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In this paper the dynamics of the simultaneously filling and emptying of a box is
studied theoretically and experimentally. Both situations, consisting of negatively buoyant
(fountains) and positively buoyant (plumes) discharges, are considered. For the sake of
generality, no assumption is made about the value of the density deficit (between the
release and the ambient fluid), so this study deals with the so-called non-Boussinesq
general case. Experiments are carried out with buoyant air-helium mixtures continuously
released from the top (fountain) or bottom (plume) into air in a cylindrical tank with an
open bottom boundary and a top vent of variable areas. At steady state, for both fountain
and plume configurations, a buoyant layer of constant thickness and density forms under
the tank ceiling. Based on mass and buoyancy conservation equations applied on the
buoyant layer, theoretical models are proposed to estimate its depth and density at steady
state. The theoretical models compare favorably with the experimental data. Subsequently,
these models allow us to compare the plume and the fountain configurations for identical
source conditions, box size, and vent area. Even if, in the majority of situations, the plume
configuration allows a better mixing of the buoyant fluid with the environment, it is found
that beyond a certain value of the fountain height, the fountain configuration becomes more
efficient than the plume configuration for mixing phenomena.
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I. INTRODUCTION

The continuous release of a buoyant fluid into confined and semiconfined environments is a
widespread phenomenon in nature and industry such as building natural ventilation [1], chemical
processes [2], and geophysical flows [3,4], to name but a few. In all these applications, the buoyant
fluid can be injected in the form of either a plume (positively buoyant release [5]) or a fountain
(negatively buoyant release [6,7]). Thus, in a box, the release of a fluid lighter than the ambient fluid
will give rise to a plume in the case of an upward injection (from the bottom) or a fountain in the
case of a downward injection (from the ceiling). The aim of the present study is to compare, for the
same release, both configurations in the particular case where the enclosure has a vent area at its
ceiling. These two situations correspond to the so-called emptying-filling box problem.

In the plume case, a layer of buoyant fluid forms under the box ceiling and grows with time
due to the volume flux delivered by the plume. At the same time, a part of this fluid escapes
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through the vent located at the ceiling owing to the density difference between the buoyant layer
and the outer fluid. After a while, the fluid layer thickness stabilizes and the fluid density eventually
stabilizes around constant values, thus defining the steady-state regime. The simultaneous filling and
emptying of an enclosure was first analyzed both theoretically and experimentally by Linden et al.
[8], under the Boussinesq assumption (i.e., for small density differences). Using the conservation
equations of volume and buoyancy for the buoyant layer, these authors obtained analytically the
layer thickness as well as its density. A striking result is that, at steady state, the layer thickness
only depends on the ratio between the vent area and the square of the enclosure height. The
case of a large density difference between the plume and the ambient (i.e., the non-Boussinesq
case) was studied by Vauquelin [9]. In that case, an additional parameter appears. This parameter
accounts for the influence of the source buoyancy flux. However, the weaknesses of these two
theoretical studies lie in the modeling of the plume. These studies are indeed both based on the
far-field self-similar solutions of the plume originally introduced by Morton and Turner [5,10].
These solutions correspond to a plume issuing from a point source of buoyancy without source mass
and momentum fluxes. However, this model is not realistic for a real plume which has a source of
finite size. To represent the plume variables without singularities, an alternative model, based on
the so-called plume function, was proposed among others by Morton [5] and Hunt and Kaye [11]
for Boussinesq plumes and by Michaux and Vauquelin [12] and Candelier and Vauquelin [13] for
non-Boussinesq plumes. In this study we propose to revisit the emptying-filling box problem by
using these analytical developments on turbulent non-Boussinesq plumes.

Unlike the case of plumes, much less attention has been directed to the topic of fountains
developing in confined environments. Among the few authors interested in fountains in confined
and semiconfined environments, we can cite the work by Baines et al. [14]. These authors studied
the filling of a box with a fountain, both theoretically and experimentally. To produce fountains, the
authors injected from below salt water into a tank initially filled up with fresh water. The fountain
rises initially as a jet due to the source momentum of the release but slows down gradually owing
to its negative buoyancy. Thus, the fountain reaches a finite height before collapsing under the
form of an annular downflow surrounding an inner upflow. When this downflow reaches the floor,
a negatively buoyant layer of fluid forms, similarly to the plume case. The study by Baines et al.
[14] mainly focused on determining the time evolution of the buoyant-layer depth and density. In
particular, they identified two phases in the filling process.

