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Stability of a thin viscoelastic film falling down an inclined plane
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The stability of a thin viscoelastic film of Oldroyd-B fluid falling down an incline is in-
vestigated. In the weak viscoelasticity limit, a reduced model is derived using the weighted
residual techniques, which consists of two coupled equations for the film thickness and
local flow rate. Through the normal mode analysis, temporal growth rates and neutral
stability curves are calculated to explore linear stability of the film. Results show that the
viscoelasticity acts to destabilize the film and decrease the phase speed of linear waves.
Good agreement is found between the reduced model and full linearized equations solved
by the Chebyshev spectral collocation method when viscoelastic effect is relatively weak.
Nonlinear traveling waves are further determined. The speed of fast/slow-wave families
is promoted/reduced in the presence of the viscoelasticity, resulting in a dispersion effect
on the system; while the wave amplitudes are augmented for both fast and slow waves.
Besides, the temporal evolution of surface waves is numerically resolved, which validates
the linear prediction of the instability threshold. Steady permanent waves are observed
in the final stage; the surface deformation and perturbation energy are enhanced by the
viscoelasticity as expected.
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I. INTRODUCTION

Falling liquid films are encountered in various industrial fields like heat and mass exchangers
[1], coating processes [2], and cooling systems of combustion chamber in rocket engines [3], as
well as daily life. As a result, much work has been done on the hydrodynamic instability problem
of falling films in the past decades [4–7]. Early researches were initiated by the experiment of
Kapitza and Kapitza [8] where the well-known long-wave instability of thin films flowing down an
incline is observed. Benjamin [9] and Yih [10] carried out theoretical studies and concluded that
the critical Reynolds number for the onset of this instability depends on the inclination of the plane.
A significant experimental work is later conducted by Liu et al. [11], where they confirmed the
prediction of the instability threshold and showed the convective nature of the film instability. Smith
[12] proposed a detailed explanation on the instability mechanism where the inertia is claimed to
play a key role.

Over the years, several models have been devised to account for the dynamics of falling films
[13]. Applying a long-wave expansion technique, Benney [14] first derived a single evolution
equation of the film thickness h, which proved to be effective in capturing the instability threshold.
However, as pointed out by Pumir et al. [15], Benney equation (BE) suffers from unphysical
finite-time blow-up which thus limits its validity at larger Reynolds numbers beyond the criticality.
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One remedy for this drawback is the integral boundary layer (IBL) model derived by Shkadov [16],
who introduced the local flow rate q as an additional degree of freedom to the system. Though IBL
is able to describe the film flow at moderate Reynolds numbers, it fails to determine accurately
the instability threshold [7]. To fix this defect, Ruyer-Quil and Manneville [17,18] employed a
weighted residual technique and obtained a series of reduced equations, which are often referred
to as the weighted residual integral boundary layer (WRIBL) model. And this approach has later
been commonly adopted to investigate thin film flows because of its relatively good performance in
both linear and nonlinear regimes [19–23].

On the other hand, in many engineering applications the working fluid is viscoelastic, which
thus inspired some research interest in the film flow of the viscoelastic fluids [24,25]. Gupta [26]
studied the linear stability of a second-order viscoelastic film and concluded that the viscoelasticity
destabilizes the film. Shaqfeh et al. [27] analyzed the Oldroyd-B fluid film and also observed
destabilizing impact of the viscoelasticity at small Reynolds numbers, which agreed with previous
researches [28,29]; while the a primarily stabilizing effect of the elasticity for moderate Reynolds
numbers was also pointed out. Specially, a purely elastic instability was identified for sufficiently
large Deborah numbers. Joo [30] considered the film flow utilizing a four-constant Oldroyd model
which incorporates both the elastic and shear-thinning effect. Following a long-wave expansion
procedure, Kang and Chen [31] obtained a second-order evolution equation for Oldroyd-B film
and analyzed the nonlinear waves resulting from the elastic instability. Tihon and Wein [32]
conducted an experiment on viscoelastic film flows and confirmed the destabilizing impact of the
fluid viscoelasticity. Besides, they also observed elastic instabilities in small inclination angles.
Andersson and Dahl [33] investigated the steady laminar film flow of Walters’ liquid B′′ and showed
that viscoelastic films develop more rapidly towards the downstream traveling-wave state than
Newtonian counterparts. And the influence of evaporation and bottom heating were also considered
for Walters B′′ films [34].

