
PHYSICAL REVIEW FLUIDS 6, 083101 (2021)

Wall-curvature driven dynamics of a microswimmer

Chaithanya K. V. S. and Sumesh P. Thampi
Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, India

(Received 28 January 2021; accepted 28 July 2021; published 16 August 2021)

Microorganisms navigate through fluid, often confined by complex environments, to
survive and sustain life. Inspired by this fact, we consider a model system and seek to
understand the wall curvature driven dynamics of a squirmer, a mathematical model for
a microswimmer, using (i) lattice Boltzmann simulations and (ii) analytical theory by D.
Papavassiliou and G. P. Alexander [Eur. Phys. Lett. 110, 44001 (2015)]. The instantaneous
dynamics of the system is presented in terms of fluid velocity fields, and the translational
and angular velocities of the microswimmer, whereas the long time dynamics is presented
by plotting the squirmer trajectories near curved boundaries in physical and dynamical
space, as well as characterizing them in terms of fixed points and experimentally relevant
measures, namely, (i) proximity parameter, (ii) retention time, (iii) swimmer orientation
and (iv) tangential velocity near the boundary, and (v) scattering angle during the collision.
Our detailed analysis shows that irrespective of the type and strength, microswimmers
exhibit a greater affinity towards a concave boundary due to hydrodynamic interactions
compared to a convex boundary. In the presence of additional repulsive interactions with
the boundary, we find that pullers (propel by forward thrust) have a slightly greater
affinity towards the convex-curved walls compared to pushers (propel by backward thrust).
Our study provides a comprehensive understanding of the consequence of hydrodynamic
interactions in a unified framework that encompasses the dynamics of pullers, pushers,
and neutral swimmers in the neighborhood of flat, concave, and convex walls. In addition,
the combined effect of oppositely curved surfaces is studied by confining the squirmer
in an annulus. The results presented in a unified framework and insights obtained are
expected to be useful to design geometrical confinements to control and guide the motion
of microswimmers in microfluidic applications.
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I. INTRODUCTION

The natural habitats of microorganisms are complex. They navigate in a fluid, often through
complex and confined environments. In such surroundings, long-ranged hydrodynamic interactions
of microorganisms with confining boundaries may play a crucial role and they decide the trajectories
of these swimming bodies [1]. Therefore important parameters that affect the trajectory of a
microorganism, which are studied in the literature, are (i) its size and shape, [2–4], (ii) strength of
the confinement [1,5], (iii) rheological properties of the suspending fluid (viscosity, elasticity etc.)
[6–9], (iv) presence of a background flow (linear, quadratic flow etc.) [10,11], and (v) external forces
acting on the microorganism (such as gravity) [12,13]. On the other hand, far fewer studies have
considered the effect of confining geometry on the dynamics of a microswimmer (or a swimming
microorganism) and thus a systematic analysis of the effects of curved boundaries on the dynamics
of different microswimmers are not well recorded in the literature. In this work, we address this
question and fill the gap by presenting a detailed study of the effect of confining geometry on the
dynamics of a microswimmer.
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Based on geometry, the works that have addressed the effect of confining geometry [14,15] on
the dynamics of a microswimmer can be broadly classified into three categories: effects due to (i) a
flat wall [5,16,17], (ii) a convex boundary [18–21], and (iii) a concave boundary [22]. Following are
some of the interesting behaviours observed in these geometries. Escherichia coli and other similar
bacteria are attracted to flat walls and get trapped. Experiments showed that trapped E. coli rotates in
a clockwise direction (when viewed from above the wall) [23–25], but the sense of rotation reverses
when it is near a flat fluid-fluid interface [26–28]. Convex boundaries also trap microswimmers,
for example, chemically propelled Janus microrods are captured by spherical obstacles [20]. The
capture occurs only when the size of the obstacle is larger than a critical size [29], and the trapping
ability of the spherical obstacle is enhanced by the viscoelasticity of the suspending fluid [14].
Similar trapping ability is exhibited by concave surfaces. Chlamydomonas reinhardtii cells confined
in circular and elliptical enclosures get trapped near concave boundaries, and this trapping ability is
observed to increase with concavity [30] but reduces with increase in activity of the microswimmer
and fluid viscoelasticity [14].

The experimental observations are often successfully explained by simple theoretical models
and numerical simulations based on the hydrodynamic interactions between the microswimmer and
the boundary. For example, a point particle model by Spagnolie et al. [29] qualitatively captured
the trapping behavior of microswimmers by spherical obstacles (convex curvature). Building on
this concept, both theoretical and numerical investigations have been performed later, to include
finite-sized microswimmers and walls with arbitrary curvatures [18,21]. Malgaretti and Stark [31]
analyzed the dynamics of a dilute suspension of microswimmers in channels of varying cross
section. They reported that the accumulation of microswimmers at channel walls is sensitive to
the swimming mechanism and the geometry of the channels. Desai et al. [32] analyzed spherical,
surfactant-laden drops and found that the trapping ability of surfactant-laden drops is larger than
that of rigid spherical obstacles. Recently Sprenger et al. [33] analytically studied the dynamics of
a point swimmer confined inside a drop. However, the point particle-based theoretical models are
valid only if the separation distance between the microswimmer and the boundary is much larger
than the size of the microswimmer itself [29,32–34]. Using fully resolved numerical simulations,
several studies have also investigated the microswimmer dynamics near a solid-fluid [5,6,18,21,35]
or a fluid-fluid [36,37] interface.

As evident from the above discussion, most of the experimental and theoretical studies have
focused the analysis only on a particular type of microswimmer or a particular type of wall curvature
(flat, concave, or convex). To the best of our knowledge, there are no studies that compare and
contrast the way in which the concave and convex curvatures affect the microswimmer dynamics
and relate the observations to that of a flat wall. Therefore, in this work we analyze the dynamics
of various types of microswimmers dictated by different geometrical confinements using the theory
developed by Papavassiliou and Alexander [15] and fully resolved numerical simulations based
on the lattice Boltzmann method. We present our results in a unified framework illustrating the
combined role of microswimmer type and wall curvature in determining the behavior of microswim-
mers in confinements. Further, the combined affect of convex and concave curvatures in governing
the dynamics of microswimmers are revealed by studying the dynamics of a microswimmer in an
annular confinement.

In this work, we restrict the analysis to two dimensions. Such an approach is justified since
(i) the motion of the microswimmer is restricted to a plane in most of the experimental studies,
(ii) previous studies [38,39] have shown that the two-dimensional models offer physical insights
and qualitatively capture the dynamics shown by the three-dimensional microswimmers, and (iii)
curvature is a second rank tensor and thus the analysis of a three-dimensional microswimmer near
an arbitrary two-dimensional surface is cumbersome due to the large parametric space involved.

This paper is organized as follows. In Sec. II we give the details of two-dimensional squirmer
model for the microswimmer and then present the exact solutions derived [15] for the squirmer
dynamics near a curved boundary. We then outline the algorithm of the lattice Boltzmann numerical
scheme for numerical simulations. In Sec. III we present our results by characterizing the dynamics
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(a) (b)

FIG. 1. Velocity field generated by an unconfined squirmer: (a) neutral swimmer (B1 > 0, B2 = 0) and
(b) shaker (B1 = 0, B2 > 0). The black circle in the center represents the squirmer, and the thick horizontal
arrow shows its orientation. Continuous lines are streamlines, and the color field shows the magnitude of
velocity (normalized by Bn/2).

of a microswimmer near convex and concave boundaries. The instantaneous dynamics is charac-
terized in terms of the velocity field of the fluid, and the translational and angular velocities of
the microswimmer, whereas the long time dynamics is characterized by constructing trajectories
in physical space and dynamical space. The trajectories are analyzed in terms of fixed points and
experimentally relevant quantities such as proximity parameter, retention time, average orientation,
and average tangential velocity of the microswimmer near the boundary, and scattering angle
resulting from the wall collision. Then in Sec. IV we present the analysis of the microswimmer
confined in an annulus in terms of fluid velocity fields and the microswimmer trajectories.

II. THEORETICAL AND NUMERICAL DETAILS

In this section, we discuss the squirmer model for the microswimmer, the exact expressions for
the squirmer dynamics near a curved boundary, and then outline the lattice Boltzmann method for
numerical simulations.

A. Squirmer model for the microswimmer

We model the microswimmer as a two-dimensional circular squirmer proposed by Blake [40],
according to which, ciliary motion on a circular microswimmer is modeled by prescribing a slip
velocity (us) on its surface,

us =
∞∑

n=0

[An cos(nθc)ir + Bn sin(nθc)iθ ]. (1)

Here An and Bn are the strengths of the nth radial and tangential modes, respectively, θc is the polar
angle on the squirmer surface relative to its orientation, and ir and iθ are the radial and azimuthal
unit vectors in the polar coordinate system, respectively.

In the far field, each squirmer mode (An, Bn) corresponds to a different fundamental solution
of Stokes’ equations [34]. For example, the velocity field generated by B1 mode corresponds to a
source dipole which decays as 1/r2 [see Fig. 1(a)], and that by B2 mode corresponds to a force dipole
(stresslet) which decays as 1/r [see Fig. 1(b)]. All other modes produce faster decaying velocity
fields that the first two modes remain strongest in the far field [40]. Therefore, we consider only the
effect of first two tangential modes in this work and consider An = 0 for all n and Bn = 0 for n > 2.
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FIG. 2. Schematic illustration of the system considered. (a) A squirmer of radius rs is located near a circular
post of radius rb at a distance of d = ds + rs + rb, where ds is the shortest distance between the surface of the
swimmer and the surface of the boundary. The orientation vector of the squirmer makes an angle θs with
the separation vector (ŝ). (b) Change in the curvature α = rs/rb corresponds to different configurations (i)
α → −∞, squirmer near an infinitesimally small post, (ii) α = −1, post has the same radius as the squirmer,
(iii) α = −0.1, squirmer near a convex boundary, (iv) α = 0, squirmer near a flat wall, (v) α = 0.1, squirmer
near a concave boundary, and (vi) α = 0.65, squirmer in a strong circular confinement.

Usually the type and strength of the microswimmer are indicated by the nondimensional number
β = B2/B1, which is referred as activity hereafter. The limit β → 0 corresponds to a squirmer with
dominant source dipole mode, and β → ∞ corresponds to a squirmer with dominant force dipole
mode.

Unlike B1 mode, self-propulsion cannot be achieved by B2 mode in an unconfined medium or in
symmetric environments [5,37,41], since the flow field produced by B2 mode has a mirror symmetry.
However, in the presence of boundaries, the symmetry in the velocity field is broken, which, then,
can significantly affect the propulsion velocity of the squirmer.

Based on the far field flows generated, microswimmers are broadly classified into three types [3],
namely, neutral swimmers such as Janus swimmers [42] and molecular motors [43], pullers such as
C. reinhardtii [44,45], and pushers such as E. coli [46,47]. A squirmer with only B1 mode (B2 = 0
or β = 0), a positive B2 (or β > 0), and a negative B2 (or β < 0) mimic the flow field generated by
neutral swimmers, pullers, and pushers respectively.

B. Exact solution for squirmer dynamics near a curved boundary

We consider a squirmer of radius rs placed near a circular boundary of radius rb. They are
separated by a distance d = ds + rb + rs, where ds is the shortest distance between the surface
of the squirmer and the surface of the boundary. The polarity of the squirmer is indicated by the
orientation vector that makes an angle θs with the separation vector ŝ as shown in Fig. 2(a).

In order to unify the results related to convex, concave, and flat walls, we define a nondimensional
curvature, as the ratio of curvature of the boundary (1/rb) to the curvature of the squirmer (1/rs),
i.e., α = rs/rb with the following sign convention: α < 0 for a convex and α > 0 for a concave
boundary. The variation of α with change in the radius of curvature of the neighboring boundary for
a squirmer of fixed size is shown in Fig. 2(b), in the complete range −∞ < α < 1. A squirmer near
a circular post of infinitesimally small radius corresponds to α → −∞. Increase in the value of α

corresponds to increase in the size of the convex post. At α = −1, the squirmer and the post have
the same radius. Further increase in α corresponds to posts of larger size with the limit being α = 0,
which corresponds to a flat wall. α > 0 corresponds to a squirmer confined in concave boundaries
and the confinement becomes stronger as α increases with the limit being α = 1, when the radius of
the confinement is equal to that of the squirmer. Thus, a single parameter α can be used to represent
the variation in the curvature of the curved boundary.
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Ishimoto and Crowdy [17] solved for the dynamics of a 2D squirmer near a flat wall using the
complex variables and the conformal mapping approach in conjunction with the reciprocal theorem.
Later Papavassiliou and Alexander [15] extended this analysis for a curved boundary and derived
the following expressions for squirmer dynamics:
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[
−
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)(
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2

)
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Here V‖ and V⊥ are the components of velocity along and perpendicular to the separation vector,
respectively. �z is the angular velocity of the squirmer. [Note that the expression Eq. (16) given in
[15] has a typographical error and is corrected as per [48].] c1 is a constant, and the variables k1

and k2 are functions of separation distance, radius of the squirmer, and radius of curvature of the
boundary as follows:

(1) Convex curvature (α < 0):

c1 = π ; k1,2 = d2 + r2
b,s − r2

s,b − √
m

2drb,s
, (3)

where m = d4 + r4
b + r4

s − 2(d2r2
b + d2r2

s + r2
br2

s ). Here k1 < 1 and 0 � k2 � 1.
(2) Concave curvature (α > 0):

c1 = 0; k1,2 = ±d2 + r2
b,s − r2

s,b + √
m

2drb,s
. (4)

Here k1 � 1 and 0 � k2 � 1.
In the limit of α → 0, the above expressions for k1,2 of both convex and concave curvatures

reduce to same form,

k1 = 1, k2 = ds + rs − √
d2

s + 2dsrs

rs
. (5)

This is expected as α = 0 corresponds to that of a flat wall, whether approached from the expressions
for a concave or convex boundary. It may also be noted that the above limit is the same as the solution
derived by Ishimoto and Crowdy [17] for a squirmer near a flat wall.