(i) First, the buoyant-layer depth grows over time due to the fountain source volume flux and to
the volume flux of ambient air entrained by the part of the fountain that penetrates vertically beyond
the buoyant-layer depth.

(ii) The second phase of replenishment involves only the fountain source volume flux since the
buoyant layer has completely submerged the fountain. Then its evolution in time becomes linear,
similarly to the filling of a bathtub with a submerged water jet.

As observed by Baines et al. [14], in order to accurately determine the growth of the buoyant
layer in the first phase, the key parameter is the fountain entrainment coefficient. On the basis of
dimensional considerations, these authors found that the ratio between the bulk entrainment flux
and the source volume flux is proportional to the height of the fountain extending above the buoyant
layer. In the present study, the aim is to extend the model by Baines et al. [14] to the simultaneous
emptying-filling situation.

In some applications such as thermal comfort of buildings, one may wonder if it is more
appropriate to inject hot air downward (fountain) or upward (plume), and vice versa, in the case
of air conditioning. Intuitively, one might argue that the plume is the most efficient flow to produce
a uniform temperature field into a room. Nevertheless, Baines et al. [14] highlighted the important
potential of a fountain to entrain strongly its surrounding and then to create mixing. In this case,
the comparison of the two modes of injection seems to be relevant to this issue of thermal comfort.
In addition, in other applications such as accidental release of heavy or light gases [15] and fires
in building [16–18], it would be desirable, sometimes, rather not to mix in order to maintain the
natural stratification. Thus, it is also interesting to compare these two injection modes.
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FIG. 1. Schematic of the experimental apparatus.

To answer such questions, we propose in this paper to compare two theoretical models. These
models are based on the conservation equations of mass and buoyancy of the buoyant layer. The aim
is to take into account both the non-Boussinesq effects and the effects associated with the finite-size
source. Since these theoretical models require validation and/or calibration, experiments are carried
out with releases of air-helium mixture injected into a cylindrical tank with a vent area at its ceiling.
Note that these experiments allow large density contrasts to be reached so that the results turn out
to be reliable for thermal comfort applications [19] but also for problems involving large density
differences out of the Boussinesq assumption.

The paper is organized as follows. In Sec. II the experimental apparatus is presented. In Sec. III a
model is proposed for the simultaneously filling and emptying of the box with a plume. This model
is validated against experimental data. In Sec. IV a model for filling and emptying with a fountain
is proposed. Similarly to the plume case, the model is compared to experimental data. In Sec. V the
plume and fountain theoretical models are compared with identical source conditions, box size, and
vent area. A summary is given in Sec. VI.

II. EXPERIMENTS

The experimental apparatus is schematically shown in Fig. 1. It is composed of a cylindrical tank
made of plexiglass; its height is 80 cm and its diameter is 120 cm. Similarly to the experiments by
Baines et al. [14], the bottom of the cylindrical tank is fully open to the atmosphere (i.e., the cylinder
constitutes a so-called open chamber). This is an important point for the theory because it will be
assumed later that both fountains and plumes are allowed to freely entrain the ambient fluid without
any confinement effects. Since our experiments consider the simultaneous filling and emptying box
processes, the top surface of the cylinder tank involves a circular opening allowing the buoyant fluid
to flow out of the box. The diameter of this opening varies in our experiments.

The turbulent fountains and plumes used to fill the tank are produced by a continuous discharge
of an air-helium mixture. In order to accurately control the density of the mixture, air and helium
initially flow through independent networks and their respective flow rates are measured with flow
meters (Bronkhorst model EL-FLOW, with a relative error of 2%). The two fluids are then mixed
and the resulting mixture is made visible with passive tracers before being injected in a cylindrical
tank through a nozzle of radius bi. Two different nozzles have been used with respective radii of 3
and 6 mm. Note that the passive tracer is ammonium salt. It is obtained by a chemical reaction of
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TABLE I. Details of the experimental parameters for the plume case.

Configuration bi (mm) ui (m/s) ρi (kg/m3) ηi H (mm) �i Re

1 3 17.68 0.69 0.43 665 2.8 × 10−4 1955
2 6 7.95 1.025 0.16 600 8.4 × 10−4 2600
3 6 24.16 0.31 0.75 600 7.8 × 10−4 2400

ammonia vapor with hydrochloric acid [20,21]. The mass of salt added to the flow is very weak and
therefore does not affect the density of the fountain.

To visualize the flow, a laser sheet produced by a 2-W argon laser is used. The laser sheet cuts the
cylindrical box at its center in order to visualize the flow development as well as the formation of the
buoyant layer. Images are recorded by a high-speed camera (PCO 1200hs) and are postprocessed
using MATLAB software in order to determine the location of the interface between the buoyant fluid
and the ambient.

