the position of the intruders, which, in this case, are separated
by a distance of Xsep = 1.5D. We obtained these data from images of the experiments like that shown in panel
(b). Note that the region of analysis does not correspond to the limits of the experiment: the total width of the
container is 50 cm. (d) Mean bulk velocity variance as a function of U∞. The data was obtained from data like
the one presented in panel (c) and averaged over all the experiments.
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variance of the bulk as a function of U∞. Figure 5(d) shows such a relation, which, apart from one
data point, it seems to be linear. From a linear regression, we obtain

δv2 ∼ (2 × 10−2cm/s)U∞ = U0U∞, (7)

where we have defined a characteristic velocity U0 = 2 × 10−2 cm/s whose meaning rests to be
understood. If it is related to free fall under gravity, U0 = √

2gl , then it would define a characteristic
distance l ∼ 2 mm which is close to the size of the radius of the particles d/2 = 1.65 mm.

The experimental relation between velocity variance and U∞, Eq. (7), allows to estimate the
viscosity of the material and, therefore, the granular Reynolds number [23] (see the Supplemental
Material [24] for the details of the granular Reynolds number estimation). We found that in our
granular system the Reynolds number can be anywhere in the range 10−2 < Re < 100, although we
guess that the most probable value is close to Re ∼ 10 (see the Supplemental Material [24]). This
huge range reflects the fact that our estimation is based on imprecise assumptions and unknowns,
especially the value of the packing fraction. Therefore, for the moment this estimation is useful only
to compare the experimental results with the hydrodynamic model (see next section), and it should
not be considered to determine the flow regime of the granular system. The inertia and Froude
numbers are much better for that purpose.

IV. THE HYDRODYNAMIC MODEL

The hydrodynamic model used in the present work was proposed by Bocquet et al. [23] based on
the kinetic theory for inelastic particles developed by Jenkins and Savage [22]. The flow of granular
material is modeled by a fluid flow of variable viscosity as a function of temperature. Let v be
the fluid velocity field, identified with the average granular velocity, and T the so called granular
temperature, defined as the variance of the granular velocity. In the limit of incompressible flow, the
model equations are

ρ
Dv

Dt
= ∇ · σ, (8)

ρ
DT

Dt
= σ : e + ∇ · (λ∇T ) − εT . (9)

The stress tensor is defined as usual σ = −PI + 2ηe, and so it is the strain rate tensor e =
1
2 (∇v + ∇vT ). The pressure field P and the variable transport coefficients λ, η and ε (thermal
conductivity, viscosity and temperature loss coefficient, respectively) are given by

P = ρgT fρ (φ), η = ρgd
√

T fη(φ),

λ = ρgd
√

T fλ(φ), ε = (1 − ε2)ρg

√
T fε (φ)/d, (10)

where dg is the grain diameter, ρg is the granular material density, φ is the solid volume fraction and
ε the grains elastic restitution coefficient. Dimensionless functions fρ , fη, fλ and fε depend on the
volume fraction and, following the work of Seguin et al. [20], we consider them to be approximately
equal. With this assumption, transport coefficients become functions of variables P and T only,

η = η0Pd/
√

T , λ = λ0Pd/
√

T , and ε = ε0P/(d
√

T ), (11)

where η0, λ0 and ε0 are dimensionless constants in the high density limit [23]. We adjusted the
values of these constants to match as close as possible the experimental results.

Equations (8) and (9) are supplemented with nonslip and zero temperature gradient boundary
conditions on the intruders surface, of diameter D, and a uniform flow of speed U∞ far upstream.
Seguin et al. [20] solved the the hydrodynamic model Eqs. (8), (9), and (11) numerically for the
granular flow around a single intruder in the incompressible limit. They used finite differences
for the temperature Eq. (9), and a lattice-Boltzmann model for the momentum Eq. (8). In the
present work, we follow the same numerical strategy for the case of two fixed intruders immersed
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in a uniform stream flow, and study their hydrodynamic interactions using a procedure for the
computation of forces coming from the lattice-Boltzmann model [27].

However, it is unclear how to relate pressure on Eq. (10), with that coming from the momentum
Eq. (8), since temperature is zero under uniform flow conditions and Eq. (10) will impose a
corresponding zero pressure. Notice that setting a zero pressure field as an initial condition with
the media at rest, may result in negative pressures during flow.

To set a base pressure level to which relate pressure with temperature through Eq. (10), we chose
a characteristic base pressure from a classic solution to the Stokes flow around a cylinder [28].
The dimensionless base pressure used was P0 = 4/(ReiLog(7.5/Rei )), where the initial Reynolds
number is defined as Rei = U∞ρD/ηi < 1, ρ is the granular media density, and ηi the initial
viscosity specified below (see Section 4.10 in Ref. [29]).