Saprykin et al. [35] extended IBL model for viscoelastic film flowing over topography by
assuming weak topography and viscoelasticity. A second-order two-equation model is employed
by Amatousse et al. [36] to investigate the stability of a falling Walters B′′ film. And they discussed
the bifurcation behavior and nonlinear development of the traveling waves on the free surface.
Davalos-Orozco [37] derived a Benney-type equation for an Oldroyd-B film flowing down a wavy
wall and showed that a spatial resonant effect due to the waviness of the wall is possible to
passively stabilize the viscoelastic film. Recently, Sharma et al. [38] revisited the problem and
solved the linear instability using Floquet theory whereby the elastic instability was divided into
three regimes according to the wall wavelength. Moreover, simulations of the evolution equation
indicated the existence of several nonlinear states like the traveling waves, time-periodic waves, and
chaos. Pettas et al. [39,40] also considered the viscoelastic film which obeys the Phan-Thien-Tanner
constitutive model flowing down an inclined wall with sinusoidal corrugations. The steady-state
flow was determined by numerical calculations based on the finite-element method while the
linear stability problem was resolved using Floquet-Bloch theory. Their results demonstrated that
three-dimensional instability may arise for highly elastic fluids.

In this paper, instead of BE and IBL adopted in previous studies, we make an effort to employ the
WRIBL model to investigate the viscoelastic film flow in both linear and nonlinear region, which
has not been clearly clarified yet. Section II presents the governing equation based on which a
reduced model is derived for the film flow. In Sec. III we examine the linear stability using both the
reduced model and full equations. Nonlinear traveling waves are obtained and discussed in Sec. IV.
Moreover, numerical simulations of model equations are performed in Sec. V and the conclusions
are drawn in Sec. VI.

II. MATHEMATICAL FORMULATION

A. Governing equations

Consider a thin viscoelastic film with density ρ and surface tension σ flowing down a plane
inclined at the angle θ , as depicted in Fig. 1. We introduce a Cartesian coordinate (x, y) with x
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FIG. 1. Schematic of a thin film flowing down an incline.

pointing toward the streamwise direction and y denoting the outward cross-stream direction. The
mass and momentum equations in the fluid layer are given by

∇ · u = 0, (1)

ρ(∂t u + u · ∇u) = −∇p + ∇ · τ + ρg, (2)

where u = (u, v) is the velocity vector, ∇ = (∂x, ∂y) is the gradient operator on the (x, y) plane and
g = (g sin θ,−gcos θ ) represents the gravitational acceleration. For the stress tensor τ, we adopt the
Oldroyd-B constitutive model, which is an appropriate approximation for a Boger fluid (an elastic
liquid with a constant viscosity) under relatively small shear rates [41]; and it has been frequently
used to study the unsteady shear flows with viscoelastic effects. Oldroyd-B equation is written as

τ + λ1Lτ = 2μ(D + λ2LD), (3)

where D = [(∇u) + (∇u)T]/2 is the rate-of-strain tensor, λ1 is the stress relaxation time and λ2 is
deformation retardation time of the fluid. The operator L denotes the upper convected derivative

Lτ = ∂tτ + u · ∇τ − (∇u) · τ − τ · (∇u)T. (4)

In the limit case λ2 = 0, Eq. (3) corresponds to a upper convected Maxwell fluid; and a purely
Newtonian fluid is recovered when further letting λ1 = 0.