Usually, the control parameters of the release are the source plume function �i, the source
Reynolds number Re, and the density deficit ηi which accounts for the non-Boussinesq effects.
These parameters are defined, respectively, as

�i = 5gbiηi

8α
√

1 − ηiu2
i

, Re = ρiuibi

μ
, ηi = �ρ

ρa
, (1)

where ui is the bulk velocity at the source, �ρ = ρa − ρi is the density difference between the
ambient (subscript a) and the source fluid (subscript i), g is the gravitational acceleration, and α is
the plume entrainment coefficient introduced by Morton and Turner [10]. Note that the source plume
function �i is equivalent to the Richardson number. It quantifies the importance of the buoyancy
with respect to the momentum at the source. When �i < 1, the released fluid is dominated by its
momentum and then the plume is referred to as a forced plume, while when �i > 1, the plume is
dominated by its buoyancy and called a lazy plume. The case �i = 1 corresponds to a pure plume.

To measure the effects of the exhaust vent, we introduce the parameter

� = 4
√

αCd A√
5πb2

i

, (2)

where Cd is a discharge coefficient accounting for streamline contraction. Its value lies between 0.6
and 0.7 and is generally constant for high Reynolds number [22]. References [23,24] show that this
coefficient is a function of the layer depth and its density contrast. This effect is important in the
transient phase and becomes negligible as soon as the layer reaches its steady state. In what follows,
we choose the value Cd = 0.7, which seems very common in natural ventilation problems [25,26].

For plume releases, three configurations are considered. For each configuration, the source
conditions (Re, �i, and ηi) and the distance between the source and the ceiling (denoted by H)
are kept fixed while the vent area is varied (see Table I). Seven circular vent areas are considered
with respective diameters of 50, 80, 100, 120, 150, 170, and 200 mm and one square vent area with
a size of 200 × 200 mm2. These configurations correspond to 24 experiments. A visualization of
the flow pattern is shown in Fig. 2(a).

In the case of fountain releases, 34 experiments are carried out. In these experiments, the source
density deficit ηi = �ρ/ρa is varied in the range 0.86 > ηi > 0.28 and the parameter �i is varied
in the range 0.0015–0.043. The fountain source Reynolds number Re is varied in the range 655 <

Re < 2160. Note that the radius bi = 7 mm is kept constant for all the fountain experiments. An
illustration of a typical experiment is shown in Fig. 2(b). When the steady state is reached, there
are two possibilities: The fountain is fully submerged by the buoyant layer or the fountain is only
partially submerged by the buoyant layer. In the first case, the air-entrainment process induced by
the fountain vanishes and therefore the volume flow rate at the outlet opening balances that injected
into the tank from the source. In the second case, the fountain is only partially submerged, so the
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FIG. 2. Illustration of (a) plume and (b) fountain filling-emptying box experiments.

volume flow rate at the outlet opening balances the volume flow rate injected into the tank from the
source plus the volume flow rate of the ambient air entrained by the emergent part of the fountain.

The presentation and discussion of the experimental results are postponed to Secs. III B and
IV B for plume and fountain releases, respectively, in order to allow us to compare them with the
theoretical models that will be presented thereafter.

III. SIMULTANEOUS FILLING AND EMPTYING WITH A PLUME

In this section we propose, as a first step, a theoretical model for the simultaneous filling and
emptying of a box with a plume. This theoretical model incorporates the non-Boussinesq effects
and the influence of the finite-size source. In a second step, the model will be validated against
experimental data.

A. Theoretical model

As shown schematically in Fig. 3, we consider the simultaneous filling and emptying of a box
with a turbulent plume. The height of the box is denoted by H and the surface of the ceiling is
denoted by S. The source of the buoyant plume is defined by its density ρi, its radius bi, and its
volume flux Qi = πuib2

i . The fluid escapes from the box through a surface A at the ceiling with a
mean velocity w. The thickness of the buoyant fluid layer that forms under the ceiling is denoted by
za and its density, which is assumed to be homogeneous at any time, is denoted by ρ∗. By using this
notation, the conservation equations for the mass and for the buoyancy of the buoyant layer read

d (Sρ∗za)

dt
= Qm − ρ∗wA, (3)

d (gη∗Sza)

dt
= Bi − gη∗wA, (4)

where η∗ = (ρa − ρ∗)/ρa is the buoyant-layer density deficit, Bi = Qig(ρa − ρi )/ρa is the buoyancy
flux at the source of the plume, and Qm is the mass flow rate that feeds the fluid layer in the box. To
evaluate the outlet velocity w, Bernoulli’s theorem is applied between the buoyant-layer interface
and the upstream of the outlet vent

1
2ρ∗w2 = C2

d (ρa − ρ∗)gza, (5)

where Cd is a coefficient coefficient [23].
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FIG. 3. Schematic of the plume filling a box which is simultaneously emptied by an opening vent on the
ceiling. Note that A corresponds to the vent area.