Therefore, the equations of motion of the squirmer near any curved boundary are given by

ḋs = V‖, ḋ⊥ = V⊥, and θ̇s = �z, (6)

where the dot on the variable represents the time derivative, and d⊥ is the coordinate defined
perpendicular to ŝ. These expressions were integrated using the forward Euler method to construct
the trajectory of a squirmer in the presence of a curved boundary.

In addition to hydrodynamics, for the purpose of studying the role of repulsive interactions
between the microswimmer and the boundary, a hard potential of the form

V‖ = 0, for ds � δrs (7)

was also implemented on the solid boundary while constructing the squirmer trajectories. In Eq. (7),
δrs specifies the distance over which the repulsive potential acts. It may be noted that the hard sphere
potential modifies only the component of velocity parallel (V‖) to the separation vector (ŝ) while the
perpendicular component and the angular velocity remain unmodified.
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Equation (2) that govern the dynamics of the squirmer were derived by solving Stokes’ equations
in a complex plane and then using the reciprocal theorem by Papavassiliou and Alexander [15].
They are derived in a context to show that the reciprocal theorem is a powerful mathematical
tool to analyze the low Reynolds number hydrodynamics problems. Hence, the equations or
their consequences are not analyzed in detail in the literature. Since the above expressions were
obtained using reciprocal theorem, the exact flow fields associated with these solutions are not
known analytically, which makes it difficult to explain the observations. Therefore, we employ a
complementary approach wherein the lattice Boltzmann method-based numerical simulations are
used to construct the flow field generated by the squirmer in the presence of a curved boundary.

C. Numerical method

The lattice Boltzmann method (LBM) [49] is a numerical method to solve the fluid flow prob-
lems. Unlike the conventional numerical techniques like finite difference, finite volume, etc. [50],
where the governing equation is directly discretized and solved, in LBM the Boltzmann equation is
discretized [51]. Hence, it is often referred to as a mesoscopic technique. LBM is widely popular to
simulate fluid flows containing particles of different shapes [52] and in complex confinements [35].
Below we give a brief outline of the algorithm and the method of coupling the squirmer dynamics
with the surrounding fluid flow dynamics.

Fluid motion is resolved on a Cartesian mesh by solving the finite difference discretized, BGK
approximated Boltzmann equation. Spatial and temporal resolutions are denoted as �x and �t ,
respectively. The two main steps in the solution procedure are collision and streaming [49,51],
which are given as

f ∗
i (x, t ) = fi(x, t ) − �t

τ

[
fi(x, t ) − f eq

i (x, t )
]
, (8)

fi(x + ei�t, t + �t ) = f ∗
i (x, t ). (9)

Here fi(x, t ) represents the discrete distribution function in the direction of the lattice velocity
vector ei at position x and time t . f ∗

i is the postcollision discrete distribution function, and f eq
i is the

equilibrium distribution function, which is given as

f eq
i = ρwi

[
1 + 3

u · ei

c2
s

− 3

2

u · u
c2

s

+ 3

2

(u · ei )2

c4
s

]
, (10)

where wi is the weight factor, cs is the speed of the sound, ρ is the fluid density, and u is the fluid
velocity. Lattice velocities ei and weight factors wi depend on the particular lattice model used. In
this work, we use the D2Q9 model [53], which has nine velocity directions (i = 0 to 8) at a given
lattice point. The relaxation time (τ ) in Eq. (8) is related to the kinematic viscosity ν of the fluid via
the relationship ν = c2

s (τ − �t
2 ) [51]. The macroscopic variables can be calculated from the solution

as zeroth and first moments of the discrete distribution function, i.e., ρ = ∑
i fi and ρu = ∑

i fiei.
Implementation of boundary conditions: bounce-back scheme: In order to impose the boundary

conditions on the surface of the solid (squirmer and the curved boundary) the discrete distribution
function streaming in the direction of the boundary nodes are made to bounce back in the opposite
direction with a modification based on the boundary node velocity [54,55]. In this work, we use
a midgrid bounce-back scheme, i.e., boundary nodes (xb) are located half way between the nodes
inside the solid surface (xp) and the external fluid nodes (x f ) as shown in Fig. 3. Then the bounce-
back scheme can be implemented as

fi− = f ∗
i − 2ρswi

ub · ei

c2
s

, (11)
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FIG. 3. The curved boundary of the solid particle (continuous black line) is approximated with a staircase
construction (dotted line) in the simulations. There are four types of nodes: (i) xp, solid nodes that interact
with the fluid nodes (solid black circles), (ii) x f , the fluid nodes that interact with the solid nodes (blue filled
circles), (iii) solid nodes that don’t interact with the fluid nodes (grey filled circles), and (iv) fluid nodes that
don’t interact with the solid nodes (hollow circles). Lattice Boltzmann populations moving along the links
(brown lines) from x f to xp (or from xp to x f ) are bounced back at boundary nodes xb (green squares).

where ρs is the density of the solid particle and ub is the velocity of the boundary node. For the fixed
boundary, ub = 0, and for the squirmer

ub = us + V + �z ∧ (xb − xs), (12)

where V and �z are the translational and rotational velocities of the squirmer, respectively, and xs

is the center of mass of the squirmer.
Squirmer dynamics: Squirmer motion is governed by the Newton’s second law of motion. The

total momentum exchange (�P) and the total angular momentum exchange (�L) between the fluid
and the squirmer during one time step are given by

�P = �x3
∑
xb, i

[ f ∗
i (x f , t ) + fi− (x f , t + �t )]ei, (13)

�L = �x3
∑
xb, i

[ f ∗
i (x f , t ) + fi− (x f , t + �t )](xb − xs) ∧ ei, (14)

where the sum runs over all the boundary links pointing from fluid nodes (x f ) to solid nodes (xp).
The equations of motion that govern the squirmer dynamics are

dV
dt

= �P
M

, (15)

d�z

dt
= �L

I
, (16)

where M = ρsπr2
s is the mass, and I = 1

2 Mr2
s is the moment of inertia.

Equations (15) and (16) are numerically integrated to track the dynamics of the squirmer using a
modified implicit scheme. While an explicit scheme (e.g., forward Euler method) which calculates
the velocities at time t using velocities and forces at time t − �t is simpler to implement, it is
known to be inaccurate, in particular for small angular velocities. Therefore, an implicit scheme was
necessary to integrate Eqs. (15) and (16). However, no such schemes were available in the literature
that could be directly used for an active particle. Hence, we suitably modified the implicit scheme
that was originally proposed for a passive particle in the literature [56] to apply for the squirmer. The
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details of these modifications are given in the Appendix A. Using this modified implicit scheme, the
time evolution of the position and the orientation of the squirmer are determined.

Thus, the momentum exchange between the fluid and the squirmer is completely taken into
account which ensures a simultaneous and coupled evolution of the dynamics of the fluid flow and
the squirmer.

D. Simulation details

In the simulations, spatial (�x) and temporal (�t) resolutions are chosen to be unity. The density
(ρ) and viscosity (μ) of the fluid are taken as 1 and 1/6 (τ = 1) lattice units respectively. In this
work, we consider a neutrally buoyant swimmer (ρs = ρ) of size rs = 30 lattice units, and size of
the boundary is varied according to rb = rs/α for the simulations with the concave boundary. A
domain size of 20rb × 20rb is used for the simulations with the convex boundary. Simulations are
performed at a Reynolds number (= rs (Bn/2)ρ

μ
) ≈0.075.

The trajectory of the squirmer near a curved surface is constructed using the algorithm described
in Sec. II B. However, in the results shown below, namely, the instantaneous fluid velocity field,
and the translational and angular velocities attained by the squirmer are determined by a simpler,
quasisteady approach [5]. The numerical method has also been validated by comparing the results
with that from the analytical calculations, as shown in Fig. 6. In this figure, markers in each
plot are obtained from the simulations for the case of α = 0.33. A good agreement with the
analytical solution can be observed in all cases, validating the proposed numerical scheme. The
small deviations from the analytical solution is due to the staircase construction of curved surfaces
(of both squirmer and the boundary) in the simulations, which suggests that accuracy of numerical
simulations decreases with decrease in the separation distance between curved surfaces.

III. RESULTS AND DISCUSSION

In this section, we first discuss the fluid flow around the squirmer when it is located near a wall
having either convex or concave curvature. Following this, the instantaneous and then the long-term
dynamics of the microswimmer in response to the curved boundaries will be discussed. In most of
the analysis that follows, the case of B1 and B2 modes are dealt separately to understand the effect
of each mode. Since the linear Stokes’ equation governs the dynamics of fluid flow which in turn
determines the dynamics of the squirmer, the superposition of individual solutions of B1 and B2

modes can be performed to obtain full solution and analyze the effect of activity β, as we do in the
later sections. A squirmer with only B1 mode and only B2 mode are referred to as a neutral swimmer
and a shaker, respectively.

A. Fluid dynamics around the squirmer near a curved boundary

The dynamics of a microswimmer in the neighborhood of a curved wall is governed by four
parameters, namely, the curvature of the boundary (α), the activity (β), and its position (x, y) and
orientation (θs) with respect to the curved boundary. In this section, we analyze the velocity fields
generated by the squirmer near the curved boundaries at a given location and orientation but as α

varies.
The steady-state velocity fields of the fluid generated by a squirmer that is oriented at an angle

with respect to the nearby curved boundary, obtained from lattice Boltzmann simulations, are shown
in Fig. 4. The first row corresponds to neutral swimmers (B1 > 0, B2 = 0), and the second row
corresponds to shakers (B1 = 0, B2 > 0). These flow fields are to be contrasted with those in
the unbounded fluid domain shown in Fig. 1. For example, B1 mode generates a velocity field
corresponding to a source dipole in an unconfined domain [Fig. 1(a)]. This field is altered near
a convex boundary with streamlines on the source side (in this case) curving and going around
the convex object as shown in Figs. 4(a) and 4(b). As size of the convex boundary increases, the
streamlines also deflect by a large extent to go around the convex object. In the limit of a flat
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FIG. 4. Instantaneous velocity fields of the fluid around the squirmer are obtained from the lattice Boltz-
mann simulations for θs = 45◦ and ds/rs = 0.5. The first row is for a neutral swimmer (B1 > 0, B2 = 0):
(a) α = −0.5, (b) α = −0.2, (c) α = 0, (d) α = 0.2, and (e) α = 0.5. The continuous lines are streamlines,
and the background color corresponds to the magnitude of the normalized velocity field (red, highest; blue,
lowest). The second row is for a shaker (B1 = 0, B2 > 0), and for the same α as in first row.

wall, the streamlines cannot bend around the object anymore [Fig. 4(c)]. The streamlines bend in
the opposite direction as α increases further, aligning with the concave boundary [Figs. 4(d) and
4(e)]. This change in the streamline patterns (compared to that of an unbounded squirmer) increases
viscous dissipation in the system, and therefore, the dissipation can be expected to increase with
increase in α for a given value of B1.

Another consequence of the presence of a nearby boundary is the formation of eddies (circulating
flow patterns), e.g., a clockwise eddy ahead of the squirmer next to the convex object in Fig. 4(a) and
the clockwise eddy developed on the left side of the squirmer in concave confinement in Fig. 4(d).
These eddies are formed far from the squirmer surface. They are generally weak compared to
the velocity of the squirmer, so they have less effect on the squirmer dynamics. As the boundary
effects become stronger (α increases) these eddies disappear, e.g., the clockwise eddy ahead of the
squirmer in Figs. 4(a)–4(c) reduces its size as α increases. Similarly, with increase in α in concave
confinements, the clockwise eddy on the left side of the squirmer in Fig. 4(d) vanishes and the
streamlines are more aligned with the confining boundary as shown in Fig. 4(e). It may also be
noted that, for the same |α|, the strength of the velocity field is weaker in the case of a concave
boundary compared to a convex boundary. This can be expected as the fraction of the boundary to
which the microswimmer is exposed increases with increase in α and is maximum in the case of
a strong concave confinement (α → 1). This increased frictional resistance reduces the strength of
the fluid velocity field.

