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A polyatomic gas with slow relaxation of the internal modes in contact with a solid
boundary is considered. In a previous paper [K. Aoki et al., Phys. Rev. E 102, 023104
(2020)], the two-temperature Navier-Stokes system, i.e., a set of compressible Navier-
Stokes equations with the translational and internal temperatures, was derived from the
ellipsoidal-statistical (ES) model of the Boltzmann equation for a polyatomic gas under
the assumption that the Knudsen number is small and the ratio of the collisional mean free
time to the relaxation time of the internal modes is as small as the Knudsen number. In the
present study, the appropriate boundary conditions for the two-temperature Navier-Stokes
system are derived by the analysis of the Knudsen layer on the basis of the ES model
for a polyatomic gas and the Maxwell-type diffuse-specular reflection condition on the
boundary. The resulting boundary conditions, which are of the type of slip boundary
conditions, are summarized, together with the two-temperature Navier-Stokes equations,
in a form that is applicable to practical applications immediately.
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I. INTRODUCTION

Rarefied polyatomic gas flows play increasingly important roles in nonequilibrium gas dynamics
and its applications. For these flows, one needs kinetic theory based on the Boltzmann equation,
which can be written in an abstract form using the transition probabilities of microscopic states of
molecules during molecular collisions [1–9]. However, the transition probabilities, which depend
on the detailed structure of molecules and thus on individual gases, are not known for many
polyatomic gases. Therefore, it is hard to directly apply the Boltzmann equation for practical flow
problems.

To avoid this difficulty, two different approaches are often taken, in addition to the direct
simulation Monte Carlo (DSMC) method [10], which will not be discussed in this paper. One
approach is to use kinetic model equations, such as the models of the Bhatnagar-Gross-Krook
(BGK) type, that have dramatically simplified collision integrals and satisfy some basic properties
of the original Boltzmann equation [11–25]. The other is to use macroscopic or fluid equations that
are simpler than the kinetic models but are expected to be accurate when the state of the gas is close
to a local equilibrium. In the present study, we consider the latter approach.

There have been many attempts to construct macroscopic equations on the basis of kinetic theory
or purely macroscopic considerations [6,8,21,26–34]. One of the standard approaches is to derive
equations of Euler and Navier-Stokes types using the Chapman-Enskog procedure [35] from the
Boltzmann equation [6,8,28,33,34]. In the case of a polyatomic gas, the standard Chapman-Enskog
expansion leads to the ordinary Navier-Stokes equations with a single temperature and with bulk
viscosity. However, for a gas in which the characteristic (or relaxation) times of different internal
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modes of a molecule differ significantly, the ordinary Navier-Stokes equations with a single temper-
ature are not sufficient to describe flow properties [28,31,33].

In order to reduce the difficulty, some authors have derived the Euler- or Navier-Stokes-type
equations with multi temperatures associated with the translational motion and with the internal
modes of a molecule on the basis of the Boltzmann equation, taking into account the differences in
the relaxation times of different internal modes [1,28,33,34]. However, although accurate theoreti-
cally, these approaches require a large amount of information on the molecular structure, containing
numerical and empirical formulas and some assumptions, for individual gases. Therefore, for
practical applications, it was desirable to construct handy and overall fluid-dynamic models that
do not depend on the detailed molecular structure but contain only overall information.

To answer this problem, four of the present authors proposed a handy set of macroscopic
equations of Navier-Stokes type with two temperatures, which they called the two-temperature
Navier-Stokes equations (or system) [36]. Unlike the previous studies [1,28,33], the starting point
was not the original Boltzmann equation but the polyatomic version of the ellipsoidal-statistical (ES)
model, which is one of the widely used kinetic models proposed in [16] and rederived in a systematic
way in [37]. The ES model contains a parameter that is of the order of the ratio of the mean free time
of the gas molecules to the relaxation time of the internal modes. Under the assumption that this
parameter is as small as the Knudsen number, the Chapman-Enskog expansion [35] was carried out
to derive the two-temperature Navier-Stokes equations. Since the number of parameters contained
in the ES model is much less than the original Boltzmann equation, the transport properties of
the resulting two-temperature Navier-Stokes system in terms of the parameters are much simpler
and perfectly explicit. Therefore, it has a wide applicability to practical flow problems. In fact, the
system was successfully applied to the problem of the structure of a stationary shock wave in CO2

gas [36,38].
However, since most of practical flow problems contain solid boundaries, we need appropriate

boundary conditions in order to enlarge the applicability of the two-temperature Navier-Stokes
equations. The appropriate boundary conditions for the standard Navier-Stokes equations with a
single temperature have been obtained for a polyatomic gas in [39] on the basis of the ES model,
following the procedure in [40] for a monatomic gas. In the present study, we will derive the
appropriate boundary conditions for the two-temperature Navier-Stokes equations [36], starting
from the ES model, together with the condition of diffuse-specular reflection on the boundaries (the
so-called Maxwell-type condition), and following the method in [39]. The essence of the procedure
lies in the analysis of the Knudsen layer adjacent to the boundary. The adoption of the ES model,
which is consistent with the two-temperature Navier-Stokes equations, facilitates the analysis of the
Knudsen layer and enables to obtain the explicit form of the boundary conditions, which are of the
form of slip conditions, as we will see in Sec. VII. It should be emphasized that it is a great advantage
of the two-temperature Navier-Stokes equations to have clear boundary conditions, compared with
other types of moment equations.

Here the following remark is in order. Let us consider the case of a monatomic gas. The
(compressible) Navier-Stokes equations correspond to the first-order Chapman-Enskog solution,
which formally satisfies the Boltzmann equation up to the order of the Knudsen number (Kn).
Therefore, the boundary conditions for the Navier-Stokes equations should be constructed in such
a manner that the kinetic boundary condition for the Boltzmann equation is satisfied up to the order
of Kn, and the resulting conditions are of the form of slip conditions, as pointed out in [40]. In this
sense, the usual no-slip conditions, which correspond to satisfying the kinetic boundary condition
only at the zeroth order in Kn, are not consistent, and use is to be made of the slip boundary
conditions for the Navier-Stokes equations. The same remark applies to the case of a polyatomic
gas, including the boundary conditions for the two-temperature Navier-Stokes equations.

The paper is organized as follows. After this introduction, the slip boundary conditions for
the two-temperature Navier-Stokes equations, which are the main results of the paper, are sum-
marized in Sec. II, where the original kinetic problem and the assumptions are stated, and the
two-temperature Navier-Stokes equations are also summarized. The ES model and its initial and
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boundary conditions are mentioned in Sec. III, and their dimensionless forms are presented in
Sec. IV. In Sec. V the parameter setting for a polyatomic gas with slow relaxation of the internal
modes is explained, and the first-order Chapman-Enskog solution, which corresponds to the two-
temperature Navier-Stokes system, is summarized. The Knudsen-layer is introduced in Sec. VI,
and its analysis is carried out to derive the slip boundary conditions in Secs. VI and VII. The
two-temperature Navier-Stokes equations and the derived slip boundary conditions are summarized
in dimensional form in Sec. VIII. Section IX is devoted to brief remarks. In addition, the main text
is supplemented by four Appendixes.

II. SUMMARY OF MAIN RESULTS

Our aim is to construct the boundary conditions for the two-temperature Navier-Stokes equations
derived in [36]. For this purpose, we need to start with the description of the problem in the
framework of kinetic theory. One will see how the analysis of the kinetic problem provides the
desired boundary conditions in the following sections. However, since the analysis takes several
pages, we will summarize the main results, together with some necessary information, in this
section.

A. Problem and assumptions

The basic kinetic problem is described as follows. Let us consider a polyatomic (or diatomic)
ideal gas in contact with solid boundaries of arbitrary but smooth shape. The gas may extend to
infinity, and no external force acts on the gas molecules. We investigate the unsteady behavior of
the gas under the following assumptions:

(i) The behavior of the gas is described by the ES model of the Boltzmann equation for a
polyatomic gas [16,37].

(ii) The boundaries do not deform and undergo a rigid-body motion, and the gas-surface
interaction is described by the Maxwell-type diffuse-specular reflection.

(iii) The Knudsen number, which is the ratio of the mean free path (or the mean free time)
of the gas molecules at the reference equilibrium state at rest to the characteristic length (or the
characteristic time) of the system, is sufficiently small.

(iv) The gas is such that the internal modes relax much slower than the translational mode. To be
more precise, the ratio of the mean free time of the gas molecules to the characteristic (or relaxation)
time of the internal modes is as small as the Knudsen number.

(v) At the initial time, the boundaries are at rest and have a uniform temperature, and the gas is
in the equilibrium state at rest with the same temperature. After the initial time, the boundaries may
start moving smoothly, and their temperature may change smoothly in time and position. (For the
problems including infinities, the corresponding initial state and slow variations should be assumed
at infinities.)

We put assumption (v) to avoid the occurrence of the initial layer and that of the interaction
between the initial layer and the Knudsen layer during the initial stage for the sake of theoretical
rigor (cf. [40]). Assumption (v) may be relaxed if we admit the inaccuracy during the initial stage
with the duration of the order of the mean free time.

B. Notation and parameters

Let us denote by δ the number of the internal degrees of freedom of the gas molecule, where δ

is a constant such that δ � 2. Then the specific heat at constant volume cv, that at constant pressure
cp, and the ratio of the specific heats γ = cp/cv are all constant and are expressed as

cv = δ + 3

2
R, cp = δ + 5

2
R, γ = δ + 5

δ + 3
. (1)
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Here R is the gas constant per unit mass and is related to the Boltzmann constant kB and the mass
of a molecule m by R = kB/m.

Let t be the time variable and X (or Xi) be the position vector in the physical space. Let ρ denote
the density, v (or vi) the flow velocity, Ttr the temperature associated with the translational energy,
Tint the temperature associated with the energy of the internal modes, and T the temperature. The
kinetic definitions of these macroscopic quantities are given in Eqs. (18d), (18e), and (18g)–(18i) in
Sec. III A, respectively.

The ES model, which will be detailed in Sec. III A and Appendix A, contains two adjustable
parameters ν ∈ [−1/2, 1) and θ ∈ [0, 1], as well as a function Ac(T ) of the temperature T such
that Ac(T )ρ indicates the collision frequency of the gas molecules. These quantities are related
to the viscosity μ(T ), the bulk viscosity μb(T ), and the thermal conductivity λ(T ) as shown by
Eqs. (A7a)–(A7c) in Appendix A 2. As the result, the Prandtl number Pr = cpμ/λ is expressed in
terms of ν and θ by Eq. (A8).

C. Two-temperature Navier-Stokes equations

In this subsection, we summarize the two-temperature Navier-Stokes equations, derived in [36],
in the dimensionless form. Their dimensional form is shown in Sec. VIII.

Let us denote by L the reference length, t0 the reference time, ρ0 the reference density, and T0 the
reference temperature. In the present study, we choose t0 as

t0 = L/(2RT0)1/2, (2)

which corresponds to the so-called fluid-dynamic scaling. Now we introduce the dimensionless
quantities [t̂ , xi, ρ̂, v̂i, T̂tr, T̂int, T̂ , Âc(T̂ )], which correspond to the original dimensional quantities
[t , Xi, ρ, vi, Ttr, Tint, T , Ac(T )], by the following relations:

t̂ = t/t0, xi = Xi/L, ρ̂ = ρ/ρ0, v̂i = vi/(2RT0)1/2,

(T̂tr, T̂int, T̂ ) = (Ttr, Tint, T )/T0, Âc(T̂ ) = Ac(T )/Ac(T0). (3)

According to assumption (iii) in Sec. II A, the Knudsen number Kn, defined by Kn = l0/L, is
small, where l0 is the mean free path of the gas molecules at the reference equilibrium state at rest
with density ρ0 and temperature T0 [cf. Eq. (A5) in Appendix A 1]. In the present paper, we use the
small parameter ε:

ε =
√

π

2
Kn =

√
π

2

l0
L

� 1, (4)

in place of Kn. As will be explained in Sec. V A, the ratio of the mean free time of the gas molecules
to the characteristic (or relaxation) time of the internal modes is represented by the parameter θ

included in the ES model. Therefore, assumption (iv) in Sec. II A indicates the following setting:

θ = αε � 1, (5)

where α is a positive constant (parameter) of the order of unity. It follows from Eq. (A9) that small
values of θ indicate large values of the ratio μb/μ of the bulk viscosity to the viscosity. Therefore,
we can also say that we are considering gases with large bulk viscosities.

The two-temperature Navier-Stokes equations, which have been derived from the ES model by
the Chapman-Enskog expansion under the condition (5), have the following form [36]:

∂ρ̂

∂ t̂
+ ∂ (ρ̂v̂ j )

∂x j
= 0, (6a)

∂ (ρ̂v̂i )

∂ t̂
+ ∂ (ρ̂v̂iv̂ j )

∂x j
+ 1

2

∂ (ρ̂T̂tr )

∂xi
= 1

2
ε

∂

∂x j

[
�μ(T̂ , T̂tr )

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)]
, (6b)
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∂

∂ t̂

[
ρ̂

(
3

2
T̂tr + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
5

2
T̂tr + v̂2

i

)]
− 3

2
αÂc(T̂ )ρ̂2(T̂ − T̂tr )

= 5

4
ε

∂

∂x j

[
�λ(T̂ , T̂tr )

∂T̂tr

∂x j

]
+ ε

∂

∂x j

[
�μ(T̂ , T̂tr )v̂i

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)]
, (6c)

∂ (ρ̂T̂int )

∂ t̂
+ ∂ (ρ̂v̂ j T̂int )

∂x j
− αÂc(T̂ )ρ̂2(T̂ − T̂int ) = 1

2
ε

∂

∂x j

[
�λ(T̂ , T̂tr )

∂T̂int

∂x j

]
, (6d)

where

�μ(T̂ , T̂tr ) = T̂tr

(1 − ν)Âc(T̂ )
, �λ(T̂ , T̂tr ) = T̂tr

Âc(T̂ )
, (7)

and T̂ = (3T̂tr + δT̂int )/(3 + δ). These are the equations for ρ̂, v̂i, T̂tr, and T̂int and contain the
parameters ε, ν, and α. Here and in what follows, we basically use the summation convention,
i.e., aibi = ∑3

i=1 aibi, a2
i = ∑3

i=1 a2
i , etc. It is shown in Appendix B that the ordinary Navier-Stokes

equations with a single temperature can be recovered from Eq. (6).

D. Slip boundary conditions: Main results

The slip boundary conditions for the two-temperature Navier-Stokes equations, which are ob-
tained by the analysis of the Knudsen layer detailed in Secs. VI and VII, are the main results in this
paper. Their dimensionless form is summarized below. See Sec. VIII for their dimensional form.

Let X w (or Xwi) be the position of a point on the boundary, vw (or vwi) and Tw be, respectively, the
velocity and temperature of the boundary at the point X w. Let us denote by n (or ni) the unit normal
vector to the boundary, pointing into the gas, at X w and by t (or ti) an arbitrary unit tangential
vector to the boundary at the same point. Following the notion of fields, we understand that the
arguments of vw, Tw, n, and t are (t, X w). Then we introduce the dimensionless quantities (xwi, v̂wi,
T̂w) corresponding to (Xwi, vwi, Tw) by

xwi = Xwi/L, v̂wi = vwi/(2RT0)1/2, T̂w = Tw/T0. (8)

The kinetic boundary condition for the ES model is the Maxwell-type condition, which is a
linear combination of the diffuse reflection, with coefficient ac (0 � ac � 1), and the specular
reflection, with coefficient 1 − ac [see assumption (ii) in Sec. II A]. The coefficient ac is the so-called
accommodation coefficient, giving the specular reflection when ac = 0 and the diffuse reflection
when ac = 1. In the present paper, we exclude the case of specular reflection assuming that ac is
strictly positive. The explicit form of the kinetic boundary condition is given by Eq. (25) in Sec. III B
in the dimensional form and by Eq. (41) in Sec. IV B in the dimensionless form.

Under the Maxwell-type condition, the ES model gives the following slip boundary conditions
for Eq. (6):

(v̂i − v̂wi )ni = 0, (9a)

(v̂i − v̂wi )ti = εcI
v

T̂ 1/2
w

Âc(T̂w)

1

ρ̂

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi

)
nit j + εcI

T

1

Âc(T̂w)

1

ρ̂

∂T̂w

∂xi
ti, (9b)

T̂tr − T̂w = εcII
v

T̂w

Âc(T̂w)

1

ρ̂

∂ v̂i

∂x j
nin j + εcII

T

T̂ 1/2
w

Âc(T̂w)

1

ρ̂

∂T̂tr

∂xi
ni, (9c)

T̂int − T̂w = εc̃II
T

T̂ 1/2
w

Âc(T̂w)

1

ρ̂

∂T̂int

∂xi
ni, (9d)

where the quantities ρ̂, v̂i, T̂tr, and T̂int as well as their derivatives are all evaluated at the boundary
x = xw. The coefficients cI

v , cI
T , cII

v , cII
T , and c̃II

T , which are called the slip coefficients, depend on
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TABLE I. Values of cI
vBGK and cI

T BGK [43].

ac cI
vBGK cI

T BGK

0.1 17.10313 0.2641783
0.2 8.224902 0.2781510
0.3 5.255112 0.2919238
0.4 3.762619 0.3055019
0.5 2.861190 0.3188906
0.6 2.255410 0.3320949
0.7 1.818667 0.3451195
0.8 1.487654 0.3579692
0.9 1.227198 0.3706483
1.0 1.016191 0.3831612

the parameters ν (except cI
T and c̃II

T ) and ac. Leaving the details of the analysis determining the slip
coefficients to Sec. VII, we show only their resulting numerical values here.

It is noted that the coefficients cI
v , cI

T , and c̃II
T satisfy the following relations:

cI
v = 1

1 − ν
cI
vBGK, cI

T = cI
T BGK, c̃II

T = cI
vBGK, (10)

where cI
vBGK and cI

T BGK are, respectively, the shear-slip and thermal-slip (creep) coefficients for the
BGK model [41,42] for a monatomic gas (see Sec. VII C for the details). Therefore, the coefficients
cI
v , cI

T , and c̃II
T are obtained immediately from the known values in the literature. The numerical

values of cI
vBGK and cI

T BGK, taken from [43], are tabulated in Table I for various values of ac.
In contrast, a new numerical analysis is required to obtain the numerical values of cII

v and cII
T

(see Sec. VII C and Appendix D). We show the resulting numerical values in Tables II and III for
various values of the parameter ν and the accommodation coefficient ac. The range −1/2 � ν �
1/2 corresponds to the range 2/(3 − θ ) � Pr � 2/(1 + θ ) of the Prandtl number, and ν = 0 (i.e.,
Pr = 1) corresponds to the BGK model. It is noted that the values of cII

v and cII
T for ac = 1 and

ν = −0.5 and 0 had been obtained in [44,45] and that the values in Tables II and III agree with the
corresponding values (i.e., c(0)

5 and c(0)
1 , respectively) in [44,45] up to four to five decimal places.

With the numerical data in Tables II and III, one can easily obtain the values of cII
v and cII

T at arbitrary
ν and ac by appropriate interpolation.