To accurately calculate Qm, the plume model needs to consider the non-Boussinesq effects as well
as the effects associated with the use of a finite-size source. To do this, the classical approach using
the plume function � is used here. Indeed, following [5,12,27–32], in the general non-Boussinesq
case, the plume characteristics, namely, the mean velocity u, the radius b, and the mean density
deficit η, can be written as

u(z) = ui

(
�i

�(z)

)1/2(1 − �(z)

1 − �i

)1/10

, (6)

b(z) =
√

1 − ηibi

[
1 + ηi

1 − ηi

(
�i

�(z)

)1/2(1 − �(z)

1 − �i

)1/2]1/2(
�(z)

�i

)1/2( 1 − �i

1 − �(z)

)3/10

, (7)

η(z)

1 − η(z)
= ηi

1 − ηi

(
�i

�(z)

)1/2(1 − �(z)

1 − �i

)1/2

, (8)

where the so-called plume function � is related to the vertical coordinate z via the differential
equation

d�(z)

dz
= 4α

bi
√

1 − ηi

�
1/2
i

(1 − �i )3/10
�(z)1/2[1 − �(z)]13/10. (9)

We recall that �i is the source plume function. With these definitions, the mass flow rate Qm can be
evaluated as

Qm = ρaQi(1 − ηi )

(
�

�i

)1/2(1 − �i

1 − �

)1/2

. (10)

At steady state (i.e., t → ∞), the layer thickness as well as the density deficit in
the layer can be evaluated by combining Eqs. (3)–(5) and (10). We obtain the set of
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FIG. 4. Dimensionless thickness of the buoyant layer ζa as a function of the parameter �, for three different
configurations. The thick solid lines correspond to the numerical solutions of Eqs. (12) and (13), the thin
solid lines correspond to the numerical solutions of Eq. (14), the thick dashed lines corresponds to Eq. (15),
and the thick dash-dotted lines correspond to Eq. (16). The symbols correspond to the experimental data: ,

configuration 1; , configuration 2; and , configuration 3. Note that the entrainment coefficient α is set to
0.12.

equations

η∗ = ηi

ηi + (1 − ηi )
(

�ss
�i

)1/2( 1−�i
1−�ss

)1/2 , (11)

ζa = (1 − ηi )5/2

�i�2

(
�ss

�i

)1/2( 1 − �i

1 − �ss

)1/2[
ηi

1 − ηi
+

(
�ss

�i

)1/2( 1 − �i

1 − �ss

)1/2]2

, (12)

where ζa = za/bi is the dimensionless thickness of the layer. The parameter � has been defined
in the relation (2) and appears naturally in Eq. (12). This parameter takes into account the effects
associated with the vent area. The parameter �ss corresponds to the value of the function � at z = za.
The value of �ss can be evaluated from Eq. (9) as follows:

ζa = H

bi
−

√
1 − ηi

4α

|1 − �i|3/10

�
1/2
i

∫ �ss

�i

dγ

γ 1/2|1 − γ |13/10
. (13)

By numerically solving the two coupled equations (12) and (13), the dimensionless layer thickness
ζa can be evaluated and subsequently the density deficit η∗.

B. Comparison with experimental data

In this section the model developed for the simultaneous filling and emptying of a box with
a plume is compared with experimental data. To do this, we focus on the thickness of the fluid
layer under the ceiling. As a reminder, three different configurations are considered experimentally,
corresponding to 24 experiments. For each configuration, the source conditions (�i and ηi) and the
box size (H/bi) are kept constant, while the surface of the vent area (i.e., �) is varied.