To solve numerically the Eq. (9) for the temperature we scaled variables using D, U∞ and ρ.
Pressure and granular temperature are scaled with ρU 2

∞ and U 2
∞, respectively. The dimensionless

equation for the granular temperature results in

Dθ

Dt
= 2η0d

D

p√
θ

e : e + ∇ ·
(

λ0d

D

p√
θ
∇θ

)
− ε0D

d
p
√

θ, (12)

where θ and p are the dimensionless granular temperature and pressure respectively, and e is now the
dimensionless strain rate tensor. Notice that the contribution from the pressure in the stress tensor
term is neglected since the incompressible flow approximations is assumed, following [20], and that
transport coefficients (11) in terms of the dimensionless pressure and temperature are

η = η0ρU∞d
p√
θ
, λ = λ0ρU∞d

p√
θ
, and ε = ε0ρU∞

d

p√
θ
. (13)

Also notice that the quadratic term, the deformation contribution to the temperature increase, comes
with the factor η0 pd/D

√
θ = η/(ρUD). This factor is the inverse of the Reynolds number Re that

appears in the dimensionless momentum equation

Dv

Dt
= −∇ph + 1

Re
∇2v, (14)

where the hydrodynamic pressure P computed solving the momentum equation is related to the
granular model pressure by ph = p + p0 (p0 = P0/ρU 2

∞). Re will be considered a variable parame-
ter, as viscosity will change in time and space with pressure and temperature.

Following Seguin et al. [20] we solved numerically Eq. (12) using finite differences, and Eq. (14)
using a lattice Boltzmann scheme.

Numerical results and comparison with experiments

Prior to computing a solution to the coupled Eqs. (12) and (14), Eqs. (14) were first solved with
a constant Re = Rei, corresponding to a constant viscosity ηi, hence decoupled from Eq. (12). The
decoupled hydrodynamic Eqs. (14) were solved until a stationary flow was obtained, to provide for
an initial pressure and velocity fields to be used when coupled with the temperature Eq. (12). The
computation domain is a vertical rectangle (see Fig. 6 for a close up view) with the intruders placed
in the upper half. No-slip boundary conditions were imposed at the intruders surface, and a zero
strain rate condition was prescribed at all but the top domain boundaries, where a uniform downward
velocity of speed U∞ was imposed. Once the initial steady flow condition was obtained, the coupled
system was solved explicitly at each time step, with a zero initial temperature distribution. At the
domain and intruder boundaries, zero temperature gradient conditions were used. With each time
step, the pressure obtained solving Eq. (14) was applied in Eq. (12). However, each new temperature
distribution will change viscosities, according to Eq. (13), and also the distribution of Re to be used
in Eq. (14) for the following time step. Computations were performed until a new steady-state was
obtained.
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FIG. 6. Temperature and velocity fields obtained from the hydrodynamic model (LBM). Comparing these
fields with the experiments [Figs. 5(a) and 5(b)] helped to find the best values of the parameters of the
hydrodynamic model.

Limits were imposed over η and λ according to the numerical scheme stability conditions, espe-
cially since the temperature will remain zero in some domain regions under many circumstances.
These limits override diverging coefficient values appearing in Eq. (12).

The values λ0, ε0, and η0 for the transport coefficients Eq. (11) where chosen after exploration
of different sets of values and comparison of the resulting fields and forces with the experiment.
Figure 6 shows the temperature and the magnitude of the velocity computed from the model for
an intruders separation of Xsep = D, Rei = 0.1, λ0 = ε0 = 0.1, and η0 = 0.005. For comparison,
Figs. 5(a) and 5(b) show experimental observations. Qualitative comparison is reasonably good, and
corresponds to a regime where attraction is observed both in the experiment and in the numerical
solutions.

The chosen values for λ0, ε0, and η0 not only produce velocity and temperature fields similar
to the experiments, they also reproduce reasonably well the qualitative features of attractive and
repulsive interactions as a function of upstream speed and obstacles separation. Figure 7 shows the
lift coefficient CL, simply to compare with the results from the model equations for different flow
velocities and obstacles separations, defined as [8]

CL = 〈FL〉
1
2ρtφDwU 2∞

, (15)

where we considered a constant packing density φ = 0.6. We must stress that although the definition
of the lift coefficient is the one used for high Reynolds number flows, our observations suggest a
phenomena closer to a moderate Reynolds flow.

Although we are not in an inertial regime, the model equations were solved for an imposed
upstream flow and no gravitational forces. The experimental data in Figs. 7(b) and 7(d) is the same
data of Fig. 2 but expressed in terms of CL to compare them to the model. In both experimental
plots, we show in the main graph the data corresponding to U∞ � 9.4 cm/s to better appreciate
the similarity with the lift coefficient from the model. It is remarkable that not only CL behaves
as expected when separation grows, but attraction and repulsion become more intense as upstream
flow diminishes, something observed in the granular system that is opposite to what happens in a
Newtonian flow [3].

Quantitatively, the discrepancy between the model and the experiment on the value of the lift
coefficient is large. Moreover, although the Reynolds numbers explored with the model is within
the experimental range (see Fig. 7(b) of the Supplemental Material [24]), we estimate that the
experimental granular Re is close to 10. This value is an order of magnitude larger than the
maximum Re of the model, for which a larger Re would imply even more reduction of the intensity
of attraction and repulsion.

