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Linear theory of particulate Rayleigh-Bénard instability
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A two-fluid model is used to study the effect of point particles on the Rayleigh-Bénard
stability threshold in a laterally unbounded cell. Equal particles are steadily and uniformly
introduced at the top plate at their terminal velocity with a fixed temperature. Both velocity
and temperature are allowed to vary while, falling, the particles interact with the fluid. This
interaction is modulated by the ratio of the particle density and heat capacity to those
of the fluid. Particles are found to have a stabilizing effect, which increases with their
concentration and density up to several orders of magnitude above the single-phase stability
threshold. This result is primarily a consequence of the particle mechanical, rather than
thermal, coupling with the fluid. The particle initial temperature has a strong effect on the
undisturbed temperature distribution in the cell, which is a significant factor for the stability
of the system. The addition of particles greatly increases the dimension of the parameter
space necessary to characterize the flow.

DOI: 10.1103/PhysRevFluids.6.083901

I. INTRODUCTION

The importance of particulate flows in nature and technology has motivated a rich literature
devoted to improving our understanding of the physical processes that determine their behavior.
The major part of this work has dealt with isothermal systems (see, e.g., [1–3] for recent reviews),
but study of the effect of suspended particles on heat transfer processes—and, in particular, on
Rayleigh-Bénard convection, which is the topic of the present paper—is gaining importance.

A significant impulse to this line of research was given by interest in the heat transport properties
of so-called nanofluids. In a series of papers, Nield and Kuznetsov studied natural convection of
nanofluids in different situations [4–7] on the basis of the mathematical model proposed in Ref. [8].
This and related work is reviewed in [9–11], among others. Nanoparticles are sensitive to processes,
such as Brownian motion and thermophoresis, which quickly become unimportant as the particle
size grows to the micrometer scale and beyond. In this size range particle inertia becomes significant
and the homogeneous-fluid model often adopted for nanofluids is no longer appropriate.

There are a few theoretical studies dealing with particle-resolved simulations of particulate
Rayleigh-Bénard convection (see, e.g., [12–16]), but much of the work on this topic has relied on
extensions of the Lagrangian-Eulerian point-particle model widely used in the study of adiabatic tur-
bulence in particulate flow. References [17,18] studied the effect on the Nusselt number of particles
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introduced at the upper plate of a cylindrical Rayleigh-Bénard cell at a weakly turbulent Rayleigh
number of 2 × 106. The particle-fluid mechanical coupling was found to be more significant than the
thermal coupling in affecting the heat transfer through the cell. This conclusion was also reached in
Ref. [19] at the same Rayleigh number. The Nusselt number was found to increase with the particle
loading and the particle specific heat reaching a maximum for a particle Stokes number of about 1.
This effect occurs in spite of an attenuation of the turbulent kinetic energy and is due to the direct
transport of thermal energy by the particles which are picked up by the turbulent eddies near the hot
bottom plate and carried up by the rising plumes. When the Rayleigh number is increased up to 1012

the situation becomes more complex [20]. At such large Rayleigh numbers there are large-scale
circulating structures that carry the particle for a long time hindering their settling. Furthermore,
particles do not settle uniformly on the base of the cell but preferentially under regions of large
upwelling. A very recent study focuses on micron-sized particles and describes implication for the
spreading of pollutants and contaminants [21]. Other situations have been studied theoretically by
similar means. References [22–24] studied particle transport and settling in a differentially heated
cavity at Rayleigh number up to 7 × 108 using one-way and two-way coupling. Reference [25]
studied the transport of particles in a laminar thermal plume. Buoyancy effects caused by the direct
heating of the particles have been investigated in the context of solar energy harvesting (see, e.g.,
[26–28]).

The abundance of studies devoted to effects of buoyancy in particulate flows that can be
deduced from these examples is a witness to the practical importance of these phenomena in
nature (e.g., crystallization in magma chambers, snow and rain formation), technology (e.g.,
metallurgy, fluidized beds, solar energy), and society (e.g., dispersion of pollutants). Motivated
by these applications, this paper presents a study of the linear stability of a laterally unbounded
particulate Rayleigh-Bénard system based on a standard two-fluid model. Particles are assumed to
be introduced steadily and uniformly at the upper plate and to be removed at the bottom plate. The
downward motion of the particles renders the spatial operator of the problem non-self-adjoint so
that the principle of exchange of stabilities prevailing in the single-phase version of the problem
(see, e.g., [29]) does not apply and some of the eigenvalues are complex. The numerical solution of
the eigenvalue problem shows however that the eigenvalues with the largest real part, on which the
stability of the system depends, are real. Near marginal conditions, the complex eigenvalues have a
negative real part and do not affect the stability of the system.

The mathematical setup that we develop has some similarities with Rayleigh-Bénard convection
in a porous medium which has been studied extensively (see, e.g., [30–32]), both in connection with
geothermal energy and geological sequestration of carbon dioxide (see, e.g., [33–36]), and in view
of its intrinsic scientific interest (see, e.g., [37–40]).