The experimental data are plotted in Fig. 4 together with the theoretical predictions. Note that to
compute the theoretical values, the coefficient Cd and the entrainment coefficient α are set to 0.7 and
0.12, respectively. It can be seen that, for fixed source conditions, the dimensionless layer thickness
decreases as a function of the parameter �. Since the source plume conditions and the size of the
box are fixed, the parameter � increases proportionally to the vent area. Thus, the larger the vent
area is, the smaller the thickness of the buoyant layer will be. In particular, when � = 0, their is no
opening and hence the buoyant-layer depth equals the tank depth, i.e., ζa = H/bi.
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To evaluate the improvement brought by this model, the experimental and numerical results are
compared with the simplified model obtained with the self-similar solutions of a point source plume.
This model can be found in [9], where the layer thickness is expressed by the equation

[(H

bi
− ζa

)5/3

+ �

]2(H

bi
− ζa

)5/3

=
(

5

6α

)5

�2ζa, (14)

where

c = 1

3

(
25

6πα2

)2/3

, � = cB2/3

gH5/3
.

Note that the non-Boussinesq effects are taken into account through the parameter �. By setting
� = 0 in (14), the classical Boussinesq case (see [8,26]) is then recovered as

[H

bi
− ζa

]5

=
(

5

6α

)5

�2ζa. (15)

This relation shows that in the Boussinesq case and for point source conditions, the layer thickness
is simply obtained through the geometrical parameters H/bi and �. Both Boussinesq and non-
Boussinesq relations are plotted in Fig. 4. As can be seen, the theoretical predictions of the simplified
models follow the same behavior as the experimental data. However, they predict much thinner
thickness than what is actually seen. This is true even with the simplified model taking into account
non-Boussinesq effects. To improve those models, Woods et al. [25] proposed a model that accounts
for the effect associated with the lower opening as well as for the virtual origin correction. They
obtained an implicit equation which reads(

�2 + �′2

�′2

)(H

bi
− ζa + ζv

)5

− 2
�2

�′2 ζ 5/3
v

(H

bi
− ζa + ζv

)10/3

+ ζ 10/3
v

�2

�′2
(H

bi
− ζa + ζv

)5/3

=
(

5

6α

)5

�2ζa, (16)

where ζv is the dimensionless virtual origin corrected by the source volume flux defined as

ζv =
(

5

6α

)3/5( 10

9π2α

)1/5 Q3/5
i

biB
1/5
i

and the parameter �′ as

�′ = 4
√

αCd S√
5πb2

i

,

where S is the surface of the lower boundary, which is completely open. As can be seen, when
�′ → ∞, Eq. (16) tends to that of a plume issuing from a point source, i.e., Eq. (15). It can be
observed in Fig. 4 that this model allows us to improve the theoretical predictions as compared to
those using the self-similar solutions of the plume variables. This shows that the better the primary
variables are modeled near the source, the better the predictions are. Obviously, by using the �

function, which actually turns out to be equivalent to solving numerically the Morton-Taylor-Turner
equations, the agreement is even better.

IV. SIMULTANEOUS FILLING AND EMPTYING WITH A FOUNTAIN

This section is devoted to the fountain problem. When the steady state is reached, there are two
possibilities: Either the fountain is fully submerged by the buoyant layer or the fountain is only
partially submerged by the buoyant layer. In the first case, there is no air entrainment at the bottom
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FIG. 5. Schematic of the fountain filling a box which is simultaneously emptied by an opening vent on the
ceiling. Note that A corresponds to the vent area.

of the cylinder tank (which is fully open to the atmosphere). As a result, the volume flow rate at the
outlet vent must be equal to that injected into the tank from the source. The second case is more
interesting. When the fountain is only partially submerged, the volume flow rate at the outlet vent
balances the volume flow rate discharged at the source plus the volume flow rate of the ambient air
entrained by the fountain which comes from the bottom of the cylinder tank. The model developed
in this section will analyze these two situations.

A. Theoretical model

Similarly to the plume problem, the fountain source volume flux is denoted by Qi and its density
is denoted by ρi (see Fig. 5). The conservation equations for the mass and for the buoyancy of the
buoyant layer are however slightly different. They are written as

d (Sρ∗za)

dt
= ρiQi + ρaQe − ρ∗wA, (17)

d (gη∗Sza)

dt
= Bi − gη∗wA, (18)

where Qe is the volume flux of ambient fluid entrained by the fountain. Concerning the outlet
velocity w, it is identical to the expression [5] given in the plume problem. Note that the density ρ∗
is assumed to be uniform in the buoyant fluid layer.