On the bottom plane we have the no-slip boundary condition

u = 0 at y = 0. (5)

At the free surface y = h(x, t ) the film satisfies the kinematic condition

v = ∂t h + u∂xh, (6)

together with the normal and tangential stress balances

p − pg + n · τ · n = σ (∇ · n), (7)

n · τ · t = 0. (8)

Here, n and t is the unit normal and tangential vector at the interface

n = 1

n
(−∂xh, 1), t = 1

n
(1, ∂xh), n =

√
1 + (∂xh)2, (9)

respectively.
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The parallel basic state solution of the above system Eqs. (1)–(9) can be easily determined:

ū = ρg sin θh2
0

2μ
(2y − y2), v̄ = 0, p̄ = ρgcos θ (h0 − y) + pg,

τ̄xx = 2μ(λ1 − λ2)(∂yū)2, τ̄xy = μ∂yū, τ̄yy = 0, (10)

where h0 is the uniform layer thickness of the film. Then we apply the following scaling procedure
to above equations:

(x, y) = (lx∗, h0y∗), (u, v) = u0(u∗, δv∗), h = h0h∗, t = l

u0
t∗,

p − pg = ρu2
0 p∗, (τxx, τxy, τyy ) = h0

μu0

(
1

δ
τ ∗

xx, τ
∗
xy, δτ

∗
yy

)
, (11)

where u0 = ρg sin θh2
0/(2μ) is the average velocity of the basic flow. Note that we have introduced

δ = h0/l � 1 as a thin-film parameter with l being the length scale in the x direction. For the
simplicity of the notation, we drop the superscript asterisks from all the dimensionless variables.
Then the dimensionless governing equations of motion write

∂xu + ∂yv = 0, (12)

δRe(∂t u + u∂xu + v∂yu) = −δRe∂x p + ∂xτxx + ∂yτxy + 3, (13)

δ2Re(∂tv + u∂xv + v∂yv) = −Re∂y p + δ(∂xτxy + ∂yτyy) − 3 cot θ, (14)

where Re = ρu0h0/μ is the Reynolds number. And the stress components are expressed by

τxx + δDe[∂tτxx + u∂xτxx + v∂yτxx − 2(τxx∂xu + τxy∂yu)]

= 2δ2∂xu + δrDe[δ2(∂xt u + u∂xxu + v∂xyu) − (∂yu + δ2∂xv)∂yu − 2δ2(∂xu)2], (15)

τxy + δDe[∂tτxy + u∂xτxy + v∂yτxy − (τxy∂xu + τyy∂yu) − (τxx∂xv + τxy∂yv)]

= ∂yu + δ2∂xv + δrDe[∂yt u + δ2∂xtv + u(∂xyu + δ2∂xxv)

+ v(∂yyu + δ2∂xyv) + 2∂xu(∂yu − δ2∂xv)], (16)

τyy + δDe[∂tτyy + u∂xτyy + v∂yτyy − 2(τxy∂xv + τyy∂yv)]

= 2{∂yv + δrDe[∂ytv + u∂xyv + v∂yyv − (∂yu + δ2∂xv)∂xv − 2(∂yv)2]}, (17)

where De = λ1u0/h0 is the Deborah number and r = λ2/λ1 denotes the ratio of deformation
retardation time to stress relaxation time (also referred to as the time constant ratio). And these
equations are subjected to the no-slip boundary condition

u = 0, v = 0, at y = 0, (18)

and the dimensionless kinematic and dynamic boundary conditions at the free surface y = h(x, t ),

v = ∂t h + u∂xh, (19)

[1 − δ2(∂xh)2]τxy + ∂xh(δ2τyy − τxx ) = 0, (20)

p − δ

Re[1 + δ2(∂xh)2]
{(∂xh)2τxx + τyy − 2τxy∂xh} = −3δ2We

Re

∂xxh

[1 + δ2(∂xh)2]3/2
(21)

with We = σ/(ρgh2
0 sin θ ) being the Weber number.
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B. Weighted residual integral boundary layer model