We now consider the case of a shaker, a squirmer with only B2 mode, shown in the second row
of Fig. 4. The velocity field generated by a B2 mode in an unbounded fluid domain is that of a
stresslet, and it is mirror symmetric as shown in Fig. 1(b). However, this symmetry breaks down
near a boundary as shown in Figs. 4(f)–4(j). Considering the first case of a smallest convex object
[see Fig. 4(f)] it can be noticed that the streamlines curve and go around the convex object similar
to the flow generated by the neutral swimmer. However, unlike the neutral swimmer, flow around
the shaker on all other sides is also affected. A series of eddies appear around the shaker. The case
shown in Fig. 4(f) has two clockwise eddies closer to the squirmer, and one anticlockwise eddy
slightly far from the squirmer and on the opposite side of the convex object. It is interesting to note
that the occurrence of these eddies themselves (closed streamlines) are in sharp contrast with the
open streamlines found in the unconfined case. As the size of the convex object increases, the eddy
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FIG. 5. Effect of curvature of a neighboring boundary (α) on the instantaneous dynamics of a squirmer.
(a) V‖, (b) V⊥ (the components of instantaneous translational velocity parallel and perpendicular to the
separation vector), and (c) �z (the angular velocity) of a neutral swimmer (B1 > 0, B2 = 0) are plotted as
a function of squirmer orientation. Panels (d)–(f) are similar plots for a shaker (B1 = 0, B2 �= 0). In all cases,
the surface to surface separation is maintained as ds = 0.2rs. Legends of all plots are same as that given in (a).
V‖ and V⊥ are normalized by the U0, and �z is normalized by rsU0, where U0 = B1/2 for the top row and B2/2
for the bottom row.

opposite to the curved boundary gets larger compared to the other two [see Fig. 4(g)]. This continues
to be the case for a flat wall [α = 0, Fig. 4(h)] and even for weak concave curvatures [α = 0.2,
Fig. 4(i)]. However, in the case of a strong concave confinement [α = 0.5, Fig. 4(j)], another eddy
sandwiched between the squirmer and the nearby concave boundary appears and the flow field
becomes more symmetric. Thus, the asymmetry in the velocity field varies nonmonotonically with
the curvature, i.e., asymmetry being minimum both in the limit α → −∞ and in the limit α → 1.

B. Instantaneous dynamics

In this section, we discuss the instantaneous dynamics of the squirmer which is located close to a
convex or a concave boundary. The instantaneous translational and angular velocities are analyzed
as a function of squirmer orientation and location with respect to the neighboring solid surface.
The translational velocity is reported as its components parallel (V‖) and perpendicular (V⊥) to the
separation vector pointing from the center of the squirmer to the surface of the nearest neighboring
boundary (ŝ).

1. Effect of orientation of the squirmer with respect to the curved boundary

Figure 5 shows the normalized components of instantaneous translational velocity (V‖ and V⊥),
and the angular velocity (�z) of a squirmer as a function of its orientation (θs): Figs. 5(a)–5(c)
correspond to a neutral swimmer (B1 > 0, B2 = 0), and Figs. 5(d)–5(f) correspond to a shaker (B1 =
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0, B2 �= 0). Different curves in each plot are for different values of α. It may be observed that,
irrespective of the curvature, the magnitude of instantaneous velocities are symmetric about θs =
90◦ (swimmer oriented parallel to the boundary) for both neutral swimmer and shaker. However,
the sign (direction of velocity) depends on the squirmer orientation.

Figure 5(a) shows that V‖ of the neutral swimmer continuously decreases with increase in θs,
reaches a value of zero before increasing further in the opposite direction, i.e., as the squirmer
which is oriented towards the boundary (θs = 0◦) turns and orients away from the boundary
(θs = 180◦). However, both perpendicular component V⊥ and angular velocity �z are maximum
when the squirmer is orientated parallel to the boundary (θs = 90◦), and they reduce as the neutral
swimmer turns in either direction. Similarly, V‖ is maximum for a shaker when it is oriented parallel
the boundary (θs = 90◦) and reduces as the swimmer rotates in either direction. In contrast, the
perpendicular component and the angular velocity are zero when the shaker is aligned parallel
or perpendicular to the boundary but show a maximum at the intermediate angle θs = 45◦. These
results remain valid irrespective of the size and nature of curvature of the boundary.

Now let us look into the effect of curvature of the neighboring boundary on the instantaneous
dynamics of the microswimmer. As shown in Figs. 5(a) and 5(b) and Figs. 5(d) and 5(e), the
translational velocity (both V‖ and V⊥) decreases with increase in the curvature. In other words,
a squirmer has a larger translational velocity near a convex surface compared to a concave surface.
As the curvature of the neighboring boundary changes from a highly convex (α → −∞) to a highly
concave (α → 1) surface, a squirmer (specified by a fixed B1 and B2) slows down. This slow down
is due to the fact that the larger fraction of the surrounding fluid of the microswimmer is exposed to
no-slip boundaries as the curvature of the neighboring surface changes from convex to concave. The
result is that more recirculating regions of the fluid appear as seen in Fig. 4 and viscous dissipation
in the fluid increases. This increase in frictional resistance slows down the microswimmer. The
squirmer dynamics near a flat wall (α = 0) is well studied in the literature [5,17]. Our study shows
that, compared to a flat wall (α = 0), a convex surface (α < 0) enhances the translational velocity
of the squirmer but a concave surface (α > 0) diminishes it irrespective of the orientation of the
squirmer.

However, the angular (spin) velocity of the squirmer shows a nonmonotonic variation with the
change in curvature of the neighboring boundary. And this variation is also different for B1 and B2

modes. As shown in Fig. 5(c), the angular velocity of a neutral swimmer increases as the curvature
of the boundary changes from convex (α < 0) to concave (α > 0), but this trend reverses beyond
a critical α. When α > 0.276, further increase in α (or concavity of the wall) reduces the angular
velocity of the neutral swimmer. This reduction may be due to the fact that as α → 1 the squirmer
occupies a symmetric position in the concave confinement. Thus, compared to a flat wall, both
concave and convex boundaries reduce the angular velocity of the neutral swimmer except when
for weak concave curvatures, namely, 0 < α < 0.276 when the angular velocity is increased. Two
features that are worth noticing are that (i) the boundary-induced angular velocity always rotates
the neutral swimmer away from the boundary and (ii) the angular velocity of the squirmer does
not go to zero as α → −∞, i.e., in the limit of a point convex object because the point object
generates a Stokeslet disturbance velocity field, thus rotating the squirmer even in the limiting case
of α → −∞.

A shaker shows a more subtle behavior in terms of its angular velocity. As α increases from that
corresponding to a convex curvature to that of a concave curvature, the magnitude of the angular
velocity decreases. It becomes zero at α = 0.206, a weak concave curvature. Further increase in the
concavity of the wall increases the angular velocity of the shaker in the opposite direction, but this
behavior again breaks down beyond a critical α. When α > 0.573, further increase in the concavity
of the boundary reduces the angular velocity of the shaker. This reduction is similar to that of a
neutral swimmer where it attains a symmetric position in strong confinements and slows down
significantly. Unlike a neutral swimmer, the boundary-induced direction of rotation of the shaker
depends on both α and the orientation of the squirmer. Near a convex object, a shaker oriented
towards the boundary rotates further towards it, but one rotated away from the boundary rotates
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FIG. 6. Effect of curvature of a neighboring boundary (α) on the instantaneous dynamics of a squirmer. The
components of instantaneous velocity (a) V‖ and (b) V⊥, and (c) the angular velocity �z of a neutral swimmer
are plotted as a function of surface to surface separation distance ds. Panels (d)–(f) are similar plots for a shaker.
In all cases, the orientation of the squirmer is chosen as θs = 60◦. Legends of all plots are the same and are
given in (a). Both V‖ and V⊥ are normalized by U0, and �z is normalized by rsU0, where U0 = B1/2 for top
row and B2/2 for bottom row. The markers in each plot are obtained from lattice Boltzmann simulations for
the case of α = 0.33.

further away from it. Interpreting the results in another way, compared to that near a flat plate,
a shaker near a convex object rotates faster, and near a concave object rotates slower. Moreover,
concavity of the boundary may also change the direction of rotation of the shaker compared to that
near a flat wall. The change in the sign of the angular velocity is due to the nonmonotonic variation
of asymmetry in the velocity field with the curvature [refer to Figs. 4(f)–4(j)].

The instantaneous dynamics of a microswimmer can be calculated by a scaled sum of the two
solutions (that of B1 and B2 modes) discussed above, and clearly, this behavior can be complicated
based on the individual contributions from each mode.

2. Effect of location of the squirmer with respect to the curved boundary

In Sec. III B 1 we analyzed the effect of orientation on the instantaneous dynamics of the squirmer
for a constant separation distance. Here we analyze the effect of separation distance (ds) on the
squirmer dynamics when it is in the neighborhood of a curved boundary.

The instantaneous velocities V‖, V⊥, and �z as a function of separation distance between the
surface of the squirmer and the curved boundary (ds) are shown in Fig. 6. The minimum separation
distance ds = 0 corresponds to a physical contact between the squirmer and the boundary. For
a concave boundary, the maximum separation distance is ds = rb − rs, which corresponds to a
squirmer located at the center of the circular confinement. There is no such maximum ds for a
convex boundary. As earlier, the analysis for B1 and B2 modes are done separately: Figs. 6(a)–6(c)
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correspond to a neutral swimmer, and Figs. 6(d)–6(f) correspond to a shaker. In all cases, at ds = 0
the translational velocities vanish while angular velocities exhibit a maximum value.

Let us consider the case of a neutral swimmer first, shown in Figs. 6(a) and 6(b). As ds increases
both V‖ and V⊥ increase irrespective of whether it is near a convex or a concave boundary. However,
for a given ds both V‖ and V⊥ decrease with increase in α. In other words, the translational velocity
of a neutral swimmer is smaller near a concave boundary compared to a convex boundary. This
difference between convex and concave boundaries increases with increase in ds. For large ds, the
translational velocity approaches that of a squirmer in the unbounded domain when it is located in
the neighborhood of a convex boundary, but it approaches that of a concentrically placed squirmer
in a circular confinement exhibiting a smaller translational velocity when it is in the neighborhood
of a concave boundary. As shown in Fig. 6(c), the angular velocity of the squirmer decreases
monotonically with separation distance. However the variation of angular velocity with α is non
monotonic at a given ds. The angular velocity of the squirmer slightly increases with increase in α

(compare a convex wall with a flat wall), but as α → 1 (strongly concave boundary), it decreases
again as squirmer occupies a symmetric position in the strong confinement.

Unlike that of a neutral swimmer, the induced velocities on the shaker is a nonmonotonic function
of ds. At ds = 0, both V‖ and V⊥ are zero since the squirmer is in contact with the boundary. On the
other hand, at large ds, a squirmer located near a convex boundary approaches the dynamics of an
unconfined shaker which will have V‖ = 0 and V⊥ = 0. Similarly a squirmer in the neighborhood
of a concave surface, when ds is large, corresponds to a concentric squirmer in circular confinement
with a symmetric flow field around it, and therefore, V‖ = 0 and V⊥ = 0. Thus, the translational
velocity of a shaker is zero in either limit (small and large ds), and it exhibits a maximum velocity
for some intermediate values of ds as shown in Figs. 6(d) and 6(e). Similar to B1 mode, at a fixed
value of ds the components of induced velocity V‖ and V⊥ also decrease with increase in α. It may
be noted that, as shown in Fig. 6(f) the variation in the angular velocity of a shaker is different from
its translational counterpart: �z is maximum when ds = 0 and it decreases to zero as ds increases.
This trend itself is not monotonic. For a squirmer located near a convex wall the angular velocity
decreases as ds increases, changes sign, reaches a maximum value before reducing further to reach
zero. On the other hand, for a squirmer in the neighborhood of a concave surface the reduction in
angular velocity with ds is monotonic. Despite this complex behavior the following two points may
be noticed in Fig. 6(f): (i) when ds is large, at a given ds the induced angular velocity is larger due to
a neighboring convex boundary than a concave boundary, and (ii) when ds → 0 the trend reverses,
and at a given ds the angular velocity due to a neighboring concave boundary is more than that due
to a convex boundary.

To summarize this section, for a given ds the translational velocity of both neutral swimmer
and shaker is always largest due to a convex boundary and smallest due to a concave boundary,
and the case of a flat wall lies in between. Thus, microswimmers have larger velocity near convex
boundaries compared to concave boundaries. The signs of V‖ and V⊥ depend upon the orientation
of the squirmer and the sign of B2 mode. No such general statements can be made with regard to
the variations of angular velocity as its dependence on ds and α is more complex. This diversity in
the variation of instantaneous velocities (V‖, V⊥, and �z) makes it difficult to predict the long time
behavior of a microswimmer near a curved boundary. Therefore we now calculate the trajectory of
a squirmer near curved boundaries.