If we plot cII
v versus ac for fixed values of ν, we find that cII

v is almost linear with respect to ac

(the plot is omitted). Similarly, if we plot cII
v versus 1/(1 − ν), we can observe that cII

v is almost
proportional to 1/(1 − ν) (the plot is omitted). These facts suggest an approximate numerical fit of
the following simple form:

cII
v ≈ k1ac + k2

1 − ν
, k1 = 0.1046, k2 = 0.3358. (11)

This formula can reproduce the values in Table II within the error of 1% for −0.3 � ν � 0.1; 1.6%
for ν = −0.5, −0.4, and 0.3; and 3% for ν = 0.5. On the other hand, it is seen from Table III that
cII

T is almost independent of ν. Therefore, neglecting the dependence of cII
T on ν, one can propose

the following simple numerical fit for cII
T :

cII
T ≈ k3 − ac

ac
, k3 = 2.302. (12)

This formula can reproduce the values in Table III within the error of 1% for ac = 0.3, 0.4, 0.5, 0.9,
and 1; 1.5% for ac = 0.6, 0.7, and 0.8; 1.7% for ac = 0.2; and 2.7% for ac = 0.1.
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TABLE II. Values of cII
v .

ac ν = −0.5 ν = −0.4 ν = −0.3 ν = −0.2 ν = −0.1

0.1 0.229056 0.245551 0.264600 0.286847 0.313171
0.2 0.235862 0.252963 0.272726 0.295826 0.323182
0.3 0.242643 0.260334 0.280791 0.304717 0.333070
0.4 0.249400 0.267666 0.288797 0.313522 0.342836
0.5 0.256135 0.274961 0.296747 0.322244 0.352485
0.6 0.262849 0.282221 0.304641 0.330886 0.362018
0.7 0.269545 0.289446 0.312481 0.339448 0.371439
0.8 0.276224 0.296640 0.320270 0.347934 0.380750
0.9 0.282887 0.303802 0.328010 0.356345 0.389955
1.0 0.289536 0.310936 0.335700 0.364684 0.399056

ac ν = 0 ν = 0.1 ν = 0.3 ν = 0.5

0.1 0.344801 0.383520 0.494486 0.695347
0.2 0.356088 0.396415 0.512244 0.722726
0.3 0.367200 0.409062 0.529488 0.748894
0.4 0.378141 0.421470 0.546243 0.773934
0.5 0.388917 0.433645 0.562528 0.797920
0.6 0.399532 0.445596 0.578365 0.820919
0.7 0.409989 0.457328 0.593771 0.842994
0.8 0.420294 0.468848 0.608765 0.864202
0.9 0.430449 0.480163 0.623364 0.884595
1.0 0.440460 0.491277 0.637583 0.904222

TABLE III. Values of cII
T .

ac ν = −0.5 ν = −0.4 ν = −0.3 ν = −0.2 ν = −0.1

0.1 21.4458 21.4465 21.4472 21.4480 21.4490
0.2 10.3436 10.3442 10.3449 10.3456 10.3465
0.3 6.62711 6.62763 6.62822 6.62888 6.62964
0.4 4.75734 4.75780 4.75832 4.75891 4.75957
0.5 3.62652 3.62692 3.62738 3.62789 3.62846
0.6 2.86536 2.86571 2.86611 2.86655 2.86705
0.7 2.31560 2.31591 2.31625 2.31663 2.31705
0.8 1.89811 1.89837 1.89866 1.89898 1.89933
0.9 1.56890 1.56912 1.56936 1.56963 1.56993
1.0 1.30160 1.30178 1.30198 1.30220 1.30244

ac ν = 0 ν = 0.1 ν = 0.3 ν = 0.5

0.1 21.4501 21.4515 21.4550 21.4607
0.2 10.3475 10.3486 10.3517 10.3566
0.3 6.63052 6.63154 6.63423 6.63841
0.4 4.76033 4.76122 4.76354 4.76711
0.5 3.62913 3.62989 3.63188 3.63489
0.6 2.86762 2.86827 2.86996 2.87248
0.7 2.31753 2.31809 2.31951 2.32161
0.8 1.89974 1.90021 1.90139 1.90311
0.9 1.57026 1.57065 1.57162 1.57301
1.0 1.30272 1.30303 1.30381 1.30492
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TABLE IV. Thermophysical properties of some gases with large bulk viscosities.

106μ [Pa s] s γ Pr μb/μ 103θ ν

H2 8.955a 0.67 1.406a 0.7072a 28b 13.2 −0.420
CO2 14.91a 0.83 1.293a 0.767a 3849b 0.127 −0.304
SF6 15.24a 0.90 1.097a 0.806a 320b 2.21 −0.241
CH4 11.43a 0.83 1.305a 0.7630a 240b 1.98 −0.311
C2H4 10.30a 0.97 1.245a 0.7718a 130b 4.20 −0.297
C3H8 8.219a 0.97 1.136a 0.6853a 240b 3.23 −0.461

aValue at 300 K, 101 kPa in [46].
bValue at 300 K in [47].

The boundary conditions (9) should be supplemented by the initial condition. If we admit the
inaccuracy in the initial stage 0 < t̂ < O(mean free time) in practical applications, we may ignore
assumption (v) in Sec. II A and assume the following initial conditions:

ρ̂ = ρ̂ in(x), v̂ = v̂in(x), T̂tr = T̂ in
tr (x), T̂int = T̂ in

int (x), at t̂ = 0, (13)

where ρ̂ in(x), v̂in(x), T̂ in
tr (x), and T̂ in

int (x) are appropriately chosen functions (see Sec. VII D for the
discussion about this point).

E. Remarks on applications

We now have the complete system consisting of the two-temperature Navier-Stokes equations
(6), the slip boundary conditions (9), and the initial conditions (13). However, in order to apply the
system to practical problems, we have to identify the parameters ε, ν, and θ (or α) [cf. Eq. (5)]
and the function Âc(T̂ ) from the properties of the gas under consideration. The accommodation
coefficient ac, which depends also on the property of the boundary, is excluded in this discussion.
A conventional way to identify the parameters and Âc(T̂ ) is to use the data of transport coefficients
of the gas, since the data of shear and bulk viscosities and the thermal conductivity (or the Prandtl
number) are often available. Here we should note that these transport coefficients make sense under
the ordinary Navier-Stokes constitutive laws (A6). Therefore, we use the expressions (A7a)–(A9) of
the transport coefficients in terms of ν, θ , and Ac(T ). To be more specific, we first determine ν and θ

from the data of μb/μ and Pr, which are often available, using Eqs. (A8) and (A9). The parameter θ

thus obtained should be small, otherwise the two-temperature Navier-Stokes equations are not valid.
Then, knowing the temperature dependence of the viscosity μ from the data, we determine Ac(T )
from Eq. (A7a). Once Ac(T ) is determined, its dimensionless counterpart Âc(T̂ ) is determined by
Eq. (3), and then ε by Eqs. (4) and (A5).

F. Examples of real gases

Now we provide some examples of real gases. We consider the gases with large bulk viscosities
listed in Table IV. The data for the viscosity μ, the ratio of the specific heats γ , and the Prandtl
number Pr, which are at T = 300 K and p = 101 kPa, are taken from [46], whereas those for the
ratio μb/μ, which are at T = 300 K, are taken from [47]. Note that for the ES model, μ does not
depend on p. From these data, one obtains the values of θ and ν in Table IV by using Eqs. (A8)
and (A9).

With ν in Table IV, we can obtain the values of the slip coefficients for each gas. The values of
cI
v , cI

T , and c̃II
T are obtained immediately from Eq. (10) and Table I. The values of cII

v and cII
T are

obtained from Tables II and III or Eqs. (11) and (12). The results for ac = 0.2, 0.5, and 1 are shown
in Table V, where “Interpolation” indicates the values obtained by a simple linear interpolation,
with respect to 1/(1 − ν), using the two neighboring values in Tables II and III, and “Numerical”
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TABLE V. Values of cII
v and cII

T for some gases.

cII
v cII

T

ac Eq. (11) Interpolation Numerical Eq. (12) Interpolation Numerical

H2 0.2 0.251211 0.249350 0.249348 10.5100 10.3441 10.3441
0.5 0.273310 0.270984 0.270979 3.60400 3.62684 3.62684
1.0 0.310141 0.306415 0.306410 1.30200 1.30174 1.30174

CO2 0.2 0.273558 0.271877 0.271877 10.5100 10.3449 10.3448
0.5 0.297623 0.295811 0.295810 3.60400 3.62736 3.62736
1.0 0.337730 0.334637 0.334635 1.30200 1.30197 1.30197

SF6 0.2 0.287446 0.285905 0.285899 10.5100 10.3453 10.3453
0.5 0.312732 0.311293 0.311283 3.60400 3.62767 3.62767
1.0 0.354875 0.352236 0.352224 1.30200 1.30211 1.30210

CH4 0.2 0.272098 0.270404 0.270403 10.5100 10.3448 10.3448
0.5 0.296034 0.294188 0.294184 3.60400 3.62733 3.62732
1.0 0.335927 0.332791 0.332787 1.30200 1.30196 1.30195

C2H4 0.2 0.275035 0.273367 0.273367 10.5100 10.3449 10.3449
0.5 0.299229 0.297455 0.297453 3.60400 3.62739 3.62739
1.0 0.339553 0.336504 0.336503 1.30200 1.30199 1.30198

C3H8 0.2 0.244162 0.242253 0.242250 10.5100 10.3438 10.3438
0.5 0.265640 0.263171 0.263164 3.60400 3.62667 3.62667
1.0 0.301437 0.297534 0.297527 1.30200 1.30167 1.30167

indicates the numerical result based on the method outlined in Appendix D. It is seen that the
interpolation based on Tables II and III is sufficient to obtain accurate values.

In order to determine Ac(T ), we assume the following power law with respect to T for the
viscosity μ:

μ(T ) = μ(300 K) × (T/300 K)s (14)

and determine the exponent s using the method of least squares on the basis of the data provided in
[46]. The obtained value of s for each gas is also shown in Table IV. Equation (14) with these values
of s reproduces the data of μ given in [48] quite well in the temperature range 250–1300 K for CO2

and 250–600 K for SF6, CH4, and C2H4. Equations (A7a) and (A8) then give

Ac(T ) = Ac(300 K) × (T/300 K)1−s, Ac(300 K) = (RPr) × [300 K/μ(300 K)], (15)

and thus Âc(T̂ ) = T̂ 1−s. With this Ac(T ), the reference mean free path l0 is obtained by Eq. (A5).
Then the parameters ε and α are determined by Eqs. (4) and (5), respectively.

III. ES MODEL AND ITS INITIAL AND BOUNDARY CONDITIONS

In this and the following sections (Secs. III–VII), we will describe the steps that have led to our
results summarized in Sec. II. First, the basic kinetic problem, which is described in Sec. II A, is
formulated in this section.

A. ES model

We first describe the ES model for a polyatomic gas that was proposed in [16] and rederived in a
systematic way in [37]. Its basic properties are shown in Appendix A.

We have introduced the number of the internal degrees of freedom δ, the time variable t , and the
space position vector X in Sec. II B. In addition, let ξ (or ξi) be the molecular velocity and E be the
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energy per unit mass associated with the internal modes (i.e., the combined energy for the δ modes),
which is continuous ranging from 0 to ∞. We denote the number of the gas molecules, at time t ,
contained in an infinitesimal volume dX dξ dE around a point (X , ξ, E ) in the seven-dimensional
(extended) phase space consisting of X , ξ, and E by

1

m
f (t, X , ξ, E ) dX dξ dE . (16)

Therefore, f (t, X , ξ, E ) is the mass density in the seven-dimensional phase space. We call
f (t, X , ξ, E ) the velocity-energy distribution function of the gas molecules. It is governed by the
ES model of the Boltzmann equation for a polyatomic gas [16,37], which can be written in the
following form:

∂ f

∂t
+ ξi

∂ f

∂Xi
= Q( f ), (17)

where

Q( f ) = Ac(T )ρ(G − f ), (18a)

G = ρEδ/2−1

(2π )3/2(detT)1/2(RTrel )δ/2�(δ/2)
exp

(
−1

2
(T−1)i j (ξi − vi )(ξ j − v j ) − E

RTrel

)
, (18b)

(T)i j = (1 − θ )[(1 − ν)RTtrδi j + νpi j/ρ] + θRT δi j, (18c)

ρ =
∫∫ ∞

0
f dE dξ, (18d)

vi = 1

ρ

∫∫ ∞

0
ξi f dE dξ, (18e)

pi j =
∫∫ ∞

0
(ξi − vi )(ξ j − v j ) f dE dξ, (18f)

Ttr = 1

3Rρ

∫∫ ∞

0
|ξ − v|2 f dE dξ, (18g)

Tint = 2

δRρ

∫∫ ∞

0
E f dE dξ, (18h)

T = 3Ttr + δTint

3 + δ
, (18i)

Trel = θT + (1 − θ )Tint. (18j)

Here ρ, vi, Ttr, Tint, and T are the macroscopic quantities already appeared in Sec. II B, pi j is the
stress tensor, dξ = dξ1 dξ2 dξ3, and the domain of integration with respect to ξ is its whole space
R3. The symbol δi j indicates the Kronecker delta, ν ∈ [−1/2, 1) and θ ∈ [0, 1] are the adjustable
parameters mentioned in Sec. II B, and Ac(T ), also appeared in Sec. II B, is a function of T such
that Ac(T )ρ is the collision frequency of the gas molecules. In addition, �(z) is the gamma function
defined by

�(z) =
∫ ∞

0
sz−1e−s ds, (19)

T is the 3×3 matrix with its (i, j) component defined by Eq. (18c), and detT and T−1 are,
respectively, its determinant and inverse.
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The other important macroscopic quantities, the pressure p and the heat-flow vector qi, are
defined by

p = RρT (20)

and

qi = q(tr)i + q(int)i, (21a)

q(tr)i = 1

2

∫∫ ∞

0
(ξi − vi )|ξ − v|2 f dE dξ, (21b)

q(int)i =
∫∫ ∞

0
(ξi − vi )E f dE dξ, (21c)

where Eq. (20) is the equation of state.
It should be noted that in [16], the variable I , which is related to our E as E = I2/δ , is used as

an independent variable instead of E . See [49] or Appendix A in [50] for the relation between the
notation in [16] and that of the present paper (see also [24]). In addition, the case with θ = 0, which
is excluded in [16], is included here, and it plays an important role in the present analysis. In the
ES model (17), the energy associated with the internal modes is expressed by a single continuous
variable E . Some models also use a continuous energy variable (e.g., [13,17,24]), whereas the
others use a discrete energy variable (e.g., [11,12,14,15]). However, the corresponding macroscopic
equations are analogous in both cases (see, e.g., [20]). Some mathematical studies of the ES model
for a polyatomic gas are found in [51,52].

Finally, we mention how the ES model for a monatomic gas is recovered from Eq. (17)
(see Sec. 7 in [52]). Let us introduce the marginal distribution function F (t, X , ξ):

F (t, X , ξ) =
∫ ∞

0
f (t, X , ξ, E ) dE . (22)

If we integrate both sides of Eq. (17) with respect to E from 0 to ∞, let θ = 0, and interpret Ttr as
the temperature T , then, we obtain the equation for F , which is exactly the same as the ES model
for a monatomic gas [16]. The linearized version of this property will be used in the Knudsen-layer
analysis later.

B. Initial and boundary conditions

The local equilibrium for Eq. (17) is shown in Eq. (A1). Correspondingly, the global equilibrium
distribution f0 with the uniform density ρ0 (reference density) and the uniform temperature T0

(reference temperature) is given by

f0 = ρ0Eδ/2−1

(2πRT0)3/2(RT0)δ/2�(δ/2)
exp

(
− |ξ|2

2RT0
− E

RT0

)
. (23)

According to assumption (v) in Sec. II A, the initial condition for f is given at time t = 0 by

f (0, X , ξ, E ) = f0. (24)

We will relax this condition later for practical applications.
From the form of the local equilibrium distribution (A1), the Maxwell-type boundary condition

is written as follows:

f (t, Xw, ξ, E ) = (1 − ac)R f (t, X w, ξ, E ) + ac
ρwEδ/2−1

(2πRTw)3/2(RTw)δ/2�(δ/2)

× exp

(
−|ξ − vw|2

2RTw
− E

RTw

)
, for (ξ − vw) · n > 0, (25a)

ρw = −
(

2π

RTw

)1/2 ∫
(ξ−vw )·n<0

∫ ∞

0
(ξ − vw) · n f (t, X w, ξ, E ) dE dξ, (25b)
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where R indicates the reflection operator defined by

Rg(ξi ) = g(ξi − 2(ξ j − vw j )n jni ), (26)

with an arbitrary function g(ξ) of ξ. It should be recalled that the quantities X w, vw, Tw, and n, as
well as the accommodation coefficient ac (0 < ac � 1), have already appeared in Sec. II D.

Note that this boundary condition satisfies the condition that there is no instantaneous mass flow
across the boundary: ∫∫ ∞

0
(ξ − vw) · n f (t, Xw, ξ, E ) dE dξ = 0. (27)

To be consistent with assumption (v), vw = 0 and Tw = T0 should hold at t = 0, and X w (thus, vw),
Tw, and n are assumed to change smoothly with t . In practical applications, however, this condition
may be relaxed occasionally.

IV. DIMENSIONLESS SYSTEM

We should recall that the dimensionless quantities [t̂ , xi, ρ̂, v̂i, T̂tr, T̂int, T̂ , Âc(T̂ ), xwi, v̂wi, T̂w], as
well as the reference quantities L, t0, ρ0, and T0 with t0 being chosen as Eq. (2), have been introduced
in Secs. II C and II D [cf. Eqs. (3) and (8)]. In addition, we let p0 = Rρ0T0 be the reference pressure.

Now we introduce the additional dimensionless quantities [ζi, Ê , f̂ , Ĝ, T̂rel, p̂i j , p̂, q̂(tr)i, q̂(int)i, q̂i],
which correspond to the original dimensional quantities [ξi, E , f , G, Trel, pi j , p, q(tr)i, q(int)i, qi], by
the following relations:

ζi = ξi/(2RT0)1/2, Ê = E/RT0, ( f̂ , Ĝ ) = ( f , G)/2ρ0(2RT0)−5/2,

T̂rel = Trel/T0, p̂i j = pi j/p0, p̂ = p/p0,

(q̂(tr)i, q̂(int)i, q̂i ) = (q(tr)i, q(int)i, qi )/p0(2RT0)1/2. (28)

We occasionally use the boldfaced letters x, ζ, v̂, q̂, xw, and v̂w in place of xi, ζi, v̂i, q̂i, xwi, and v̂wi,
respectively.

A. Dimensionless form of ES model

With Eqs. (3) and (28), the ES model (17) is transformed into the following dimensionless form:

∂ f̂

∂ t̂
+ ζi

∂ f̂

∂xi
= 1

ε
Q̂( f̂ ), (29)

where

Q̂( f̂ ) = Âc(T̂ )ρ̂(Ĝ − f̂ ), (30a)

Ĝ = ρ̂

π3/2(detT̂)1/2 T̂ δ/2
rel �(δ/2)

Êδ/2−1 exp

(
−(T̂−1)i j (ζi − v̂i )(ζ j − v̂ j ) − Ê

T̂rel

)
, (30b)

(T̂)i j = (1 − θ )[(1 − ν)T̂trδi j + ν p̂i j/ρ̂] + θ T̂ δi j, (30c)

ρ̂ =
∫∫ ∞

0
f̂ d Ê dζ, (30d)

v̂i = 1

ρ̂

∫∫ ∞

0
ζi f̂ d Ê dζ, (30e)

p̂i j = 2
∫∫ ∞

0
(ζi − v̂i )(ζ j − v̂ j ) f̂ d Ê dζ, (30f)
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T̂tr = 2

3ρ̂

∫∫ ∞

0
(ζk − v̂k )2 f̂ d Ê dζ, (30g)

T̂int = 2

δρ̂

∫∫ ∞

0
Ê f̂ d Ê dζ, (30h)

T̂ = 3T̂tr + δT̂int

3 + δ
, (30i)

T̂rel = θ T̂ + (1 − θ )T̂int. (30j)

Here ε is a small parameter of the order of the Knudsen number defined by Eq. (4), dζ =
dζ1 dζ2 dζ3, and the domain of integration with respect to ζ is the whole space (R3) of ζ.

The dimensionless pressure p̂ and heat-flow vector q̂i, corresponding to Eqs. (20) and (21), are
given by

p̂ = ρ̂T̂ (31)

and

q̂i = q̂(tr)i + q̂(int)i, (32a)

q̂(tr)i =
∫∫ ∞

0
(ζi − v̂i )|ζ − v̂|2 f̂ d Ê dζ, (32b)

q̂(int)i =
∫∫ ∞

0
(ζi − v̂i )Ê f̂ d Ê dζ. (32c)

The dimensionless form of the first two basic properties of the ES model shown in Appendix A 1
is described as follows:

Equilibrium: Q̂( f̂ ) = 0 is equivalent to the fact that f̂ is the dimensionless local equilibrium
given by

f̂eq = ρ̂Êδ/2−1

(π T̂ )3/2T̂ δ/2�(δ/2)
exp

(
−|ζ − v̂|2

T̂
− Ê

T̂

)
, (33)

where ρ̂, v̂, and T̂ are arbitrary functions of t̂ and x.
Conservations: For an arbitrary function ĝ(t̂, x, ζ, Ê ), the relation∫∫ ∞

0
ϕ̂rQ̂(ĝ) d Ê dζ = 0 (34)

holds, where ϕ̂r (r = 0, . . . , 4) are the dimensionless collision invariants:

ϕ̂0 = 1, ϕ̂i = ζi (i = 1, 2, 3), ϕ̂4 = |ζ|2 + Ê . (35)

Here we should note that when the parameter θ vanishes, these equilibrium and conservation
properties take slightly different forms. Their dimensional versions are shown in Appendix A 3 in
[53], and the dimensionless versions are stated as follows (see Sec. III B in [36]):

Equilibrium: Q̂( f̂ )|θ=0 = 0 is equivalent to the fact that f̂ is the (dimensionless) local equilibrium
of the form

f̂eq = ρ̂ Êδ/2−1

(π T̂tr )3/2T̂ δ/2
int �(δ/2)

exp

(
−|ζ − v̂|2

T̂tr
− Ê

T̂int

)
, (36)

where ρ̂, v̂, T̂tr, and T̂int are arbitrary dimensionless functions of t̂ and x.
Conservations: For an arbitrary function ĝ(t̂, x, ζ, Ê ), the relation∫∫ ∞

0
φ̂rQ̂(ĝ)|θ=0 d Ê dζ = 0 (37)
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holds, where φ̂r (r = 0, . . . , 5) are the (dimensionless) collision invariants:

φ̂0 = 1, φ̂i = ζi (i = 1, 2, 3), φ̂4 = |ζ|2, φ̂5 = Ê . (38)

These properties for θ = 0 play important roles in the present study.