In what follows, a weighted residual technique is employed to derive a reduced model based on
the above equations Eqs. (12)–(21), which has been frequently utilized in previous studies on falling
films [19–23]. After neglecting all the terms of higher orders than O(δ2), we assume a self-similar
velocity profile in the fluid layer with

u = 3q

2h3
b, (22)

where b = y(2h − y) and q = ∫ h
0 udy represents the flow rate. The prescribed profile for u satisfies

the no-slip condition Eq. (18) and the free-surface condition Eq. (20) to O(δ). And as noted by
Kalliadasis et al. [42], Eq. (20) is actually incorporated into the momentum equation (13) when it is
integrated over the film thickness later.

In the present study, we adopt a weak viscoelasticity approximation with De � 1 which enables
us to obtain explicit expressions for the stresses and thus substantially simplify the formulation of the
model. This assumption has been made by a number of authors when analyzing the thin-film flows
of the viscoelastic fluids [35,43]. Therefore, evaluating Eqs. (15)–(17) the following approximation
at first order in De for the stresses readily gives

τxx = 2δ2∂xu − δDe(1 − r)[δ2(∂xt u + u∂xxu + v∂xyu)

− (∂yu + δ2∂xv)∂yu − 2δ2(∂xu)2], (23)

τxy = ∂yu + δ2∂xv − δDe(1 − r)[∂yt u + δ2∂xtv + u(∂xyu + δ2∂xxv)

+ v(∂yyu + δ2∂xyv) + 2∂xu(∂yu − δ2∂xv)] (24)

τyy = 2{∂yv − δDe(1 − r)[∂ytv + u∂xyv + v∂yyv − (∂yu + δ2∂xv)∂xv − 2(∂yv)2]}. (25)

Obviously, in the weak viscoelasticity limit, a single parameter M = De(1 − r) could be introduced
to characterize the overall effect of viscoelasticity. And the time constant ratio r always acts to
alleviate the impact of the viscoelasticity in this case. Moreover, the above expressions (23)–(25)
for the stresses are actually the same as those for the Walters’ liquid B′′ [36].

The pressure p in the streamwise momentum equation (13) is determined by integrating the
cross-streamwise momentum equation (14) from y to h and inserting the boundary condition (21),
which yields

p = 3 cot θ

Re
(h − y) − δ

Re
∂xu − δ

Re
(∂xu)|y=h − δ2 3We

Re
∂xxh. (26)

In Eq. (26) we have dropped terms of higher order than O(δ), since it would be multiplied with δ in
Eq. (13) [the surface tension term is kept with We assumed to be of O(1/δ) or larger].

Then we integrate Eq. (12) over the film thickness and apply the no-slip (18) and kinematic
conditions (19). In accordance with the Galerkin method, b is chosen as a weighted function and
multiplied with Eq. (13) from y = 0 to y = h, we finally obtain the following coupled equations for
h and q:

ht + qx = 0, (27)

qt +
(

9q2

7h
+ 5 cot θ

4Re
h2

)
x

= q

7h
qx + 5

2δRe

(
h − q

h2

)
+ 5δ2We

2Re
hhxxx

+ δ

Re

(
9

2
qxx − 9

2h
qxhx + 4q

h2
h2

x − 6q

h
hxx

)

+ 5De(1 − r)

2Reh4
(h2qt + 6hqqx − 6q2hx ), (28)
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where the subscripts x and t denote the corresponding partial derivatives hereinafter except for those
in stress components. Equations (27)–(28) constitute a second-order WRIBL model for a thin falling
film with weak viscoelasticity. We note that by setting De = 0 or r = 1, it recovers the original case
proposed by Ruyer-Quil and Manneville [18] for a Newtonian fluid.