C. Long time dynamics

The analysis on the instantaneous dynamics in Sec. III B showed that the dynamics of the
microswimmer depends upon (i) its location and orientation with respect to the curved boundary, (ii)
the size and nature of curvature of the boundary, and (iii) the strength and nature of the squirmer.
In order to comprehensively understand the resulting dynamics due to these multiple factors and
competing effects we now follow the squirmers over longer times as they come in contact with
a curved surface and construct their trajectories in physical space (x, y) and in dynamical space
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FIG. 7. Trajectories of a squirmer near a curved boundary (|α| = 0.1). (a) A neutral swimmer and (b) a
shaker near a convex boundary with an initial orientation θ i

s = 45◦ (shown by the black arrow). (c) A neutral
swimmer and (d) a shaker near a concave boundary with θ i

s = 135◦. Here (x, y) are normalized by rs. Color bar
indicates the orientation of the squirmer with the surface tangent, 90◦ − θs. Panels (e)–(f) are altered trajectories
corresponding to cases (a)–(d) but when the boundary has a repulsive potential.

(θs, ds). The trajectories are first analyzed, and then different measures that may have experimental
relevance are introduced to quantify the behavior of microswimmers near curved surfaces.

1. Trajectory of a squirmer near the curved boundary

Physical space: Figure 7 illustrates the typical trajectories of a squirmer in the vicinity of the
curved boundary when initialized at di

s = rs. In all cases the trajectories are colored by 90◦ − θs,
the instantaneous angle that the squirmer makes with the tangent drawn on the boundary surface.
Figure 7(a) shows that a neutral swimmer bounces off from the convex object after the hydrody-
namic collision. On the other hand, a shaker which bounces off from the convex surface is attracted
towards the surface again and thus exhibiting an oscillatory trajectory on the convex object as shown
in Fig. 7(b). Similar bouncing and oscillatory trajectories are shown by neutral swimmers [Fig. 7(c)]
and shakers [Fig. 7(d)] on concave surfaces. Papavassiliou and Alexander [15] have reported similar
trajectories for a squirmer in a concave confinement.

The presence of a repulsive potential on the boundary surface [Eq. (7)] restricts the distance
of closest approach of the squirmer. Therefore, the trajectory of the squirmer is affected by the
repulsive potential of the curved walls, as has been demonstrated earlier for flat walls [16]. The
altered trajectories corresponding to four different situations described above, due to the repulsive
potential of the curved surface, are shown in Figs. 7(e)–7(h). It may be noticed that the presence of a
repulsive potential does not change the qualitative nature of the trajectories in these four cases, and
both bouncing off and oscillatory trajectories are seen. However, the amplitude of the oscillations is
smaller in case of the repulsive boundary, which arises from the restricted motion of the squirmer
near the surface. In some cases, the oscillations may completely disappear, and consequently the
squirmer crawls on the curved surface, as shown in Fig. 7(h)

Dynamical space: The trajectories depicted in Fig. 7 correspond to a particular initial condition
defined by di

s and θ i
s . However, the change in the initial condition may completely change the

nature of the trajectory: bouncing, oscillatory, and crawling. Analyzing the sensitivity of the
microswimmer trajectories for different initial conditions in physical space is cumbersome and is
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FIG. 8. The trajectories of a squirmer in a dynamical space (ds, θs) for various values of size ratio and
activity: (a) α = −0.5, β = 0.1, (b) α = −0.5, β = 4, (c) α = −0.2, β = 4, (d) α = 0.2, β = 0.1, and (e)
α = 0.2, β = 4. Fixed points corresponding to crawling trajectories, marked as thick black dots, with θs <

90◦ and θs > 90◦ are referred to as Type I and Type II, respectively. The regions of existence of Type I and
Type II fixed points in α − β space is illustrated in (f). Labels A–E indicate different regions which are also
colored differently. Note that plots (a)–(e) are enclosed in boxes colored according to the color coding of the
regions in (f).

often accomplished in a dynamical space. In Fig. 8 we plot the trajectory of a microswimmer in the
dynamical space (θs, ds) for different values of size ratio (α) and activity (β).

Bouncing and oscillatory trajectories: Figure 8(a) shows the dynamical trajectory of a swimmer
with dominant source dipole mode (β � 1) near a convex boundary (α = −0.5). The trajectories
are open, indicating that such swimmers exhibit a bouncing trajectory on a convex boundary
irrespective of the initial location and orientation as shown in Fig. 7(a). Figure 8(b) shows the
dynamical trajectories for a squirmer with dominant force dipole mode, β = 4, but near the same
convex object (same α) as in Fig. 8(a). Unlike the previous case, both open and closed trajectories
are observed indicating that the swimmer will exhibit either bouncing or oscillatory trajectory based
on its initial location and orientation. The open trajectories occur when squirmer is oriented towards
the boundary (θs < 90◦) while the closed trajectories are possible when squirmer is oriented away
from the boundary (θs > 90◦). Figure 8(c) shows the dynamical trajectories for α = −0.2 but at β

same as that in Fig. 8(b). In this case, we observe that some of the open trajectories have turned to
closed trajectories even for θs < 90◦ [see Fig. 7(b)], thus illustrating that increase in the size ratio
can also result in closed trajectories. In other words, Figs. 8(a)–8(c) show that the transition from
bouncing trajectory to an oscillatory trajectory may happen either with increase in α or with increase
in β near a convex boundary.
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In the case of a concave confinement, irrespective of size ratio (α) and activity (β), we always
observe closed trajectories in the dynamical space [Figs. 8(d) and 8(e)]. The closed trajectories
indicate that the swimmers approach the concave surface in a periodic fashion and the maximum
possible amplitude of the oscillations is equal to maximum value of the ds in the dynamical
trajectory. The smaller the size of the closed loop, the smaller is the amplitude of the oscillations.
For a given initial condition, the amplitude of the oscillations is much larger for a swimmer with
dominant source dipole mode [Fig. 7(c)] compared to that of a swimmer with dominant force dipole
mode [Fig. 7(d)]. This can be inferred by comparing Figs. 8(d) and 8(e); for example, compare the
dotted-line trajectory from the initial point marked by the hollow circle. Hence all trajectories in the
dynamical space are either open which extend up to infinity or are closed. It illustrates that there are
no attractors, instead the squirmers exhibit trajectories that are dependent on initial conditions even
at long times.

Crawling and hovering trajectories: In addition to bouncing and oscillatory trajectories squirmers
may also exhibit crawling and hovering trajectories. Such behavior will correspond to fixed points
in the dynamical space. As discussed above, increase in α or β introduces closed orbits in the
dynamical space thus introducing fixed points as the limiting cases of these closed orbits (crawling
trajectory) or the points that separate out closed and open orbits (hovering state). Below we discuss
these fixed points and their dynamics in the phase space when the size ratio or activity is changed.

2. Dynamics of fixed points

Hovering fixed points: These are fixed points characterized by V‖ = V⊥ = �z = 0. A maximum
of five such fixed points are possible as shown in Fig. 8(c), and they will be referred to as H1−5. Three
of them are located on the boundary surface, i.e., ds = 0 and at (i) θs = 0◦ (H1), (ii) θs = 180◦ (H2),
and (iii) 0◦ < θs < 180◦ (H3). The other two are located in the domain, i.e., 0 < ds < ∞ and are at
(iv) θs = 180◦ (H4) and (v) 0◦ < θs < 90◦ (H5). The complex interplay of these fixed points in α-β
space is described below.

(i) H1 (ds = 0, θs = 0◦): This fixed point is indicated by a pentagram in Fig. 8. Existence of
this fixed point indicates that, irrespective of the initial location, if a squirmer is initialized with
θs = 0◦, it moves towards the boundary surface, comes in contact with the surface and stays there,
exhibiting a hovering state. This fixed point exists at all values of α and β indicating that existence
of this hovering state is independent of size ratio and activity. The phase space trajectories in the
vicinity of H1 indicate that it is stable to the perturbations in ds but unstable to the perturbations
in θs. For example, for a squirmer located at H1, if slightly perturbed in θs, will attain a nonzero
angular velocity. The squirmer will then spin on the surface of the curved boundary till it attains a
stable orientation with �z = 0. This dynamics leads to the presence of two other fixed points on the
curved surface, namely, H2 and H3 as shown in Figs. 8(b)–8(d) and are discussed below.

(ii) H2 (ds = 0, θs = 180◦): This fixed point is indicated by a rhombus in Fig. 8. Similar to H1,
this point exists irrespective of α and β. Figure 8(a) shows that, for swimmers with a dominant
source dipole, this fixed point is stable with respect to the perturbations in θs but unstable with
respect to the perturbations in ds. The case is exactly opposite if the swimmer have a dominant force
dipole mode, i.e., the fixed point is stable (unstable) with respect to perturbations in ds (θs) as shown
in Fig. 8(b). This change in behavior occurs beyond a critical β when two other fixed points, namely,
H3 and H4 as shown in Figs. 8(b), 8(c) and 8(e) appear.

(iii) H3 (ds = 0, 90◦ < θs < 180◦): This fixed point is indicated by a triangle in Fig. 8. Unlike
H1 and H2, this fixed point appears only when activity is larger than a critical β. At large activities
when H3 exists, it can be seen that slight perturbations in θs on a swimmer located at either H1 or
H2 drives it towards H3, however H3 is also a saddle point, it is stable to the perturbations in θs but
unstable to the perturbations in ds. Irrespective of size ratio, as activity increases this fixed point
approaches θs = 90◦. Therefore, swimmers with dominant source dipole mode (β � 1) can hover
at θs = 0◦ and θs = 180◦ while the swimmers with dominant force dipole mode (β  1) hover at
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θs = 90◦. Swimmers with intermediate values of β can hover at an angle between 90◦ and 180◦ as
shown in Figs. 8(c) and 8(d).

(iv) H4 (0 < ds < ∞, θs = 180◦): This point is indicated by a square in Fig. 8. A positive
perturbation in ds drives the swimmer towards infinity, and a negative perturbation in ds drives
the swimmer towards the fixed point H2. The location of H4 is sensitive to the values of α and β. H4

moves towards infinity with increase in β but moves towards the curved surface with increase in α.
(v) H5 (0 < ds < ∞, 0◦ < θs < 90◦): This fixed point is indicated by a hexagram in Fig. 8. It

separates the closed and open trajectories in phase space as shown in Fig. 8(c). Therefore, this point
doesn’t exist for a concave surface [see Fig. 8(e)], as all the trajectories are closed for a concave
surface. For a convex surface, H5 appears beyond a critical β, and it moves away from the curved
surface with increase in either α or β.

While identifying the hovering fixed points helped us to understand the phase portraits with
respect to variation in the size ratio and activity, these points are of less physical significance since
they are generally not stable.

Crawling fixed points: The other class of fixed points that are shown in Fig. 8 correspond to the
limiting trajectory of closed orbits with zero radii. Figure 8 confirms the existence of these fixed
points near both concave and convex-curved boundaries, and at a maximum two such fixed points
are possible as shown in Figs. 8(c) and 8(e). The fixed point with θs < 90◦ and 0 < ds < ∞ is
referred as Type I, and the fixed point with θs > 90◦ and 0 < ds < ∞ is referred to as Type II. Both
these fixed points correspond to crawling trajectory of swimmers in physical space.

Crawling trajectories should satisfy the following relation:

V‖ = 0,
V⊥
d

= �z. (17)

The above relations correspond to the conditions that (i) the radial velocity of the squirmer is
zero and (ii) the change in the angular position of the microswimmer with respect to the curved
surface caused by its tangential velocity should be equal to the change in the orientation of the
squirmer resulting from its angular velocity. Thus, the first condition constraints the motion of the
microswimmer only in the tangential direction with respect to the curved surface and the second
constraint assures that the microswimmer moves along the tangent such that its orientation with
respect to the curved surface does not change. Equation (17) is numerically solved to determine
the Type I and Type II fixed points; their behavior in the α − β plane is shown in Fig. 8(f) and is
described below.

Let us consider the case of squirmers with small activity (β � 1) first. These are swimmers with
a dominant source dipole and there are no Type I or Type II fixed points when they are near a convex
boundary as shown in Fig. 8(a). On the other hand, as shown in Fig. 8(d), Type I fixed point exists
when the squirmer is in the concave confinement even when β � 1. The change from the absence
of fixed points to presence of Type I fixed points with change in curvature for swimmers of small
activity (β) can be seen as a transition from region A to region B in Fig. 8(f). This transition occurs
at α = 0 (corresponds to a flat wall boundary) irrespective of the value of β.