B. Dimensionless form of initial and boundary conditions

The dimensionless form of the initial condition (24) can be written in the following form:

f̂ (0, x, ζ, Ê ) = f̂0, (39)

where

f̂0 = [�(δ/2)]−1E (ζ )Êδ/2−1e−Ê , ζ = |ζ| = (ζ 2
i )1/2, E (ζ ) = π−3/2 exp(−ζ 2). (40)

With the dimensionless quantities defined by Eq. (8), the boundary condition (25) is nondimension-
alized as follows:

f̂ (t̂, xw, ζ, Ê ) = (1 − ac)R̂ f̂ (t̂, xw, ζ, Ê ) + ac
ρ̂wÊδ/2−1

(π T̂w)3/2T̂ δ/2
w �(δ/2)

× exp

(
−|ζ − v̂w|2

T̂w
− Ê

T̂w

)
, for (ζ − v̂w) · n > 0, (41a)

ρ̂w = −2

(
π

T̂w

)1/2 ∫
(ζ−v̂w )·n<0

∫ ∞

0
(ζ − v̂w) · n f̂ (t̂, xw, ζ, Ê ) d Ê dζ, (41b)

where R̂ is the dimensionless reflection operator, corresponding to Eq. (26), acting on any function
ĝ of ζi as

R̂ĝ(ζi ) = ĝ(ζi − 2(ζ j − v̂w j )n jni ). (42)

Corresponding to Eq. (27), the following condition holds on the boundary:∫∫ ∞

0
(ζ − v̂w) · n f̂ (t̂, xw, ζ, Ê ) d Ê dζ = 0. (43)

We note that v̂w = 0 and T̂w = 1 at t̂ = 0, and xw (thus v̂w), T̂w, and n are assumed to change
smoothly in t̂ though this restriction may be relaxed occasionally in practical applications.

V. TWO-TEMPERATURE NAVIER-STOKES EQUATIONS

A. Preliminary remarks

In [36], the two-temperature Navier-Stokes equations have been derived from the ES model in
the case where the parameter θ , as well as the Knudsen number Kn, is small, that is, under the
setting (5). The background of this assumption is explained in Sec. II E in [36]. However, a brief
description of its essence is given below.

As can be seen from Eq. (A9) in Appendix A 2, small θ indicates large values of the ratio μb/μ,
where μ is the (shear) viscosity and μb the bulk viscosity [cf. Eqs. (A6) and (A7) in Appendix A 2].
On the other hand, as is seen from Eq. (A10) in Appendix A 2, small θ corresponds to slow
relaxation of the internal modes. These two statements are consistent because it is a common
understanding that large bulk viscosity is related to the slow relaxation of the internal modes [47,54].
Therefore, the condition (5) targets the behavior in the near continuum regime of a gas with slow
relaxation of the internal modes or with large bulk viscosity. The two-temperature Navier-Stokes
equations are the consequence of the Chapman-Enskog expansion under the condition (5).

As mentioned in Sec. II F, some gases have large bulk viscosities, more precisely, large values of
the ratio μb/μ of the bulk viscosity to the viscosity (see Table IV in Sec. II F). The reader is referred

083401-14



BOUNDARY CONDITIONS FOR TWO-TEMPERATURE …

to [47] and p. 30 in [55] concerning gases with large bulk viscosities. It is noted that the impact of
large bulk viscosity for H2 gas flows is investigated in [56]. Here it should also be mentioned that
some authors are doubtful about the large values of μb/μ for CO2 gas [33,57]. However, as in [36],
we here follow the view that μb/μ is large for CO2 gas.

The standard Chapman-Enskog expansion for small ε applied to the ES model leads to the
ordinary Navier-Stokes equations with the single temperature and with the bulk viscosity [16]
(cf. Appendix A 2). In this case, it is implicitly assumed that the parameter θ is of the order of unity.
When θ is small, therefore, one expects that the ordinary Navier-Stokes equations are not valid and
a new system of equations is required. For this reason, we considered the parameter setting (5) and,
as the result, derived the two-temperature Navier-Stokes equations, which have been summarized in
Sec. II C.

B. Chapman-Enskog solution and two-temperature Navier-Stokes equations

In this subsection, we summarize the result of the Chapman-Enskog expansion carried out in [36]
to derive the two-temperature Navier-Stokes equations (6). Let us put aside the initial and boundary
conditions (39) and (41).

If the Chapman-Enskog procedure is applied to the ES model (29) under the assumption (5), the
solution f̂ is expressed in the expansion of the following form:

f̂ = f̂ (0) + f̂ (1)ε + f̂ (2)ε2 + · · · . (44)

Here the leading-order term f̂ (0) is given by the local equilibrium distribution (36) for θ = 0,

f̂ (0) = ρ̂ Êδ/2−1

(π T̂tr )3/2T̂ δ/2
int �(δ/2)

exp

(
−|ζ − v̂|2

T̂tr
− Ê

T̂int

)
, (45)

and the first-order term f̂ (1) is given as

f̂ (1) = − 1

Âc(T̂ )ρ̂
f̂ (0)

{
1

1 − ν

[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− 1

3

(ζk − v̂k )2

T̂tr
δi j

](
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi

)
+ (ζ j − v̂ j )

T̂tr

[
(ζk − v̂k )2

T̂tr
− 5

2

]
∂T̂tr

∂x j
+ (ζ j − v̂ j )

T̂int

( Ê
T̂int

− δ

2

)
∂T̂int

∂x j

}
. (46)

The expansion is designed in such a way that the macroscopic quantities ρ̂, v̂, T̂tr, and T̂int in
Eqs. (30d), (30e), (30g), and (30h) are not expanded and are generated by the leading-order term
f̂ (0):

ρ̂ =
∫∫ ∞

0
f̂ (0) d Ê dζ, (47a)

v̂i = 1

ρ̂

∫∫ ∞

0
ζi f̂ (0) d Ê dζ, (47b)

T̂tr = 2

3ρ̂

∫∫ ∞

0
(ζk − v̂k )2 f̂ (0) d Ê dζ, (47c)

T̂int = 2

δρ̂

∫∫ ∞

0
Ê f̂ (0) d Ê dζ. (47d)

This is equivalent to imposing the following condition for the higher-order terms f̂ (1), f̂ (2), . . . :∫∫ ∞

0
φ̂r f̂ (m) d Ê dζ = 0, (r = 0, . . . , 5; m = 1, 2, . . . ), (48)

where φ̂r (r = 0, . . . , 5) are defined by Eq. (38).
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In accordance with Eq. (44), other macroscopic quantities p̂i j , q̂i, q̂(tr)i, q̂(int)i, and T̂rel are
expanded as

ĥ = ĥ(0) + ĥ(1)ε + · · · , (ĥ = p̂i j, q̂i, q̂(tr)i, q̂(int)i, and T̂rel ). (49)

Here the coefficients for p̂i j , q̂i, q̂(tr)i, and q̂(int)i are obtained by substituting Eqs. (44) and (49) into
Eqs. (30f) and (32) as

p̂(m)
i j = 2

∫∫ ∞

0
(ζi − v̂i )(ζ j − v̂ j ) f̂ (m) d Ê dζ, (m = 0, 1, . . . ) (50)

and

q̂(m)
i = q̂(m)

(tr)i + q̂(m)
(int)i, (m = 0, 1, . . . ), (51a)

q̂(m)
(tr)i =

∫∫ ∞

0
(ζi − v̂i )|ζ − v̂|2 f̂ (m) d Ê dζ, (51b)

q̂(m)
(int)i =

∫∫ ∞

0
(ζi − v̂i )Ê f̂ (m) d Ê dζ, (51c)

and those for T̂rel are obtained from Eqs. (30j) and (5) as

T̂ (0)
rel = T̂int, T̂ (1)

rel = α(T̂ − T̂int ), T̂ (m+2)
rel = 0, (m = 0, 1, . . . ), (52)

where T̂ is determined by Eq. (30i) and thus is not expanded in ε.
If we use f̂ = f̂ (0) + f̂ (1)ε + O(ε2) with Eqs. (45) and (46) in Eqs. (49), (50), and (51), we obtain

the following expressions of p̂i j , q̂(tr)i, q̂(int)i, and q̂i:

p̂i j = ρ̂T̂trδi j − �μ(T̂ , T̂tr )

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)
ε + O(ε2), (53a)

q̂(tr)i = −5

4
�λ(T̂ , T̂tr )

∂T̂tr

∂xi
ε + O(ε2), (53b)

q̂(int)i = − δ

4
�λ(T̂ , T̂tr )

∂T̂int

∂xi
ε + O(ε2), (53c)

q̂i = q̂(tr)i + q̂(int)i, (53d)

where �μ(T̂ , T̂tr ) and �λ(T̂ , T̂tr ) are defined by Eq. (7).
The two-temperature Navier-Stokes equations, which correspond to the first-order solution f̂ =

f̂ (0) + f̂ (1)ε and whose constitutive laws are given by Eq. (53) with O(ε2) terms being neglected,
are the equations for ρ̂, v̂i, T̂tr, and T̂int and take the form of Eq. (6). One can derive the equation for
the conservation of the total energy from Eqs. (6c) and (6d):

∂

∂ t̂

[
ρ̂

(
3 + δ

2
T̂ + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
3 + δ

2
T̂ + T̂tr + v̂2

i

)]
= 1

2
ε

∂

∂x j

[
�λ(T̂ , T̂tr )

(
3 + δ

2

∂T̂

∂x j
+ ∂T̂tr

∂x j

)]
+ ε

∂

∂x j

[
�μ(T̂ , T̂tr )v̂i

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)]
.

(54)

Equation (54) may be used in place of Eq. (6c) or (6d). The two-temperature Navier-Stokes
equations can be reduced to the ordinary Navier-Stokes equations with a single temperature by
considering the case when α is large. The procedure is explained in Appendix B.
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C. No-slip conditions and their inconsistency

Now, let us consider the initial and boundary conditions (39) and (41). If we assume

ρ̂ = 1, v̂ = 0, T̂tr = T̂int = 1, at t̂ = 0, (55)

then the Chapman-Enskog solution, Eq. (44) with Eqs. (45) and (46), satisfies Eq. (39) up to O(ε)
because ∂ v̂i/∂x j = 0, ∂T̂tr/∂xi = 0, and ∂T̂int/∂xi = 0 hold. Therefore, under assumption (v) in
Sec. II A, Eq. (55) is the correct initial condition for Eq. (6).

Next, we consider the boundary condition (41). Since the leading-order term f̂ (0) of the
Chapman-Enskog solution is a local equilibrium distribution with two temperatures [Eq. (45)], it
can be made to satisfy Eq. (41) by assuming that

v̂ = v̂w, T̂tr = T̂int = T̂w, at x = xw. (56)

In this way, we are able to satisfy the boundary condition (41) at the zeroth order of ε with the choice
(56). Equation (56) provides the so-called no-slip boundary conditions for the two-temperature
Navier-Stokes equations (6).

However, to be consistent with the fact that the first-order Chapman-Enskog solution f̂ = f̂ (0) +
f̂ (1)ε, which corresponds to the two-temperature Navier-Stokes equations, satisfies the ES model
(29) formally up to O(ε), we need to satisfy the boundary condition (41) also up to O(ε). If we try
to do so with f̂ = f̂ (0) + f̂ (1)ε, we must impose the following conditions in addition to Eq. (56):

∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
= 0,

∂T̂tr

∂x j
= 0,

∂T̂int

∂x j
= 0, at x = xw. (57)

However, these conditions are too many for Eq. (6), so that this scheme does not work at the order of
ε. This difficulty can be resolved by introducing the Knudsen layer, as is well known (cf. [58,59]).
As we will see in the next section, the correction of O(ε) to Eq. (56) is obtained by the analysis of
the Knudsen layer.

The above argument indicates that the no-slip boundary conditions (56) are not consistent with
the two-temperature Navier-Stokes equations. In classical gas dynamics, the no-slip boundary
conditions are usually used for the standard compressible Navier-Stokes equations (with the single
temperature). As pointed out in [40], the no-slip conditions are inconsistent also in this case.

VI. KNUDSEN LAYER

A. Introduction of Knudsen layer

In Sec. V C, we have seen that the Chapman-Enskog solution, Eq. (44) with Eqs. (45) and (46),
cannot be made to satisfy the kinetic boundary condition (41) at the first order of ε. In order to obtain
the solution satisfying the boundary condition, one has to introduce the kinetic boundary layer, the
so-called Knudsen layer, with thickness of the order of ε (of the order of the mean free path in the
dimensional physical space) adjacent to the boundary [58,59].

Let us denote the Chapman-Enskog solution, Eq. (44) with Eqs. (45) and (46), by f̂CE, the
correction term inside the Knudsen layer by f̂K, and the total solution that satisfies the boundary
condition by f̂tot. Then we write

f̂tot = f̂CE + f̂K. (58)

Correspondingly, we denote the macroscopic quantities by

ĥtot = ĥCE + ĥK, (59)

where ĥ stands for any of the dimensionless macroscopic quantities, ρ̂, v̂i, p̂i j , T̂tr , etc., appeared in
Eqs. (30d)–(30j), (31), and (32), and ĥCE and ĥK indicate these macroscopic quantities associated
with the Chapman-Enskog solution and the Knudsen-layer correction, respectively. Note that the
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macroscopic quantities appeared in Sec. V belong to ĥCE although the subscript “CE” was not used
there.

We assume the following properties for the correction term f̂K:
(a) f̂K is appreciable only in the Knudsen layer and vanishes rapidly away from the boundary.
(b) f̂K has the length scale of variation of the order of ε (i.e., of the order of the mean free path

l0 in the dimensional physical space) in the direction normal to the boundary, that is, nj∂ f̂K/∂x j =
O( f̂K/ε).

(c) f̂K has the length scale of variation of the order of 1 (i.e., of the order of the reference length
L in the dimensional physical space) in the direction along the boundary.

(d) f̂K has the timescale of variation of the order of 1 [i.e., of the order of t0 = L/(2RT0)1/2 in
the dimensional time], i.e., ∂ f̂K/∂ t̂ = O( f̂K ).

These assumptions can be justified if such a solution is obtained consistently.
The fact that the Chapman-Enskog solution, Eq. (44) with Eqs. (45) and (46), can be made

to satisfy the boundary condition (41) at the zeroth order in ε by the choice (56) indicates that
the differences v̂ − v̂w, T̂tr − T̂w, and T̂int − T̂w are small and of the order of ε on the boundary.
Therefore, we put

v̂ − v̂w = ¯̄vε, T̂tr − T̂w = ¯̄Ttrε, T̂int − T̂w = ¯̄Tintε, at x = xw, (60)

where ¯̄v, ¯̄Ttr, and ¯̄Tint are the quantities of O(1). This fact also indicates that f̂K starts at the order of
ε, so that we let

f̂K = f̂ (1)
K ε + R f ε

2, (61)

where R f ε
2 is the remainder, and R f is of O(1) and has the properties (a)–(d). Correspondingly, we

put

ĥK = ĥ(1)
K ε + Rhε

2, (62)

where Rhε
2 is the remainder corresponding to R f ε

2.
We insert Eqs. (58) and (59) with Eqs. (61) and (62) into Eqs. (30d)–(30j), (31), and (32) (with

f̂ = f̂tot and ĥ = ĥtot) and note that f̂CE and ĥCE satisfy the same relations as Eqs. (30d)–(30j), (31),
and (32) (with f̂ = f̂CE and ĥ = ĥCE). In this process, we have to note the following. From Eqs. (30j)
and (5), we have

(T̂rel )tot = αεT̂tot + (1 − αε)(T̂int )tot

= αε
[
T̂ + T̂ (1)

K ε + O(Rhε
2)
]+ (1 − αε)

[
T̂int + T̂ (1)

intKε + O(Rhε
2)
]

= T̂int + αε(T̂ − T̂int ) + T̂ (1)
intKε + O(Rhε

2), (63)

where T̂ and T̂int are the Chapman-Enskog quantities. On the other hand, (T̂rel )tot = T̂rel + T̂ (1)
relKε +

O(Rhε
2) by definition, and T̂rel = T̂ (0)

rel + T̂ (1)
rel ε = T̂int + α(T̂ − T̂int ) ε from Eq. (52). Therefore, T̂ (1)

relK
is identified as

T̂ (1)
relK = T̂ (1)

intK. (64)

Then, picking up the terms of O(ε) for ĥ(1)
K and putting the O(ε2) terms in Rhε

2, we obtain the
following expressions of ĥ(1)

K :

ρ̂
(1)
K =

∫∫ ∞

0
f̂ (1)
K d Ê dζ, (65a)

v̂
(1)
Ki = 1

ρ̂

∫∫ ∞

0
(ζi − v̂i ) f̂ (1)

K d Ê dζ, (65b)
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p̂(1)
Ki j = 2

∫∫ ∞

0
(ζi − v̂i )(ζ j − v̂ j ) f̂ (1)

K d Ê dζ, (65c)

T̂ (1)
trK = 2

3ρ̂

∫∫ ∞

0

[
(ζk − v̂k )2 − 3

2
T̂tr

]
f̂ (1)
K d Ê dζ, (65d)

T̂ (1)
intK = 2

δρ̂

∫∫ ∞

0

(
Ê − δ

2
T̂int

)
f̂ (1)
K d Ê dζ, (65e)

T̂ (1)
K = 3T̂ (1)

trK + δT̂ (1)
intK

3 + δ
, (65f)

T̂ (1)
relK = T̂ (1)

intK, (65g)

p̂(1)
K = ρ̂T̂ (1)

K + ρ̂
(1)
K T̂ , (65h)

q̂(1)
(tr)Ki =

∫∫ ∞

0
(ζi − v̂i )

[
(ζk − v̂k )2 − 5

2
T̂tr

]
f̂ (1)
K d Ê dζ,

q̂(1)
(int)Ki =

∫∫ ∞

0
(ζi − v̂i )

(
Ê − δ

2
T̂int

)
f̂ (1)
K d Ê dζ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(65i)

q̂(1)
Ki = q̂(1)

(tr)Ki + q̂(1)
(int)Ki.

Note again that ρ̂, v̂i, T̂tr, and T̂int here are the macroscopic quantities associated with the Chapman-
Enskog solution though the subscript CE is not attached. It should also be mentioned that use has
been made of the fact that p̂i j = ρ̂T̂trδi j + O(ε) [Eq. (53a)] in the derivation of Eq. (65).

If we substitute Eq. (58) with Eq. (61) into Eq. (29) and take into account the fact that f̂CE is also
the solution of Eq. (29), we obtain the following equation for f̂ (1)

K (see Appendix C for the outline
of the derivation):

ε
∂ f̂ (1)

K

∂ t̂
+ εζi

∂ f̂ (1)
K

∂xi
= Âc(T̂ )ρ̂

(
Ĝ (1)

K − f̂ (1)
K

)+ O(R f ε), (66)

where

Ĝ (1)
K = f̂ (0)

{
ρ̂

(1)
K

ρ̂
+ 2

(ζi − v̂i )

T̂tr
v̂

(1)
Ki +

[
(ζi − v̂i )2

T̂tr
− 3

2

]
T̂ (1)

trK

T̂tr

+ ν

[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− 1

3

(ζk − v̂k )2

T̂tr
δi j

]
p̂(1)

Ki j

ρ̂T̂tr
+
( Ê

T̂int
− δ

2

)
T̂ (1)

intK

T̂int

}
, (67)

and note that the function Âc(T̂ ) is unexpanded because T̂ is not expanded. Equation (66) is the
starting point of the analysis of the Knudsen layer in the following.

B. Knudsen-layer equation

The analysis of this subsection follows that in Sec. V A 3 in [39], so that we omit the details and
only show the main points referring to [39] occasionally. However, in order to explain the essence of
the coordinate system to describe the Knudsen layer, we need to start with repeating the explanation
in [39].

We first express a point xw on the boundary as a function of coordinates χ1 and χ2 fixed on the
surface of the boundary and of time t̂ [see Fig. 1(a)]:

xw = xw(t̂, χ1, χ2). (68)

When χ1 and χ2 are fixed, the function xw(t̂, χ1, χ2) of t̂ gives the trajectory of a fixed point on
the boundary, and when t̂ is fixed, the function xw(t̂, χ1, χ2) of χ1 and χ2 gives the parameter
representation of the boundary surface at time t̂ . The velocity of the boundary v̂w and the unit
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(a () b)

FIG. 1. Coordinate systems. (a) Coordinate system on the boundary, (b) coordinate system for the Knudsen
layer.

normal vector to the boundary n, which are also the functions of t̂ , χ1, and χ2, are expressed as

v̂w(t̂, χ1, χ2) = ∂xw

∂ t̂
, (69a)

n(t̂, χ1, χ2) = ±
(

∂xw

∂χ1
× ∂xw

∂χ2

)∣∣∣∣∂xw

∂χ1
× ∂xw

∂χ2

∣∣∣∣−1

, (69b)

where × indicates the vector product, and + sign or − sign is chosen in such a way that n points
into the gas region.