To complete the model, a closure model is still required for the volume flux entrained by the
fountain (i.e., Qe). Here we first focus on the situation where the fountain is not submerged by the
buoyant layer. In the case of filling a box with Boussinesq fountains, Baines et al. [14] showed
that the entrained volume is proportional to the emergent part of the fountain, i.e., proportional to
z f − za. In the present case of non-Boussinesq fountains, we propose the expression

Qe = βnb

(
ρi

ρa

)1/2 Qi

bi
(z f − za), (19)

where βnb is a constant that plays the role of an entrainment coefficient for the turbulent fountains. In
comparison with the relation proposed by Baines et al. [14], this constant of proportionality involved
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in their expression has been replaced by βnb(ρi/ρa)1/2 in order to take into account the effects of
density difference [33].

Having now established an entrainment model for the fountain, we are able to evaluate the
simultaneous filling and emptying process at steady state. Using Eqs. (19) and (5) in (17) and (18),
at the steady state, we are led to the set of equations

�(1 − ηi )1/4

η
1/2
i �

1/2
i

√
(1 − η∗)η∗ζa = (1 − ηi )

1/2 + βnb(ζ f − ζa), (20)

(
η∗

ηi

)3/2( 1 − ηi

1 − η∗

)1/2 (1 − ηi )1/4�ζ 1/2
a

�
1/2
i

= 1, (21)

where ζ f = z f /bi is dimensionless fountain height. By dividing Eq. (20) by (21), we obtain, for the
density deficit of the buoyant layer, the expression

η∗ = ηi

1 + βnb(1 − ηi)1/2(ζ f − ζa)
. (22)

By combining the relations (21) and (22), after some algebra, the following equation is obtained:

(ζ f − ζa)3 + 3 − ηi

βnb(1 − ηi )1/2
(ζ f − ζa)2 +

(
3 − 2ηi

β2
nb(1 − ηi )

+ �i�
2

(1 − ηi )β3
nb

)
(ζ f − ζa)

− �i�
2

(1 − ηi )β3
nb

ζ f + 1

(1 − ηi )1/2β3
nb

= 0. (23)

This cubic equation admits three roots. Two of these roots are complex and the third one is real and
positive. It corresponds to the stabilized buoyant-layer depth.

In the case where the fountain is completely submerged, the entrained volume flux is identically
null (i.e., Qe = 0). Thus, by using the previous notation, we obtain

η = ηi, (24)

ζa =
√

1 − ηi

�i�2
. (25)

From these relations, it is easy to seen that if

� >
(1 − ηi )1/4

(�iζa)1/2
, (26)

then the fountain is not fully submerged by the buoyant layer. Consequently, in that case, Eq. (23)
still holds for the evaluation of the buoyant-layer depth.

B. Comparison with experimental data

The comparison between the theory and the experiments essentially focuses on the stabilized
buoyant-layer depth. Indeed, its value is evaluated for each experiment and compared to the theo-
retical value derived from Eq. (23). However, before proceeding with this comparison, estimations
of the free parameters βnb and ζ f are needed.

Concerning the value of ζ f , it is evaluated directly from experimental data. Figure 6 shows the
fountain height measured at the steady state as a function of the length scale Lb. It can be seen that
it is well approximated by

z f ≈ 1.8Lb, (27)

where the length scale Lb is defined as Lb = (Mi/ρi )3/4/[Bi(ρa/ρi )]1/2 (see [20,35]) and the
momentum flux as Mi = πρib2

i u2
i . This length scale was originally introduced by Turner [6], who
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FIG. 6. Plot of the fountain height as a function of the length scale Lb. The blue squares correspond to
the experimental points, the black solid line corresponds to z f ≈ 1.8Lb, the black dotted line corresponds to
z f ≈ 1.84Lb given by [6,34], and the black dashed line corresponds to z f ≈ 1.92Lb given by [20]. The bars
correspond to the amplitude of oscillation of the fountain height set to 0.14Lb as suggested in [20].

found z f ≈ 1.84Lb for a forced fountain in the Boussinesq case. Mehaddi et al. [20] extended
this result for the case of non-Boussinesq fountains and found experimentally a coefficient of
proportionality of 1.92. This result was confirmed numerically by Vaux et al. [35] with a slightly
different coefficient of proportionality of 1.8.

Note that the fountain height fluctuates naturally around a mean value. As shown in [36] for a
Boussinesq fountain and in [20] for non-Boussinesq fountains, the amplitude of fluctuations of the
fountain height is proportional to the jet length, meaning that δz ∝ Lb. In Fig. 6 these oscillations
have been incorporated in the form of bars with an amplitude δz ≈ 0.14Lb (see [20]).