Now consider the case of squirmers with increased activity. As shown in Figs. 8(a) and 8(b)
increase in activity results in the emergence of type II fixed points for α < 0. Similarly as shown in
Figs. 8(c) and 8(d), Type II fixed points emerge for α > 0 with increase in activity. The critical
β beyond which the Type II fixed points appear near convex surfaces is shown as a transition
from region A to region C in Fig. 8(f). Similarly for concave surfaces the appearance of Type II
fixed points is shown as a transition from region B to region D in Fig. 8(f). It is clear that the
transitions indicating the emergence of Type II fixed points for both convex and concave surfaces
is independent of the size ratio, α. The third bifurcation occurs at β = f (α), beyond which Type I
fixed points appear in the phase space for convex surfaces as observed in Figs. 8(b) and 8(c). Unlike
the transitions discussed above, this bifurcation depends on both size ratio and activity. As size ratio
increases, the critical β beyond which Type I fixed point appears decreases. Thus the bifurcation
leading to the formation of Type I fixed points can happen either with increase in the activity (for
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a fixed size ratio) or with increase in the size ratio (for a fixed activity). This change in behavior is
indicated as a transition from region C to region E in Fig. 8(f).

To summarize, increase in either α or β results in a transition from open trajectories to closed
trajectories in the phase space which is reflected as an increase in the number of fixed points in
Fig. 8(f). Open trajectories in phase space correspond to bouncing behavior of the swimmer on the
curved wall characterized by a single collision. However, the closed curves in phase space don’t
necessarily correspond to oscillatory trajectories. For example, the closed trajectories in concave
confinement are not really the consequence of hydrodynamic interactions but due to the motion in
closed space. Thus the trajectories in phase space cannot distinguish the bouncing versus oscillatory
behavior as observed in the physical space [see Figs. 7(c) and 7(d)]. Therefore, below we define
measures that may have experimental relevance and can effectively distinguish different kinds of
trajectories near boundaries with either curvatures.

3. Characterizing the trajectories: Proximity parameter and retention time

In order to classify different kinds of trajectories, and thus to quantify the effect of wall curvature
on the behavior of microswimmers we define two measures: proximity parameter and retention
time.

Proximity parameter quantifies the affinity of the microswimmer towards the boundary based on
its trajectory. It is defined as the fraction of the distance that a microswimmer traverses in close
proximity of a curved boundary,

φ =
∫

ds<dc
dS∫

dS
, (18)

where dS is the differential arc length on the trajectory of the microswimmer, and dc is a cutoff
distance. If a squirmer bounces off from the boundary and swims away after the hydrodynamic
collision [e.g., Figs. 7(a) and 7(c)], then φ → 0, i.e., the distance traveled by the squirmer in
proximity of the boundary is much smaller than the total distance that it traveled. In the other
limit, φ → 1 corresponds to a crawling behavior of the squirmer where the squirmer is always in
close proximity of the boundary [e.g., Fig. 7(h)]. Intermediate values of φ represent oscillatory
trajectories of varying amplitude and frequency [as in Figs. 7(b) and 7(d)], increase in φ indicating
more frequent oscillations with decreasing amplitude and the squirmer trajectory lying more in close
proximity of the surface.

Since velocity of the microswimmer is not constant along its path, it is also useful to quantify the
time spent by the microswimmer in proximity of a surface, as it gives an independent measure of
the affinity of the microswimmer towards the surface. Thus, a parameter, retention time is defined
as

tr =
∫

ds<dc
dt∫

dt
, (19)

where dt is the differential time taken by the microswimmer on its trajectory. For a bouncing
trajectory tr → 0, for a crawling behavior tr → 1, and intermediate values of tr indicates oscillatory
trajectories, similar to the proximity parameter.

As discussed earlier, the trajectory and hence both φ and tr are initial condition dependent.
Therefore, we integrate φ and tr over all possible initial orientations to define an average proximity
parameter,

〈φ〉 = 1

2π

∫ 2π

0
φ
(
θ i

s

)
dθ i

s, (20)
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FIG. 9. The contour plot of average proximity parameter, 〈φ〉, as a function of curvature (α) and activity
(β). (a) In the absence of repulsion (δ = 0) and (b) in the presence of repulsion (δ = 0.05). In these calculations,
the swimmer is considered to be in the proximity of the boundary, if the surface to surface separation distance
is less than dc = 0.2rs. Note that dc is an arbitrary choice, and the behavior depicted here is insensitive to the
value of dc. (c) The contour plot of average retention time, 〈tr〉, as a function of the curvature (α) and β, and
in the absence of repulsion (δ = 0). Color bar of (a) and (b) is the same as that of (c). For the analysis, we
approximate the integral in Eqs. (20) and (21) with summation, and divide the orientational space into 18 equal
size intervals.

and an average retention time,

〈tr〉 = 1

2π

∫ 2π

0
tr
(
θ i

s

)
dθ i

s, (21)

which eliminate the dependency of φ and tr on the initial orientation of the squirmer θ i
s .

Average proximity parameter: Figure 9(a) depicts the dependency of average proximity parameter
on the curvature α and the activity β. It may be observed that 〈φ〉 � 0.2, in the α-β plane as long as
α < 0. This small value of 〈φ〉 indicates minimal contact between the squirmer and convex surfaces
it comes into contact with. The corresponding trajectories may be either single contact (bouncing
trajectory, open trajectory in phase space and no fixed points) or multiple contact (oscillatory
trajectory, closed trajectories in phase space, presence of Type I and Type II fixed points). Bouncing
trajectories are encountered in two regions in the α-β plane: (i) by squirmers with dominant B1 mode
(β ≈ 0: neutral swimmers, weak pullers and pushers) irrespective of the value of the curvature as
long as α < 0, and (ii) squirmers with dominant B2 mode(|β| � 4: strong pullers and pushers) on
strongly curved convex surfaces (α � −0.5). On the contrary, when both B1 and B2 modes are
significant (|β| < 4: pullers and pushers), such squirmers show small to moderate values of 〈φ〉 on
convex surfaces indicating that they get trapped and exhibit wall-bounded oscillations. It may also
be noted that the average proximity parameter increases with increase in α, irrespective of the value
of β. This increase is least for the squirmers with dominant B1 mode (β → 0), so they continue to
exhibit bouncing trajectory even on the flat wall. All other swimmers, (|β| > 1) exhibit oscillatory
trajectory on a flat wall as reported in [17]. This behavior is reflected as the transition from region
A to region C in Fig. 8(f). The increase in 〈φ〉 with increase in α continues even beyond the wall
limit (α > 0), i.e., as the concavity of the confinement increases. This is consistent with the smaller
values of ds associated with closed orbits near a concave surface compared to a convex surface in
Fig. 8. Moreover, when α > 0, the average proximity parameter is dependent only on β when |β| is
approximately less than unity. A similar behavior can be seen in Fig. 8(f) in terms of fixed points.
When α > 0 the dynamics of fixed points is insensitive to the size ratio, and the critical β beyond
which the Type II fixed points appear is of order unity as predicted by the proximity parameter.

In other words, Fig. 9(a) suggests that a microswimmer is likely to be attracted towards a concave
boundary and swims close to it. The proximity of the trajectory to the surface increases with increase
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in concavity, irrespective of the type and strength of the microswimmer. Thus, hydrodynamic
interaction results in a squirmer to swim away from a convex boundary but to swim closer to a
concave boundary. A flat plate has 〈φ〉 ≈ 0.4, an intermediate behavior representing neither a strong
attraction nor a strong repulsion.

The increase in proximity parameter with curvature, i.e., as the curvature changes from convex
to concave can be understood as follows. First, it may be noted that Figs. 5 and 6 show that the
instantaneous translational velocities decrease with increase in α. Moreover, the angular velocity of
the squirmer near a convex boundary is generally larger than that near a concave boundary (except a
neutral swimmer near a weak concave surface). Therefore, a microswimmer located near a convex
boundary can reorient easily, resulting in an escape from the neighboring wall. On the other hand
the microswimmer near a concave boundary will exhibit a weaker dynamics. Second, the geometry
of the neighboring wall makes a difference—an escaped microswimmer goes further away from
the neighboring part of the surface when escaping from a convex boundary, but this will not be
the case with a concave boundary. An escaping microswimmer may get again influenced by the
neighboring wall due to the concavity of the surface, reflected as closed trajectories in the phase
space [see Figs. 8(d) and 8(e)]. Thus, a microswimmer near a convex boundary easily escapes while
a microswimmer near a concave boundary continues to stay close to it.

As mentioned earlier, 〈φ〉 is independent of β for sufficiently large |β|. This may be expected as
large |β| indicates that the squirmer dynamics is primarily governed by B2 mode, and contributions
from B1 mode are smaller. On the other hand when |β| < 1 neither B1 nor B2 contributions can
be neglected. As |β| → 0 squirmer behavior is dictated only by B1 mode. For these swimmers,
if α → 0, but α > 0 (weak concave curvature) the angular velocity of a squirmer is sufficiently
large that it easily escapes from the surface and thus, 〈φ〉 remains small. However, on these weakly
concave surfaces, as |β| increases there will be a transition from bouncing to oscillatory trajectory.
This observation is similar to the behavior of two-dimensional squirmers observed near a flat wall
[5]. In the limit α → 1, the squirmer motion is highly restricted, and the angular velocities are small.
Hence, in this limit, irrespective of β the proximity parameter is close to 1 indicating a crawling
behavior.

Another characteristic feature to note in Fig. 9(a) is the symmetry about β = 0 axis. This happens
because a puller will show exactly the same trajectory as a pusher when initialized at the same
location but at a different orientation, referred to as puller-pusher duality [17]. Therefore, integrating
over the initial orientations, average proximity parameter doesn’t distinguish pullers and pushers,
which leads to the symmetry about β = 0 axis. However, this is not the case when the wall has a
repulsive force. This case is illustrated in Fig. 9(b) where the average proximity parameter is plotted
in α-β phase space. The symmetry about β = 0 axis is slightly broken. In the case of a strong
convex boundary, pullers (β > 0) have slightly larger proximity parameter compared to pushers
(β < 0) however both pullers and pushers have either a bouncing or an oscillatory trajectory. As
the curvature changes from convex to concave, irrespective of β the proximity parameter increases.
The small asymmetry, namely, pullers have slightly larger proximity parameter compared to equally
strong pushers holds for weak concave and convex surfaces as well. As the concave confinement
becomes stronger, irrespective of β the proximity parameter is very large indicating a crawling
trajectory.

More importantly, on comparing Figs. 9(a) and 9(b) it can be noted that the presence of repulsion
increases the proximity parameter irrespective of α and β. Thus, the affinity of the microswimmer
towards the boundary increases with presence of repulsive forces on the wall. For example, the
region of α − β plane corresponding to bouncing trajectories exhibited by strong pushers and pullers
shrinks. Similarly, the increase in affinity is quite significant for concave surfaces suggesting that
the proximity of the squirmer trajectory near a concave surface is enhanced by the repulsive forces
on the boundary, which occurs irrespective of the value of β. However, the enhancement due to
repulsive force is not significant for neutral swimmers, and when α < 0, they continue to exhibit
bouncing trajectories.
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FIG. 10. The contour plot of (a) 〈90◦ − θs〉, the average orientation with respect to the surface tangent, and
(b) 〈V⊥〉, the average tangential velocity near the surface are plotted as a function of α and β. (c) Scattering
angle (Sθ ) of a neutral swimmer (β = 0) as a function of angle made by the orientation vector with the
separation vector (θ i

s) at time t = 0 for various size ratios. The inset in (c) shows the definition of the scattering
angle Sθ .

Average retention time: Now, we analyze the effect of α and β on average retention time 〈tr〉.
This is illustrated in Fig. 9(c). Clearly, the dependency of retention time on α and β is very similar
to that of proximity parameter. For a fixed β, the retention time increases with increase in α, i.e.,
as curvature changes from convex to concave, indicating a transition from bouncing to crawling
trajectory. Similar to 〈φ〉, the retention time is insensitive to β unless |β| is small. The symmetry
about β = 0 axis is also noticeable and this symmetry breaks down when the curved surface exhibits
a repulsive potential. In other words, 〈tr〉 follows the same trend as 〈φ〉 suggesting that (i) the nature
of the behavior of the microswimmer near a curved boundary can be inferred from either of these
measures, and (ii) the conclusions drawn from Figs. 9(a) and 9(b) are robust.

4. Characterizing the dynamics close to the boundary: Squirmer orientation,
tangential velocity, and scattering angle

In Sec. III C 3 we characterized the entire trajectory of a squirmer in terms of average proximity
parameter and average retention time. Now we analyze the configurational and dynamic behavior
of the squirmer when it is in the neighborhood of the curved boundaries.

Squirmer orientation near the boundary: As the squirmer moves along the wall, its orientation
changes continuously. We measured the angle that the squirmer makes with the neighboring surface,
i.e., measured as the angle between the squirmer orientation and the surface tangent, and averaged
over the trajectory when the squirmer is in proximity to the boundary, ds � dc. Figure 10(a) illus-
trates that the squirmer maintains an angle close to ≈53◦ with the neighboring surface, irrespective
of the curvature of the surface α or the activity β. However, a considerable change in the value
is observed if the curved boundary possesses repulsive forces. It has been found that, in this case
the squirmer is more aligned with the boundary irrespective of α or β. However, Das and Cacciuto
[18] reported a microswimmer dependent alignment on curved boundaries, which may be due to the
fact that the rotational dynamics of the microswimmers in their study was affected by the thermal
fluctuations.