In order to analyze the Knudsen layer, we introduce a new coordinate system that is local near
the boundary and appropriate to describe the rapid change of the physical quantities in the direction
normal to the boundary. We introduce the new variables t̃ , η, and ζw by the following relations
[see Fig. 1(b)]:

t̂ = t̃, (70a)

x = ε η n(t̃, χ1, χ2) + xw(t̃, χ1, χ2), (70b)

ζ = ζw + v̂w(t̃, χ1, χ2). (70c)

Here η is a stretched normal coordinate, and ζw is the molecular velocity relative to the velocity of
the boundary. In accordance with the properties (a)–(d) in Sec. VI A, we assume that f̂K is a function
of (t̃, η, χ1, χ2, ζw, Ê ) and vanishes rapidly as η → ∞:

f̂K = f̂K(t̃, η, χ1, χ2, ζw, Ê ), (71a)

f̂K → 0, as η → ∞. (71b)

Therefore, Eq. (71) also holds for f̂ (1)
K and R f in Eq. (61).

We now consider Eq. (66) inside the Knudsen layer, i.e., η = O(1) or (x − xw) · n = O(ε). The
x-dependence of f̂ (0) is through ρ̂, v̂, T̂tr, and T̂int, whose length scale is of O(1). Therefore, inside
the Knudsen layer, they can be Taylor expanded around x = xw as

ρ̂ = ρ̂B + O(εη), v̂ = v̂B + O(εη), T̂tr = (T̂tr )B + O(εη), T̂int = (T̂int )B + O(εη), (72)

where the subscript B indicates the value on the boundary x = xw or η = 0. Because v̂B = v̂w +
O(ε), (T̂tr )B = T̂w + O(ε), and (T̂int )B = T̂w + O(ε) [Eq. (60)], we can write

ρ̂ = ρ̂B + O(εη), v̂ = v̂w + O(ε(η + 1)),

T̂tr = T̂w + O(ε(η + 1)), T̂int = T̂w + O(ε(η + 1)), T̂ = T̂w + O(ε(η + 1)). (73)

Here the last equation is the consequence of Eq. (30i).
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If Eq. (73) is substituted into Eq. (65), the O(εη) and O(ε(η + 1)) terms in Eq. (73) produce the
terms of the order of ε(η + 1) times a moment of f̂ (1)

K , which vanish rapidly as η → ∞. Therefore,
we put these terms (times ε) into Rhε

2 in Eq. (62) to simplify the expressions of ĥ(1)
K . To be more

specific, we can transform Eq. (65) in the following way:

[Eq. (65)] �⇒ [Eq. (65) with ρ̂ = ρ̂B, v̂ = v̂w, and T̂tr = T̂int = T̂ = T̂w]. (74)

The right-hand side of Eq. (74) is the same as Eq. (63) in [39] except that Eq. (63g) there has been
replaced by the equation T̂ (1)

relK = T̂ (1)
intK.

With the help of Eq. (73), f̂ (0) in Eq. (45) inside the Knudsen layer is expanded as

f̂ (0) = f̂w[1 + O(ε(η + 1))], (75)

where

f̂w = ρ̂BÊδ/2−1

(π T̂w)3/2T̂ δ/2
w �(δ/2)

exp

(
− (ζ j − v̂w j )2

T̂w
− Ê

T̂w

)
. (76)

Here we follow the procedure that was used in [39] in the derivation of Eqs. (66)– (68) there.
That is, we use Eqs. (73) and (75) in Eqs. (66) and (67) and put the terms of O(εη) and O(ε(η + 1)),
which are produced by the terms of O(εη) and O(ε(η + 1)) in Eqs. (73) and (75) and vanish rapidly
as η → ∞, into the remainder εR f in Eq. (66). In addition, we take into account the fact that the
left-hand side of Eq. (66), in terms of the new variables (t̃, η, χ1, χ2, ζw), reduces to (see Sec. 5.2.2
in [40])

ζwini
∂ f̂ (1)

K

∂η
+ O(R f ε). (77)

Then we obtain the following equations corresponding to Eqs. (68), (66b), and (66c) in [39]:

ζwini
∂ f̂ (1)

K

∂η
= Âc(T̂w)ρ̂B

(
Ĝ (1)

K − f̂ (1)
K

)+ O(εR f ), (78a)

Ĝ (1)
K = f̂w

{
ρ̂

(1)
K

ρ̂B
+ 2

(ζi − v̂wi )

T̂w
v̂

(1)
Ki +

[
(ζi − v̂wi )2

T̂w
− 3

2

]
T̂ (1)

trK

T̂w

+ ν

[
(ζi − v̂wi )(ζ j − v̂w j )

T̂w
− 1

3

(ζk − v̂wk )2

T̂w
δi j

]
p̂(1)

Ki j

ρ̂BT̂w
+
( Ê

T̂w
− δ

2

)
T̂ (1)

intK

T̂w

}
. (78b)

Here we should mention that Eq. (78) is the same as Eqs. (68), (66b), and (66c) in [39] with θ = 0
(note that T̂ (1)

relK = T̂ (1)
intK for θ = 0). Therefore, we can utilize the transformation from Eqs. (68),

(66b), and (66c) in [39] to their final form, Eq. (79) there. That is, the final equation transformed
from Eq. (78) is nothing but Eq. (79) in [39] with θ = 0. The equation is summarized below.

We first introduce new variables Cw and Ēw by

Cw = ζw

T̂ 1/2
w

= ζ − v̂w

T̂ 1/2
w

, Ēw = Ê
T̂w

, (79)

and denote the normal component and magnitude of Cw by Cwn and Cw, respectively:

Cwn = Cw jn j = Cw · n, Cw = (
C2

w j

)1/2 = |Cw|. (80)

Then f̂w can be expressed as

f̂w = ρ̂B

T̂ 5/2
w �(δ/2)

E (Cw)Ēδ/2−1
w e−Ēw , (81)
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where E (Cw) = π−3/2 exp(−C2
w) as defined in Eq. (40). It should be noted that ρ̂B and T̂w are

functions of (t̃, χ1, χ2), so that f̂w is a function of (t̃, χ1, χ2, Cw, Ēw).
We further introduce the following new normal coordinate y in place of η:

y = ρ̂B
Âc(T̂w)

T̂ 1/2
w

η, (82)

and change the independent variables from (t̃, η, χ1, χ2, ζw, Ê ) to (t̃, y, χ1, χ2, Cw, Ēw) by
letting

f̂ (1)
K

(
t̃, [ρ̂BÂc(T̂w)]−1T̂ 1/2

w y, χ1, χ2, T̂ 1/2
w Cw, T̂wĒw

)
= f̂w(t̃, χ1, χ2, Cw, Ēw) φ(t̃, y, χ1, χ2, Cw, Ēw). (83)

Then Eq. (78) is transformed into the following equation for φ:

Cwn
∂φ

∂y
= L0(φ) + O(εR f / f̂w). (84)

Here the linear integral operator L0, which is equal to the linearized collision operator L of the ES
model [Eq. (32) in [39]] with θ = 0, is defined as

L0[φ(Cw, Ēw)](Cw, Ēw)

= ω + 2Cwiui +
(
C2

w − 3

2

)
τtr + ν

(
CwiCw j − 1

3
C2

wδi j

)
Pi j +

(
Ēw − δ

2

)
τint − φ, (85)

where

ω = 〈〈φ〉〉, ui = 〈〈Cwiφ〉〉, Pi j = 2〈〈CwiCw jφ〉〉, (86a)

τtr = 2

3

〈〈(
C2

w − 3

2

)
φ

〉〉
, τint = 2

δ

〈〈(
Ēw − δ

2

)
φ

〉〉
, (86b)

and 〈〈 · 〉〉 is defined, with an arbitrary function ĝ(Cw, Ēw) of Cw and Ēw, as

〈〈ĝ(Cw, Ēw)〉〉 = [�(δ/2)]−1
∫∫ ∞

0
ĝ(Cw, Ēw)E (Cw)Ēδ/2−1

w e−Ēw d Ēw dCw. (87)

On the left-hand side of Eq. (85), the arguments Cw and Ēw of φ and those of L0(φ) are shown
explicitly, the other arguments t̃ , y, χ1, and χ2 being omitted. If we neglect the terms of O(εR f / f̂w)
in Eq. (84), we obtain the equation for φ, i.e., that for f̂ (1)

K .
Here it is noted that the macroscopic quantities ρ̂

(1)
K , v̂

(1)
Ki , p̂(1)

Ki j , T̂ (1)
trK , and T̂ (1)

intK, which are given

by Eqs. (65a)–(65e) with ρ̂ = ρ̂B, v̂ = v̂w, and T̂tr = T̂int = T̂w [cf. Eq. (74)] and are the functions of
(t̃, η, χ1, χ2), are related to ω, ui, Pi j , τtr, and τint in Eqs. (86a) and (86b), which are the functions
of (t̃, y, χ1, χ2), by the following relations:

ρ̂
(1)
K

ρ̂B
= ω,

v̂
(1)
Ki

T̂ 1/2
w

= ui,
p̂(1)

Ki j

ρ̂BT̂w
= Pi j,

T̂ (1)
trK

T̂w
= τtr,

T̂ (1)
intK

T̂w
= τint. (88)

In addition, q̂(1)
(tr)Ki and q̂(1)

(int)Ki, which are given by Eq. (65i) with v̂ = v̂w and T̂tr = T̂int = T̂w [cf.
Eq. (74)] and are the functions of (t̃, η, χ1, χ2), are expressed as

q̂(1)
(tr)Ki

ρ̂BT̂ 3/2
w

=
〈〈
Cwi

(
C2

w − 5

2

)
φ

〉〉
,

q̂(1)
(int)Ki

ρ̂BT̂ 3/2
w

=
〈〈
Cwi

(
Ēw − δ

2

)
φ

〉〉
, (89)

where the right-hand sides are the functions of (t̃, y, χ1, χ2).
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The operator L0( · ) is the linearized collision operator of the ES collision operator Q̂( · ) in
Eq. (30a) [or Q( · ) in Eq. (18a) ] when θ = 0 and is equal to L( · ) defined by Eq. (32) in [39] with
θ = 0. The solution of L0(φ) = 0 (equilibrium solution) is given by the six-parameter family of the
form

φ = c0 + c1Cw1 + c2Cw2 + c3Cw3 + c4C2
w + c5Ēw, (90)

where c0, c1, . . . are parameters. This corresponds to Eq. (36). The operator L0 also satisfies the
relation

〈〈φ̂rL0(ĝ)〉〉 = 0, (91)

which corresponds to Eq. (37); here φ̂r (r = 0, . . . , 5) are given by Eq. (38) with ζi → Cwi and
Ê → Ēw.

Multiplying Eq. (84) by (1, Cwi, |Cw|2, Ēw), taking 〈〈 · 〉〉 of the respective equations,
and using the property (91), we obtain ∂〈〈Cwnφ〉〉/∂y = ∂〈〈CwnCwiφ〉〉/∂y= ∂〈〈Cwn|Cw|2φ〉〉/∂y =
∂〈〈CwnĒwφ〉〉/∂y= O(Rhε). Since φ → 0 as y → ∞, it follows that

〈〈Cwnφ〉〉 = 〈〈CwnCwiφ〉〉 = 〈〈Cwn|Cw|2φ〉〉 = 〈〈CwnĒwφ〉〉 = O(Rhε). (92)

C. Knudsen-layer boundary condition

Now we consider the boundary condition. We impose the boundary condition (41) to the total
solution f̂tot [Eq. (58)]. Using Eq. (58) with f̂CE = f̂ (0) + f̂ (1)ε + O(ε2) [Eq. (44)] and with f̂K =
f̂ (1)
K ε + O(R f ε

2) [Eq. (61)] in Eq. (41), we obtain the following relation at η = 0 (or x = xw):

ε f̂ (1)
K = (1 − ac)εR̂ f̂ (1)

K − f̂ (0) − ε f̂ (1) + (1 − ac)R̂( f̂ (0) + ε f̂ (1) )

+ ac
ρ̂w

ρ̂B
f̂w + O(ε2Rw), for (ζ − v̂w) · n > 0, (93a)

ρ̂w = −2

(
π

T̂w

)1/2 ∫
(ζ−v̂w )·n<0

∫ ∞

0
(ζ − v̂w) · n( f̂ (0) + ε f̂ (1) + ε f̂ (1)

K ) d Ê dζ + O(ε2), (93b)

where Rw is a function of O(1) vanishing rapidly as |ζ| (or |Cw|) → ∞ and as Ê (or Ēw) → ∞. For
instance, f̂w [Eq. (76)] belongs to the class of Rw.

Noting that f̂ (0) and f̂ (1) in Eq. (93) are evaluated at the boundary and following the procedure
in Appendix B in [40] for a monatomic gas, we obtain the following expressions of f̂ (0), f̂ (1), and
ρ̂w contained in Eq. (93):

f̂ (0) = f̂w

{
1 + ε

[
2Cwi

¯̄vi

T̂ 1/2
w

+
(
C2

w − 3

2

) ¯̄Ttr

T̂w
+
(
Ēw − δ

2

) ¯̄Tint

T̂w

]
+ O(ε2)

}
, (94a)

f̂ (1) = − 1

Âc(T̂w)ρ̂B
f̂w

{
1

1 − ν

(
CwiCw j − 1

3
C2

wδi j

)[(
∂ v̂i

∂x j

)
B

+
(

∂ v̂ j

∂xi

)
B

]
+ Cwi

(
C2

w − 5

2

)
1

T̂ 1/2
w

(
∂T̂tr

∂xi

)
B

+ Cwi

(
Ēw − δ

2

)
1

T̂ 1/2
w

(
∂T̂int

∂xi

)
B

+ O(ε)

}
, (94b)

ρ̂w

ρ̂B
= 1 + ε

{
−√

π
¯̄vi

T̂ 1/2
w

ni + 1

2

¯̄Ttr

T̂w

− 1

3

1

Âc(T̂w)

1

1 − ν

1

ρ̂B

[(
∂ v̂i

∂x j

)
B

+
(

∂ v̂ j

∂xi

)
B

][
nin j − 1

2
(δi j − nin j )

]
− 2

√
π

1

�(δ/2)

∫
Cwn<0

∫ ∞

0
CwnφE (Cw)Ēδ/2−1

w e−Ēw d Ēw dCw

}
+ O(ε2). (94c)
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Here use has been made of Eq. (83) and the new variables Cw and Ēw introduced in Eq. (79), together
with the symbols Cw and Cwn defined by Eq. (80). For the new velocity variable Cw, the reflection
operator (42) is replaced by the following R̃:

R̃ĝ(Cwi) = ĝ(Cwi − 2Cw jn jni ), (95)

where ĝ(Cwi ) is a function of Cwi. It should be noted that R̃ f̂w = f̂w holds.
Then, following the procedure that derived Eq. (93) in [39] from Eqs. (80)–(83) there for the

standard (one-temperature) Navier-Stokes equations, we transform Eqs. (93) and (94) further. In
particular, one can show that

¯̄v · n = O(ε), (96)

in the same way as the derivation of Eq. (90) in [39]. In consequence, Eq. (93) is reduced to the
following form in terms of φ [cf. Eq. (83)]:

φ = (1 − ac)R̃φ − ac
(
C2

w − 2
) ¯̄Ttr

T̂w
− ac

(
Ēw − δ

2

) ¯̄Tint

T̂w
− 2acCwi(δi j − nin j )

¯̄v j

T̂ 1/2
w

− 2
√

πac
1

�(δ/2)

∫
Cwn<0

∫ ∞

0
CwnφE (Cw)Ēδ/2−1

w e−Ēw d Ēw dCw

+ (2 − ac)
1

Âc(T̂w)ρ̂BT̂ 1/2
w

Cwn

[(
C2

w − 5

2

)(
∂T̂tr

∂xi

)
B

ni +
(
Ēw − δ

2

)(
∂T̂int

∂xi

)
B

ni

]
+ ac

1

Âc(T̂w)ρ̂B

2

1 − ν

(
C2

wn − 1

3
C2

w − 1

3

)(
∂ v̂i

∂x j

)
B

nin j

+ (2 − ac)
1

Âc(T̂w)ρ̂B

2

1 − ν
CwnCwinl (δi j − nin j )

[(
∂ v̂l

∂x j

)
B

+
(

∂ v̂ j

∂xl

)
B

]
+ ac

1

Âc(T̂w)ρ̂BT̂ 1/2
w

Cwi(δi j − nin j )

(
C2

w + Ēw − 5 + δ

2

)
∂T̂w

∂x j
+ O(ε), (y = 0, Cwn > 0).

(97)

In the derivation of Eq. (97), use has been made of the formulas (91a) and (91c) in [39], which
are also valid in the present paper, as well as the expressions Cwi = Cwnni + Cw j (δi j − nin j ) and
R̃Cwi = −Cwnni + Cw j (δi j − nin j ). In addition, because of the relations T̂tr = T̂w + O(ε) and T̂int =
T̂w + O(ε) on the boundary [cf. Eq. (60)] and of the fact that (δi j − nin j )(∂S/∂x j )B consists of
tangential derivatives of S on the boundary, we can write

(δi j − nin j )

(
∂T̂tr

∂x j

)
B

= (δi j − nin j )
∂T̂w

∂x j
+ O(ε), (98a)

(δi j − nin j )

(
∂T̂int

∂x j

)
B

= (δi j − nin j )
∂T̂w

∂x j
+ O(ε). (98b)

Note that (δi j − nin j )∂T̂w/∂x j is defined only on the boundary. Equation (98) has been used in the
derivation of the term containing (δi j − nin j )∂T̂w/∂x j in Eq. (97).

D. Summary

If we omit the terms of O(ε) in Eqs. (84) and (97) and take into account Eq. (71b), then we obtain
the problem for φ. In order to avoid cumbersome notations, we change the names of the variables
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from (Cw, Ēw) to (ζ, Ê ) and denote φ as a function of (t̃, y, χ1, χ2, ζ, Ê ):

Cw → ζ (thus Cwn → ζn and Cw → ζ ), Ēw → Ê, (99a)

φ(t̃, y, χ1, χ2, Cw, Ēw) → φ(t̃, y, χ1, χ2, ζ, Ê ). (99b)

Here (ζ, Ê ) should not be confused with (ζ, Ê ) used until Sec. VI C. Then the equation and the
boundary condition for φ become as follows:

ζn
∂φ

∂y
= L0(φ), (y > 0), (100a)

φ = (1 − ac)R̃φ − ac
(
ζ 2 − 2

) ¯̄Ttr

T̂w
− ac

(
Ê − δ

2

) ¯̄Tint

T̂w
− 2acζi(δi j − nin j )

¯̄v j

T̂ 1/2
w

− 2
√

πac
1

�(δ/2)

∫
ζn<0

∫ ∞

0
ζnφE (ζ )Êδ/2−1e−Ê d Ê dζ

+ (2 − ac)
1

Âc(T̂w)ρ̂BT̂ 1/2
w

ζn

[(
ζ 2 − 5

2

)(
∂T̂tr

∂xi

)
B

ni +
(
Ê − δ

2

)(
∂T̂int

∂xi

)
B

ni

]
+ ac

1

Âc(T̂w)ρ̂B

2

1 − ν

(
ζ 2

n − 1

3
ζ 2 − 1

3

)(
∂ v̂i

∂x j

)
B

nin j

+ (2 − ac)
1

Âc(T̂w)ρ̂B

2

1 − ν
ζnζinl (δi j − nin j )

[(
∂ v̂l

∂x j

)
B

+
(

∂ v̂ j

∂xl

)
B

]
+ ac

1

Âc(T̂w)ρ̂BT̂ 1/2
w

ζi(δi j − nin j )

(
ζ 2 + Ê − 5 + δ

2

)
∂T̂w

∂x j
, (y = 0, ζn > 0), (100b)

φ → 0, (y → ∞), (100c)

where L0(φ) is defined by Eqs. (85)–(87) with the change of notations (99) being applied. Here and
in what follows, the reflection operator R̃ indicates R̃ĝ(ζi ) = ĝ(ζi − 2ζ jn jni ) because of Eqs. (95)
and (99).