II. MATHEMATICAL MODEL

One of the basic frameworks for the study of particulate flows is the so-called point-particle
model in which the finite size of the particles is disregarded. This model goes back to the early days
of the study of these systems (see, e.g., [41–43]) and has been widely used ever since (see, e.g.,
[1,3,44,45]). Its use is justified when the fluid-particles mixture is dilute and the particles are much
smaller than all the flow length scales. In the Eulerian-Lagrangian version of the point-particle
model, the effect of the particles is included in the fluid equations as a sum of delta functions
centered at the particle positions multiplied by appropriate sources, i.e., forces for the momentum
equation and energies for the energy equation (see, e.g., [1,44]). The position, velocity, and energy
of the particles, on the other hand, are found by integrating the momentum and energy equations
for each particle. It is not straightforward to adapt this framework to the study of the linear stability
of the Rayleigh-Bénard problem, while an Eulerian-Eulerian description, with quantities pertaining
to both the fluid and the particulate phase described by continuous fields, considerably simplifies
the task. Conceptually, this latter description can be connected to the Eulerian-Lagrangian one
by replacing the sum over the sources representing the contribution of the particle contained in

083901-2



LINEAR THEORY OF PARTICULATE …

a macroscopically small volume of the mixture by the product of the number of contributing
particles multiplied by average values of the sources. With the Boussinesq approximation (see,
e.g., [29,31,46]), the fluid momentum equation modified to include the effect of the particles is then
given by

ρ f (∂t u + u · ∇u) = −∇p + μ f ∇2u + ρ f [1 − β(T − Tr )]g − nmpf . (2.1)

Here u, p, and T are the fluid velocity, pressure, and temperature fields, μ f , β, and ρ f are the
fluid viscosity, thermal expansion coefficient and density at the reference temperature Tr , and g is
the (vector) acceleration of gravity. The particles are assumed to be equal spheres with mass mp,
density ρp, and diameter dp, and to be distributed with a local number density n. The force per unit
particle mass exerted by the fluid on the particles is denoted by f . We model this quantity in a fairly
standard way as

f = u − w
τp

, (2.2)

in which w is the velocity field of the particulate phase and τp is the particle characteristic time
given by

τp = ρpd2
p

18ρ f ν f rRe
, (2.3)

with ν f = μ f /ρ f the fluid kinematic viscosity. The factor rRe, defined by

rRe = 1 + 0.15Re0.687
p , (2.4)

represents a finite-Reynolds-number correction to the Stokes drag force (see, e.g., [47]); the particle
Reynolds number Rep is defined later in (2.15). Consistently with the point-particle approximation,
the particle effect on the fluid continuity equation is neglected so that

∇ · u = 0. (2.5)

In a field framework, the ordinary time derivative following each particle of the Eulerian-
Lagrangian description is replaced by a convective derivative so that conservation of the particle
number density is expressed by

∂t n + ∇ · (nw) = 0, (2.6)

while the momentum equation for the particulate phase is

∂t w + w · ∇w = f +
(

1 − ρ f

ρp

)
g, (2.7)

in which the last term represents the particle weight corrected for the buoyancy force.
Similarly to (2.1), the fluid energy equation is written as

∂t T + u · ∇T = D f ∇2T + n
Qp

ρ f cp f
, (2.8)

with cp f the fluid specific heat and Qp the heat transferred by the particles to the fluid, for which we
assume the form

Qp = πd2
php(Tp − T ), (2.9)

in which Tp is the temperature field of the particulate phase. The heat transfer coefficient hp is
expressed in terms of the Nusselt number Nup, for which we use a standard correlation applicable
to spheres, namely (see, e.g., [47–49]),

Nup = dphp

k f
= 2 + 0.6 Re1/2

p Pr1/3, (2.10)

083901-3



SURYANSH PRAKHAR AND ANDREA PROSPERETTI

with k f the fluid thermal conductivity and Pr the fluid Prandtl number. The particle temperature
is treated in the lumped-capacitance approximation so that the energy equation for the particulate
phase is

mpcpp(∂t Tp + w · ∇Tp) = −Qp, (2.11)

with cpp the specific heat of the particle material. On the basis of this equation we can define a
temperature relaxation time for the particles similar to (2.3), namely

τth = mpcpp

πd2
php

, (2.12)

in terms of which (2.11) becomes

∂t Tp + w · ∇Tp = T − Tp

τth
. (2.13)

A. Unperturbed state

We assume a base state in which the fluid is at rest and the particles are uniformly distributed
with a number density n0 and fall at their terminal velocity w0 given, from (2.7), by

w0 =
(

1 − ρ f

ρp

)
τpg ≡ −w0k, (2.14)

with k a unit vector in the z direction directed upward against gravity. The particle Reynolds number
in terms of this velocity is given by

Rep = dpw0

ν f
= (ρp/ρ f − 1)gd3

p

18ν2
f rRe

. (2.15)

As discussed in Ref. [18] if, at the upper boundary, particles were introduced with zero velocity and
allowed to accelerate to their terminal velocity, a dense, nonuniform particle layer would form which
would obscure the interpretation of the stability results. To avoid this inessential complication,
we assume that particles are introduced at their terminal velocity. This procedure is equivalent to
assuming that the distance traveled by the particles during the acceleration phase, of the order of
w0τp, is much smaller than the cell height. Accumulation of particles at the lower boundary is also
assumed to be a negligible effect. This aspect of the model may be justified if the particle-fluid
mixture is dilute and the particle size is much smaller than the cell height so that the thickness of the
particle layer grows very slowly essentially maintaining the temperature of the bottom plate. Both
assumptions are satisfied when reliance on the point-particle model is justified. It may also be noted
that a similar device to avoid the inessential effects introduced by the boundary layers that form
near the plates is adopted in the so-called “homogeneous models” of single-phase Rayleigh-Bénard
convection in which the top- and bottom-temperature boundary conditions are replaced by periodic
ones, with a temperature gradient imposed (see, e.g., [50,51]).