Tangential velocity near the boundary: The average velocity parallel to the boundary 〈V⊥〉 is
calculated when the squirmer is in the proximity of the surface (ds � dc) and is shown in Fig. 10(b)
as a function of α and β. It may be noted that the average tangential velocity of the squirmer near a
convex curvature is larger compared to that near a concave curvature. This is in agreement with our
previous observations in [Figs. 5(b) and 5(e)], where it was found that the instantaneous translational
velocity decreases as the curvature changes from convex to concave. A larger tangential velocity
near a convex surface indicates an easy escape of the squirmer while a smaller tangential velocity
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near a concave surface indicates the trapping ability of the surface. Again, these observations are
consistent with our earlier findings on proximity parameter and retention time, both of which are
seen to increase as the curvature changes from convex to concave.

However, it is worth noting that, irrespective of the curvature the average tangential velocity of
pushers is larger than pullers when α < 0 (convex walls). This arises from the fact that instantaneous
tangential velocities due to +B1 and +B2 modes are in opposite directions [Figs. 5(b) and 5(e)].
Hence, for a given α, the instantaneous tangential velocity of pullers (B1 > 0, B2 > 0) is smaller
compared to pushers (B1 > 0, B2 < 0). Since smaller tangential velocity indicates lesser possibility
of escaping of the microswimmer from the neighborhood of a convex surface, we may conclude
that pullers have more affinity towards convex surfaces compared to pushers. Figure 10(b) shows
that 〈V⊥〉 is almost insensitive to β near concave surfaces.

Scattering angle: Here we analyze the angle at which the squirmer scatters after its collision with
the curved surface. Scattering angle (Sθ ) is defined as the angle between the incident trajectory and
the reflected trajectory as shown in the inset of Fig. 10(c).

Figure 10(c) depicts the scattering angle (Sθ ) as a function of initial orientation of the squirmer
(θ i

s) for various values of size ratio (α). The scattering angle increases with θ i
s in all cases, namely,

for convex (α < 0) and concave-curved (α > 0) boundaries and planar walls. If the squirmer is
initially oriented along the separation vector (θ i

s = 0◦), it exhibits a large radial velocity and zero
tangential velocity. Therefore in this limit, squirmer reaches very close to the curved boundary
(ds → 0). The consequence is that it experiences a large angular velocity which will reorient the
squirmer immediately, resulting in smaller scattering angles. As the orientation of the squirmer
deviates from the separation vector, i.e., as θ i

s increases, the swimmer does not reach so close to
the curved boundary, it deflects with a relatively smaller angular velocity thereby shows a larger
scattering angle. We find that for a given orientation, scattering angle decreases with increase in
the size ratio. It happens because, as α increases, the boundary-induced angular velocity reorients
the swimmer more, resulting in smaller scattering angles. In short, the microswimmers deflect with
larger scattering angles from convex surfaces, and with smaller scattering angles from concave
surfaces. We find that this behavior is rather insensitive to activity.

Till now, we analyzed the affinity of the microswimmer towards a convex or a concave boundary
in terms of fixed points and by calculating various measures, namely, proximity parameter, retention
time, squirmer orientation near the boundary, tangential velocity near the boundary, and scattering
angle. All the analysis shows that a convex surface is less likely to trap the microswimmer
hydrodynamically while a concave surface does. The type and strength of the microswimmer do
not seem to be very important in determining this behavior: compared to pushers, pullers show
only a slightly greater affinity towards the convex surfaces. It has also been seen that repulsive
forces on the surface enhance the affinity of the microswimmer towards the boundary. The extent of
enhancement in the affinity can be significant for a concave surface.

We now investigate the combined effects of concave and convex curvatures by analyzing the
squirmer dynamics in an annular confinement.

IV. SQUIRMER DYNAMICS IN AN ANNULAR CONFINEMENT: NET EFFECT
OF BOTH CONVEX AND CONCAVE CURVATURES

In earlier sections, we have analyzed the squirmer dynamics near a concave or a convex boundary.
However, most often the boundaries are geometrically complex. Therefore, here we analyze the
squirmer dynamics in annular confinement, where the dynamics is governed by both convex and
concave curvatures of the boundary. A convex post is placed concentrically within a concave
confinement, where both the convex post and the concave confinement are circular, and the motion
of the squirmer in the resulting annular space is analyzed in this section.

The nondimensional radii of curvature of the inner convex post, αi = rs/rib and the outer concave
confinement αo = rs/rob are taken to be negative and positive respectively to be consistent with the
notation in the earlier sections. Further, in order to characterize the separation distance between the
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FIG. 11. Instantaneous velocity fields of a squirmer in annular confinement obtained from the lattice
Boltzmann simulations for αo = 0.125, αi = −1, and θs = 45◦. For dn = 0.1, (a) a neutral swimmer (B1 > 0,
B2 = 0), (b) a shaker (B1 = 0, B2 > 0). For dn = 0.9, (c) a neutral swimmer, (d) a shaker. Here the continuous
lines are streamlines, and the color field corresponds to the magnitude of the velocity. Note that θs is defined
as an angle made by the orientation vector with the separation vector joining the center of the squirmer and the
surface of the concave boundary.

squirmer and the surrounding surfaces, we define eccentricity

dn = dsi

rob − rib − 2rs
, (22)

where dsi is the shortest distance between the surface of the inner convex post and the surface
of the squirmer. dn = 0 corresponds to the squirmer touching the inner convex post, and dn = 1
corresponds to the squirmer touching the outer concave confinement.

As earlier, two different approaches are used to analyze the squirmer dynamics:
(1) In Sec. III, exact expressions describing the squirmer motion near a curved boundary [15]

is used for the analysis. However, the exact expressions that govern the squirmer dynamics in an
annular confinement are not available. Therefore, in this first approach, we construct an approximate
solution by superposition:

Vannular = Vconvex + Vconcave, (23)

�annular = �convex + �concave, (24)

where Vconvex, Vconcave, �convex, and �concave are obtained from Eq. (2). Such approximate analysis
based on superposition is shown to be useful in the context of a microswimmer confined between
two flat walls [11]. To avoid the penetration of the squirmer into the boundary while constructing
trajectories, a hard repulsion at a distance δrs is imposed from the confining surfaces.

(2) In the second approach, no such assumptions are made, instead full numerical simulations
are performed for a squirmer in an annular confinement using LBM simulations as explained in
Sec. II C.

A comparison between two approaches, namely the instantaneous velocities obtained from the
approximate expressions (first approach) and the exact values obtained from the LBM simulations
(second approach) is given in Appendix B.

Figure 11 shows the steady state velocity fields generated by the squirmer in an annular
confinement for varying eccentricities (dn). These velocity fields are qualitatively similar to that
observed near individual concave and convex boundaries. As shown in Fig. 11(a), when the neutral
swimmer (B1 > 0, B2 = 0) is close to the inner convex post (dn → 0) the source-sink nature of
the flow is significantly affected, but no secondary eddies are observed. On the other hand, the
same swimmer when close to the concave boundary (dn → 1) shows secondary eddies [Fig. 11(c)].
In an annular confinement, the convex post obstructs these secondary eddies and thus the flow
field is different compared to the case without the convex post (as in Sec. III A). This change in
the flow field results in viscous dissipation varying nonmonotonically with squirmer location, with
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FIG. 12. Trajectories of neutral swimmers and shakers in an annular confinement. Effect of (a) αi for αo =
0.1, θ i

s = 45◦, (b) initial orientation for αi = −0.5, αo = 0.1, and (c) initial location for θ i
s = 45◦, αi = −0.5,

αo = 0.1 for a neutral swimmer. Panels (d), (e), and (f) are corresponding plots for a shaker. In (a) and (b) and
(d) and (e) the squirmer is initialized at an equal distance from both the confining surfaces. Hard repulsion is
imposed at a distance 0.05rs on the confining surfaces.

dissipation being maximum when squirmer is closer to either of the curved surfaces and minimum
when it is in between. Similarly, as shown in Figs. 11(b) and 11(d), the flow field generated by a
shaker (B1 = 0, B2 > 0) in annular confinement is similar to that observed near convex and concave
boundary. Again, if the squirmer is located close to a concave surface, then we can observe that
the inner convex post alters the streamlines compared to the case where there is no post. The close
similarity in the flow fields generated by the squirmer in the annular confinement and in the presence
of individual surfaces show that the squirmer behavior is likely to be governed solely by the nature of
nearby surface in most cases, which we verify below by constructing its trajectories. However, this
effect of the nearby surface is dependent on the (i) relative size of the swimmer to the boundary, (ii)
orientation of the swimmer, and (iii) location of the swimmer. The effect of each of these parameters
is discussed below while analyzing the trajectories.

Figure 12 describes the trajectories of the squirmer in an annular confinement. For a neutral
swimmer, the effect of size of the convex post αi, the effect of initial orientation, and the effect of
initial location are shown in Figs. 12(a), 12(b), and 12(c), respectively. Similar plots for a shaker are
shown in Figs. 12(d), 12(e), and 12(f).

It may be noticed from Figs. 12(a)–12(c) that, for a given αo irrespective of the value of αi, initial
orientation and location, the neutral swimmer bounces off from the outer concave confinement.
Since αo  1 (rob  rs), this behavior is consistent with the earlier observations of bouncing
trajectory of neutral squirmers near weak concave surfaces. The collision with concave surface
occurs multiple times thus the squirmer exhibits a bouncing trajectory on the outer concave surface,
but during its path it never comes in contact with the convex post. Similar behavior is observed even
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by varying αo (not shown). It is interesting to note that even in cases when the squirmer is initially
oriented towards the inner convex surface [Fig. 12(b)], the squirmer is eventually attracted to the
concave surface after the initial hydrodynamic collision with the convex surface. On the other hand
as shown in Figs. 12(d)–12(f), a shaker is attracted towards the inner convex surface irrespective of
the size of the convex post, initial orientation or location. If the size of the convex post is small, then
the trajectory is asymmetric about the post [Fig. 12(d)]. As αi decreases, the size of the squirmer
becomes comparable with the available annular space then the squirmer exhibits concentric but
oscillatory trajectory. The exception to these observations is when the shaker is initially located
very close to the outer concave surface. In this case, the squirmer remains in the attractive zone of
the concave surface and exhibits an oscillatory trajectory on the concave surface [Fig. 12(f)].

These observations are commensurate with earlier discussions and can be understood as follows.
Proximity parameter (Fig. 9) shows that the affinity of the neutral swimmer increases with increase
in α, i.e., neutral swimmer has higher affinity towards a concave surface compared to a convex
surface of same radius. Therefore, it is not surprising to see that the concave surface attracts the
neutral swimmer which then exhibits a bouncing trajectory on the outer concave confinement in the
annulus, similar to the neutral swimmer confined in a concave confinement without the inner post
[Figs. 7(c) and 7(g)]. It may also be noted that the angular velocity of a neutral swimmer near a
convex surface is larger than that near a concave surface. The result is that, the squirmers bounce
from the convex surface with a large scattering angle even when they are initially directed towards
it and then they approach the concave confinement.

The scattering at the outer concave surface is not sufficiently strong to make them move towards
the convex surface back and the neutral swimmers exhibit a bouncing trajectory along the outer
concave surface.

However, for a shaker both inner convex and outer concave surfaces act as attractors. In other
words, a shaker has almost equal affinity towards the strong convex and weak concave surfaces
[Figs. 7(b)–7(d)]. Therefore, shaker exhibits an initial condition dependent trajectory. If the shaker
is located close to the inner convex surface, it gets trapped on the inner convex surface. However, the
attraction by the confining concave surface results in periodic drifts from the convex surface. These
periodic drifts result in an asymmetric trajectory around a small convex post. As the size of the
convex post increases, the trajectory becomes symmetric but oscillatory. This trapping of the shaker
on the inner convex post irrespective of αi is in contrast with the behavior depicted by the proximity
parameter [Fig. 9(a)]. This apparent contrast can be understood as follows. In the absence of the
outer confinement, the shaker escapes from the weak convex post (α = −1) after a hydrodynamic
collision. However, the presence of the outer concave confinement slows down and reverses the
direction of the shaker which results in trapping on the inner convex post. If the shaker is initialized
away from the inner surface, the affinity towards the inner convex surface decreases while affinity
towards the outer concave surface increases. Beyond a certain distance, the effect of outer concave
curvature dominates and shaker gets trapped by the outer concave surface.

V. CONCLUSION AND OUTLOOK

This work analyzed the dynamics of a microswimmer (modeled using a squirmer model) in the
neighborhood of a curved wall in two dimensions. The squirmer trajectories are constructed based
on the results by Papavassiliou and Alexander [15], and the corresponding flow fields are obtained
from simulations using the lattice Boltzmann method (LBM). An implicit scheme to update the
squirmer dynamics is proposed in conjunction with LBM, and a close match between analytical
and numerical solutions is found. Both instantaneous picture (in terms of translational and angular
velocities of the squirmer) and long time effects (in terms of trajectories, fixed points on dynamical
space, proximity parameter, retention time, scattering angle) are discussed in a phase plane spanning
the activity (β) and nondimensional curvature (α) thus covering all types of swimmers (pushers,
neutral swimmers, and pullers) present in the vicinity of all types of curvatures (convex, flat plate,
and concave) with the intention of providing a unified understanding of the effect of curvature
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on swimmer dynamics. Finally, we analyzed the squirmer dynamics in an annular confinement to
understand the combined effect of convex and concave curvatures.