The origin of such a sizable quantitative discrepancy is not clear for us. After exploring the space
of the parameters λ0, ε0, and η0, the chosen values are those who better reproduce the experimental
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FIG. 7. Lift coefficient CL , Eq. (15), as a function of intruders separation from (a) the LBM, and (b) ex-
periments. In the inset in panel (b), the experimental CL for all the flow velocities are plotted, in contrast with
the main graph where only the fastest experiments are shown for clarity because the value of CL changes
dramatically with U∞. (c) Lift coefficient from the LBM as a function of Re. (d) Experimental lift coefficient
as a function of bulk velocity for U∞ > 9 cm/s. Inset: lift coefficient for the whole range of U∞.

phenomenology; we did not find a set of parameters that allowed a qualitative and quantitative match
with experiments simultaneously. Noteworthy, previous works that compared experiments with this
hydrodynamic model do not report a comparison of forces, they only compare velocities [20,23],
most likely because in those cases the magnitude of the forces could not be adequately reproduced
by the model, as happens here.

There are also some qualitative discrepancies between the model and the experiments. For
example, by comparing the plots in Figs. 7(a) and 7(b) we observe that the obstacle separation
at which the attraction is most substantial is smaller when flow velocity increases for the model. In
contrast, for the experiment it is the other way around.

Noteworthy, if we want to give units to the velocity in the model we need to know the viscosity
of the fluid equivalent to the granular material. But the viscosity depends on temperature, which
behaves differently in the model and in the experiment: in the model, the temperature upstream
from the intruders is zero since the the imposed upstream flow is uniform, and so the viscosity is
constant, independently of the value of U∞. In contrast, in the experiment there is a linear relation
between temperature and U∞ in the bulk far from the intruders [see Fig. 5(d)]. However, if the
model were solved numerically in a three-dimensional space and the friction with the front and back
walls of the container were considered, a non uniform velocity profile would be present even in the
absence of intruders, and the temperature of the bulk would depend on U∞, according to Eq. 9.
Additionally, a more realistic three-dimensional model simulation will provide, through relations
Eq. (10), a nonzero upstream pressure, avoiding the need of the artificial base pressure P0 introduced
with the hydrodynamic model. It would be interesting to see the behavior of the lift force and fields
around the intruders in that case. Probably this would make a better quantitative match between
model and experiment.
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Despite these differences, it is remarkable that the model manages to capture the most important
qualitative features of the phenomenology observed experimentally. This result suggests that the
granular flow behaves similarly to a pair of hot obstacles immersed in a fluid with temperature-
dependent viscosity, as indicated by Seguin et al. [20]. However, this representation has considerable
limitations, and better constitutive relations are needed to describe the granular flow as a complex
fluid. Understanding the reasons why the model does not manage to quantitatively describe the
experimental forces can give valuable insight into the physics of dense granular rheology.

A promising set of constitutive relations to test in our system is the one recently proposed by
Askari and Kamrin [30] that models the granular system as a Mohr-Coulomb material.

V. CONCLUSIONS

We report the experimental investigation of the interaction between two static objects placed
side-by-side immersed in a granular flow driven by gravity. Our results confirm what we had found
previously through numerical simulations in a similar geometry, namely, that attraction or repulsion
exists between the intruders depending on the granular flow velocity and the distance separating the
obstacles. In particular, an empirical equation obtained from the numerical simulations relating the
difference in mean flow velocity at both sides of the obstacles also works well for the experimental
system, even though there is a difference of two orders of magnitude in the densities of the grains
used.

The experimental determination of the relation between flow velocity and granular temperature
allowed us to make a gross estimate of the possible value of the granular Reynolds number for our
system, although the resulting range of possible values is too large (four orders of magnitude) to be
useful. A refinement of this estimation is needed to make relevant comparisons with hydrodynamic
models.

We successfully adapted to our system the Lattice-Boltzmann scheme to solve a hydrodynamic
model, and we found a remarkable sound qualitative reproduction of the experimental velocities,
temperatures, and forces. The quantitative discrepancies suggest that the constitutive relations of
the model are not entirely correct and that better relationships must be found.

Systematic variations of quantities like the dimensions of the system and the size of grains and
obstacles will help to unravel the origin of long-range interactions within a granular flow. It also rests
as an open question the understanding of the empirical Eq. (5) and a study of the role of velocity
fluctuations on attraction and repulsion.

Finally, the ranges of Froude and Inertia numbers show that the granular flow in our experiments
is in a quasistatic regime for low velocities and transits to an intermediate regime at larger flow
velocities. This, together with the fact that the attraction between obstacles is maximized at low
velocities suggest that energy dissipation governs the forces in this system and not only inertia, and,
consequently the attractive lift cannot be a Bernoulli-like force. The observed qualitative agreement
of the hydrodynamic model is encouraging and supports the search of models that include both
viscous and inertial effects.
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