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Recent investigations on electrokinetic (EK) flows have indicated turbulentlike flow
can be realized by applying strong and high frequency ac electric field to flows with
high-conductivity-gradient interface, even though under low bulk flow Reynolds number.
Relative to conventionally hydrodynamic turbulence in a high Reynolds number, the ac EK
turbulent flow exhibits high randomness with stronger intermittency [Wang et al., Phys.
Rev. E 93, 013106 (2016)]. The abnormally high intermittency could be attributed to the
ascending probability density function of velocity gradients (dominated by small scale
velocity structure function) far from the equilibrium state. By evaluating the intermittency
of the ac EK turbulent flow with hierarchical structures, we astonishingly find the inter-
mittency factor of hierarchical structures in SL94 law, i.e., β factor, which is commonly
believed to be between 0 and 1, exhibits larger value than 1 in the ac EK turbulent flow. This
result indicates the different hierarchical relations of flow structures in ac EK turbulence
flow from that in the conventional hydrodynamic turbulence, as further illustrated by the
probability density function of velocity structures among different spatial scales.
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I. INTRODUCTION

Turbulence is a complicated concept and normally, it is described as a spatial-temporal random
flow which has a continuous kinetic energy cascade between large (integral scale) and small
scale (e.g., Kolmogorov scale). To characterize the feature of multiscales, scaling laws of velocity
structure functions are commonly used. Kolmogorov [1,2] advanced the classical self-similarity law
of turbulence for high Reynolds number limit in 1941 as

Sp(l ) = 〈|�u(l )|p〉 ∼ lξp, (1)

where �u(l ) = u(x + l ) − u(x), Sp(l ) is the pth moment of �u on spatial scale l and ξp is the
corresponding scaling exponent. The usage of the absolute value of �u(l ) ensures that p can be
taken as continuous real number usually being non-negative. By Kolmogorov’s prediction ξp = p/3
should hold. However, it has been well known by a great deal of later experiments and numerical
simulations that ξp is actually a nonlinear function with respect to p. Later, in 1962, Kolmogorov
[3] advanced a refined similarity hypothesis which accounts for the influence of locally averaged
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energy dissipation (εl ), as Sp(l ) ∼ 〈εp
l 〉lξp . By applying logarithmically normal distribution on

energy dissipation, he found 〈εp
l 〉 ∼ l− μp

18 (p−3), and accordingly, ξp = p/3−μp
18 (p−3) [1,4], with μ

being an exponent. The departure of ξp from p/3 implies turbulence is intermittent for small length
scales, accompanied with several aspects, such as the probability density function (PDF) of velocity
increment departs from Gaussian distribution, etc. For 50 years, various phenomenological models
were proposed to depict the intermittency with a more applicable scaling exponent function. In
1994, She and Leveque advanced a celebrated model [5] on the basis of hierarchical structures. In
the following years, the SL94 model is supported by both experiments and numerical simulations,
in hydrodynamic turbulence [6,7], thermal convection [8], and magnetohydrodynamic (MHD)
turbulence [9], etc. The corresponding ξp in the SL94 model can be generally described by the
three parameters directly as

ξp = γ p + C(1 − β p), (2)

where γ the scaling exponent of the most singular structures and C is the codimension. β is
an intermittency factor which is crucial for describing the similarity of hierarchical structures,
especially, it characterizes the intermittency of energy dissipation [10]. Normally C > γ > 0. In
the original SL94 model, β is constant and 0 < β � 1, which has also been supported by various
reports [9,11,12].