III. LINEAR STABILITY ANALYSIS

A standard normal mode approach is adopted to study the linear stability of the film. For the
WRIBL equations (27)–(28), we impose small disturbance on the basic flow so that

(h, q) = (1, 1) + (ĥ, q̂)exp(ikx + ωt ) + c.c., (29)

where c.c. represents the complex conjugate of the second term. Substituting Eq. (29) into Eqs. (27)–
(28) and linearizing the resulting equations, one obtains a dispersion equation in the form∣∣∣∣
11 
12


21 
22

∣∣∣∣ = 0, (30)

where 
11–
22 are expressed by


11 = ω, 
12 = ik,


21 = −105 + 35iWeδ3k3 − 84δ2k2 − iδk[18Re − 35 cot θ − 210De(1 − r)]

14δRe
,


22 = 35 + 63δ2k2 − δDe(1 − r)(210ik + 35ω) + δRe(34ik + 14ω)

14δRe
. (31)

Letting the complex frequency ω = ωr + iωi, it is easy for us to evaluate the temporal growth rate
ωr and the neutral stability curves, whereby one can readily determine the critical Reynolds number
as

Recrit = 5
6 cot θ − 5

2 De(1 − r). (32)

which decreases as the viscoelasticity parameter M = De(1 − r) becomes larger, thus implying a
destabilizing impact of the viscoelastic effect. Note that Eq. (32) agrees with some early studies on
viscoelastic films [27–29].

On the other hand, we also make an effort to solve the full linearized equations of Eqs. (12)–(21)
as a check for Eq. (30). Imposing a small disturbance

(u′, v′, p′, h′, τ ′
xx, τ

′
xy, τ

′
yy) = (û, v̂, p̂, ĥ, τ̂xx, τ̂xy, τ̂yy )exp(ikx + ωt ) + c.c., (33)

an ordinary differential equation eigenvalue problem emerges with ω being the eigenvalue. We
employ a Chebyshev spectral collocation method to solve it, which is a well-known technique
and has been widely used in hydrodynamic stability problems [44]. After discretization based
on polynomial interpolation with Chebyshev points, the system is converted into a generalized
eigenvalue problem

As = ωBs, (34)

where A and B are square matrices with s being a column vector containing the values of û, v̂, p̂, τ̂xx,
τ̂xy, τ̂yy, and ĥ at the collocation points. The computer program is established within the framework
of a universal software package developed before [45].

Figure 2 depicts the influence of the Deborah number on the film instability. As De becomes
larger, the temporal growth rate and the cut-off wave number kc increases; while the instability
threshold decreases as shown in Fig. 2(b), which is also indicated by Eq. (32). And the wave speed
decreases in the meantime, which implies that the viscoelasticity strengthens the dispersion effect of
the waves. However, an opposite impact of the viscoelasticity on kc is revealed by the full equations,
i.e., the cut-off wave number starts to decrease with De, especially for larger Reynolds numbers.
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(a) (b)

FIG. 2. Influence of the Deborah number on (a) temporal growth rate ωr and wave speed cl = −ωi/k at
Re = 2; and (b) neutral stability curves on the (Re, k) plane when We = 20, θ = π/4, and r = 0.5. Thick
and thin lines correspond to the full equations and WRIBL, respectively (same notation is adopted in Figs. 3
and 4).

Actually, this stabilizing effect of viscoelasticity would be more prominent when De takes larger
values, as the growth rate would decrease remarkably with De except for very long waves [27].
We note that this stabilizing effect is not captured by the present WRIBL model, which could be
attributed to its long-wave nature as well as the weak viscoelasticity approximation applied in the
formulation. Apart from that, a nice agreement is observed between WRIBL and full equations,
especially for long waves and relatively small Reynolds numbers.