The undisturbed fluid pressure field corresponding to the situation envisaged is found
from (2.1) as

∇p0 = ρ f [1 + β(T0 − Tr )]g + mpn0

τp
w0, (2.16)

in which T0 = T0(z) is the undisturbed temperature field in the fluid. It is evident from this result that
horizontal variations of the undisturbed particle number density n0 or fluid temperature T0 would
induce horizontal variations of the pressure field which, in turn, would give rise to fluid flow. We
return on this point in Sec. II C.

A consideration of the energy equations leads to the identification of two characteristic length
scales which play an important role in what follows. In the first place, the steady version of the
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particulate energy equation (2.11) may be written as

T0 = −�∂zTp0 + Tp0, (2.17)

in which Tp0 = Tp0(z) is the temperature field of the particulate phase in the unperturbed base state.
The length �, defined by

� = mpcppw0

πd2
php0

, (2.18)

characterizes the distance traversed by a particle during the time necessary for its temperature to
equalize with that of the surrounding fluid. This interpretation is justified by noting that, if 	T is
a typical fluid-particle temperature difference, (mpcpp	T )/(πd2

php0	T ) is the ratio of the energy
content of the particle to the rate at which this energy is transmitted to the fluid, so that � equals the
particle fall velocity w0 multiplied by this timescale. Second, upon eliminating Qp between the two
energy equations (2.8) and (2.11), we find

∂2
z T0 + �

L2
∂zTp0 = 0, (2.19)

in which

L =
√

k f

πd2
phpn0

∼
√

k f 	T

n0Qp
, (2.20)

with 	T a typical temperature difference as before. To elucidate the physical meaning of this length
scale we rewrite (2.19) in order of magnitude as

	q f ∼ �

L2
k f ∂zTp0, (2.21)

in which 	q f is the difference between the conduction heat fluxes in the fluid over a distance L
(which would of course vanish in the absence of the particles). Since L/� is the number of layers
over which the fluid and particle temperatures equalize, this relation states that the change of q f

equals the mean heat flux induced by the particle temperature gradient. In other words, L is the
characteristic distance over which the heat conduction in the fluid is significantly affected by the
particles. This interpretation is also supported by rewriting (2.20) as

Ak f
	T

L
∼ ALn0Qp, (2.22)

in which A is an arbitrary horizontal area. The left-hand side is the heat flow rate in the fluid through
the area A while the right-hand side is the number of particles in a layer of thickness L, each one
exchanging heat with the liquid at the rate Qp.

Upon elimination of T0 between (2.17) and (2.19) we have

∂z

(
−�∂2

z Tp0 + ∂zTp0 + �

L2
Tp0

)
= 0. (2.23)

We assume that the particles are injected with the temperature Tpt at the top plate z = 1
2 H , with H

the height of the cell. The solution of this equation may then be written as

Tp0(z) = Tpt + K1[1 − e−k1(H/2−z)] + K2[1 − e−k2(H/2−z)], (2.24)

with K1 and K2 integration constants and

k1,2 = 1

2�

(
1 ±

√
1 + 4

�2

L2

)
. (2.25)
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FIG. 1. The normalized undisturbed temperature distribution in the cell [T0(z/H ) − Tc]/(Th − Tc ) for,
from left to right, (Tpt − Tc )/(Th − Tc ) = −1, 0, 1, and 2. The particle volume fraction is α0 = 10−4, the
dimensionless particle diameter δ = 0.01, and the particle Reynolds number Rep = 1; the parameters R, E ,
and Pr have the same values as in Fig. 2 below.

From (2.17) we then find the temperature field in the fluid phase as

T0(z) = Tpt + K1[1 − (1 − �k1)e−k1(H/2−z)] + K2[1 − (1 − �k2)e−k2(H/2−z)]. (2.26)

The fluid temperature boundary conditions T = Tc and T = Th at the top and bottom of the cell,
z = ± 1

2 H , determine the integration constants as

K1 = (Tc − Tpt )[1 − (1 − �k2)e−k2H ] − �k2(Th − Tpt )

�k1[1 − (1 − �k2)e−k2H ] − �k2[1 − (1 − �k1)e−k1H ]
, (2.27)

K2 = − (Tc − Tpt )[1 − (1 − �k1)e−k1H ] − �k1(Th − Tpt )

�k1[1 − (1 − �k2)e−k2H ] − �k2[1 − (1 − �k1)e−k1H ]
. (2.28)

It can be checked that, for neutrally buoyant particles, for which � = 0, the fluid temperature (2.26)
reduces to the single-phase linear solution

T0 = 1

2
(Th + Tc) − (Th − Tc)

z

H
. (2.29)

For future reference we show some examples of the normalized temperature profile [T0(z) −
Tc]/(Th − Tc) in Fig. 1 for four values of the normalized particle injection temperature, (Tpt −
Tc)/(Th − Tc) = −1, 0, 1, and 2. The feature to note here is the major qualitative change of the
temperature distribution and, in particular, of its gradient, which has such a profound effect on
the stability problem. Very cold particles, with (Tpt − Tc)/(Th − Tc) = −1, induce a large and
negative gradient in the lower part of the cell, which is destabilizing. As the particle temperature
increases past that of the cold plate, (Tpt − Tc)/(Th − Tc) = 0, and approaches that of the hot plate,
(Tpt − Tc)/(Th − Tc) = 1, the gradient gradually decreases over a large portion of the cell. When the
particles become even warmer, again a strong negative gradient appears, this time in the upper part
of the cell, which will be seen to be destabilizing in certain ranges of the other parameters.