The analysis of the velocity field has shown that the presence of a nearby boundary results in the
formation of eddies in the flow field. In other words the streamlines near the squirmer are closed.
The number and extend of circulatory flows depend upon the type and strength of the squirmer as
well as the curvature of the neighboring boundary. For a shaker, it has been found that the asymmetry
in the velocity field varies nonmonotonically with the curvature, i.e., asymmetry is minimum in the
two limiting cases, i.e., in the limit α → −∞ and in the limit α → 1.

The microswimmer trajectories near a curved surface are analyzed in both the physical space
and the dynamical space. The latter was used to understand the sensitivity of the microswimmer
trajectories to initial conditions. It was found that a microswimmer exhibits mainly three kinds of
trajectories near a curved boundary: (i) bouncing, (ii) oscillatory, and (iii) crawling trajectories.
This is consistent with the observations near a convex post reported in the experiments of Takagi
et al. [20], and in the simulations of Kuron et al. (refer to Fig. 4 in [21]). The trajectories were
first analyzed in terms of fixed points. We found two types of fixed points in the phase space
that, respectively, characterize the crawling and hovering trajectories. We analyzed the dynamics
of these fixed points in the α-β phase plane and found that the number of crawling fixed points
increases with increase in either wall curvature or activity. Owing to the inability of this approach
to distinguish bouncing and oscillatory trajectories in the vicinity of the curved surface, we also
introduced measures with experimental relevance to characterize the trajectories, namely, average
proximity parameter (〈φ〉) and average retention time (〈tr〉) which are obtained by averaging φ

and tr respectively, over all possible initial orientations. The proximity parameter and the retention
time respectively measure the average distance and time that the microswimmer spends in the
neighborhood of a wall.

In agreement with the observations from dynamical portraits, we found that the proximity
parameter 〈φ〉 increases with the wall curvature α. Therefore microswimmers, irrespective of their
type and strength (characterized by activity β), have a greater affinity towards a concave boundary
compared to a convex boundary. Our findings are consistent with earlier observations: Ostapenko
et al. [30] reported that the probability of finding a C. reinhardtii in an elliptical confinement
increases with increase in the local curvature of the boundary, and Kuron et al. [21] reported that
the affinity of a microswimmer towards a convex boundary increases with increase in the curvature
α. It has been found that the presence of repulsive forces on the curved walls enhances the affinity
of the microswimmer towards them. It happens irrespective of α and β, and in such cases, pullers
have a slightly more affinity towards the convex and weak concave walls compared to pushers. In
stronger concave confinements, squirmer dynamics is found to be independent of activity β. The
higher affinity of pullers towards a convex surface is also consistent with the observations of Kuron
et al. [21] made using their 3D simulations. As the velocity of the squirmer is not constant along
its path, the affinity of the squirmer towards a curved surface is also quantified in terms of retention
time. We observed that the dependence of average retention time on α and β is similar to that of the
proximity parameter.

The near wall behavior of a squirmer is characterized in terms of its orientation with the surface
tangent and its tangential velocity. The squirmer was found to maintain an angle close to 53◦ with the
neighboring surface, irrespective of α and β. On the other hand, the tangential velocity in proximity
of a curved surface is observed to decrease with increase in α, i.e., it is larger near a convex curvature
compared to a concave curvature. Larger tangential velocity near a convex surface indicates an easy
escape of the squirmer while that near a concave surface can lead to further trapping of the squirmer.
It has been found that irrespective of the curvature, the average tangential velocity of pushers is
found to be slightly larger than pullers near convex and weak concave walls. This last observation is
consistent with the study by Das and Cacciuto [18], which included the role of thermal fluctuations
as well.

The nontrapping dynamics of a squirmer is characterized in terms of scattering angle while
bouncing off from the curved surface. The scattering angle was observed to increase with increase in
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the initial orientation (θ i
s), i.e., angle with respect to the separation vector. As θ i

s increases, the closest
distance that the squirmer can approach the nearby boundary decreases, therefore it experiences a
smaller angular velocity and it deflects with a larger scattering angle. The scattering angle also
decreases with increase in α, i.e., as the curvature changes from convex to concave. The larger values
of scattering angle in the presence of a convex curvature is due to the undeflected trajectories of the
microswimmer, that resulted from the weaker hydrodynamic interaction between the microswimmer
and the convex boundary.

The combined effects of convex and concave curvatures on microswimmer dynamics was
analyzed by placing the squirmer in a concentric annular confinement. Compared to that of an
unconfined squirmer, the velocity field due to a confined squirmer is different which includes loss
of symmetry of the flow field around the squirmer and the generation of secondary eddies. With
increase in eccentricity, i.e., as the squirmer gets closer to the outer concave confinement, such
deviations increase indicating a large viscous dissipation. For neutral swimmers, larger dissipation
corresponds to smaller swimming velocity, while for shakers larger dissipation translates to larger
swimming velocities (see Fig. 13). This difference in the flow fields and the squirmer dynamics
due to disturbance generated by a convex and a concave boundary are also evident when a
microswimmer in the neighborhood of a single curved wall is analyzed. The exact expressions that
govern the squirmer dynamics in an annular confinement are not available, hence we constructed
approximate equations by superposition of induced velocities due to convex and concave curvatures.
Extending the approximate solution approach to complex geometries like porous media [57] have to
be the subject of future investigations. The instantaneous velocities obtained from the approximate
expressions are in good agreement with those obtained from lattice Boltzmann simulations for a
neutral swimmer. The agreement is weaker for a shaker, possibly due to the slower decay of its
velocity field. On analyzing the trajectories, it was found that a neutral swimmer exhibits a bouncing
trajectory along the outer confinement. It occurs even if the squirmer is initially oriented towards the
inner convex post because it collides with the post and scatters towards the outer concave boundary.
However, the trajectory of a shaker is found to depend on the initial location. If a shaker is initialized
near the inner convex surface, it gets trapped on it, which happens only beyond a critical radius of
the inner convex surface. If a squirmer is initialized close to the outer concave surface, it gets trapped
on it, irrespective of its radius of curvature.

Finally we note that the analysis presented here may provide guidelines in designing geometrical
confinements that can be used to drive the motion of a microswimmer and thus to control its
trajectory. Moreover, different measures introduced in the work can be used in a variety of contexts:
(i) if it is desirable to trap a microswimmer for a particular application, results from the proximity
parameter can be used since it provides information about the curvature of the boundary required to
trap the microswimmer of particular type (given β). (ii) The retention time can be correlated with
the time required to clean a curved surface to prevent the bio-fouling since retention time provides
the average residence time of the microswimmer in proximity of the surfaces. (iii) The observations
of the scattering angle may be used to guide the trajectory of a microswimmer by varying the
local curvature of the boundary with which it interacts. However, caution must be exercised in
quantitative comparisons as the calculations presented here are strictly in two dimensions. Our
results are qualitatively consistent with several experiments and numerical simulations reported
in the literature, but future investigations must be carried out in three dimensions to approach
experimental conditions, and to make quantitative predictions. Similarly relaxing the assumption
of circular or spherical shape of the squirmer may also be important. Such investigations will
also help us to determine the relative importance of hydrodynamics in the collision process of a
microswimmer with a curved wall more accurately.
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APPENDIX A

In this Appendix, we extend the implicit scheme proposed for a passive particle by Lowe et al.
[56], to an active particle, squirmer with first two tangential modes to update the translational and
angular velocities in the numerical scheme based on the lattice Boltzmann method. It is straight
forward to extend present scheme to higher order squirmer modes.

The idea of implicit scheme is to use the particle velocity at the new time step to calculate the
boundary velocity of the particle given by Eq. (12), rather than using the velocity in the previous
time step. We summarize the steps involved in this process. First, the net momentum exchange
between the particle and the fluid is calculated for the implemented boundary conditions (bounce
back scheme [51]). This result is then used to derive the expressions for force and torque acting
on a squirmer of mass, M, and moment of inertia, I . Both force and torque will be functions of
two unknown velocity components (in the x and y directions), namely, Vx and Vy, and the unknown
angular velocity of the particle in the z-direction �z. Newton’s second law is used here to relate the
forces and torques acting on the squirmer to the rate of change of linear and angular momentum.
Thus, finally, a set of three linear equations are obtained,(

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎠

⎛
⎝Vx

Vy

�z

⎞
⎠ =

(
b1
b2
b3

⎞
⎠+

(
c1
c2
c3

⎞
⎠, which has to be solved simultaneously to determine the

three unknowns, Vx, Vy, and �z. The elements in the matrix are calculated as follows:

a11 = 1 + 6

M

∑
xb,i

ρwieixeix, a21 = a12 = 6

M

∑
xb,i

ρwieixeiy,

a13 = − 6

M

∑
xb,i

[ρwieix (ryeix − rxeiy)], a22 = 1 + 6

M

∑
xb,i

ρwieiyeiy,

a23 = − 6

M

∑
xb,i

[ρwieiy(ryeix − rxeiy)], a31 = −6

I

∑
xb,i

[ρwieix (ryeix − rxeiy)],

a32 = −6

I

∑
xb,i

[ρwieiy(ryeix − rxeiy)], a33 = 1 + 6

I

∑
xb,i

[ρwieix(ryeix − rxeiy)2],

b1 = Vx(t ) + 2

M

∑
xb,i

f ∗
i eix, b2 = Vy(t ) + 2

M

∑
xb,i

f ∗
i eiy,

b3 = �z(t ) + 2

I

∑
xb,i

(rx f ∗
i eiy − ry f ∗

i eix ), c1 = 6

M

∑
xb,i

wiρ(Rxeix + Ryeiy)eix,

c2 = 6

M

∑
xb,i

wiρ(Rxeix + Ryeiy)eiy, c3 = 6

M

∑
xb,i

wiρ(Rxeix + Ryeiy)(rxeiy − ryeix ),

Rx = [B1 sin(θc) + B2 sin(2θc)] sin θ, Ry = [B1 sin(θc) + B2 sin(2θc)] cos θ,

where θ is the polar angle. In the above expressions, r is the position vector of a point relative to
the squirmer center, and Vx(t ), Vy(t ), and �z(t ) are the known values at the present time t . The
summation is to be carried out over each boundary node (xb) and over all relevant directions (ei).
The proposed scheme can be extended easily to any number of squirmers as well.

APPENDIX B

In this Appendix, the instantaneous velocities of a squirmer in annular confinement obtained
from the approximate expressions, Eqs. (23) and (24), are compared with the values obtained from
full numerical, lattice Boltzmann simulations.
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FIG. 13. Instantaneous velocities of a squirmer in an annular confinement as a function of eccentricity for
an orientation of θs = 30◦. (a) Neutral swimmer (B1 > 0, B2 = 0) and (b) shaker (B1 = 0, B2 �= 0). Continuous
lines are expressions based on simple superposition [Eqs. (23) and (24)], and markers indicate the results
obtained from the numerical simulations.

The results are illustrated in Fig. 13. The match between the simulations and the approximate
expressions is better for the case of a neutral swimmer (B1 > 0, B2 = 0) compared to a shaker
(B1 = 0, B2 �= 0). This better match for a neutral swimmer is due to the rapid decay of the velocity
field generated by it. In an unbounded domain, the velocity field generated by B1 mode decays as
1/r2. Moreover, in the annular confinement, the strength of the Stokeslet velocity field generated by
the convex post in response to the disturbance flow generated by the neutral swimmer is weaker and
is further suppressed by the outer concave confinement. Thus the approximate expressions obtained
by superposition of velocities due to concave and convex surfaces agree well with the results from
simulations in the case of neutral swimmer.

However, in the case of a B2 mode, the velocity field generated by the squirmer decays slower
as 1/r in an unbounded fluid domain. Moreover, in the annular confinement, the strength of
the disturbance velocity field generated by the convex post (Stokeslet) in response to the flow
generated by the shaker is also stronger. Of course, the concave confinement will suppress this
disturbance velocity field. However, these hydrodynamic interactions are not taken into account
in the approximate expressions, and thus they deviate from the full numerical results for shaker
more compared to a neutral swimmer. Hence, it can be concluded that the error in the approximate
solutions increases with increase in β and in the limit of large β numerical approach may give more
accurate results compared to the approximate solution by superposition.

[1] J. C. Conrad and R. Poling-Skutvik, Confined flow: Consequences and implications for bacteria and
biofilms, Annu. Rev. Chem. Biomol. Eng. 9, 175 (2018).

[2] R. Pöhnl, M. N. Popescu, and W. E. Uspal, Axisymmetric spheroidal squirmers and self-diffusiophoretic
particles, J. Phys.: Condens. Matter 32, 164001 (2020).