For the coefficient βnb, in the Boussinesq case (i.e., ρi/ρa → 1), Baines et al. [14] set the value
of βnb equal to 0.25, while Burridge and Hunt [37] showed that a good value for this coefficient, in
their case of forced Boussinesq fountains in unbounded environment, lies between 0.29 and 0.32.
Thus, it can be expected that a value of βnb ≈ 0.3 may be used for our problem. However, the
simplification, which consists in considering that the majority of the entrained fluid comes from the
fountain lateral edges, may be insufficient. Indeed, a part of the entrained fluid may also come from
the fountain top. Accordingly to account for a part of this effect, the value of βnb may be adjusted
to fit experimental data. As a result, in the present investigation, the value of this coefficient is
varied systematically to minimize the difference between experiments and theory. The coefficient
of determination R2 around the one-to-one line is evaluated for βnb = (0.25, 0.30, 0.35, 0.40, 0.45);
we find R2 = (0.68, 0.79, 0.84, 0.84, 0.83), respectively. Thus, in the following, the value βnb =
0.35 is chosen.

In Fig. 7(a) the thickness za is plotted as a function of the jet length Lb for a fixed value of the
outlet surface and with different values of the density ratio ηi. We obtain that the thickness of the
fluid layer varies linearly as a function of Lb. In this figure the theory is represented in the form
of two curves for two limiting values of ηi, namely, ηi = 0.2 and 0.9. We notice that the theory
reproduces in a satisfactory way the variation of the thickness za. We also notice that the density
deficit has a negligible effect on this thickness. In Fig. 7(b) we have also plotted the variation of the
thickness for two different vent areas, namely, � = 14.1 and 31.8. Here again it can be observed that
the model reproduces satisfactorily the behavior of the thickness as a function of Lb. To reinforce
these results we have fixed the value of jet length Lb or in other terms (�i and ηi) while varying the
sizes of the outlets. Therefore, as can be seen in Fig. 8, we observe the same behavior as the plume
case, namely, the decrease of the layer thickness as a function of the parameter �, and this behavior
is satisfactorily reproduced by the present model.
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(a)

(b)

FIG. 7. (a) Variation of za as a function of Lb for a fixed value of � = 14.1. The experimental data are
shaded according to the density deficit ηi; the blue line corresponds to the numerical solution of (23) with
ηi = 0.2 and the red line corresponds to ηi = 0.9. (b) Variation of za as a function of Lb for two different
values of �. The colored circles correspond to experimental data and the lines correspond to the theoretical
predictions. Red corresponds to � = 14.1 and blue corresponds to � = 31.8.

FIG. 8. Variation of ζa as a function � for two different values of �i: �i = 0.0087 (blue) and �i = 0.0114
(red).
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FIG. 9. Comparison between the experimental data and the numerical solution of (23).

Finally, Fig. 9 shows the comparison between all the experimental points and the theoretical
results. As it can be seen, fairly good agreement is achieved.

FIG. 10. Difference (ζap − ζa f )bi/H as a function of � for different values of �i, H/bi = 200, and (a) ηi =
0.05 and (b) ηi = 0.85. The thin solid lines correspond to ζap − ζa f = 0.
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FIG. 11. Difference (ζap − ζa f )bi/H as a function of � for different values of ηi, H/bi = 200, and (a) �i =
5 × 10−3 and (b) �i = 8 × 10−4. The thin dashed line in (b) corresponds to ζap − ζa f = 0.

V. COMPARISON BETWEEN PLUME AND FOUNTAIN CONFIGURATIONS

So far we have established two theoretical models for the simultaneous filling and emptying of
an enclosure. As a reminder, the configurations considered are the release of a light fluid under the
form of a turbulent plume or under the form of a turbulent fountain. The question that can now
be asked is which configuration (fountain or plume) results in a larger fluid layer and in a lower
density deficit. Alternatively, for given source conditions and enclosure size, does a plume entrain
more efficiently its surrounding than a fountain? To answer this question let us note that from the
two models, the following functional relations can be inferred:

ζa f , η∗
f = f (�i, �, ηi ), ζ f <

H

bi
, (28)

ζap, η∗
p = f

(
�i, �, ηi,

H

bi

)
. (29)

Here ζa f , ζap , η∗
f , and η∗

p are the layer depth resulting from the fountain configuration, the layer
depth resulting from the plume, the density in the fountain configuration, and the density in the
plume configuration, respectively. It is seen in relation (28) that the height of the box is an implicit
parameter which limits the height of the fountain ζ f .