II. THEORY

Nevertheless, a basic question arises: is β always limited to be within 0 and 1? Recall that the SL
model implies a log-Poisson distribution of random multiplier connecting any pair of fluctuations at
a small scale l and a large scale l0, respectively (see She and Waymire [4]). Based on this observation
and thereafter by means of some techniques from probability theory, a rigorous relation can be
derived linking the PDF of velocity increment at small scale and the one at large scale [13]. Let
Pl = Pl [�u(l )], which represents the PDF of �u(l ), then the relations between Pl0 and Pl can be
expressed as

Pl = Tl,l0

∞∑
k=0

WkPl0

[
�l,l0β

−k�u(l0)
]
, (3)

where Wk = (β−1 ln Ml,l0 )k/k! is a weight function and

Tl,l0 = l∗C−γ < 1
�l,l0 = l∗−γ > 1
Ml,l0 = l∗−C > 1

, (4)

where l∗ = l/l0 is dimensionless length scale and 0 < l∗ < 1. Because Ref. [13] is not in English,
we would like to comfort readers by indicating that from the PDF one can readily confirm by
working with Eq. (3) that

Sp(l ) = 〈|�u(l )|p〉 =
∫

|�u(l )|pPl [�u(l )]d�u(l )

= (l∗)γ p+C(1−β p)
∫

|�u(l0)|pPl0 [�u(l0)]d�u(l0)

= (l∗)γ p+C(1−β p)Sp(l0). (5)

Equation (3) could provide a potential way to expand β to a wider parameter space, e.g.,
β > 1, as follows. In conventional turbulence, where 0 < β � 1, considering C > γ > 0, we have
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FIG. 1. Influence of β on the relation of Pl and Pl0 . (a) 0 < β � 1, (b) β > 1.

�l,l0β
−k � 1 for all k, thus

Pl = Tl,l0

∞∑
k=0

WkPl0,>[�u(l0)], (6)

where Pl0,>[�u(l0)] = Pl0 [�u(l0)]|�u(l )��u(l0 ) and Pl0,<[�u(l0)] = Pl0 [�u(l0)]|�u(l )<�u(l0 ) denote
the Pl0 at the higher and lower sides of �u(l0), which is equal to �u(l ), as diagrammed in Fig. 1(a).
Equation (6) implies, in conventional turbulence, the PDF of �u(l ) at small scales (for instance,
marked by the red circle) is solely determined by the PDF of stronger velocity increments at large
scales, i.e., Pl0,>[�u(l0)], as plotted by the green shadow region in Fig. 1(a). If Pl0,>[�u(l0)] is
increased, Pl is increased too. Meanwhile, if l is significantly decreased, �l,l0β

−k can be much
larger than unity. The PDF of �u(l ) on small scale is tightly related to the small probability event
of �u(l0).

However, when β > 1, β−k < 1 and �l,l0 > 1. There exists a kc = ln �l,l0/ ln β with

�l,l0β
−k > 1, for 0 � k < kc

�l,l0β
−k < 1, for k � kc

. (7)

The PDF of �u(l ) can be presented as

Pl = Pl,1 + Pl,2, (8)

where

Pl,1 = Tl,l0

kc−1∑
k=0

WkPl0,>[�u(l0)], (9a)

Pl,2 = Tl,l0

∞∑
k=kc

WkPl0,<[�u(l0)]. (9b)

Pl0,<[�u(l0)] is plotted by the gray shadow region as diagrammed in Fig. 1(a). Compared to Eq. (6),
in the calculation Pl of �u(l ), both Pl0,<[�u(l0)] and Pl0,>[�u(l0)] must be taken into account, as
can be seen in Eqs. (8), (9a), and (9b). Or in other words, both the high and low probability events
of �u(l0) have influence on the PDF of �u(l ), as schematically plotted in Fig. 1(b). At large scales,
the PDF of weak velocity increments could be much higher than that of strong counterparts, i.e.,
Pl0,<[�u(l0)] � Pl0,>[�u(l0)]. There also exists a kw for weight function Wk . For 1 < k � kw, Wk �
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FIG. 2. Schematic of the relations between Pl0 and Pl at l∗ = 0.01. Here, C = 2, β = 3/2, γ = 2/3. (a) Pl0

has Gaussian distributions with αl0 = 1, and (b) Pl0 has exponential decaying with A = 1.