B. Linearization

We now linearize the mathematical model of the previous section by setting

u = u′, p = p0 + p′, T = T0 + T ′, (2.30)

n = n0 + n′, w = −w0k + w′, Tp = Tp0 + T ′
p, (2.31)
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with the primed quantities assumed small with respect to the corresponding base-state fields carrying
the index zero (for the fluid velocity smallness is understood in the sense that |∂t u′| � |u′ · ∇u′|).
For simplicity, we omit to perturb the drag force and the heat transfer coefficients evaluating them
at base-state conditions. This slight inconsistency affects the particle mechanical relaxation time via
the Reynolds-number correction rRe defined in (2.4) and the thermal relaxation time via the Nusselt
number (2.10), neither of which depends strongly on Rep in the range investigated in this paper.

After subtraction of the base-state relations, and omitting quadratic terms in the perturbed
quantities, the fluid model equations become

∇ · u′ = 0, (2.32)

∂t u′ = − 1

ρ f
∇p′ + ν f ∇2u′ − βT ′g + ρp

ρ f
n0vp

w′ − u′

τp
− mpw0

ρ f τp
n′k, (2.33)

∂t T
′ + u′

z∂zT0 = D f ∇2T ′ + Qp0

ρ f cp f
n′ − ρpcppn0vp

ρ f cp f

T ′ − T ′
p

τth
. (2.34)

In (2.33) vp = π
6 d3

p is the particle volume and, in (2.34), u′
z is the vertical component of the fluid

perturbation velocity. The corresponding equations for the particulate phase are

∂t n
′ − w0∂zn

′ + n0∇ · w′ = 0, (2.35)

∂t w′ − w0∂zw′ = u′ − w′

τp
, (2.36)

∂t T
′

p − w0∂zT
′

p + w′ · ∇Tp0 = T ′ − T ′
p

τth
. (2.37)

It is interesting to point out a similarity between the momentum equation (2.33) and the
corresponding equation of the Brinkman model for flow in a fluid-saturated porous medium (see,
e.g., [30,31]). Indeed, written out in detail, the term multiplying w′ − u′ is

ρpn0vp

ρ f τp
= 18n0vprRe

d2
p

ν f . (2.38)

The permeability κ of a porous medium is defined in such a way that the pressure gradient equals
(−μ f /κ ) times the (relative) velocity. For the present case in which the particles apply a point force
to the fluid, this definition leads to

κ = d2
p

18n0vprRe
, (2.39)

which is precisely the inverse of the fraction in (2.38). A similar interpretation can be developed for
the fraction multiplying T ′ − T ′

p in the energy equation (2.34), bringing this term to a form similar to
the one adopted in the local thermal nonequilibrium model of heat transfer in fluid-saturated porous
media. One difference is that, in a porous medium, the solid phase is stationary while, here, it is
falling. This is not a major difference as long as the particles are uniformly distributed which, as
explained in Sec. III below, is the situation explored in detail in this paper. Nevertheless, it may
be noted that, in principle, a spatial particle nonuniformity can give a mechanical contribution
to the instability of the system, an effect that is absent in a porous medium in which, at most,
nonuniformities of the solid-phase distribution can only affect stability by thermal processes.
Another difference is that, here, the particles can be introduced with an arbitrary temperature while,
in a porous medium, the solid-phase temperature may lag that of the fluid, but is usually enslaved
to it, at least in the absence of radiation or radioactive heating. As shown in Fig. 1, the undisturbed
particle temperature can have a major effect on the fluid temperature distribution in the cell which,
as will be shown below, has some interesting consequences for the stability of the system.
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C. Boundary conditions

We envisage a cell with a height H and much larger dimensions (infinite in the limit) in the
horizontal directions. Since the fluid is confined within the cell, its normal velocity on the horizontal
boundaries must vanish. Standard conditions of prescribed temperatures at the boundaries are also
assumed so that

u′
z = 0 and T ′ = 0 at z = ± 1

2 H. (2.40)

We consider the case of no-slip conditions at the boundaries so that, from the fluid continuity
equation (see, e.g., [29]),

∂zu
′
z = 0, at z = ± 1

2 H. (2.41)

These boundary conditions on the fluid fields are the same ones adopted in the linear stability theory
of the single-phase Rayleigh-Bénard problem.

For the particulate phase, the present mathematical model can describe various situations, all
compatible with the postulated uniform base state. For example, particles can be introduced at the
upper plate with a small spatial nonuniformity, a small temperature nonuniformity, or both. As
can be understood from the expression (2.16) of the undisturbed pressure field, in these situations
one would expect to encounter fluid flow for any temperature difference so that the stability
threshold Th − Tc would effectively vanish. As a matter of fact, with a horizontal particle number
nonuniformity, the stability threshold may even turn negative. While these are interesting situations
well deserving to be investigated, a natural first step in a study of particulate Rayleigh-Bénard
convection is to consider how the fluid stability is affected by particles introduced uniformly with a
uniform temperature. This is the problem on which we focus the analysis that follows. Thus, on the
upper boundary at z = 1

2 H , we impose that

T ′
p = 0, w′

z = 0, (2.42)

in which w′
z is the vertical component of the particle disturbance velocity field. No conditions can

be imposed on the disturbance velocity and temperature fields at the lower boundary z = − 1
2 H . The

values of T ′
p and w′

z there will depend on the interaction of the falling particles with the fluid and
must be found as part of the problem solution.