The problem (100) is a steady boundary-value problem of the linearized ES model for a
polyatomic gas with θ = 0 in the half space y > 0. It looks similar to the corresponding problem in
[39] for the ES model with θ = O(1) [Eq. (95) in [39]]. However, there is a significant difference.
In the latter case, the boundary condition contains two quantities ¯̄T and ¯̄v, instead of the three
quantities ¯̄Ttr, ¯̄Tint, and ¯̄v in Eq. (100b), and the problem has the unique solution only when ¯̄T and ¯̄v
are related to the derivatives (∂T̂ /∂x j )B and (∂ v̂i/∂x j )B appropriately. These relations provided the
so-called slip boundary conditions for the standard compressible Navier-Stokes equations with the
single temperature and with the bulk viscosity [39]. This structure is analogous to the corresponding
half-space problem of the linearized Boltzmann equation for a monatomic gas, which has been
studied mathematically [60–64] and whose mathematical structure, such as the existence and
uniqueness of the solution, has been well understood. Numerical analysis of some relevant problems
can also be found in the literature (e.g., [65,66]).

As mentioned above, the present problem, Eq. (100), contains the three quantities ¯̄Ttr, ¯̄Tint, and
¯̄v in the boundary condition. This difference from the corresponding problem in [39] is due to
the following fact: The equilibrium solution L0(φ) = 0 is the six-parameter family given by φ =
c0 + c1ζ1 + c2ζ2 + c3ζ3 + c4ζ

2 + c5Ê [cf. Eq. (90)], whereas the equilibrium solution L(φ) = 0,
where L( · ) is the linearized collision operator of the ES model defined by Eq. (32) in [39] [recall
that L0( · ) = L( · )|θ=0], is the five-parameter family φ = c0 + c1ζ1 + c2ζ2 + c3ζ3 + c4(ζ 2 + Ê ).
In analogy with the case of [39], we can expect that the problem (100) has the unique solution
only when ¯̄Ttr, ¯̄Tint, and ¯̄v are related to the derivatives (∂T̂tr/∂x j )B, (∂T̂int/∂x j )B, (∂ v̂i/∂x j )B, and
(δi j − nin j )∂T̂w/∂x j , appropriately. These relations provide the desired boundary conditions for the
two-temperature Navier-Stokes equations, as we will see in the following section.
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We have not mentioned the initial condition for the Knudsen-layer equation so far. Since the
time-derivative term is not contained in Eq. (100a), we cannot impose the initial condition to this
equation. However, we can show that the problem (100) is consistent with the initial condition (55)
for the two-temperature Navier-Stokes equations and assumption (v) in Sec. II A. For the detailed
discussion on this point, the reader is referred to Sec. 5.2.4 in [40].

VII. SLIP BOUNDARY CONDITIONS

In this section, we analyze the Knudsen-layer problem (100) to establish the slip boundary
conditions for the two-temperature Navier-Stokes equations (6) basically following the descriptions
in [39].

A. Decomposition of Knudsen-layer problem

We first introduce the following reduced velocity distribution functions:[
�(t̃, y, χ1, χ2, ζ)

�(t̃, y, χ1, χ2, ζ)

]
= 1

�(δ/2)

∫ ∞

0

[
Êδ/2−1

(2/δ)Êδ/2

]
φ(t̃, y, χ1, χ2, ζ, Ê )e−Ê d Ê . (101)

Let us integrate each of Eqs. (100a), (100b), and (100c), multiplied by [�(δ/2)]−1Êδ/2−1e−Ê ,
with respect to Ê from 0 to ∞ and make use of Eq. (101). Then we obtain the closed set of equation
and boundary conditions for � of the following form:

ζn
∂�

∂y
= LES(�), (y > 0), (102a)

� = (1 − ac)R̃� − ac
(
ζ 2 − 2

) ¯̄Ttr

T̂w
− 2acζi(δi j − nin j )

¯̄v j

T̂ 1/2
w

− 2
√

πac

∫
ζn<0

ζn�E (ζ ) dζ

+ (2 − ac)
1

Âc(T̂w)ρ̂BT̂ 1/2
w

ζn

(
ζ 2 − 5

2

)(
∂T̂tr

∂xi

)
B

ni

+ ac
1

Âc(T̂w)ρ̂B

2

1 − ν

(
ζ 2

n − 1

3
ζ 2 − 1

3

)(
∂ v̂i

∂x j

)
B

nin j

+ (2 − ac)
1

Âc(T̂w)ρ̂B

2

1 − ν
ζnζinl (δi j − nin j )

[(
∂ v̂l

∂x j

)
B

+
(

∂ v̂ j

∂xl

)
B

]
+ ac

1

Âc(T̂w)ρ̂BT̂ 1/2
w

ζi(δi j − nin j )

(
ζ 2 − 5

2

)
∂T̂w

∂x j
, (y = 0, ζn > 0), (102b)

� → 0, (y → ∞). (102c)

Here

LES(�) = 1

�(δ/2)

∫ ∞

0
L0(φ)Êδ/2−1e−Ê d Ê

= ω + 2ζiui +
(

ζ 2 − 3

2

)
τtr + ν

(
ζiζ j − 1

3
ζ 2δi j

)
Pi j − �, (103)

where

ω = 〈�〉, ui = 〈ζi�〉, τtr = 2

3

〈(
ζ 2 − 3

2

)
�

〉
, Pi j = 2〈ζiζ j�〉, (104)

and 〈 · 〉 is defined, for an arbitrary function ĝ(ζ) of ζ, by

〈 ĝ(ζ) 〉 =
∫
R3

ĝ(ζ)E (ζ ) dζ. (105)
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It should be emphasized here that LES( · ) is nothing but the linearized collision operator of the
ES model for a monatomic gas. It follows from Eq. (91) [with the replacement (99)] that, for an
arbitrary function g(ζi ),

〈LES(g)〉 = 〈ζiLES(g)〉 = 〈ζ 2LES(g)〉 = 0. (106)

In [40], the slip boundary conditions for the compressible Navier-Stokes equations were derived for
a monatomic gas on the basis of the Boltzmann equation including the BGK model. Although the ES
model was not considered there, it is not difficult to see that the problem (102) is the Knudsen-layer
problem for the ES model for a monatomic gas if T̂tr is regarded as the temperature T̂ [cf. Eqs. (100)
and (101) in [40]; note that for a monatomic gas, the ES model reduces to the BGK model when
ν = 0]. Therefore, the problem (102) can be handled in the same way as in [40].

Next, we integrate each of Eqs. (100a)–(100c), multiplied by (2/δ)[�(δ/2)]−1Êδ/2e−Ê , with
respect to Ê from 0 to ∞ and make use of Eq. (101). Then, from the resulting equations, we subtract
Eqs. (102a)–(102c), respectively. As the result, we obtain the problem for the difference � − �:

ζn
∂ϒ

∂y
= 〈ϒ〉 − ϒ, (y > 0), (107a)

ϒ = (1 − ac)R̃ϒ − ac

¯̄Tint

T̂w
+ (2 − ac)

1

Âc(T̂w)ρ̂BT̂ 1/2
w

ζn

(
∂T̂int

∂xi

)
B

ni

+ ac
1

Âc(T̂w)ρ̂BT̂ 1/2
w

ζi(δi j − nin j )
∂T̂w

∂x j
, (y = 0, ζn > 0), (107b)

ϒ → 0, (y → ∞), (107c)

where ϒ is defined by the difference

ϒ(t̃, y, χ1, χ2, ζ) = �(t̃, y, χ1, χ2, ζ) − �(t̃, y, χ1, χ2, ζ). (108)

Let us consider the problem (102). As discussed in Sec. 5.3.1 in [40], if the terms containing the
boundary values of the derivatives (∂T̂tr/∂xi )B and (∂ v̂i/∂x j )B and the tangential derivative of the
boundary temperature (δi j − nin j )(∂T̂w/∂x j ) in Eq. (102b) are all set to be zero, then the problem
(102) has a trivial solution � = 0, ¯̄Ttr = 0, and ¯̄vi = 0, which should be unique in analogy with
the case of the linearized Boltzmann equation for a monatomic gas [61]. Therefore, these terms are
regarded as the inhomogeneous terms, and ¯̄Ttr and ¯̄vi are a part of the solution. That is, � as well
as ¯̄Ttr and ¯̄vi is determined depending on the inhomogeneous terms. Because of its linearity, the
problem (102) can be decomposed in accordance with the form of the inhomogeneous terms.

Here we note that ζi(δi j − nin j ) in the last two lines of Eq. (102b) indicates the tangential
component of ζ, i.e., the projection of ζ onto the plane tangent to the boundary. From the form
of the inhomogeneous terms in Eq. (102b), we assume the solution � in the following form:

�(t̃, y, χ1, χ2, ζ) = 1

Âc(T̂w)ρ̂B

[(
∂ v̂l

∂x j

)
B

+
(

∂ v̂ j

∂xl

)
B

]
ζinl (δi j − nin j ) �I

v (y, ζn, ζ )

+ 1

Âc(T̂w)ρ̂BT̂ 1/2
w

∂T̂w

∂x j
ζi(δi j − nin j ) �I

T (y, ζn, ζ )

+ 1

Âc(T̂w)ρ̂B

(
∂ v̂i

∂x j

)
B

nin j�
II
v (y, ζn, ζ )

+ 1

Âc(T̂w)ρ̂BT̂ 1/2
w

(
∂T̂tr

∂xi

)
B

ni�
II
T (y, ζn, ζ ). (109)
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Then we also set the unknown parameters ¯̄v j and ¯̄Ttr in the form consistent with the form of the
macroscopic quantities in the inhomogeneous terms. To be more specific, the tangential vector
(δi j − nin j ) ¯̄v j should be related to the (macroscopic) tangential vectors in the inhomogeneous
terms, i.e., (δi j − nin j )[(∂ v̂l/∂x j )B + (∂ v̂ j/∂xl )B]nl and (δi j − nin j )(∂T̂w/∂x j ), whereas the scalar
¯̄Ttr should be related to the (macroscopic) scalars in the inhomogeneous terms, i.e., (∂ v̂i/∂x j )Bnin j

and (∂T̂tr/∂xi )Bni. To summarize, we let

¯̄v j

T̂ 1/2
w

(δi j − nin j ) = cI
v

1

Âc(T̂w)ρ̂B

[(
∂ v̂l

∂x j

)
B

+
(

∂ v̂ j

∂xl

)
B

]
nl (δi j − nin j )

+ cI
T

1

Âc(T̂w)ρ̂BT̂ 1/2
w

∂T̂w

∂x j
(δi j − nin j ), (110a)

¯̄Ttr

T̂w
= cII

v

1

Âc(T̂w)ρ̂B

(
∂ v̂i

∂x j

)
B

nin j + cII
T

1

Âc(T̂w)ρ̂BT̂ 1/2
w

(
∂T̂tr

∂xi

)
B

ni, (110b)

where cI
v , cI

T , cII
v , and cII

T are undetermined constants that depend on the properties of the gas as well
as on the accommodation coefficient ac and are determined together with the solutions �I

v , �I
T , �II

v ,
and �II

T .
Similarly, the problem (107) can be decomposed by letting

ϒ(t̃, y, χ1, χ2, ζ) = 1

Âc(T̂w)ρ̂BT̂ 1/2
w

∂T̂w

∂x j
ζi(δi j − nin j ) ϒ I

T (y, ζn, ζ )

+ 1

Âc(T̂w)ρ̂BT̂ 1/2
w

(
∂T̂int

∂xi

)
B

niϒ
II
T (y, ζn, ζ ) (111)

and
¯̄Tint

T̂w
= c̃II

T

1

Âc(T̂w)ρ̂BT̂ 1/2
w

(
∂T̂int

∂xi

)
B

ni, (112)

where c̃II
T is an undetermined constant depending on the properties of the gas as well as on the

accommodation coefficient ac and is determined together with the solution ϒ II
T . Since ¯̄Tint is a

scalar, it cannot be related to the tangential vector (δi j − nin j )(∂T̂w/∂x j ). Therefore, ¯̄Tint must have
the form of Eq. (112). In other words, the problem for ϒ I

T does not contain any undetermined
constant.

If we substitute Eqs. (109) and (110) into Eq. (102) and substitute Eqs. (111) and (112) into
Eq. (107), we obtain six decomposed problems for �I

v , �I
T , �II

v , �II
T , ϒ I

T , and ϒ II
T . Once they

have been determined together with the constants cI
v , cI

T , cII
v , cII

T , and c̃II
T , Eqs. (110) and (112)

provide the desired slip boundary conditions for the two temperature Navier-Stokes equations. The
assumption that �I

v , �I
T , �II

v , �II
T , ϒ I

T , and ϒ II
T are all functions of y, ζn, and ζ will turn out to be

consistent.
Before presenting the decomposed problems, we need a small preparation. Let us introduce two

unit vectors s and t tangent to the boundary and orthogonal to each other, i.e., n · s = n · t = s · t =
0, and denote the two orthogonal tangential components of ζ by ζs = ζ · s and ζt = ζ · t . Then we
have the expressions, such as ζi = ζnni + ζssi + ζtti, ζ 2 = ζ 2

n + ζ 2
s + ζ 2

t , and nin j + sis j + tit j = δi j .
With these relations, it is easy to verify the following relation for any function g = g(ζn, ζ ):

LES[ζi(δi j − nin j )g(ζn, ζ )] = ζi(δi j − nin j )LS
ES[g(ζn, ζ )], (113)

where

LS
ES[g(ζn, ζ )] = 〈(

ζ 2 − ζ 2
n

)
g
〉+ 2νζn

〈
ζn
(
ζ 2 − ζ 2

n

)
g
〉− g. (114)

Now we list the resulting six decomposed problems for �I
v , �I

T , �II
v , �II

T , ϒ I
T , and ϒ II

T .
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(i) Problems for (�I
κ ; cI

κ ) (κ = v, T ):

ζn
∂�I

κ

∂y
= LS

ES

(
�I

κ

)
, (y > 0), (115a)

�I
κ = (1 − ac)R̃�I

κ − 2accI
κ + HI

κ , (y = 0, ζn > 0), (115b)

�I
κ → 0, (y → ∞), (115c)

where

HI
v = (2 − ac)

2

1 − ν
ζn, HI

T = ac

(
ζ 2 − 5

2

)
. (116)

If we take 〈 · 〉 of Eq. (115a) multiplied by ζ 2 − ζ 2
n and note that 〈ζ 2 − ζ 2

n 〉 = 1, we have d〈ζn(ζ 2 −
ζ 2

n )�I
κ〉/dy = 0. Then it follows from Eq. (115c) that〈

ζn
(
ζ 2 − ζ 2

n

)
�I

κ

〉 = 0. (117)

(ii) Problems for (�II
κ ; cII

κ ) (κ = v, T ):

ζn
∂�II

κ

∂y
= LES

(
�II

κ

)
, (y > 0), (118a)

�II
κ = (1 − ac)R̃�II

κ − 2
√

π ac

∫
ζn<0

ζn�
II
κ E (ζ ) dζ − ac(ζ 2 − 2)cII

κ + HII
κ ,

(y = 0, ζn > 0), (118b)

�II
κ → 0, (y → ∞), (118c)

where

HII
v = ac

2

1 − ν

(
ζ 2

n − 1

3
ζ 2 − 1

3

)
, HII

T = (2 − ac)ζn

(
ζ 2 − 5

2

)
. (119)

Taking 〈 · 〉 of Eq. (118a) multiplied by (1, ζn, ζ 2) and taking account of Eq. (106), we have
d〈ζn�

II
κ 〉/dy = d〈ζ 2

n �II
κ 〉/dy = d〈ζnζ

2�II
κ 〉/dy = 0. Then, from Eq. (118c), we obtain〈

ζn�
II
κ

〉 = 〈
ζ 2

n �II
κ

〉 = 〈
ζnζ

2�II
κ

〉 = 0. (120)

(iii) Problem for ϒ I
T :

ζn
∂ϒ I

T

∂y
= −ϒ I

T , (y > 0), (121a)

ϒ I
T = (1 − ac)R̃ϒ I

T + ac, (y = 0, ζn > 0), (121b)

ϒ I
T → 0, (y → ∞). (121c)

(iv) Problem for (ϒ II
T ; c̃II

T ):

ζn
∂ϒ II

T

∂y
= 〈

ϒ II
T

〉− ϒ II
T , (y > 0), (122a)

ϒ II
T = (1 − ac)R̃ϒ II

T − acc̃II
T + (2 − ac)ζn, (y = 0, ζn > 0), (122b)

ϒ II
T → 0, (y → ∞). (122c)

Taking 〈 · 〉 of Eq. (122a) and taking Eq. (122c) into account, we have〈
ζnϒ

II
T

〉 = 0. (123)
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B. Further reduction of decomposed problems

The independent variables in the decomposed problems listed in Sec. VII A are y, ζn, and ζ . In the
present section, we will further reduce the independent variables to y and ζn using the conventional
procedure first introduced for the BGK model [67]. For this purpose, we introduce the following
reduced velocity distribution functions (ϕII

v , ϕII
T ), (ψ I

v , ψ I
T , ψ II

v , ψ II
T ), and (υI

T , υII
T ):

ϕII
κ (y, ζn) = 1

π

∫ ∞

−∞

∫ ∞

−∞
�II

κ (y, ζn, ζ )e−ζ 2
s −ζ 2

t dζt dζs, (124a)

ψN
κ (y, ζn) = 1

π

∫ ∞

−∞

∫ ∞

−∞

(
ζ 2

s + ζ 2
t

)
�N

κ (y, ζn, ζ )e−ζ 2
s −ζ 2

t dζt dζs, (124b)

υN
T (y, ζn) = 1

π

∫ ∞

−∞

∫ ∞

−∞
ϒN

T (y, ζn, ζ )e−ζ 2
s −ζ 2

t dζt dζs, (κ = v, T, and N = I, II ). (124c)

Here we have expressed ζ using the components ζn, ζs, and ζt, i.e., ζ = ζnn + ζss + ζtt , so that
ζ 2 − ζ 2

n = ζ 2
s + ζ 2

t holds.
Equations (117), (120), and (123) are, respectively, expressed in terms of the reduced velocity

distribution functions as follows: ∫ ∞

−∞
ζnψ

I
κe−ζ 2

n dζn = 0, (125a)

∫ ∞

−∞
ζn

⎡⎢⎣ϕII
κ

ζnϕ
II
κ

ζ 2
n ϕII

κ + ψ II
κ

⎤⎥⎦e−ζ 2
n dζn = 0, (125b)

∫ ∞

−∞
ζnυ

II
T e−ζ 2

n dζn = 0, (κ = v, T ). (125c)

Then, by the use of Eq. (125a), LS
ES(�I

κ ) (κ = v, T ) [cf. Eq. (114)] is expressed as

LS
ES

(
�I

κ

) = 1√
π

∫ ∞

−∞
ψ I

κe−ζ 2
n dζn − �I

κ , (κ = v, T ), (126)

and with the help of Eq. (125b), LES(�II
κ ) (κ = v, T ) [cf. Eq. (103)] is expressed as follows:

LES
(
�II

κ

) = ω + (
ζ 2 − 3

2

)
τtr + ν

(
ζiζ j − 1

3ζ 2δi j
)
Pi j − �II

κ , (κ = v, T ), (127)

with

ω = 1√
π

∫ ∞

−∞
ϕII

κ e−ζ 2
n dζn, (128a)

τtr = − 1√
π

∫ ∞

−∞
ϕII

κ e−ζ 2
n dζn + 2

3

1√
π

∫ ∞

−∞
ψ II

κ e−ζ 2
n dζn, (128b)

Pi j = 1√
π

∫ ∞

−∞
ψ II

κ e−ζ 2
n dζn (δi j − nin j ). (128c)

Here we have omitted the subscript κ and superscript II for the macroscopic quantities ω, Pi j , and
τtr to avoid cumbersome notation. In addition, 〈ϒ II

T 〉 in Eq. (122a) is reduced to〈
ϒ II

T

〉 = 1√
π

∫ ∞

−∞
υII

T e−ζ 2
n dζn. (129)

With these preparations, we consider the problems for (�I
κ ; cI

κ ) and (�II
κ ; cII

κ )(κ = v, T ) as well as
those for ϒ I

T and (ϒ II
T ; c̃II

T ) listed in Sec. VII A.

083401-30



BOUNDARY CONDITIONS FOR TWO-TEMPERATURE …

(i) Problems for (�I
κ ; cI

κ ) (κ = v, T ):
Let us multiply each of Eqs. (115a) [with Eq. (126)], (115b), and (115c) by (1/π )(ζ 2

s +
ζ 2

t ) e−ζ 2
s −ζ 2

t and integrate the resulting equations with respect to ζs and ζt from −∞ to ∞ for both
variables. In addition, we let(

ψ I
v, cI

v

) = 1

1 − ν

(
ψ̄ I

v, c̄I
v

)
,

(
ψ I

T , cI
T

) = (
ψ̄ I

T , c̄I
T

)
. (130)

Then we obtain the following half-space problems for (ψ̄ I
κ ; c̄I

κ )(κ = v, T ):

ζn
∂ψ̄ I

κ

∂y
= 1√

π

∫ ∞

−∞
ψ̄ I

κe−ζ 2
n dζn − ψ̄ I

κ , (y > 0), (131a)

ψ̄ I
κ = (1 − ac)R̃ψ̄ I

κ − 2acc̄I
κ + GI

κ , (y = 0, ζn > 0), (131b)

ψ̄ I
κ → 0, (y → ∞), (131c)

where

GI
v = 2(2 − ac) ζn, GI

T = ac
(
ζ 2

n − 1
2

)
, (132)

and R̃ψ̄ I
κ (0, ζn) = ψ̄ I

κ (0, −ζn).