1, while for k > kw, Wk < 1. For the case kw ≈ kc (approximation relation is only for theoretical
analysis and not true with high probability), even though Wk < 1, WkPl0,<[�u(l0)] can still be more
important than WkPl0,>[�u(l0)]. The overall contribution from Pl,2 can be non-neglectable. This may
lead to abnormally high Pl at large |�u|. The dependence of Pl on the large-scale counterpart Pl0 can
be clearly distinguished from two symmetrical Pl0 which are typical in turbulence (asymmetry is not
discussed here, even though it is commonly existed in turbulence). One is the Gaussian distribution

Pl0 = 1

σl0

√
2π

exp

{
− [�u(l0)]2

2σ 2
l0

}
, (10)

where σl0 is the standard derivation of �u(l0). The other is exponential distribution to describe the
influence of the exponential tail as a representation of strong intermittency in the following:

Pl0 = A

2
exp {−A�u(l0)}. (11)

The results are plotted in Fig. 2, where l∗ = 0.01, C = 2, β = 3/2, and γ = 2/3. From Fig. 2(a),
when Pl0 has a Gaussian distribution which means weak intermittency, Pl,1 decreases faster than
Gaussian distribution, as shown by the blue dashed line. In the region �u(l ) � 0.6, Pl,2 � Pl,1,
and Pl is dominated by Pl,1. While �u(l ) > 0.6, Pl,2 > Pl,1. In this region, Pl is dominated by Pl,2

instead, with an approximately overlapping of Pl and Pl,2. When �u(l ) > 1.8, Pl,2 becomes even
larger than Pl0 . The slowly decaying Pl,2 leads to a nearly exponential fall of Pl from the Gaussian
distribution of Pl0 . It indicates, with β > 1, a turbulent flow without intermittency on large scale l0
could become eventually intermittent on small scale l . Nevertheless, for Pl0 with exponential decay
[Fig. 2(b)], Pl is dominated by Pl,2 when �u(l ) > 0.5. Pl also exhibits less steep than Pl0 . Pl > Pl0
only emerges when �u(l ) > 2.4. We also find from Fig. 2 that at sufficiently large �u(l ), Pl is
always dominated by Pl,2 which leads to much flatter distributions.

Similar results can also be found at larger l∗ = 0.1, with C = 2, β = 3/2, and γ = 2/3, as plotted
in Fig. 3. As a result of the increasing l∗, the critical �u(l ) where Pl becomes larger than Pl0 , are
1.9 (Gaussian) and 2.3 (exponential decay), respectively. Pl become dominated by Pl,2 when �u(l )
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FIG. 3. Schematic of the relations between Pl0 and Pl at l∗ = 0.1. Here, C = 2, β = 3/2, γ = 2/3. (a) Pl0

has Gaussian distributions, and (b) Pl0 has exponential decaying.

are over 0.5 (Gaussian) and 0.4 (exponential decay), respectively. The results for l∗ = 0.1 and 0.01
indicate, when l∗ is increased, Pl,2 becomes more important.

A direct comparison of Pl,2 for both Gaussian and exponential decay with cases of l∗ = 0.1 and
0.01 are plotted in Fig. 4. With fixed C, β and γ in Fig. 4(a) are larger than those in Fig. 4(b),

FIG. 4. Pl,2 calculated at different β and γ , when C = 2. (a) β = 3/2, γ = 2/3; (b) β = 9/8, γ = 5/12.
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respectively. In Fig. 4(a), for the Pl0 of Gaussian distribution, as l∗ is increased Pl,2 curves become
steeper. This means, at smaller l∗, the small �u(l ) components of Pl0 contribute more to the large
�u(l ) components of Pl through Pl,2. In contrast, for the Pl0 of exponential distribution, Pl,2 curves
become less steep with increasing l∗. There exists a hump around �u(l ) = 0. At smaller l∗, the
small �u(l ) components of Pl0 contribute more to the small �u(l ) components of Pl through Pl,2.