III. SETUP FOR THE SOLUTION

To solve the perturbation problem posed in the previous section we start by taking the double
curl of the fluid momentum equation (2.33) and considering the z component of the result which is,
after using (2.32),

∂t∇2u′
z = ν f ∇4u′

z − βg
[
∂2

z T ′ − ∇2T ′] − ρp

ρ f
α0

∂z(∇ · w′) − ∇2w′
z + ∇2u′

z

τp
+ mpw0

ρ f τp

[
∂2

z n′ − ∇2n′].
(3.1)

We decompose the fields into horizontal normal modes each one of which is assumed to depend on
the horizontal coordinates (x, y) proportionally to a function f (x, y) with the property that(

∂2
x + ∂2

y

)
f = −k2 f , (3.2)

with k the modulus of a wave number in the horizontal plane. With this ansatz, ∇2 = ∂2
z − k2 and

the previous equation becomes

∂t
(
∂2

z − k2
)
u′

z = ν f
(
∂2

z − k2
)2

u′
z − βgk2T ′ − ρp

ρ f
α0

∂z(∇ · w′) + (
∂2

z − k2
)(

u′
z − w′

z

)
τp

+ mpw0

ρ f τp
k2n′.

(3.3)
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Upon taking the divergence of the particle momentum equation we find, using (2.32),

∂t (∇ · w′) − w0∂z(∇ · w′) = −∇ · w′

τp
. (3.4)

This equation shows that, as the particles fall from higher levels with velocity w0, ∇ · w′ will tend
to relax to zero on a timescale τp. It is therefore evident that, if ∇ · w′ = 0 at the upper boundary,
∇ · w′ will vanish for all times. An alternative way to reach the same conclusion is to note that, as
is evident from Sec. II B, the spatial operator of the problem is independent of time and, therefore,
the general solution will be the sum of terms having an exponential time dependence proportional
to eηt , with the η’s eigenvalues of the spatial operator. For ∇ · w′, each one of these terms, W ′(x),
say, satisfies the equation

ηW ′ − w0∂zW
′ = −W ′

τp
, (3.5)

with solution

W ′(x) = W ′
t (x, y) exp

[
−

(
η + 1

τp

) 1
2 H − z

w0

]
, (3.6)

with W ′
t (x, y) the boundary condition on W ′ at the top boundary z = 1

2 H . If W ′
t is taken to

vanish, W ′ will vanish for all times and all z’s in agreement with the previous statement. With
this choice, particle nonuniformities cannot develop in the bulk of the system, but can still be
introduced as boundary conditions on the upper plate. Indeed, the perturbation number density mode
corresponding to W ′ can be found from (2.35)

ηn′ − w0∂zn
′ + n0W

′ = 0, (3.7)

and is

n′(x) =
{

n′
t (x, y) + τpn0W

′
t

[
1 − exp

(
−

1
2 H − z

τpw0

)]}
exp

[
− η

w0

(
1

2
H − z

)]
, (3.8)

with n′
t (x, y) the value of the n′ mode at the top boundary. As anticipated in Sec. II C, this work

focuses on the effect on the stability threshold of particles introduced uniformly at the top plate at
the same rate as in the base state. Thus, we take n′

t = 0 so that n′ = 0 as well. It should be noted
that, with these choices, particle clustering, and the attendant sweeping effect (see, e.g., [52]), is
eliminated as a potential factor affecting the stability of the system. Situations in which W ′ and n′
are nonzero require a separate investigation.

The problem is now reduced to four equations in the unknowns u′
z, w′

z, T ′, T ′
p:

∂t
(
∂2

z − k2
)
u′

z = ν f
(
∂2

z − k2
)2

u′
z − βgk2T ′ − ρpn0vp

ρ f

(
∂2

z − k2
)
(u′

z − w′
z )

τp
, (3.9)

∂tw
′
z − w0∂zw

′
z = u′

z − w′
z

τp
, (3.10)

∂t T
′ + u′

z∂zT0 = D f
(
∂2

z − k2
)
T ′ − ρpcppn0vp

ρ f cp f

T ′ − T ′
p

τth
, (3.11)

∂t T
′

p − w0∂zT
′

p + w′
z∂zTp0 = T ′ − T ′

p

τth
. (3.12)

It may be noted that (3.10) and (3.12) can be solved to express w′
z and T ′

p in terms of u′
z and

T ′, respectively, so that the particle fields can be eliminated from (3.9) and (3.11). The resulting
system of integro-differential equations can be reduced to differential equations by an additional
differentiation with respect to z. We do not take these steps as they do not seem to lead to a significant
simplification of the mathematical problem.
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Nondimensionalization and nondimensional quantities

We nondimensionalize lengths in terms of the cell height H , velocities in terms of the free-fall
velocity v f = √

gβTh − Tc)H , time in terms of H/v f , and temperatures in terms of Th − Tc. Upon
so doing, Eqs. (3.9) to (3.12) become

(
∂2

z − k2
)[

∂t u
′
z −

√
Pr

Ra

(
∂2

z − k2
)
u′

z

]
+ k2T ′ + M

Stm

(
∂2

z − k2
)
(u′

z − w′
z ) = 0, (3.13)

∂tw
′
z − Rep

δ

√
Pr

Ra
∂zw

′
z − u′

z − w′
z

Stm
= 0, (3.14)

∂t T
′ + u′

z∂zT0 − 1√
Ra Pr

(
∂2

z − k2
)
T ′ + E

Stth
(T ′ − T ′

p ) = 0, (3.15)

∂t T
′

p − Rep

δ

√
Pr

Ra
∂zT

′
p + w′

z∂zTp0 − T ′ − T ′
p

Stth
= 0. (3.16)

In these equations, and in all the relations that follow, time and space coordinates as well as all
the field quantities and operators are dimensionless but, to avoid unnecessarily encumbering the
writing, we do not use a special notation to indicate this fact.