(ii) Problems for (�II
κ ; cII

κ ) (κ = v, T ):
We multiply each of Eqs. (118a) [with Eq. (127)], (118b), and (118c) by (1/π )(1, ζ 2

s +
ζ 2

t ) e−ζ 2
s −ζ 2

t and integrate the resulting equations with respect to ζs and ζt from −∞ to ∞ for both
variables. Then we obtain the following half-space problems for (ϕII

κ , ψ II
κ ; cII

κ )(κ = v, T ):

ζn
∂

∂y

[
ϕII

κ

ψ II
κ

]
= ω

[
1

1

]
+ τtr

[
ζ 2

n − 1
2

ζ 2
n + 1

2

]
− 1

3
νPii

[
ζ 2

n − 1
2

ζ 2
n − 1

]
−
[
ϕII

κ

ψ II
κ

]
, (y > 0), (133a)

[
ϕII

κ

ψ II
κ

]
= (1 − ac)R̃

[
ϕII

κ

ψ II
κ

]
− 2ac

∫ 0

−∞
ζnϕ

II
κ e−ζ 2

n dζn

[
1

1

]

− accII
κ

[
ζ 2

n − 1

ζ 2
n

]
+ GII

κ , (y = 0, ζn > 0), (133b)

[
ϕII

κ

ψ II
κ

]
→ 0, (y → ∞), (133c)

where

GII
v = 4

3
ac

1

1 − ν

[
ζ 2

n − 1

ζ 2
n − 3

2

]
, GII

T = (2 − ac)ζn

[
ζ 2

n − 3
2

ζ 2
n − 1

2

]
, (134)

and ω, τtr, and Pii (= Pi jδi j) contained in Eq. (133a) are defined by Eqs. (128a)–(128c).

(iii) Problem for ϒ I
T :

Integrating each of Eqs. (121a)–(121c), multiplied by (1/π )e−ζ 2
s −ζ 2

t , with respect to ζs and ζt

from −∞ to ∞ for both variables, we obtain the following problem for υI
T :

ζn
∂υI

T

∂y
= −υI

T , (y > 0), (135a)

υI
T = (1 − ac)R̃υI

T + ac, (y = 0, ζn > 0), (135b)

υI
T → 0, (y → ∞). (135c)
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(iv) Problem for (ϒ II
T ; c̃II

T ):
Integrating each of Eqs. (122a)–(122c), multiplied by (1/π )e−ζ 2

s −ζ 2
t , with respect to ζs and ζt

from −∞ to ∞ for both variables, we obtain the following problem for (υII
T , c̃II

T ):

ζn
∂υII

T

∂y
= 1√

π

∫ ∞

−∞
υII

T e−ζ 2
n dζn − υII

T , (y > 0), (136a)

υII
T = (1 − ac)R̃υII

T − acc̃II
T + (2 − ac)ζn, (y = 0, ζn > 0), (136b)

υII
T → 0, (y → ∞). (136c)

C. Some remarks on reduced problems

As the result of the analysis in the preceding sections, the Knudsen-layer problem to determine
the slip boundary conditions has been reduced to the half-space problems for (i) (ψ̄ I

κ ; c̄I
κ )(κ =

v, T ), i.e., Eqs. (131) and (132); (ii) (ϕII
κ , ψ II

κ ; cII
κ )(κ = v, T ), i.e., Eqs. (133) and (134); (iii) υI

T ,
i.e., Eq. (135); and (iv) (υII

T ; c̃II
T ), i.e., Eq. (136). At this point, we give some remarks on these

problems.
We first note that the problem of (ψ̄ I

v ; c̄I
v ), i.e., Eqs. (131) and (132) with κ = v, is exactly the

same as the problem of the Knudsen layer for the shear slip based on the linearized BGK model for
a monatomic gas [41,42] and the Maxwell-type boundary condition. It is one of the fundamental
classical problems in kinetic theory studied by various authors [43,68–71] [there are some earlier
results [72,73] for ac = 1 (diffuse reflection)]. In fact, c̄I

v is the slip coefficient of the problem, which
is equal to κ in [69] and ζP in [43]. Therefore, we can easily find the value of c̄I

v in the literature and
can, in principle, recover the solution ψ̄ I

v from the data in the literature. Consequently, we can obtain
the reduced distribution function ψ I

v of �I
v and the value of cI

v of the original problem, Eqs. (115)
and (116), immediately from Eq. (130) as

ψ I
v = 1

1 − ν
ψ I

vBGK, cI
v = 1

1 − ν
cI
vBGK, (137)

where and in what follows the subscript BGK indicates the corresponding quantities for the BGK
model for a monatomic gas. This reduction from the ES model to the BGK model has been used in
[44] in connection with the analysis of the Knudsen layer in the framework of the generalized slip
flow theory based on the linearized ES model for a monatomic gas.

We next note that the problem of (ψ̄ I
T ; c̄I

T ), i.e., Eqs. (131) and (132) with κ = T , is exactly the
same as the problem of the Knudsen layer for the thermal creep based on the linearized BGK model
for a monatomic gas and the Maxwell-type boundary condition. It is also a fundamental classical
problem that has been investigated in several papers [43,70,74,75] (there is an earlier work [76] for
ac = 1), and c̄I

T corresponds to the slip coefficient of the problem, which is equal to d/2 in [75]
and ζT in [43]. Therefore, the numerical value of c̄I

T is available, and the reduced distribution ψ̄ I
T

associated with �I
T can, in principle, be obtained from the literature. From Eq. (130), this fact can

be summarized as

ψ I
T = ψ I

T BGK, cI
T = cI

T BGK. (138)

This equivalence between the ES model and the BGK model for a monatomic gas is also pointed
out in [44].

Now let us consider the problem for (ϕII
v , ψ II

v ; cII
v ), i.e., Eqs. (133) and (134) with κ = v. This

problem is exactly the same as that of the Knudsen layer for the temperature jump, caused by the
normal gradient of the normal component of the flow velocity, based on the linearized ES model for
a monatomic gas and the Maxwell-type boundary condition [cf. the sentences following Eq. (106)].
It has been studied in [44], and the numerical results for ac = 1 (diffuse reflection) and ν = −0.5
and 0 (BGK model) are found there (see also [45]), e.g., cII

v (here) = c(0)
5 (in [44,45]). However,

since no result is available for the general case, a new numerical analysis of the problem is required.
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The problem for (ϕII
T , ψ II

T ; cII
T ), i.e., Eqs. (133) and (134) with κ = T is the same as that of the

Knudsen layer for the standard temperature jump based on the linearized ES model for a monatomic
gas and the Maxwell-type boundary condition [cf. the sentences following Eq. (106)]. It has been
studied in [44], and the numerical results for ac = 1 and ν = −0.5 and 0 (BGK model) are found
there (see also [45]), e.g., cII

T (here) = c(0)
1 (in [44,45]). However, since no result is available for the

general case, we need new numerical computation for this problem.
Finally, we consider the problem for υI

T and that for (υII
T ; c̃II

T ), i.e., Eqs. (135) and (136),
respectively. The problem (135) can be solved immediately:

υI
T =

{
0, (ζn < 0),

ace−y/ζn , (ζn > 0).
(139)

By comparing Eq. (136) and Eq. (131) with κ = v, one immediately finds that

υII
T = 1

2 ψ̄ I
v = 1

2ψ I
vBGK, c̃II

T = c̄I
v = cI

vBGK. (140)

In this way, the problem for (υII
T ; c̃II

T ) has been solved.
In summary, what we only need is to solve the temperature jump problems, i.e., Eq. (133) with

κ = v, T , for specified ν.

D. Summary and additional remarks

We note that ν and the accommodation coefficient ac are the only parameters that enter the
solution of the problem for (ψ I

v, cI
v ) [Eq. (137)] and the solutions of the problems (133) for

(ϕII
κ , ψ II

κ ; cII
κ ) (κ = v, T ). In addition, the solution of the problem for (ψ I

T , cI
T ) [Eq. (138)] and

that of the problem for (υII
T , c̃II

T ) [Eq. (140)] are independent of ν. It follows from Eq. (A8) that
Pr = 1/(1 − ν + θν) ≈ 1/(1 − ν) when θ � 1. Therefore, ν is basically determined by the Prandtl
number.

According to Eqs. (137), (138), and (140), the coefficients cI
v , cI

T , and c̃II
T are obtained imme-

diately from the slip coefficients for the BGK model for a monatomic gas. The result is shown in
Eq. (10) with Table I.

By contrast, we need a new numerical analysis of the problem (133) (with κ = v, T ) to obtain
the numerical values of cII

v and cII
T . Since the analysis, which is based on a finite-difference method,

is straightforward, we show only its outline in Appendix D. As mentioned in Sec. II D, the resulting
numerical values are shown in Tables II and III. The dependence of cII

v and cII
T on the parameters ν

and ac is discussed in Sec. II D.
With these numerical values of cI

v , cI
T , cII

v , cII
T , and c̃II

T , the slip boundary conditions for the two-
temperature Navier-Stokes equations (6) follow immediately from Eqs. (60), (96), (110), and (112).
The result is summarized in Eq. (9) in Sec. II D. As noted in [40], Eq. (9) forms two-dimensional
fields on the boundary at each time and is independent of the trajectory of the points on the boundary.

The initial conditions for Eq. (6) are given by Eq. (55) under assumption (v) in Sec. II A.
However, if we are interested only in the behavior of the gas in the fluid-dynamic timescale that
is much longer than the mean free time and admit the inaccuracy in the initial stage 0 < t̂ <

O(mean free time), we may ignore assumption (v) in Sec. II A and assume the more general initial
conditions of the form of Eq. (13), where ρ̂ in(x), v̂in(x), T̂ in

tr (x), and T̂ in
int (x) are appropriately chosen

functions and are related to the initial condition for the ES model specified in the problem under
consideration, say,

f̂ (0, x, ζ, Ê ) = f̂ in(x, ζ, Ê ), (141)

which may be more general than Eq. (39). The reader is referred to Sec. 5.2.4 in [40] for more
detailed discussion about the initial conditions.
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E. Macroscopic quantities inside Knudsen layer

We consider the Knudsen-layer parts of the macroscopic quantities ĥ(1)
K in Eq. (62) or more

specifically Eq. (65), on the basis of the expressions (88) [with Eq. (86)] and (89). Equation (92)
indicates that v̂

(1)
Ki ni, p̂(1)

Ki jn j , q̂(1)
(tr)Kini, and q̂(1)

(int)Kini are all of O(Rhε). Other components of the

macroscopic quantities ĥ(1)
K can be obtained by using Eqs. (101), (108), (109), and (111) in Eqs. (88)

[with Eq. (86)] and (89) and by noting that the change of the names of the variables (99) has
been made in Eqs. (101), (108), (109), and (111). In this process, use is also made of the relations
derived in Sec. VII C. We summarize the results of the Knudsen-layer corrections of the macroscopic
quantities, i.e., ĥK = ĥ(1)

K ε + O(Rhε
2) [Eq. (62)], neglecting the terms of O(Rhε

2):

v̂Kini = 0, (142a)

v̂Kiti = εYv (y)
T̂ 1/2

w

Âc(T̂w)

1

ρ̂

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi

)
nit j + εYT (y)

1

Âc(T̂w)

1

ρ̂

∂T̂w

∂xi
ti, (142b)

ρ̂K = ε�v (y)
1

Âc(T̂w)

∂ v̂i

∂x j
nin j + ε�T (y)

1

Âc(T̂w)T̂ 1/2
w

∂T̂tr

∂xi
ni, (142c)

T̂trK = ε�v (y)
T̂w

Âc(T̂w)

1

ρ̂

∂ v̂i

∂x j
nin j + ε�T (y)

T̂ 1/2
w

Âc(T̂w)

1

ρ̂

∂T̂tr

∂xi
ni, (142d)

T̂intK = ε�̃T (y)
T̂ 1/2

w

Âc(T̂w)

1

ρ̂

∂T̂int

∂xi
ni, (142e)

T̂K = 3T̂trK + δT̂intK

3 + δ
, (142f)

p̂Ki jn j = 0, (142g)

p̂Ki jt j = ε�v (y)
T̂w

Âc(T̂w)

∂ v̂ j

∂xk
n jnkti + ε�T (y)

T̂ 1/2
w

Âc(T̂w)

∂T̂tr

∂x j
n jti, (142h)

q̂(tr)Kini = 0, (142i)

q̂(tr)Kiti = εHv (y)
T̂ 3/2

w

Âc(T̂w)

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi

)
nit j + εHT (y)

T̂w

Âc(T̂w)

∂T̂w

∂xi
ti, (142j)

q̂(int)Kini = 0, (142k)

q̂(int)Kiti = εH̃T (y)
T̂w

Âc(T̂w)

∂T̂w

∂xi
ti, (142l)

q̂Ki = q̂(tr)Ki + q̂(int)Ki, (142m)

where, with κ = v and T ,

Yκ (y) = 1

2

〈(
ζ 2 − ζ 2

n

)
�I

κ

〉 = 1

2
√

π

∫ ∞

−∞
ψ I

κe−ζ 2
n dζn, (143a)

�κ (y) = 〈
�II

κ

〉 = 1√
π

∫ ∞

−∞
ϕII

κ e−ζ 2
n dζn, (143b)

�κ (y) = 2

3

〈(
ζ 2 − 3

2

)
�II

κ

〉
= − 1√

π

∫ ∞

−∞

(
ϕII

κ − 2

3
ψ II

κ

)
e−ζ 2

n dζn, (143c)

�̃T (y) = 〈
ϒ II

T

〉 = 1√
π

∫ ∞

−∞
υII

T e−ζ 2
n dζn = 1 − ν

2
√

π

∫ ∞

−∞
ψ I

ve−ζ 2
n dζn = (1 − ν)Yv (y), (143d)
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�κ (y) = 3

2
[�κ (y) + �κ (y)], (143e)

Hκ (y) = 1

2

〈
(ζ 2 − ζ 2

n )

(
ζ 2 − 5

2

)
�I

κ

〉
, (143f)

H̃T (y) = δ

4

〈
(ζ 2 − ζ 2

n )ϒ I
T

〉
. (143g)

Here 〈 · 〉 is defined by Eq. (105). In Eq. (142), the quantities ρ̂, v̂i, T̂tr, and T̂int belong to the
Chapman-Enskog solution, and ρ̂ and the derivatives of v̂i, T̂tr, and T̂int are all evaluated on the
boundary. By the use of Eqs. (137) and (138) and by a similar procedure to that in Appendix C in
[39], we obtain the following relations (the details are omitted here):

Yv (y) = 1

1 − ν
YvBGK(y), YT (y) = YT BGK(y), (144a)

Hv (y) = 1

1 − ν
HvBGK(y), HT (y) = HT BGK(y), (144b)

H̃T (y) = 1

4
√

π
acδJ0(y), (144c)

where YvBGK(y), YT BGK(y), HvBGK(y), and HT BGK(y) are the corresponding functions for the BGK
model for a monatomic gas, and Jn(y) is the so-called Abramowitz function [77] defined by

Jn(y) =
∫ ∞

0
zne−z2− y

z dz, (y � 0). (145)

The basic functions YvBGK(y), YT BGK(y), HvBGK(y), and HT BGK(y) versus y are plotted in Fig. 2
in [39] for three different values of the accommodation coefficient ac [note that ac (here) = α (in
[39])], i.e., ac = 1.0, 0.5, and 0.2. These functions vanish rapidly as y → ∞. Here it should be noted
that [YvBGK(y), YT BGK(y), HvBGK(y), HT BGK(y)] (here) = [Y (1)

1 (y), Y (1)
2 (y), H (1)

1 (y), H (1)
2 (y)] (in

[44,45]) and the latter functions for ac = 1 are tabulated in Table 6 in [45]. In addition, the function
J0(y) is tabulated in Table V in [39]. Therefore, these data are omitted here. The functions Yv (y),
YT (y), Hv (y), HT (y), and H̃T (y) are recovered from these data once the value of ν is known for the
gas under consideration.

In Figs. 2–5 we show the profiles of the functions �v (y), �T (y), �v (y), and �T (y), respectively,
in the case of ac = 1.0, 0.5, and 0.2 for ν = −0.5, −0.3, −0.1, and 0.1. In these figures, the
corresponding profiles for the BGK model for a monatomic gas (ν = 0) are also shown. We should
recall that the functions �v (y), �T (y), �v (y), and �T (y) are the same as the corresponding functions
for the ES model for a monatomic gas. To be more specific, [�v (y), �T (y), �v (y), �T (y)] (here) =
[�(0)

5 (y), �
(0)
1 (y), �

(0)
5 (y), �

(0)
1 (y)] (in [44,45]), and the latter functions for ac = 1 and ν = −0.5

(Pr = 2/3) and 0 (BGK model) are tabulated in Tables 4 and 6 in [45]. Corresponding to the fact
that cII

T is almost constant with respect to ν, the functions �T and �T are almost independent
of ν.

VIII. TWO-TEMPERATURE NAVIER-STOKES EQUATIONS AND SLIP BOUNDARY
CONDITIONS IN DIMENSIONAL FORM

We first summarize the dimensional form of the two-temperature Navier-Stokes equations fol-
lowing Sec. III C in [36]. The stress tensor pi j and the heat-flow vector qi, which are the dimensional
version of Eq. (53) with the O(ε2) terms being neglected, are given by

pi j = ρRTtrδi j − μtr(T, Ttr )

(
∂vi

∂Xj
+ ∂v j

∂Xi
− 2

3

∂vk

∂Xk
δi j

)
, (146a)
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(a)

y

Ω
v
(y

)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

(b)

y

Ω
v
(y

)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

(c)

y

Ω
v
(y

)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

FIG. 2. Profile of �v (y). (a) ac = 1, (b) ac = 0.5, (c) ac = 0.2.

q(tr)i = −λtr(T, Ttr )
∂Ttr

∂Xi
, q(int)i = −λint(T, Ttr )

∂Tint

∂Xi
, (146b)

qi = q(tr)i + q(int)i, (146c)

where

μtr(T, Ttr ) = 1

1 − ν

RTtr

Ac(T )
, λtr(T, Ttr ) = 5

2
R

RTtr

Ac(T )
, λint(T, Ttr ) = δ

2
R

RTtr

Ac(T )
, (147)

(a)
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)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

(b)

y

Ω
T
(y

)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

(c)

y

Ω
T
(y

)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

FIG. 3. Profile of �T (y). (a) ac = 1, (b) ac = 0.5, (c) ac = 0.2.
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(b)

y

Θ
v
(y
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ν =−0.5
−0.3
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0 (BGK)
0.1

(c)
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−0.1
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FIG. 4. Profile of �v (y). (a) ac = 1, (b) ac = 0.5, (c) ac = 0.2.

and T = (3Ttr + δTint )/(3 + δ) [Eq. (18i)]. Correspondingly, the dimensional two-temperature
Navier-Stokes equations, which are the dimensional version of Eq. (6), are given by the following
equations:

∂ρ

∂t
+ ∂ (ρv j )

∂Xj
= 0, (148a)

∂ (ρvi )

∂t
+ ∂ (ρviv j )

∂Xj
+ ∂ (ρRTtr )

∂Xi
= ∂

∂Xj

[
μtr(T, Ttr )

(
∂vi

∂Xj
+ ∂v j

∂Xi
− 2

3

∂vk

∂Xk
δi j

)]
, (148b)

(a)

y

Θ
T
(y

)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

(b)

y

Θ
T
(y

)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

(c)

y

Θ
T
(y

)

ν =−0.5
−0.3
−0.1
0 (BGK)
0.1

FIG. 5. Profile of �T (y). (a) ac = 1, (b) ac = 0.5, (c) ac = 0.2.
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∂

∂t

[
ρ

(
3

2
RTtr + 1

2
v2

i

)]
+ ∂

∂Xj

[
ρv j

(
5

2
RTtr + 1

2
v2

i

)]
− 3

2
θAc(T )ρ2R(T − Ttr )

= ∂

∂Xj

[
λtr(T, Ttr )

∂Ttr

∂Xj

]
+ ∂

∂Xj

[
μtr(T, Ttr )vi

(
∂vi

∂Xj
+ ∂v j

∂Xi
− 2

3

∂vk

∂Xk
δi j

)]
, (148c)

∂ (ρTint )

∂t
+ ∂ (ρv jTint )

∂Xj
− θAc(T )ρ2(T − Tint ) = 2

δ

1

R

∂

∂Xj

[
λint(T, Ttr )

∂Tint

∂Xj

]
. (148d)

The Ac(T ) in Eqs. (148c) and (148d) can be replaced by an expression in terms of μtr, λtr, or
λint with the help of Eq. (147). However, the terms containing Ac(T ) indicate the relaxation of the
translational temperature and that of the internal temperature. Since [θAc(T )ρ]−1 is the timescale of
the relaxation of the translational and internal temperatures [cf. Eq. (A10)], it would be more natural
to keep θAc(T ) in Eqs. (148c) and (148d). The dimensional version of Eq. (54) is omitted here
[cf. Eq. (70) in [36]].