[3] T. J. Pedley, Spherical squirmers: Models for swimming micro-organisms, IMA J. Appl. Math. 81, 488
(2016).

[4] M. Theers, E. Westphal, K. Qi, R. G. Winkler, and G. Gompper, Clustering of microswimmers: Interplay
of shape and hydrodynamics, Soft Matter 14, 8590 (2018).

[5] P. Ahana and S. P. Thampi, Confinement induced trajectory of a squirmer in a two dimensional channel,
Fluid Dyn. Res. 51, 065504 (2019).

[6] Z. Ouyang, J. Lin, and X. Ku, The hydrodynamic behavior of a squirmer swimming in power-law fluid,
Phys. Fluids 30, 083301 (2018).

083101-29

https://doi.org/10.1146/annurev-chembioeng-060817-084006
https://doi.org/10.1088/1361-648X/ab5edd
https://doi.org/10.1093/imamat/hxw030
https://doi.org/10.1039/C8SM01390J
https://doi.org/10.1088/1873-7005/ab4d08
https://doi.org/10.1063/1.5045701


CHAITHANYA K. V. S. AND SUMESH P. THAMPI

[7] M. De Corato, F. Greco, and P. L. Maffettone, Locomotion of a microorganism in weakly viscoelastic
liquids, Phys. Rev. E 92, 053008 (2015).

[8] H. Nganguia and O. S. Pak, Squirming motion in a Brinkman medium, J. Fluid Mech. 855, 554 (2018).
[9] C. Datt and G. J. Elfring, Active Particles in Viscosity Gradients, Phys. Rev. Lett. 123, 158006 (2019).

[10] M. De Corato and G. D’Avino, Dynamics of a microorganism in a sheared viscoelastic liquid, Soft Matter
13, 196 (2017).

[11] A. Zöttl and H. Stark, Nonlinear Dynamics of a Microswimmer in Poiseuille Flow, Phys. Rev. Lett. 108,
218104 (2012).

[12] F. Rühle, J. Blaschke, J.-T. Kuhr, and H. Stark, Gravity-induced dynamics of a squirmer microswimmer
in wall proximity, New J. Phys. 20, 025003 (2018).

[13] J.-T. Kuhr, J. Blaschke, F. Rühle, and H. Stark, Collective sedimentation of squirmers under gravity, Soft
Matter 13, 7548 (2017).

[14] N. Narinder, J. R. Gomez-Solano, and C. Bechinger, Active particles in geometrically confined viscoelas-
tic fluids, New J. Phys. 21, 093058 (2019).

[15] D. Papavassiliou and G. P. Alexander, The many-body reciprocal theorem and swimmer hydrodynamics,
Eur. Phys. Lett. 110, 44001 (2015).

[16] J. S. Lintuvuori, A. T. Brown, K. Stratford, and D. Marenduzzo, Hydrodynamic oscillations and variable
swimming speed in squirmers close to repulsive walls, Soft Matter 12, 7959 (2016).

[17] K. Ishimoto and D. G. Crowdy, Dynamics of a treadmilling microswimmer near a no-slip wall in simple
shear, J. Fluid Mech. 821, 647 (2017).

[18] S. Das and A. Cacciuto, Colloidal swimmers near curved and structured walls, Soft Matter 15, 8290
(2019).

[19] A. Chamolly, T. Ishikawa, and E. Lauga, Active particles in periodic lattices, New J. Phys. 19, 115001
(2017).

[20] D. Takagi, J. Palacci, A. B. Braunschweig, M. J. Shelley, and J. Zhang, Hydrodynamic capture of
microswimmers into sphere-bound orbits, Soft Matter 10, 1784 (2014).

[21] M. Kuron, P. Stärk, C. Holm, and J. de Graaf, Hydrodynamic mobility reversal of squirmers near flat and
curved surfaces, Soft Matter 15, 5908 (2019).

[22] E. Lushi, H. Wioland, and R. E. Goldstein, Fluid flows created by swimming bacteria drive self-
organization in confined suspensions, Proc. Nat. Acad. Sci. USA 111, 9733 (2014).

[23] P. D. Frymier, R. M. Ford, H. C. Berg, and P. T. Cummings, Three-dimensional tracking of motile bacteria
near a solid planar surface, Proc. Nat. Acad. Sci. USA 92, 6195 (1995).

[24] E. Lauga, W. R. DiLuzio, G. M. Whitesides, and H. A. Stone, Swimming in circles: Motion of bacteria
near solid boundaries, Biophys J. 90, 400 (2006).

[25] J. Hu, A. Wysocki, R. G. Winkler, and G. Gompper, Physical sensing of surface properties by
microswimmers—Directing bacterial motion via wall slip, Sci. Rep. 5, 9586 (2015).

[26] L. Lemelle, J.-F. Palierne, E. Chatre, and C. Place, Counterclockwise circular motion of bacteria swim-
ming at the air-liquid interface, J. Bacteriol. 192, 6307 (2010).

[27] R. Di Leonardo, D. Dell’Arciprete, L. Angelani, and V. Iebba, Swimming with an Image, Phys. Rev. Lett.
106, 038101 (2011).

[28] D. Lopez and E. Lauga, Dynamics of swimming bacteria at complex interfaces, Phys. Fluids 26, 071902
(2014).

[29] S. E. Spagnolie, G. R. Moreno-Flores, D. Bartolo, and E. Lauga, Geometric capture and escape of a
microswimmer colliding with an obstacle, Soft Matter 11, 3396 (2015).

[30] T. Ostapenko, F. J. Schwarzendahl, T. J. Böddeker, C. T. Kreis, J. Cammann, M. G. Mazza, and O.
Bäumchen, Curvature-Guided Motility of Microalgae in Geometric Confinement, Phys. Rev. Lett. 120,
068002 (2018).

[31] P. Malgaretti and H. Stark, Model microswimmers in channels with varying cross section, J. Chem. Phys.
146, 174901 (2017).

[32] N. Desai, V. A. Shaik, and A. M. Ardekani, Hydrodynamics-mediated trapping of micro-swimmers near
drops, Soft Matter 14, 264 (2018).

083101-30

https://doi.org/10.1103/PhysRevE.92.053008
https://doi.org/10.1017/jfm.2018.685
https://doi.org/10.1103/PhysRevLett.123.158006
https://doi.org/10.1039/C6SM00697C
https://doi.org/10.1103/PhysRevLett.108.218104
https://doi.org/10.1088/1367-2630/aa9ed3
https://doi.org/10.1039/C7SM01180F
https://doi.org/10.1088/1367-2630/ab40e0
https://doi.org/10.1209/0295-5075/110/44001
https://doi.org/10.1039/C6SM01353H
https://doi.org/10.1017/jfm.2017.220
https://doi.org/10.1039/C9SM01432B
https://doi.org/10.1088/1367-2630/aa8d5e
https://doi.org/10.1039/c3sm52815d
https://doi.org/10.1039/C9SM00692C
https://doi.org/10.1073/pnas.1405698111
https://doi.org/10.1073/pnas.92.13.6195
https://doi.org/10.1529/biophysj.105.069401
https://doi.org/10.1038/srep09586
https://doi.org/10.1128/JB.00397-10
https://doi.org/10.1103/PhysRevLett.106.038101
https://doi.org/10.1063/1.4887255
https://doi.org/10.1039/C4SM02785J
https://doi.org/10.1103/PhysRevLett.120.068002
https://doi.org/10.1063/1.4981886
https://doi.org/10.1039/C7SM01615H


WALL-CURVATURE DRIVEN DYNAMICS OF A …

[33] A. R. Sprenger, V. A. Shaik, A. M. Ardekani, M. Lisicki, A. J. T. M. Mathijssen, F. Guzmán-Lastra,
H. Löwen, A. M. Menzel, and A. Daddi-Moussa-Ider, Towards an analytical description of active
microswimmers in clean and in surfactant-covered drops, Eur. Phys. J. E 43, 58 (2020).

[34] S. E. Spagnolie and E. Lauga, Hydrodynamics of self-propulsion near a boundary: Predictions and
accuracy of far-field approximations, J. Fluid Mech. 700, 105 (2012).

[35] H. Huang, X. Yang, and X.-Y. Lu, Sedimentation of an ellipsoidal particle in narrow tubes, Phys. Fluids
26, 053302 (2014).

[36] T. Peter, P. Malgaretti, N. Rivas, A. Scagliarini, J. Harting, and S. Dietrich, Numerical simulations of
self-diffusiophoretic colloids at fluid interfaces, Soft Matter 16, 3536 (2020).

[37] S. Y. Reigh, L. Zhu, F. Gallaire, and E. Lauga, Swimming with a cage: Low-Reynolds-number locomotion
inside a droplet, Soft Matter 13, 3161 (2017).

[38] D. Crowdy and O. Samson, Hydrodynamic bound states of a low-Reynolds-number swimmer near a gap
in a wall, J. Fluid Mech. 667, 309 (2011).

[39] Y. Or, S. Zhang, and R. M. Murray, Dynamics and stability of low-Reynolds-number swimming near a
wall, SIAM J. Appl. Dyn. Syst. 10, 1013 (2011).

[40] J. R. Blake, Self propulsion due to oscillations on the surface of a cylinder at low Reynolds number, Bull.
Austral. Math. Soc. 5, 255 (1971).

[41] C. K. V. S and S. P. Thampi, Deformation dynamics of an active compound particle in an imposed shear
flow—A theoretical study, J. Phys. D: Appl. Phys. 53, 314001 (2020).

[42] P. H. Colberg, S. Y. Reigh, B. Robertson, and R. Kapral, Chemistry in motion: Tiny synthetic motors,
Acc. Chem. Res. 47, 3504 (2014).

[43] E. R. Kay, D. A. Leigh, and F. Zerbetto, Synthetic molecular motors and mechanical machines, Angew.
Chem. Int. Ed. 46, 72 (2007).

[44] R. E. Goldstein, Green algae as model organisms for biological fluid dynamics, Annu. Rev. Fluid Mech.
47, 343 (2015).

[45] B. Qin, A. Gopinath, J. Yang, J. P. Gollub, and P. E. Arratia, Flagellar kinematics and swimming of algal
cells in viscoelastic fluids, Sci. Rep. 5, 9190 (2015).

[46] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein, Fluid dynamics and
noise in bacterial cell–cell and cell–surface scattering, Proc. Nat. Acad. Sci. USA 108, 10940
(2011).

[47] E. E. Riley, D. Das, and E. Lauga, Swimming of peritrichous bacteria is enabled by an elastohydrody-
namic instability, Sci. Rep. 8, 10728 (2018).

[48] D. Papavassiliou, The reciprocal theorem and swimmer interactions, Ph.D. thesis, University of Warwick,
2016.

[49] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Clarendon Press, Oxford,
2001).

[50] S. Jayanti, Computational Fluid Dynamics for Engineers and Scientists (Springer, Dordrecht, 2018).
[51] T. Krueger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, and E. M. Viggen, The Lattice Boltz-

mann Method: Principles and Practice, Graduate Texts in Physics (Springer International Publishing,
Switzerland, 2017).

[52] A. Gupta, H. J. H. Clercx, and F. Toschi, Effect of particle shape on fluid statistics and particle dynamics
in turbulent pipe flow, Eur. Phys. J. E 41, 116 (2018).

[53] C. Ay, C.-W. Young, and C.-F. Young, Application of lattice Boltzmann method to the fluid analysis in a
rectangular microchannel, Comput. Math. Appl. 64, 1065 (2012).

[54] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation.
Part 1. Theoretical foundation, J. Fluid Mech. 271, 285 (1994).

[55] A. J. C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann equation.
Part 2. Numerical results, J. Fluid Mech. 271, 311 (1994).

[56] C. P. Lowe, D. Frenkel, and A. J. Masters, Long-time tails in angular momentum correlations, J. Chem.
Phys. 103, 1582 (1995).

[57] T. Bhattacharjee and S. S. Datta, Bacterial hopping and trapping in porous media, Nat. Commun. 10, 2075
(2019).

083101-31

https://doi.org/10.1140/epje/i2020-11980-9
https://doi.org/10.1017/jfm.2012.101
https://doi.org/10.1063/1.4874606
https://doi.org/10.1039/C9SM02247C
https://doi.org/10.1039/C6SM01636G
https://doi.org/10.1017/S0022112010004465
https://doi.org/10.1137/100808745
https://doi.org/10.1017/S0004972700047134
https://doi.org/10.1088/1361-6463/ab86e3
https://doi.org/10.1021/ar5002582
https://doi.org/10.1002/anie.200504313
https://doi.org/10.1146/annurev-fluid-010313-141426
https://doi.org/10.1038/srep09190
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1038/s41598-018-28319-8
https://doi.org/10.1140/epje/i2018-11724-6
https://doi.org/10.1016/j.camwa.2012.03.025
https://doi.org/10.1017/S0022112094001771
https://doi.org/10.1017/S0022112094001783
https://doi.org/10.1063/1.469780
https://doi.org/10.1038/s41467-019-10115-1