In addition to the particle Reynolds number Rep defined in (2.15), the parameters appearing here
are the Rayleigh and Prandtl numbers, defined in the same way as in the single-phase case,

Ra = gβ(Th − Tc)H3

ν f D f
, Pr = ν f

D f
, (3.17)

the ratio δ of the particle diameter to the cell height,

δ = dp

H
, (3.18)

the Stokes numbers for momentum and energy,

Stm = v f τp

H
= Rδ2

18rRe

√
Ra

Pr
, Stth = v f τth

H
= δ2E

6Nup

√
Ra Pr, (3.19)

and the physical properties ratios,

R = ρp

ρ f
, E = ρpcpp

ρ f cp f
. (3.20)

Other than with the Stokes numbers, the effect of the particles appears via the the mass loading and
the analogous heat capacity quantity defined by

M = ρp

ρ f
n0vp = Rn0vp, E = ρpcpp

ρ f cp f
n0vp = En0vp. (3.21)

Equations (3.13) and (3.15) show that these parameters modulate the effect of the particle Stokes
numbers on the fluid. The product n0vp = α0 appearing here may be seen as the undisturbed particle
volume fraction but, since the present model neglects the volume occupied by the particles, α0

should more properly be regarded as a dimensionless form of the undisturbed particle number
density. We may also note that

M
Stm

= 18rRen0vp

δ2

√
Pr

Ra
,

E
Stth

= 6Nupn0vp

δ2
√

Ra Pr
. (3.22)

The first fraction in the ratio M/Stm will be recognized as the inverse of the Darcy number
Da = κ/H2, with the permeability κ defined in (2.38). Finally, an additional independent degree
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of freedom is necessary to characterize the temperature at which the particles are introduced at the
top boundary. For this purpose we define

T ∗
p = Tpt − Tc

Th − Tc
. (3.23)

The length � defined in (2.18) scaled by the particle diameter and the ratio �/L appearing in
(2.25) for the undisturbed temperature profile are

�

dp
= RepPr E

6Nup
,

�

L
= RepPrE

√
n0vp

6Nup
. (3.24)

The ratio of the particle terminal velocity to the fluid free-fall velocity is

w0

v f
= Rep

δ

√
Pr

Ra
. (3.25)

IV. NUMERICAL SOLUTION

The solution of Eqs. (3.13) to (3.16) is sought in the form of normal modes with a time
dependence proportional to exp(λt ), with the λ’s eigenvalues of the spatial operator. The second-
and fourth-order spatial derivatives are discretized by central differences except for the term ∂2

z w′
z at

the node next to the bottom boundary where the lack of a boundary condition for w′
z forces us to use

a second-order accurate one-sided derivative. First-order accurate upwind differencing was used for
the first-order derivatives in the convective terms in (3.14) and (3.16). We ran several simulations
with both 80 and 120 nodes to examine grid convergence finding essentially indistinguishable
results.

The generalized eigenvalue problem resulting from the discretization was solved using the
function eig(·, ·) of MATLAB based on the generalized Schur decomposition of the matrices. Even
though the spatial operator of the problem is not self-adjoint, we found that the dominant modes
have real eigenvalues. For each wave number k we increased the Rayleigh number starting from
an appropriately small value until the real part of the dominant eigenvalue became positive and
repeated the search by gradually increasing k. The critical Rayleigh number reported in the figures
in the next section is the smallest value of Ra identified in this way, typically with a relative accuracy
of 0.1% or better.

V. NUMERICAL RESULTS

The introduction of particles greatly increases the number of dimensionless parameters necessary
to characterize the flow. Summarizing, in addition to the Rayleigh and Prandtl numbers Ra and Pr,
a minimal set of parameters would include the undisturbed particle volume fraction α0, the particle
Reynolds number Rep, the ratio δ of the particle diameter to the cell height, the property ratios R
and E , and the dimensionless temperature of the injected particles, T ∗

p = (Tpt − Tc)/(Th − Tc). In
addition to their number, another factor that makes it difficult or impossible to isolate the effects of
specific parameters, each one of which would, by itself, permit a focus on specific physical effects,
is the mutual relationships among them. For example, the ratio of the two Stokes numbers is

Stm

Stth
= Nup

3rRe

R

PrE
. (5.1)

The first factor depends (rather weakly, in the range of present concern) on the particle Reynolds
number, while the second group will be fixed once the physical properties of the fluid and particles
are specified. Thus, Stm and Stth cannot be varied independently without changing other parameters.
As can be seen from (2.15), for a given kinematic viscosity, i.e., a given fluid, the particle Reynolds
number depends on the particle-fluid density ratio R and on the particle diameter. Thus, for a
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α

δ
δ
δ
δ

FIG. 2. Critical Rayleigh number vs undisturbed particle volume fraction α0 for the droplets/air case. The
parameter values are R = 800, E = 3385, Pr = 0.71, T ∗

p = 0.

given δ = dp/H , the Reynolds number can be changed either by changing the density ratio, which
will affect the mechanical Stokes number, or by changing the cell height H , which will affect the
Rayleigh number. The mass and thermal loadings depend on R and E , the latter dependent on Stth

once δ, Rep, Pr, and Ra are specified. Given the intricacies of this situation, the best we can do is
to show some results useful to illustrate broad trends. We focus on two particular cases, one, with
R = 800, E = 3385, Pr = 0.71, representative of a water-droplet/air system, and the other, with
R = 3, E = 0.5, and Pr = 5, representative of a sand/water system.