Presented in Fig. 3 is the impact of the time constant ratio r. Compared with the Deborah number,
an almost opposite effect could be found for the temporal growth rates, wave speeds, and the

(a) (b)

FIG. 3. Influence of the time constant ratio on (a) temporal growth rate ωr and wave speed cl = −ωi/k at
Re = 2; and (b) neutral stability curves on the (Re, k) plane when We = 20, θ = π/4, and De = 0.1.
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(a) (b)

(c)

FIG. 4. Results of elastic instability when Re = 0, We = 20, θ = 18π/37. (a) and (b) temporal growth rate
ωr and wave speed cl = −ωi/k at different De and r; (c) neutral stability curves on the (De, k) plane.

cut-off wave numbers when increasing r, which means that the effect of viscoelasticity is basically
weakened as r becomes greater. This result is evident since the viscoelasticity parameter M increases
with De while decreases with r. And as r → 1, a Newtonian film would be eventually recovered,
which is anticipated to be less unstable than those with weak viscoelastic effect.

As stated in previous studies [27,31], purely elastic instability is possible to dominate the film
flow at vanishing Reynolds numbers, which could also be anticipated from Eq. (32). In fact, setting
Re = 0 in Eq. (32), the critical value of the Deborah number for purely elastic instability is

Decrit = cot θ

3(1 − r)
. (35)

Figure 4 displays the results of this elastic instability for a nearly vertical plane. Obviously,
both the growth rates and cut-off wave numbers increase remarkably by the viscoelasticity of the
fluid; and a minor reduction is observed for the wave speed meanwhile. Also, the unstable region on
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(De, k) plane expands when r increases. However, the growth rates of the elastic instability are much
smaller than those in Figs. 2 and 3. Note that WRIBL well reproduces the results of full equations
for small Deborah numbers; while the deviation gradually arises when De becomes greater and the
weak viscoelasticity approximation starts to be violated.

In addition, by letting ω = −kc, the model dispersion relation (30) can be rewritten in the form

i(c − ck ) + �(Re)k(c − cd+)(c − cd−) = 0, (36)

which corresponds to a wave hierarchy considered by Whitham [46] with �(Re) = Re(2 −
5M0)/(9k2 + 5) and M0 = M/Re being a reduced viscoelastic parameter. Equation (36) could be
seen as a two-part combination of wave dispersion relation with a phase shift of π/2. The first kind
of waves are referred to as kinematic waves which dominate in the inertialess limit �(Re) → 0,
where the velocity field and the flow rate are slaved to the evolution of the film height as implied by
the kinematic boundary condition (19). And these waves travel at the speed

ck = 3(4k2 + 5)

9k2 + 5
, (37)

which is three times the average velocity of the basic flow in the long-wave limit, with the second-
order viscous effect playing a dispersive role there as underlined by Ruyer-Quil et al. [47]. On
the other hand, the second kind are dynamic waves that are enhanced by the inertial effects and
propagate at speeds

cd± = 1

2

[
F ±

√
F 2 − G + (cot θ + Wek2)

Re
I

]
(38)

with

F = 34 − 210M0

14 − 35M0
, G = 72 − 840M0

14 − 35M0
, I = 20

2 − 5M0
. (39)

These waves relate to the perturbation of the momentum, pressure and surface tension effect induced
by the free-surface deformation. Apparently, the dispersion of dynamic waves is caused by the
surface tension. In the framework of the Whitham wave hierarchy, the instability results from the
competition of the two kind of waves and the stability condition could be expressed as

cd− � ck � cd+. (40)

Figure 5 illustrates the dynamic wave speeds as functions of the generalized Froude number
Fr2 = (cot θ + Wek2)/Re. The dynamic waves travel at a lower speed close to the free-surface base
velocity, which are actually associated with capillary-gravity waves advected by the fluid there.
As noted by Smith [12], a key factor for the primary instability of the film lies in the fact that
the kinematic waves travel faster than any fluid particle. In the current situation, the instability
happens when ck is larger than cd+. And though the speed of kinematic waves is not altered by the
viscoelasticity from Eq. (37), the dynamic waves are decelerated by the viscoelastic effect, which
reduces the gap between the speeds of kinematic and dynamic waves and thus plays a destabilizing
role.