Unfortunately, these trends are not universal, but rely on β and γ . When β and γ are decreased
to 9/8 and 5/12, respectively, as plotted in Fig. 4(b), the hump of Pl,2 for exponential decay becomes
nonsignificant, and the Pl,2 curves becomes steeper with increasing l∗ at the far end of �u(l ). For
the Pl0 of Gaussian distribution, Pl,2 curves are nearly parallel to each other.

By comparing Figs. 4(a) and 4(b), it can be seen that the increasing β and γ generally lead to (i)
more contributions from Pl,2 and (ii) less steeper Pl,2 curves. Even for turbulent flows with Pl0 of the
Gaussian distribution, i.e., no intermittency on a large scale, Pl,2 can still be non-negligible at large
�u(l ) on a small scale, or in other words, small scale intermittency. The intermittency of turbulent
flow with higher β and γ is predictably stronger.

III. EXPERIMENTS

From the investigation above, it can be seen β > 1 is not strictly forbidden in the SL model
and may induce stronger intermittency at small scales. However, β > 1 has never been reported
in any type of turbulence. In this investigation, we applied the SL94 model in a newly observed
microelectrokinetic (micro-EK) turbulent flow.

The experiment is conducted in an EK micromixer driven by ac electric field [14–16]. The quasi-
T-shape microfluidics channel is plotted schematically in Fig. 5(a). Two electric conductive side
walls were used as electrodes. Two streams with a conductivity ratio of 5000:1 were separated by a
plastic splitter plate and delivered into the microchannel by a syringe pump. An ac signal with 100
kHz and 20 Vp-p was applied to generate the EK turbulence. The velocity fluctuation was measured
by laser induced fluorescence photobleaching anemometer [17].

The measurements were pursued at downstream position (x∗ = x/wc � 0.7) from the entrance
where the micro-EK turbulent flow becomes more homogeneous and isotropic. Typical velocity
fluctuations at different downstream positions of the micro-EK turbulent flow have been plotted in
Fig. 5(b). Compared to the velocity fluctuations of unforced flow which behave like white noise, the
velocity fluctuations at four different x∗ of the micro-EK turbulent flow all exhibit less small-scale
components, and behave like random signal accompanied with burstlike events.

In Fig. 6(a), the relations of S2(l ), S3(l ), and S6(l ) with spatial scale l are plotted. The Kol-
mogorov self-similarity of velocity structure functions can be clearly found within inertial subrange.
Compared to the width of inertial subrange evaluated from the velocity power spectrum by Wang
et al. [15], which is more than a decade long, the ones estimated from Fig. 6(a) are slightly shorter.
This is consistent with the investigation of Davidson and Krogstad [18] who found the width of
inertial subrange from power spectra was always larger than that of velocity structure functions,
since the higher-order (including second-order) velocity structure functions are poor filters and can
be contaminated by enstrophy information.

The streamwise evolution of S2(l ) is plotted in Fig. 6(b). The width of inertial subrange decreases
slightly along streamwise position from x∗ = 0.77 to 3.84. At x∗ = 3.84, the width of inertial sub-
range is only half decade, accompanied with an increasingly departure of ξ2 from 2/3 predicted by
the classical Kolmogorov self-similarity law. The decreasing of the width of inertial subrange and ξ2

can be attributed to the decreasing electric Rayleigh number (Rae,l0 = 4〈|�σ (l0)|〉εE2
W l2

0 /〈σ 〉ρνD,
where 〈|�σ (l0)|〉 represents the increment of electric conductivity (σ ), ε is the electric permittivity
of fluid, EW is the bulk electric field intensity, and D is the effective diffusivity of σ ). As the
continuous consumption of 〈|�σ (l0)|〉, the electric body force (EBF) is reduced, and accordingly,
the kinetic energy injection by EBF is reduced [19,20]. In the meanwhile, the kinetic energy is
continuously dissipated by viscosity. When the energy injection rate by EBF is smaller than the
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FIG. 5. Schematic of the microchip and time series of normalized velocity fluctuations u′/
√〈u′2〉. (a)