Next we transform the slip boundary conditions (9) into their dimensional form. To be more
specific, we use Eqs. (3) and (8) and eliminate ε with the help of Eqs. (4), (A5), and (147) (with T =
Tw and Ttr = Tw) in Eq. (9). Then we obtain the following dimensional form of the slip boundary
conditions:

(vi − vwi )ni = 0, (149a)

(vi − vwi )ti =
√

2

R1/2
aI

v

μtr(Tw, Tw)

ρT 1/2
w

(
∂vi

∂Xj
+ ∂v j

∂Xi

)
nit j + 4

5R
aI

T

λtr(Tw, Tw)

ρTw

∂Tw

∂Xi
ti, (149b)

Ttr − Tw = 1

R
aII

v

μtr(Tw, Tw)

ρ

∂vi

∂Xj
nin j + 2

√
2

5R3/2
aII

T

λtr(Tw, Tw)

ρT 1/2
w

∂Ttr

∂Xi
ni, (149c)

Tint − Tw = 2
√

2

δR3/2
ãII

T

λint(Tw, Tw)

ρT 1/2
w

∂Tint

∂Xi
ni, (149d)

where

aI
v = (1 − ν)cI

v = cI
vBGK, aI

T = cI
T = cI

T BGK,

aII
v = (1 − ν)cII

v , aII
T = cII

T , ãII
T = c̃II

T = cI
vBGK. (150)

Here Eq. (10) has been used. In Eq. (149), RTw/Ac(Tw) has been eliminated by the use of the relation
RTw/Ac(Tw) = (1 − ν)μtr(Tw, Tw) = (2/5R)λtr(Tw, Tw)= (2/δR)λint(Tw, Tw) [cf. Eq. (147)]. More
specifically, μtr is used in the terms containing the derivative of vi, λtr is used in the terms
containing the derivative of Tw or Ttr, and λint is used in the term containing the derivative of
Tint. This choice follows the analogous choice in the slip boundary conditions for the ordinary
Navier-Stokes equations (with a single temperature) for a polyatomic gas [see Eq. (139) in [39]]. In
the case of the ordinary Navier-Stokes equations in [39], the equations as well as the slip boundary
conditions are expressed in terms of the viscosity μ, bulk viscosity μb, and thermal conductivity λ

[cf. Eqs. (138) and (139) in [39]], the data of which are available for many gases. Therefore, these
data can be input directly in the equations and the boundary conditions without identifying the
function Ac(T ) in practical applications. In contrast, the two-temperature Navier-Stokes equations
(148) contains Ac(T ). In addition, the transport coefficients μtr, λtr, and λint contained in the
equations (148) and in the boundary conditions (149) are the quantities whose direct measurements
would be difficult. Therefore, we need to identify the function Ac(T ) by the procedure described in
Sec. II E. An example of the procedure is shown in the last paragraphs in Sec. II F.

The initial condition for Eq. (148) is given by

ρ = ρ0, v = 0, Ttr = Tint = T0, at t = 0, (151)
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which corresponds to Eq. (55) under assumption (v) in Sec. II A, or

ρ = ρ in(X ), v = vin(X ), Ttr = T in
tr (X ), Tint = T in

int (X ), at t = 0, (152)

which corresponds to Eq. (13) in more general case without assumption (v) and in the case when
we ignore the accuracy for short time (within the scale of the mean free time). Here ρ in, vin, T in

tr ,
and T in

int are the density, flow velocity, translational temperature, and internal temperature obtained
from the initial distribution f in corresponding to Eq. (141) (see Sec. 5.2.4 in [40]).

IX. CONCLUDING REMARKS

In [36], four of the present authors derived the two-temperature Navier-Stokes equations from
the ES model for a polyatomic gas under the assumption that the timescale of the relaxation of
the internal modes is much longer than the collisional mean free time. Then the equations have
successfully been applied to the problem of the structure of a stationary shock wave in CO2 gas
(see also [38]). Incidentally, it is generally understood that gases with slow relaxation of the internal
modes have large bulk viscosities.

In the present study, we tried, as the next step, to derive the appropriate boundary conditions
for the two-temperature Navier-Stokes equations. Since most of practical flow problems contain
solid boundaries, the applicability of the equations will be dramatically enlarged with the boundary
conditions.

As is well known [58,59,78,79], the appropriate boundary conditions, which are in the form of
the slip boundary conditions, for the ordinary Navier-Stokes equations can be obtained only by the
analysis of the Knudsen layer, which is a thin layer with thickness of the order of the mean free
path of the gas molecules adjacent to the solid boundary. The reader is referred to [40] for the slip
boundary conditions for a monatomic gas and [39] for those for a polyatomic gas.

In the present study, following these references, we have carried out a precise analysis of the
Knudsen layer, in the case where the timescale of the relaxation of the internal modes is much
longer than the collisional mean free time, on the basis of the ES model for a polyatomic gas and
the Maxwell-type boundary condition. As the result, we have derived the slip boundary conditions
for the two-temperature Navier-Stokes equations, together with the explicit numerical values of the
coefficients included in the conditions (the so-called slip coefficients).

The boundary conditions for the flow velocity and the translational temperature are essentially
the same as the slip boundary conditions for the ES model for a monatomic gas, and the internal
temperature does not appear there. The boundary condition for the internal temperature only
contains the normal derivative of itself and is free from the translational temperature as well as
the flow velocity.

In this way we have established the handy system consisting of the two-temperature Navier-
Stokes equations and their slip boundary conditions and presented it in the form that is explicit
and immediately applicable to practical flow problems of a polyatomic gas with slow relaxation of
the internal modes (or large bulk viscosity) [see Eqs. (6) and (9) or Eqs. (148) and (149)]. It is a
great advantage of the two-temperature Navier-Stokes equations to have clear boundary conditions,
compared with other macroscopic moment equations. The application of the new system to some
fundamental flow problems will be our forthcoming project. It would also be possible to extend the
present approach, as well as that of [36], to more sophisticated models than the present ES model,
such as the model proposed recently by [25], to derive multitemperature Navier-Stokes equations
and their slip boundary conditions.
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APPENDIX A: BASIC PROPERTIES OF ES MODEL

1. Basic properties

The ES model (17) has the basic properties listed in the following.
Equilibrium: The vanishing of the collision term Q( f ) = 0 is equivalent to the fact that f is the

following local equilibrium distribution [16] (see also Appendix A in [53]):

feq = ρEδ/2−1

(2πRT )3/2(RT )δ/2�(δ/2)
exp

(
−|ξ − v|2

2RT
− E

RT

)
, (A1)

where ρ, v, and T are arbitrary functions of t and X .
Conservations: For an arbitrary function g(t, X , ξ, E ), the following relation holds [16] (see

also Appendix A in [53]): ∫∫ ∞

0
ϕrQ(g)dE dξ = 0, (A2)

where ϕr (r = 0, . . . , 4) are the so-called collision invariants:

ϕ0 = 1, ϕi = ξi (i = 1, 2, 3), ϕ4 = 1
2 |ξ|2 + E . (A3)

Entropy inequality: For an arbitrary function g(t, X , ξ, E ), the following inequality holds [16]:∫∫ ∞

0

(
ln

g

Eδ/2−1

)
Q(g) dE dξ � 0, (A4)

and the equality sign holds if and only if g = feq in Eq. (A1).
Mean free path: The mean free path l0 of the gas molecules in the equilibrium state at rest at

density ρ0 and temperature T0 is given by

l0 = 2√
π

(2RT0)1/2

Ac(T0)ρ0
, (A5)

for Eq. (17), since Ac(T0)ρ0 is the collision frequency at this equilibrium state.

2. Transport and relaxation properties

When the mean free path of the gas molecules l0 is small compared with the characteristic length
of the system, we can formally derive the ordinary (compressible) Navier-Stokes equations for a
polyatomic gas from the ES model (17) by the Chapman-Enskog method [16]. The Navier-Stokes
constitutive laws thus obtained are as follows (see Sec. VI of [39] for these forms and for the entire
Navier-Stokes equations):

pi j = pδi j − μ(T )

(
∂vi

∂Xj
+ ∂v j

∂Xi
− 2

3

∂vk

∂Xk
δi j

)
− μb(T )

∂vk

∂Xk
δi j, (A6a)

qi = −λ(T )
∂T

∂Xi
, (A6b)

where μ(T ), μb(T ), and λ(T ) are, respectively, the viscosity, the bulk viscosity, and the thermal
conductivity and are expressed as follows:

μ(T ) = 1

1 − ν + θν

RT

Ac(T )
, (A7a)

μb(T ) = 2

3

δ

θ (δ + 3)

RT

Ac(T )
, (A7b)

λ(T ) = δ + 5

2

R2T

Ac(T )
. (A7c)
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From Eqs. (A7a), (A7c), and (1), the Prandtl number Pr = cpμ/λ is obtained as

Pr = 1/(1 − ν + θν), (A8)

and from Eqs. (A7a), (A7b), (A8), and (1), the ratio μb/μ is expressed as

μb

μ
= 2

3

δ

θ (δ + 3)

1

Pr
= 1

θ

(
5

3
− γ

)
1

Pr
. (A9)

Here it should be noted that the ratio μb/μ does not depend on T and is inversely proportional to
the parameter θ contained in the ES model.

In [36], the relaxation of the internal modes is examined in the space homogeneous case where
f does not depend on X , i.e., f = f (t, ξ, E ). As shown in Sec. II D in [36], the temperature Ttr

associated with the translational energy and the temperature Tint associated with the energy of the
internal modes evolve with time as

Ttr = T + (Ttr∗ − T ) e−θAc (T )ρt , (A10a)

Tint = T + (Tint∗ − T ) e−θAc (T )ρt , (A10b)

where T is the temperature that is constant, and Ttr∗ and Tint∗ are, respectively, the initial value of
Ttr and that of Tint at t = 0, which satisfy the relation (3Ttr∗ + δTint∗)/(3 + δ) = T . That is, Ttr and
Tint approach the total temperature T with the timescale 1/[θAc(T )ρ]. Since Ac(T )ρ is the collision
frequency of the gas molecules, 1/[Ac(T )ρ] is the mean free time. Therefore, the timescale of
relaxation of the internal modes is (mean free time)/θ .

In summary, small values of the parameter θ correspond to the case of large μb/μ and to the case
of slow relaxation of the internal modes.

APPENDIX B: REDUCTION OF TWO-TEMPERATURE NAVIER-STOKES EQUATIONS
TO ORDINARY NAVIER-STOKES EQUATIONS

In this Appendix, we try to recover the ordinary Navier-Stokes equations with a single tem-
perature from the two-temperature Navier-Stokes equations (6) following the procedure in [28].
The basic assumption to derive the latter equations is Eq. (5), i.e., α = θ/ε = O(1), whereas the
ordinary Navier-Stokes equations are based on the assumption that θ is of the order of unity [39],
which corresponds to α = O(1/ε) 
 1. In order to consider the situation close to the case of
α = O(1/ε) 
 1 in the two-temperature Navier-Stokes equations that are valid for α = O(1), we
let

1 � α � 1/ε, i.e., ε � θ � 1. (B1)

It is seen from the order of magnitude of each term in Eqs. (6c) and (6d) that

T̂tr − T̂ = O(1/α), T̂int − T̂ = O(1/α). (B2)

Subtracting Eq. (6b) multiplied by 2v̂i from Eq. (6c), using Eq. (6a) occasionally, and dividing by
ρ̂, we obtain

∂T̂tr

∂ t̂
+ v̂ j

∂T̂tr

∂x j
= −2

3
T̂tr

∂ v̂ j

∂x j
+ αÂc(T̂ )ρ̂(T̂ − T̂tr ) + 5

6
ε

1

ρ̂

∂

∂x j

[
�λ(T̂ , T̂tr )

∂T̂tr

∂x j

]
+ 2

3
ε

1

ρ
�μ(T̂ , T̂tr )

∂ v̂i

∂x j

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)
. (B3)

On the other hand, with the help of Eq. (6a), Eq. (6d) is transformed to the following form:

∂T̂int

∂ t̂
+ v̂ j

∂T̂int

∂x j
= αÂc(T̂ )ρ̂(T̂ − T̂int ) + 1

2
ε

1

ρ̂

∂

∂x j

[
�λ(T̂ , T̂tr )

∂T̂int

∂x j

]
. (B4)
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If we neglect the small terms of the order of ε in Eqs. (B3) and (B4) and subtract the latter from the
former, then we have

∂

∂ t̂
(T̂tr − T̂int ) + v̂ j

∂

∂x j
(T̂tr − T̂int ) = −2

3
T̂tr

∂ v̂ j

∂x j
− αÂc(T̂ )ρ̂(T̂tr − T̂int ). (B5)

Since T̂tr − T̂int = O(1/α) because of Eq. (B2), the left-hand side of Eq. (B5) is of O(1/α), while
its right-hand side is of O(1). Neglecting the left-hand side leads to the following expression of
T̂tr − T̂int:

T̂tr − T̂int = −2

3

1

α

T̂tr

Âc(T̂ )ρ̂

∂ v̂ j

∂x j
= −2

3

1

α

T̂

Âc(T̂ )ρ̂

∂ v̂ j

∂x j
+ O

(
1

α2

)
, (B6)

where use has been made of Eq. (B2). One can see that the degree of nonequilibrium T̂tr − T̂int is
directly expressed in terms of the divergence of the velocity field.

Using the definition (30i) of T̂ and Eq. (B6), we have

T̂tr − T̂ = δ

3 + δ
(T̂tr − T̂int ) = − 2δ

3(3 + δ)

1

α

T̂

Âc(T̂ )ρ̂

∂ v̂ j

∂x j
+ O

(
1

α2

)
, (B7a)

T̂int − T̂ = − 3

3 + δ
(T̂tr − T̂int ) = 2

3 + δ

1

α

T̂

Âc(T̂ )ρ̂

∂ v̂ j

∂x j
+ O

(
1

α2

)
. (B7b)

Let us substitute Eq. (B7a) into Eqs. (6b) and (54) to eliminate T̂tr, neglect the terms of O(1/α2),
and replace 1/α with ε/θ . Then we obtain the following equations:

∂ (ρ̂v̂i )

∂ t̂
+ ∂ (ρ̂v̂iv̂ j )

∂x j
= −1

2

∂ p̂

∂xi
+ ε

2

∂

∂x j

[
�̃1(T̂ )

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)]
+ ε

2

∂

∂xi

[
�b(T̂ )

∂ v̂ j

∂x j

]
,

(B8a)

∂

∂ t̂

[
ρ̂

(
3 + δ

2
T̂ + v̂2

i

)]
+ ∂

∂x j

[
ρ̂v̂ j

(
5 + δ

2
T̂ + v̂2

i

)]
= 5

4
ε

∂

∂x j

[
�2(T̂ )

∂T̂

∂x j

]
+ ε

∂

∂x j

[
�̃1(T̂ )v̂i

(
∂ v̂i

∂x j
+ ∂ v̂ j

∂xi
− 2

3

∂ v̂k

∂xk
δi j

)]
+ ε

∂

∂x j

[
�b(T̂ )v̂ j

∂ v̂k

∂xk

]
,

(B8b)

where p̂ = ρ̂T̂ [Eq. (31)] and

�̃1(T̂ ) = 1

1 − ν

T̂

Âc(T̂ )
, �2(T̂ ) =

(
1 + δ

5

)
T̂

Âc(T̂ )
, �b(T̂ ) = 1

θ

2δ

3(3 + δ)

T̂

Âc(T̂ )
. (B9)

Equations (6a), (B8a), and (B8b) coincide with the ordinary Navier-Stokes equations with a
single temperature derived from the ES model, i.e., Eq. (46) in [39], except that in Eqs. (B8a) and
(B8b), �̃1(T̂ ) appears in place of

�1(T̂ ) = 1

1 − ν + θν

T̂

Âc(T̂ )
. (B10)

However, since ε � θ � 1, it holds that �1(T̂ ) = �̃1(T̂ ) + O(θ ) ≈ �̃1(T̂ ). In this way, the ordinary
Navier-Stokes equations can be recovered from the two-temperature Navier-Stokes equations. The
quantity ε�b(T̂ ) corresponds to the bulk viscosity. It should be noted that the bulk viscosity terms
in Eqs. (B8a) and (B8b) originate from the relation (B6).
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APPENDIX C: OUTLINE OF DERIVATION OF EQS. (66) AND (67)

The derivation of Eqs. (66) and (67) is basically the same as the corresponding analysis in
Appendix A in [39], where θ = O(1) and ε � 1 are assumed instead of Eq. (5). Therefore, we
give its outline referring occasionally to [39].

We note that the Chapman-Enskog solution f̂CE satisfies Eq. (29). If we substitute Eq. (58) into
Eq. (29) and subtract Eq. (29) with f̂ = f̂CE, then we have

ε
∂ f̂ (1)

K

∂ t̂
+ εζi

∂ f̂ (1)
K

∂xi
+ O(ε2R f ) = 1

ε
[Q̂( f̂CE + f̂K ) − Q̂( f̂CE)], (C1)

where Eq. (61) has been used on the left-hand side.
In order to calculate the right-hand side of Eq. (C1), we first consider (T̂)i j in Eq. (30c). Let us use

Eq. (59) with Eq. (62) in Eq. (30c) and recall that ĥCE indicates the Chapman-Enskog macroscopic
quantities appeared in Sec. V B [i.e., ĥ in Eq. (49)] though the subscript CE is not attached there. This
operation has been done in Appendix A in [39] for θ = O(1) and led to the following expression
[cf. Eqs. (A2) and (A3) in [39]]:(

T̂|ĥ=ĥtot

)
i j

= (A)i j + ε(B)i j + O(ε2Rh), (C2)

where

(A)i j = (
T̂|ĥ=ĥCE

)
i j

= (1 − θ )

[
(1 − ν)T̂trδi j + ν

p̂i j

ρ̂

]
+ θ T̂ δi j, (C3a)

(B)i j = (1 − θ )

[
(1 − ν)T̂ (1)

trK δi j + ν
1

ρ̂

(
p̂(1)

Ki j − p̂i j
ρ̂

(1)
K

ρ̂

)]
+ θ T̂ (1)

K δi j, (C3b)

and T̂|ĥ=ĥCE
indicates T̂ evaluated with ĥ = ĥCE. Note that ρ̂, p̂i j , T̂tr , and T̂ in Eq. (C3) are the

Chapman-Enskog macroscopic quantities. Equation (C2) is a decomposition of T̂|ĥ=ĥtot
into the

Chapman-Enskog part (A)i j , Knudsen-layer part (B)i j up to O(ε), which contains the Chapman-
Enskog macroscopic quantities ρ̂ and p̂i j in the coefficients, and the remainder of O(Rhε

2)
originating from the remainder Rhε

2 in Eq. (62). Note that (A)i j and (B)i j , which are of O(1),
depend on ε and contain higher-order terms in ε. For instance, since p̂i j takes the form of expansion
in ε, it contains in general higher-order terms in ε. Equation (C2) with Eq. (C3) is one of the possible
expressions that are correct within the error of O(Rhε

2).
Since Eq. (C2) with Eq. (C3) does not contain the explicit form of the Chapman-Enskog solution,

it also holds in the present setting θ = αε � 1 [Eq. (5)]. Therefore, Eqs. (A4)– (A11) in Appendix A
in [39] are also the same in the present case.

To be more specific, Eq. (A11) in [39] gives the following expression of the difference appearing
in Eq. (C1):

Q̂( f̂CE + f̂K ) − Q̂( f̂CE) = Âc(T̂ ) ρ̂
(
Ĝ (1) − f̂ (1)

K

)
ε + O(R f ε

2), (C4)

where Ĝ (1) is given by Eq. (A10b) in [39] as

Ĝ (1) = Ĝ (0)

(
ρ̂

(1)
K

ρ̂
− 1

2

D(1)

D(0)
− δ

2

T̂ (1)
relK

T̂rel
+ P (1)

)
, (C5)

and Ĝ (0), D(0), D(1), and P (1) are defined by Eqs. (A10a), (A6a), (A6b), and (A8b) in [39],
respectively (the explicit expressions are omitted here).