A general feature of all the results that follow is that particles have a stabilizing effect, as can
be understood from the similarity pointed out earlier with Rayleigh-Bénard convection in a porous
medium. The effect is quite strong when the density of the disperse phase is much larger than
that of the fluid as can be seen in Fig. 2 for the droplets/air case, particularly when the particle
diameter is small. Although in all cases the critical Rayleigh number starts close to the single-phase
value Ra = 1707 when the particle volume fraction α0 is small, it quickly rises with increasing α0,
the faster the smaller δ and the larger Rep. Figure 3 is analogous for the sand/water system, with
the particles introduced at the cold-plate temperature T ∗

p = 0 as in the previous figure, and again
with δ = 0.01 and 0.05, and Rep = 1 and 10. In this case the effect of the particles takes longer
to manifest itself, so much so that the case with δ = 0.01 and Rep = 1 remains indistinguishable

α

δ
δ
δ
δ

FIG. 3. Critical Rayleigh number vs undisturbed particle volume fraction α0 for the sand/water case. The
parameter values are R = 3, E = 0.5, Pr = 5, T ∗

p = 0.

083901-12



LINEAR THEORY OF PARTICULATE …

FIG. 4. Examples of the velocity eigenvectors corresponding to the λ = 0 eigenvalue for two difference
ratios, R = 3 and R = 30. The other parameters are α0 = 0.01, δ = 0.05, Rep = 1, E = 0.15R, T ∗

p = 0, Pr = 5.

from the single-phase system even at a volume fraction of 1% at which the droplet/air system is
already considerably influenced by the disperse phase. This is a general feature of systems in which
the density contrast is not very marked. Contrary to the previous case, this system appears to be
affected more by the increase of δ from 0.01 to 0.05 than by the increase of Rep from 1 to 10.

The stabilizing effect of increasing R is easily understood from the two momentum equations.
The coefficient of the last term of (3.13) is independent of R and, therefore, the stabilizing effect
of this term will mostly depend on the magnitude of the velocity difference u′

z − w′
z. As is evident

from the particle momentum equation (3.14), the particle velocity perturbation is a consequence of
drag by the fluid, so that |u′

z − w′
z| < |u′

z|. Since particle inertia increases with R, the effectiveness of
drag in reducing the difference u′

z − w′
z decreases. The last term of (3.14) gains thereby importance,

which stabilizes the flow. [Indeed we have found that setting w′
z = 0, which increases the importance

of the last term of (3.14), has a marked stabilizing effect.] This explanation is made evident by the
eigenvectors corresponding to the eigenvalue with the largest real part λ = 0, examples of which
are shown in Fig. 4 for R = 3 and R = 30. When the density contrast is small, the fluid and particle
eigenvectors are close to each other, but a significant difference appears for R = 30.

Increasing the particle Reynolds number has a stabilizing effect for the same reason as increasing
R. Increasing δ can be seen as amounting to increasing the particle response time τp and, therefore,
the effect on the particle momentum is similar as can be seen comparing the two coefficients in
(3.14) which are the only ones that matter since the time derivative term vanishes at marginal
conditions.

For δ = 0.05, the dimensionless wave number kH corresponding to the critical Rayleigh number
appears to be little affected by the particle volume fraction in the range shown in Figs. 2 and 3.
For example, for the sand/water case, kH grows from ∼3.1 to ∼3.25 for Rep = 1 and between
∼3.1 and ∼3.7 for Rep = 10. For δ = 0.01, however, the dependence is stronger, increasing from
∼3 up to ∼10 for both Figs. 2 and 3; an example for the former case is shown in Fig. 5. For
the sand/water system, an increase of this magnitude requires a much larger volume fraction. A
plausible explanation for this result is that the mean interparticle distance is of the order of dp/α

1/3
0

or, in dimensionless form, δ/α
1/3
0 , a fact that introduces smaller and smaller spatial scales as the

particle volume fraction is increased.
Figures 6 and 7 show the effect of the particle temperature for δ = 0.01 and the same droplets/air

and sand/water systems, with α0 = 10−4 and Rep = 10 for the former and α0 = 0.01 and Rep = 1
for the latter. Since, as shown by (3.15), the particles act as a heat source for the system, increasing
their temperature would be expected to enhance stability by decreasing the degree of stratification,
which is indeed what is observed for the sand/water system and, in the first part of the temperature

083901-13



SURYANSH PRAKHAR AND ANDREA PROSPERETTI

α

FIG. 5. The dimensionless wave number kH corresponding to the critical Rayleigh number of the
droplets/air case shown in Fig. 2. The parameter values are R = 3, δ = 0.01, E = 0.5, Pr = 5, T ∗

p = 0.

range, for the droplets/air system as well. In the latter case, however, the critical Rayleigh number
reaches a maximum and then starts to decrease with further increasing the particle temperature, a
phenomenon that is also encountered for the other system at larger values of T ∗

p . The explanation
for this inversion lies in the effect that the particle temperature has on the undisturbed temperature
distribution shown earlier in Fig. 1. As long as the temperature distribution is monotonically
decreasing with height, warmer fluid is transported upward by the fluid disturbance velocity in
the regions where u′

z > 0 while colder fluid is transported downward where u′
z < 0. Both effects

are destabilizing as, being lighter, the warmer fluid will tend to rise further and the colder fluid,
conversely, to sink deeper. Thus, the system is stabilized if the vertical temperature gradient becomes
less negative, which is a consequence of a moderate increase of T ∗

p as can be seen comparing the
temperature distributions for T ∗

p = 0 and T ∗
p = 1 in Fig. 1. This is the cause of the increasing critical

Rayleigh number with T ∗
p in part of Fig. 6 and in Fig. 7. However, by inducing a nonmonotonic

undisturbed temperature distribution in the cell, a further increase of T ∗
p creates a strongly negative

temperature gradient in the upper part of the cell, which favors instability, and the critical Rayleigh
number starts to decrease. The undisturbed temperature is nonmonotonic also for T ∗

p = −1, but the
region where it is growing with height is smaller than that where it is strongly decreasing and this