IV. TRAVELING WAVE SOLUTIONS

Initial disturbances generally evolve into steady traveling waves on the films which propagate
at a constant speed c and wave shape, as reported by many authors [48,49]. And in this section,
the WRIBL equations (27)–(28) are utilized to determine these traveling wave solutions. First, we
introduce a moving frame ξ = x − ct and Eq. (27) writes

−ch′ + q′ = 0, (41)
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FIG. 5. Effect of the reduced viscoelastic parameter M0 on the dynamic wave speeds cd±.

where a prime denotes the derivative with respect to ξ . Integrating Eq. (41) yields q = ch + q0 with
q0 being an integral constant. Substituting this into Eq. (28) we obtain the model equation in the
moving frame

A1h′′′ + A2h′′ + A3h′2 + A4h′ + A5 = 0 (42)

with A1 − A5 given in the Appendix. And a closed flow condition is imposed with

1

L

∫ L

0
hdξ = 1, (43)

which requires that the waves carry the same mass as the basic uniform film of same periodicity
with wavelength L = 2π/k. We seek traveling wave solutions to Eqs. (42)–(43) by a continuation
software package Auto07p [50], where an initial guess of the branches is obtained from the neutral
stability solutions.

Steady traveling waves correspond to limit cycles in the phase space in the view of a dynamic
system. Figure 6 displays the influence of the viscoelasticity on the bifurcation diagram. The fast-
wave γ2 family bifurcates from the neutral stability solution through a Hopf bifurcation; while the
slow-wave γ1 family emerges from the γ2 family through a period-doubling bifurcation. According
to Scheid et al. [51], this bifurcation behavior would be reversed when Re takes sufficiently larger
value and the viscous diffusion is small; while it is not altered by a weak viscoelastic effect
considered here. It is obvious that the viscoelasticity decelerates the slow waves and accelerates
the fast waves and thus inducing an additional dispersion effect, which is consistent with the result
of linear stability analysis in Figs. 2 and 3. While the gap between the maximum and minimum
free-surface amplitudes �hm is amplified for both γ1 and γ2 waves at the same time. We further
depict the profiles of two kinds of waves in Fig. 7. The fast γ2 waves are typically one large hump
preceded by a series of small decaying capillary ripples; and the slow γ1 waves consist of one trough
followed by capillary ripples. Specially, for fast waves the amplitude of the main hump is magnified
by the viscoelastic effect and the height of the flat portion of the waves slightly decreases owing to
the conservation of mass, showing a tendency to strengthen the free-surface deformation. Similar
impact is observed for slow waves where the amplitudes of both troughs and capillary ripples are
enlarged.
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(a) (b)

FIG. 6. (a) The speed of the traveling waves and (b) the gap between the maximum and minimum
amplitudes �hm = hmax − hmin at different viscoelastic parameters when θ = π/4, Re = 5, and We = 20.

The characteristics of γ2 waves are explored in Fig. 8, since only one-hump waves could be
obtained during the simulation [15]. As the Reynolds number increases, the wave speed c first
grows rapidly and slowly decreases from a local maximum at higher Re; whereas a similar trend
is found for the amplitude gap �hm, except for a nearly plateau region at larger Re. According to
Ooshida [52], the first regime is referred to as the drag-gravity regime where the inertia effect is
relatively weak and thus the viscous drag and gravity are dominating. The second regime is called
the drag-inertia regime where the inertia effect governs the film flow. We can see that viscoelasticity
results in an amplification of both the speed and amplitude of the waves in the two regimes.