The difference between [39] and the present case arises from now on. Using the relations
T̂rel = T̂int + O(ε), T̂ (1)

relK = T̂ (1)
intK [cf. Eq. (64)], and p̂i j = ρ̂T̂trδi j + O(ε) [cf. Eq. (53a)], we obtain
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the following expressions in place of Eqs. (A12) and (A13) in [39]:

(A)i j = T̂trδi j + O(ε), (C6a)

(A−1)i j = T̂ −1
tr δi j + O(ε), (C6b)

(B)i j = T̂trdKi j + O(Rhε), (C6c)

(A−1B A−1)i j = T̂ −1
tr dKi j + O(Rhε), (C6d)

and

dKi j = −ν
ρ̂

(1)
K

ρ̂
δi j + (1 − ν)

T̂ (1)
trK

T̂tr
δi j + ν

p̂(1)
Ki j

ρ̂T̂tr
. (C7)

If these relations are used in Eqs. (A6a), (A6b), and (A8b) in [39], they give the following
expressions of D(0), D(1), and P (1) in place of Eq. (A14) in [39]:

D(0) = T̂ 3
tr + O(ε), (C8a)

D(1) = T̂ 3
tr dKii + O(Rhε), (C8b)

P (1) = (ζi − v̂i )(ζ j − v̂ j )

T̂tr
dKi j + 2

ζi − v̂i

T̂tr
v̂

(1)
Ki + Ê

T̂ 2
int

T̂ (1)
intK + O(RhSε), (C8c)

where S indicates an appropriate function of ζ and Ê that decays fast enough when multiplied
by a rapidly decaying function of ζ and Ê . Using these expressions in Eq. (C5) and noting that
Ĝ (0) = f̂ (0) + O(ε f̂CE), we have the following expression of Ĝ (1) in place of Eq. (A15) in [39]:

Ĝ (1) = f̂ (0)

[
ρ̂

(1)
K

ρ̂
− 1

2
dKii − δ

2

T̂ (1)
intK

T̂int
+ (ζi − v̂i )(ζ j − v̂ j )

T̂tr
dKi j + 2

(ζi − v̂i )

T̂tr
v̂

(1)
Ki + Ê

T̂ 2
int

T̂ (1)
intK

]
+ O(R f ε)

= f̂ (0)

{
ρ̂

(1)
K

ρ̂
+ 2

(ζi − v̂i )

T̂tr
v̂

(1)
Ki +

[
(ζi − v̂i )2

T̂tr
− 3

2

]
T̂ (1)

trK

T̂tr

+ ν

[
(ζi − v̂i )(ζ j − v̂ j )

T̂tr
− 1

3

(ζk − v̂k )2

T̂tr
δi j

]
p̂(1)

Ki j

ρ̂T̂tr
+
( Ê

T̂int
− δ

2

)
T̂ (1)

intK

T̂int

}
+ O(R f ε). (C9)

Equations (C1), (C4), and (C9) lead to Eqs. (66) and (67).

APPENDIX D: OUTLINE OF NUMERICAL ANALYSIS

In this Appendix, we show the outline of numerical analysis of the half-space problem (133).

1. Strategy

We start with the problem (118), which is the original problem of Eq. (133). The boundary
condition (118b) contains an unknown constant cII

κ as well as the integral
∫
ζn<0 ζn�

II
κ E (ζ )dζ, which

is also an unknown constant. It is not preferable to handle the boundary condition containing
unknown quantities in the numerical analysis. Therefore, we will convert the problem to another
form that is more convenient for numerical analysis, following the strategy in [80].

Let us put

�̃II
κ = �II

κ + β1 + β2

(
ζ 2 − 3

2

)
, (D1a)

bII
κ = 2

√
π

∫
ζn<0

ζn�
II
κ E (ζ ) dζ − 1

2
cII
κ , (D1b)

where β1 and β2 are undetermined constants. The bII
κ is also interpreted as an undetermined

constant because the integral is not known until the solution �II
κ is determined. Then, since
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LES(1) = LES(ζ 2) = 0, the problem (118) is recast as

ζn
∂�̃II

κ

∂y
= LES

(
�̃II

κ

)
, (D2a)

�̃II
κ = (1 − ac)R̃�̃II

κ − ac

[
b∗

κ + c∗
κ

(
ζ 2 − 3

2

)]
+ HII

κ , (y = 0, ζn > 0), (D2b)

�̃II
κ → β1 + β2

(
ζ 2 − 3

2

)
, (y → ∞), (D2c)

where

b∗
κ = bII

κ − β1, c∗
κ = cII

κ − β2. (D3)

Since �II
κ vanishes rapidly as y → ∞ (this can be confirmed by the numerical result), the following

relations hold approximately for a large positive number d:

�̃II
κ (d, ζn, ζ ) = β1 + β2

(
ζ 2 − 3

2

)
, (D4a)

ω̃(d ) := 〈
�̃II

κ (d, ζn, ζ )
〉 = β1, τ̃tr(d ) := 2

3

〈(
ζ 2 − 3

2

)
�̃II

κ (d, ζn, ζ )
〉 = β2. (D4b)

Therefore, the following reflection condition holds at y = d:

�̃II
κ (d, ζn, ζ ) = �̃II

κ (d, −ζn, ζ ). (D5)

Now we consider the boundary-value problem of Eq. (D2a) in a finite domain 0 � y � d (d 
 1)
with the boundary conditions (D2b) and (D5), which is expected to have a unique solution for
specified constants b∗

κ and c∗
κ [81]. Once the solution �̃II

κ is obtained numerically, the constants β1

and β2 are determined by Eq. (D4b). Then the original solution �II
κ and the slip coefficient cII

κ are
obtained from Eq. (D1a) and the second of Eq. (D3), respectively. The bII

κ , which is determined by
the first of Eq. (D3), gives the value of the integral in Eq. (D1b), which is not relevant to the slip
boundary conditions. This is the procedure to obtain the solution �II

κ and the slip coefficient cII
κ of

the problem (118).

2. Reduced equations

In the actual computation, we solve the version of the problem (D2a), (D2b), and (D5) that
corresponds to the problem (133). This version can be derived by the procedure used in the
derivation of the problem (133) from that (118). Let us define (̃ϕII

κ , ψ̃ II
κ ) by Eqs. (124a) and (124b)

with �II
κ = �̃II

κ :

ϕ̃II
κ (y, ζn) = 1

π

∫ ∞

−∞

∫ ∞

−∞
�̃II

κ (y, ζn, ζ )e−ζ 2
s −ζ 2

t dζt dζs, (D6a)

ψ̃ II
κ (y, ζn) = 1

π

∫ ∞

−∞

∫ ∞

−∞

(
ζ 2

s + ζ 2
t

)
�̃II

κ (y, ζn, ζ )e−ζ 2
s −ζ 2

t dζt dζs. (D6b)

Then the problem to be solved in place of Eq. (133) is obtained as follows:

ζn
∂

∂y

[
ϕ̃II

κ

ψ̃ II
κ

]
= ω̃

[
1

1

]
+ τ̃tr

[
ζ 2

n − 1
2

ζ 2
n + 1

2

]
+ νP̃i j

(
nin j − 1

3
δi j

)[
ζ 2

n − 1
2

ζ 2
n − 1

]
−
[

ϕ̃II
κ

ψ̃ II
κ

]
, (0 < y < d ),

(D7a)[
ϕ̃II

κ (0, ζn)

ψ̃ II
κ (0, ζn)

]
= (1 − ac)

[
ϕ̃II

κ (0, −ζn)

ψ̃ II
κ (0, −ζn)

]
− acb∗

κ

[
1

1

]
− acc∗

κ

[
ζ 2

n − 1
2

ζ 2
n + 1

2

]
+ GII

κ , (ζn > 0), (D7b)

[
ϕ̃II

κ (d, ζn)

ψ̃ II
κ (d, ζn)

]
=
[

ϕ̃II
κ (d, −ζn)

ψ̃ II
κ (d, −ζn)

]
, (ζn < 0), (D7c)
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where

ω̃ = 1√
π

∫ ∞

−∞
ϕ̃II

κ e−ζ 2
n dζn, τ̃tr = 2

3

1√
π

∫ ∞

−∞

[(
ζ 2

n − 3

2

)
ϕ̃II

κ + ψ̃ II
κ

]
e−ζ 2

n dζn,

P̃i j = 1√
π

∫ ∞

−∞

[
2ζ 2

n ϕ̃II
κ nin j + ψ̃ II

κ (δi j − nin j )
]
e−ζ 2

n dζn, (D8)

and GII
κ is defined by Eq. (134). In contrast to Eq. (125b),

∫∞
−∞ ζ 2

n ϕ̃II
κ e−ζ 2

n dζn is a nonzero constant
in general, so that Eq. (D8) differs from Eq. (128).

In summary, we solve the boundary-value problem in the domain 0 � y � d , i.e., Eq. (D7),
numerically for specified b∗

κ and c∗
κ . Once ϕ̃II

κ and ψ̃ II
κ are obtained, β1 and β2 are determined

by Eq. (D4b), that is, β1 = ω̃(d ) and β2 = τ̃tr(d ). Then the solution (ϕII
κ , ψ II

κ ; cII
κ ) of the original

problem (133) is obtained immediately with the help of Eqs. (D1a) and (D3), that is, ϕII
κ = ϕ̃II

κ −
β1 − β2(ζ 2

n − 1/2), ψ II
κ = ψ̃ II

κ − β1 − β2(ζ 2
n + 1/2), and cII

κ = c∗
κ + β2.

The P̃i jnin j calculated by the third of Eq. (D8) with ϕ̃II
κ = ϕII

κ should be zero theoretically
[cf. Eq. (125b)]. However, it does not vanish exactly with the numerical solution ϕII

κ and takes
small values because of the numerical error. These values provide a measure of accuracy of the
numerical solution (see Appendix D 5).

3. Finite-difference scheme

We solve Eq. (D7) or its variants, which are essentially the same as the former, by a finite-
difference method [82,83]. We write the problem (D7) symbolically as

ζn
∂ f

∂y
= L(y, ζn) − f , (0 < y < d ),

f (0, ζn) = (1 − ac) f (0, −ζn) + G(ζn), (ζn > 0), (D9)

f (d, ζn) = f (d, −ζn), (ζn < 0),

where f (y, ζn), L(y, ζn), and G(y, ζn) are two-component vectors, and L and G are known [L in
Eq. (D7a) is not known as the function of y; however, it is regarded as a known function in the
scheme shown below].

Let us denote the grid points in y by y(i) (i = 0, 1, . . . , 2N ; y(0) = 0, y(2N ) = d ), restrict the range
of ζn to a finite interval −Z � ζn � Z , and denote the grid points in ζn by ζ

( j)
n ( j = −2M,−2M +

1, . . . , 0, . . . , 2M; ζ (0)
n = 0, ζ (2M )

n = Z, ζ
(− j)
n = −ζ

( j)
n ). We denote the values of f , L, etc. at the

grid points at the nth step of iteration by

f (n)
i j = f

(
y(i), ζ ( j)

n

)
, L(n)

i j = L
(
y(i), ζ ( j)

n

)
, Gj = G

(
ζ ( j)

n

)
,

h(n)
i = h(y(i) ) (h = ω̃, τ̃tr, P̃i j ), (D10)

where the right-hand side of each equation indicates the value at the nth iteration. For i = 0, we
specially define f (n)

0,±0 = f (0, ±0) at the nth step of iteration.
The following finite-difference scheme is applied for Eq. (D9):

ζ ( j)
n ∇ f (n+1)

i j = L(n)
i j − f (n+1)

i j , (D11)

where ∇ f (n)
i j indicates the second-order upwind difference for ∂ f /∂y defined by

(a) ζ ( j)
n > 0

∇ f (n)
i j =

{(
f (n)
1, j − f (n)

0, j

)/
d1, (i = 1),

w0(di, di−1) f (n)
i j − w1(di, di−1) f (n)

i−1, j + w2(di, di−1) f (n)
i−2, j, (2 � i � 2N ),

(D12a)

(b) ζ ( j)
n < 0
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∇ f (n)
i j =

{(− f (n)
2N−1, j + f (n)

2N, j

)/
d2N , (i = 2N − 1),

−w0(di+1, di+2) f (n)
i j + w1(di+1, di+2) f (n)

i+1, j − w2(di+1, di+2) f (n)
i+2, j, (0 � i � 2N −2),

(D12b)

where

di = y(i) − y(i−1), w0(a, b) = 2a + b

a(a + b)
, w1(a, b) = a + b

ab
, w2(a, b) = a

b(a + b)
.

4. Process of computation

Suppose that the macroscopic quantities h(n)
i (thus L(n)

i j ) at the nth step and f (n)
2N, j ( j =

1, 2, . . . , 2M) at y = d for ζn > 0 are known. Then the physical quantities at the (n + 1)th step
are obtained by the following procedure:

(i) From the condition at y = d , we set f (n+1)
2N, j = f (n)

2N,− j ( j = −2M,−2M + 1, . . . ,−1).

(ii) For ζ
( j)
n = 0, we let f (n+1)

i,0 = L(n)
i,0 (i = 1, 2, . . . , 2N) and f (n+1)

0,−0 = L(n)
0,0.

(iii) For ζ
( j)
n < 0, we obtain f (n+1)

i j ( j = −2M,−2M + 1, . . . ,−1) for i = 2N − 1, 2N −
2, . . . , 0 successively using the finite-difference scheme (D11).

(iv) From the boundary condition at y = 0, we set f (n+1)
0, j = (1 − ac) f (n+1)

0,− j + Gj ( j =
1, 2, . . . , 2M) and f (n+1)

0,+0 = (1 − ac) f (n+1)
0,−0 + G0.

(v) For ζ
( j)
n > 0, we obtain f (n+1)

i j ( j = 1, 2, . . . , 2M) for i = 1, 2, . . . , 2N successively using
the finite-difference scheme (D11).

(vi) Integrating the obtained f (n+1)
i j by Simpson’s rule, we obtain the macroscopic quantities

h(n+1)
i .

We repeat the processes (i) to (vi) until the following convergence criteria are fulfilled: For
sufficiently small εe (> 0)

max
i

∣∣h(n+1)
i − h(n)

i

∣∣ < εe, (h = ω̃, P̃ := τ̃tr + ω̃). (D13)

We have set εe = 10−10 in the present computation.

5. Grid systems and accuracy tests

The following grid systems have been used in the computation:

y(i) = 40

1 + c

[
2(i/2N0)a

1 + (i/2N0)a−1
+ c

i

2N0

]
, (i = 0, 1, . . . , 2N ), (D14a)

ζ ( j)
n = 5

1 + cζ

[(
j

2M0

)3

+ cζ

j

2M0

]
, ( j = −2M,−2M + 1, . . . , 0, . . . , 2M ), (D14b)

TABLE VI. Parameters for the y-grid.

a N0 N d [= y(2N )] y(1) y(2N )− y(2N−1)

S1 3 400 420 44.05 2.81(−7)a 1.02(−1)
S2 3 200 210 44.05 1.50(−6) 2.05(−1)
S3 3 400 410 42.01 2.81(−7) 1.01(−1)
S4 4 400 420 45.07 1.25(−7) 1.28(−1)

aRead as 2.81×10−7.
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TABLE VII. Parameters for the ζn-grid.

cζ M0 M Z [= ζ (2M )
n ] ζ (1)

n ζ (2M )
n − ζ (2M−1)

n

M1 0.01 100 104 5.62 2.48(−4)a 8.02(−2)
M2 0.01 50 52 5.62 5.00(−4) 1.60(−1)
M3 0.01 100 102 5.30 2.48(−4) 7.71(−2)
M4 0.005 100 104 5.62 1.25(−4) 8.05(−2)

aRead as 2.48×10−4.

where c = 2.5×10−6 and cζ > 0, and a, N0, N, M0, and M are positive integers. Different sets of
values of the parameters in Eq. (D14), which are listed in Tables VI and VII, have been tried for test
computations, and the (S1, M1) system has been used to obtain the results shown in Secs. II D, II F,
and VII E.

Our reference grid system is (S1, M1), and the test computation has been carried out by using the
following six different systems: (S2, M1) where the number of y-grid is reduced by half; (S3, M1)
where the range of y is reduced slightly; (S4, M1) where y-grid is more concentrated around y = 0;
(S1, M2) where the number of ζn-grid is reduced by half; (S1, M3) where the range of ζn is reduced
slightly; (S1, M4) where ζn-grid is more concentrated around ζn = 0. Let

max |Pnn| = max
0�y�d

{|P̃i jnin j | with ϕ̃II
κ = ϕII

κ

}
,

Aκ = max
{[̃

ϕII
κ

]
y=d ,

[
ψ̃ II

κ

]
y=d

}
, Bκ = max

{[̃
ϕII

κ

]
|ζn|=Z ,

[
ψ̃ II

κ

]
|ζn|=Z

}
, (D15)

where

[ f ]y=d = max|ζn|�Z

∣∣ f (d, ζn)e−ζ 2
n
∣∣

max0�y�d, |ζn|�Z

∣∣ f (y, ζn)e−ζ 2
n

∣∣ , [ f ]|ζn|=Z = max0�y�d

∣∣ f (y,±Z )e−Z2 ∣∣
max0�y�d, |ζn|�Z

∣∣ f (y, ζn)e−ζ 2
n

∣∣ . (D16)

See the last paragraph in Appendix D 2 about max |Pnn|. The quantities max |Pnn|, Aκ , and Bκ should
be small enough. We have checked the values of cII

κ , max |Pnn|, Aκ , and Bκ with (S1, M1) system
plus the above six systems for various values of the parameters (ν, ac). As examples, the results for
(ν, ac) = (−0.5, 0.1) and (0.5, 1) are shown in Tables VIII and IX. The results for other values of

TABLE VIII. Test for (ν, ac ) = (−0.5, 0.1).

κ = v κ = T

Grid system cII
v max |Pnn| Av Bv cII

T max |Pnn| AT BT

(S1, M1) 0.22905585 1.9(−7)a 3.4(−9) 5.1(−13) 21.445809 3.6(−7) 4.4(−9) 7.4(−12)
(S2, M1) 0.22905639 3.0(−7) 3.4(−9) 5.1(−13) 21.445867 4.0(−6) 4.3(−9) 7.4(−12)
(S3, M1) 0.22905586 1.7(−7) 3.4(−9) 5.1(−13) 21.445809 3.8(−7) 8.0(−9) 7.4(−12)
(S4, M1) 0.22905584 2.0(−7) 3.4(−9) 5.1(−13) 21.445808 4.1(−7) 3.2(−9) 7.4(−12)
(S1, M2) 0.22905585 1.9(−7) 3.4(−9) 5.1(−13) 21.445809 3.6(−7) 4.4(−9) 7.4(−12)
(S1, M3) 0.22905585 1.9(−7) 3.4(−9) 1.4(−11) 21.445809 3.6(−7) 4.3(−9) 1.9(−10)
(S1, M4) 0.22905585 1.9(−7) 3.4(−9) 5.0(−13) 21.445809 3.6(−7) 4.4(−9) 7.3(−12)

aRead as 1.9×10−7.
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TABLE IX. Test for (ν, ac ) = (0.5, 1).

κ = v κ = T

Grid system cII
v max |Pnn| Av Bv cII

T max |Pnn| AT BT

(S1, M1) 0.90422215 1.2(−6)a 1.9(−9) 4.6(−13) 1.3049195 1.0(−7) 4.9(−9) 7.5(−12)
(S2, M1) 0.90422374 8.4(−6) 1.9(−9) 4.6(−13) 1.3049232 1.6(−6) 4.8(−9) 7.5(−12)
(S3, M1) 0.90422213 1.2(−6) 3.8(−9) 4.6(−13) 1.3049194 9.1(−8) 9.4(−9) 7.5(−12)
(S4, M1) 0.90422225 1.4(−6) 1.3(−9) 4.6(−13) 1.3049195 1.0(−7) 3.4(−9) 7.5(−12)
(S1, M2) 0.90422215 1.2(−6) 1.9(−9) 4.6(−13) 1.3049195 1.0(−7) 4.9(−9) 7.5(−12)
(S1, M3) 0.90422215 1.2(−6) 1.9(−9) 1.3(−11) 1.3049194 9.9(−8) 4.8(−9) 1.9(−10)
(S1, M4) 0.90422215 1.2(−6) 1.9(−9) 4.5(−13) 1.3049195 1.0(−7) 4.9(−9) 7.3(−12)

aRead as 1.2×10−6.

(ν, ac) are more or less of the same order of magnitude. Considering all these results, we have used
(S1, M1) system for the main computation.

[1] C. S. Wang Chang and G. E. Uhlenbeck, Transport phenomena in polyatomic gases, University of
Michigan, Ann Arbor, Engineering Research Institute Report CM-681 (1951).

[2] J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases (North-Holland,
Amsterdam, 1972).

[3] F. R. W. McCourt, J. J. M. Beenakker, W. E. Köhler, and I. Kuščer, Nonequilibrium Phenomena in
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