FIG. 6. Effect of the normalized particle temperature T ∗
p = (Tpt − Tc )/(Th − Tc ) on the critical Rayleigh

number for the droplets/air system with δ = 0.01, R = 800, E = 3385, Pr = 0.71, Rep = 1, and α0 = 10−4.
Note the lack of monotonicity as T ∗

p is increased.
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FIG. 7. Effect of the normalized particle temperature T ∗
p = (Tpt − Tc )/(Th − Tc ) on the critical Rayleigh

number for the sand/water system with δ = 0.01, R = 3, E = 0.5, Pr = 5, Rep = 1, and α0 = 0.01.

latter region prevails. Due to the difference in physical properties, in the case of the sand-water
system the undisturbed temperature becomes nonmonotonic only for larger values of T ∗

p which are
somewhat unrealistic and, therefore, are not included in the range of T ∗

p values covered in Fig. 7.
We have verified however that the critical Rayleigh number starts to decrease for sufficiently large
values of T ∗

p also for this system.
Figure 8 shows an example of the dependence of the stability threshold on the mechanical Stokes

number, varied by varying the ratio R of the particles-to-fluid densities. Here δ = 0.05, α0 = 0.01,
cpp/cp f = 0.15, Pr = 5, and Rep = 1. In descending order, the lines correspond to T ∗

p = 1, 0, and
−1. As Stm increases with R, the fluid-particle velocity difference increases as explained before,
which stabilizes the system. As shown in Fig. 1, warm particles, with T ∗

p = 1, reduce the undisturbed
temperature gradient in the cell and therefore produce a stronger stabilizing effect. On the other
hand, very cold particles, with T ∗

p = −1, greatly increase the negative temperature gradient in the
lower part of the cell, which diminishes their stabilizing influence.

An example of the effect of the thermal Stokes number Stth, varied by varying the heat capacity
ratio E , is shown in Fig. 9 for the droplets/air (solid line) and the sand/water systems. Here
δ = 0.05, α0 = 0.01, T ∗

p = 0, and Rep = 1. The general trend is similar to that seen before in Fig. 8

FIG. 8. Effect of the particle mechanical Stokes number Stm (varied by varying the density ratio R) on the
stability threshold for the sand/water case. In descending order, the particle injection temperature is T ∗

p = 1,
0, and −1. The parameter values are δ = 0.05, α0 = 0.01, cpp/cp f = 0.15, Pr = 5, Rep = 1.
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FIG. 9. Effect of the particle thermal Stokes number Stth (varied by varying the heat capacity ratio E ) on
the stability threshold for the droplets/air (solid line) and sand/water cases with α0 = 0.01. The parameter
values are δ = 0.05, T ∗

p = 0, and Rep = 1.

when the density ratio R is varied, and for a similar reason. Indeed, the ratio E/Stth in the fluid energy
equation (3.15) is independent of E , while a large E , or a large Stth, hinders the equalization of the
particle and fluid temperatures. This increases the difference T ′ − T ′

p in the fluid energy equation
and, with it, the effective energy source, which tends to destabilize the system. This explanation
is confirmed by the appearance of the eigenvectors, examples of which are shown in Fig. 10.
Analogously to Fig. 4, we see that the temperature difference is small for the sand/water case,
for which E = 0.5, while it becomes very large for the droplet/air system for which E = 3385.

VI. SUMMARY AND CONCLUSIONS

This paper started with the presentation of a mathematical model of the two-fluid type for the
study of the Rayleigh-Bénard convection in a laterally unbounded cell with the bottom plate kept
at a higher temperature than the top one. The general model was then specialized to the situation
in which particles are introduced steadily and uniformly at the top plate at their terminal velocity.
The effect of the particles on the stability threshold of the system was investigated by a standard
decomposition into normal modes.

FIG. 10. Examples of the temperature eigenvectors for the droplet/air and sand/water system for α0 =
0.01. The other parameters are δ = 0.05, T ∗

p = 0, Rep = 1.
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The addition of particles greatly enlarges the parameter space of the problem and it has not
been possible to carry out an exhaustive parameter study. Rather, we have focused on two specific
cases in which the physical properties are similar to those of a sand/water system and to those
of a water-droplets/air system. The numerical results have shown that particles tend to inhibit the
onset of natural convection thereby stabilizing the system. This effect can be understood noting that
the particles resemble a distributed drag force and heat source in the fluid, similarly to a porous
medium. An interesting result was found to occur when the particles are injected at a temperature
higher than that of the bottom plate. In this case the undisturbed temperature distribution ceases to
be monotonic with the effect that, all other parameters being the same, the system is destabilized.

Other situations can be studied within the framework of the mathematical model outlined in
Sec. II. For example, it may be expected that if particles are introduced nonuniformly at the top
plate, or with a variable velocity, or with unequal density, they would promote, rather than hinder, the
onset of convection. A similar but particularly interesting question due to the competition between
physical processes would be the effect of introducing particles at different temperatures. These
problems will be investigated in future work.
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