We first discuss the plume and fountain configurations in terms of the layer depth. To evaluate
which configuration gives rise to the largest layer, we plot in Figs. 10 and 11 the difference
(ζap − ζa f )bi/H . If the resulting layer from a plume release is larger than the layer resulting from a
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FIG. 12. Ratio η∗
p/η

∗
f as a function of � for different values of �i, H/bi = 200, and a source density deficit

of (a) ηi = 0.05 and (b) ηi = 0.85. The thin dashed line in (b) corresponds to η∗
p/η

∗
f = 1.

fountain release, then the ratio (ζap − ζa f )bi/H will be positively valued. In Figs. 10(a) and 10(b),
(ζap − ζa f )bi/H is plotted as a function of � for fixed ηi and �i. In that case, an increase of �

corresponds to the increase of the vent area A. Let us first note that for a fixed �i, the difference
(ζap − ζa f )bi/H decreases according to the parameter �. Indeed, an increase in the value of �

induces, for similar injection conditions, a decrease in the thickness of the fluid layer in both
configurations. However, in view of Fig. 8, it appears that the thickness of the fluid layer decreases
more for the plume configuration than for the fountain configuration. Moreover, it can also be seen
that the value of (ζap − ζa f )bi/H approaches zero as �i decreases. In particular, it is observed that
for large values of �, the layer resulting from the fountain becomes bigger than that of the plume.
However, it can also be seen that for the majority of situations, the plume configuration seems to
be more efficient. In Figs. 11(a) and 11(b) the influence of the density deficit is depicted for two
different values of the parameter �i. It can be seen that the efficiency of the plume configuration
diminishes as the density deficit ηi increases. This fact can be explained by the strong dependence
of the plume entrainment coefficient on the density deficit.

In Figs. 12 and 13 the ratio η∗
p/η

∗
f is plotted as a function of the parameter �. If η∗

p/η
∗
f < 1

corresponding to �ρ∗
p < �ρ∗

f , the plume configuration mixes more efficiently with the ambient
fluid, while in the opposite case (η∗

p/η
∗
f > 1) it is the fountain that mixes better. In Figs. 12(a) and

12(b) the ratio η∗
p/η

∗
f is plotted for a fixed ηi and different values of �i. It can be seen that similarly

to the layer depth, the ratio η∗
p/η

∗
f is lower than 1, which confirms that the plume configuration is

more efficient in the majority of the tested situations in terms of mixing. However, below a certain
value of �i, the fountain configuration produces a layer with lower density than the plume case.
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FIG. 13. Ratio η∗
p/η

∗
f as a function of � for different values of ηi, H/bi = 200, and (a) �i = 5 × 10−3 and

(b) �i = 8 × 10−4. The thin solid line in (b) corresponds to η∗
p/η

∗
f = 1.

In Figs. 13(a) and 13(b) the effect of the source density deficit is evaluated by fixing the parameter
�i and varying ηi. It can be seen that the non-Boussinesq effects (larger values of ηi) do not change
the general trend of the ratio η∗

p/η
∗
f as a function of � for �i = 5 × 10−3. In that case, the plume

always dominates because the fountain height is not large enough to mix its surrounding.

VI. CONCLUSION

In this paper we have investigated theoretically and experimentally the simultaneous filling and
emptying of a box in the non-Boussinesq case. Two configurations have been considered, namely,
the configuration where a light fluid was released from the bottom (plume) and the case where a
light fluid was released from above (fountain). In both configurations, the compartment contains a
vent area at the ceiling. To compare these configurations, a model for the plume filling box was
first established. The model is based on the plume theory expressed with the � function and in
the non-Boussinesq general case. This configuration allowed us to take into account the density
effects and also the effects associated with the finite-size source. Experiments were conducted with
an air-helium setup for the plume filling box model. The comparison between the experiments and
the model showed good agreement. In addition, a model for the fountain filling box model was also
established. This model is based on a formulation of the fountain entrainment that accounts for the
non-Boussinesq effects. Here again an experimental campaign was undertaken. The experimental
data were compared to the theory and fairly well agreement was observed.
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Finally, these two models were compared in the case where the fountain and the plume have the
same source conditions and fixed box geometrical characteristics (the box height and the vent area).
This comparison has shown that the plume configuration produced, in most cases, a thicker layer
of fluid under the ceiling and therefore an average density lower than that resulting from a fountain
discharge. As the jet length Lb increases, the gap between the fountain and plume configurations
decreases. This observation simply reflects the proportional relationship between the height of the
fountain and the entrainment rate. Thus, beyond a certain value of the jet length Lb, the fountain
configuration becomes better in terms of its ability to produce a wider layer and better mixed with
its environment. This final result is of importance in applications where a choice may have to be
made between an upward or a downward discharge.
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