V. NONLINEAR SIMULATIONS

We perform time-dependent simulations based on the model equations (27)–(28) under periodic
boundary conditions in this section. Spatial derivatives are calculated using the Fourier spectral

(a) (b)

FIG. 7. Wave profiles of the film thickness h: (a) fast γ2 family and (b) slow γ1 family at different
viscoelastic parameters when k = 0.03. Other parameters are the same with those in Fig. 6.
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(a) (b)

FIG. 8. (a) The speed and (b) the amplitude gap at different viscoelastic parameters when θ = π/4, We =
20, and k = 0.03.

method and 128–512 nodes are generally enough for most cases with sufficient accuracy. The
solution is advanced in time through the MATLAB routine ode45. An initial disturbance is imposed
on the basic flow

h(x, 0) = 1 + ε sin(kx). (44)

Moreover, a perturbation energy function is defined

E = 1

L

∫ L

0
(h − 1)2dx. (45)

We first monitor the evolution of the initial disturbance at different Reynolds numbers. It can be
seen that results in Fig. 9 agree with linear stability analysis. The perturbation energy E continues to
decay when Reynolds number is below the threshold value Recrit and the film gradually approaches
the basic uniform state; while for Re > Recrit in Fig. 9, E first experiences a growing process and
finally saturates at a finite value when steady permanent waves are typically formed on the free
surface. This further enables us to evaluate the instability threshold and the result is compared with
the linear stability analysis in Fig. 10. Nice agreement is observed between nonlinear simulations
and linear predictions of both WRIBL and full equations. Effects of the viscoelasticity on the film
evolution are illustrated in Fig. 11. As M increases, the perturbation energy grows faster in the initial
stage and saturates at a higher value eventually. And the profiles of the waves formed in the final
stage are quite similar to each other, with a larger amplitude of the main hump as the viscoelastic
effect becomes stronger, which is consistent with the results in Fig. 7.

VI. CONCLUSION

This paper considers the gravity-driven flow of a thin film of Oldroyd-B fluid down an incline. A
weighted residual integral boundary layer model (WRIBL) is derived to study long-wave instability
of the film. Linear stability analysis is conducted by a normal mode approach, where the viscoelastic
effect is found to destabilize the film and decrease the speed of linear waves. Results of the
WRIBL model agree with the full linearized equations satisfactorily for Reynolds numbers near
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(a) (b) (c)

(d)

FIG. 9. Wave evolution (a) Re = 0.5, (b) Re = 2, and (c) Re = 5. (d) Evolution of perturbation energy E .
The other parameters are θ = π/4, We = 20, M = 0.1, and k = 0.03.

FIG. 10. Comparison of the critical Reynolds number when θ = π/4, We = 20, r = 0.5.
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(a) (b)

FIG. 11. Wave evolution at different viscoelastic numbers: (a) wave profiles at t = 1000 and (b) evolution
of perturbation energy E when θ = π/4, Re = 5, We = 20, and k = 0.03.

the criticality and the purely elastic instability is also identified when Re vanishes. While the
stabilizing impact of the viscoelasticity at moderate Reynolds numbers revealed by full equations is
not captured by the present model, which is due to the weak viscoelasticity approximation. A further
exploration on the dispersion relation is carried out within the framework of the Whitham wave
hierarchy. The viscoelastic effect acts to promote the speed of dynamic waves with no influence
left on that of the kinematic waves, thus enhancing the instability. Traveling wave solutions are
obtained from the model equations. The speed gap between fast and slow waves is augmented by
the viscoelasticity, which results in an additional dispersion effect. And the deformation of the free
surface is also amplified as the viscoelastic number increases. Nonlinear simulations are performed
to investigate the temporal evolution of the film, which support the linear prediction of the instability
threshold. After a transient growing process, steady permanent waves are formed in the final stage.
And the viscoelasticity strengthens the surface deformation and the perturbation energy of these
traveling waves.
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APPENDIX: COEFFICIENTS OF THE MODEL EQUATION IN THE MOVING FRAME

The coefficients A1 − A5 in Eq. (42) are

A1 = −5δ2We

2Re
h, A2 = 3δ(ch + 4q0)

2Reh
, A3 = δ(ch − 8q0)

2Reh2
,

A4 = 35 cot θh5 + 2c2Reh4 − 2cReq0h3 + (
35Mc2 − 18Req2

0

)
h2 + 210Mq0(ch + q0)

14Reh4
,

A5 = − 5

2δReh2
(h3 − ch − q0). (A1)
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