Schematic of the microchannel for ac EK turbulence. Two streams have a conductivity ratio of 5000:1. The
length (lc), height (h) and initial width (wc) of microchannel are 5 mm, 240 μm and 130 μm respectively. (b)
Time series of normalized velocity fluctuations u′/

√〈u′2〉 at different x∗, where u′ = u−〈u〉.

dissipation rate, kinetic energy is mainly dissipated and only a small part of residual energy can
form inertial subrange. This is why the width of inertial subrange continuously decreases with x∗.

It is interesting that the persistence time of turbulent state in this micro-EK turbulence is more
than 0.15 s (calculated from x∗ = 0 to 2.31), which is much larger than the lifetime of conventional
hydrodynamic turbulence, e.g., in macroscale pipe flow, where the persistence time at this low Re
(<10 based on bulk flow velocity) is only 3 × 10−25 s [21,22]. In other words, if the turbulent state
can be present in such low Re flow by hydrodynamics, it can only exist for 3 × 10−26 s which is
much, much shorter than a spark. Therefore, the turbulent flow region we observed is only sustained
because of the continuous injection of kinetic energy from EBF.

At x∗ = 0.77 and 1.54, the intermittency evaluated by μ = 2 − ξ6 [1] is 0.48 and 0.38 respec-
tively. Both of them are apparently larger than the 0.22 of high Re hydrodynamic turbulence [8].
The PDF of velocity increment should have larger deviation from Gaussian process. This can be
clearly observed from Fig. 7. We selected the same three length scales, i.e., l1, l2, and l3, as marked
in Fig. 6(b). The smaller the length scale, the stronger the deviation from Gaussian distribution, and
the stronger the intermittency accordingly.

Nevertheless, in Fig. 7, Pl abnormally ascends at large �u(l )/[�u(l )]rms for length increment
l1. These parts can significantly contribute to the intermittency of velocity structure functions.
The flatness of velocity structure functions (Fn = S4(l )/S2

2 (l )) varies between 3.9 and 3.3. The
intermittency can be further evaluated by the intermittency factor β of hierarchical structures, which
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FIG. 6. Scaling behavior of velocity structure function. (a) Sp (l) vs l at x∗ = 0.77, where ξp are 0.68, 1.01
and 1.62 for p = 2, 3, and 6, respectively; (b) S2(l ) vs l at four different x∗ positions, where ξ2 are 0.68, 0.69,
0.65, and 0.62 as x∗ increases from 0.77 to 3.84.

is the focus of our concern. It is calculated by β test for each p and m, as [23,24]

Hp+1, m+1(l ) = Hp, m(l )β(p,m), (12)

where Hp, m(l ) = Fp(l )
Fm (l )

Fm (l0 )
Fp(l0 ) and Fp(l ) = Sp+1(l )/Sp(l ). l0 is a reference scale which is the upper

limit of inertial subrange. By linearly fitting the ln Hp+1, m+1 ∼ ln Hp, m curve under each p, the
corresponding exponent β(p, m) can be simply calculated.

In Fig. 8, the curves of ln Hp+1, m+1 ∼ ln Hp, m under different p and m are plotted. Generally
speaking, all the plots show approximately linear relationships between ln Hp+1, m+1 and ln Hp, m,

FIG. 7. Pl of different l at x∗ = 0.77. The length increment l1, l2 and l3 are plotted in Fig. 2(b).
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FIG. 8. Hp+1,m+1(l ) vs Hp,m(l ) for β-test. The slope of the curve is equal to β. (a), (b) at x∗ = 0.77 and (c),
(d) at x∗ = 1.54. (a), (c) different p at m = 1, (b), (d) different m at p = 5.
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FIG. 9. Proportion of β(p, m) calculated from Eq. (12) for all p and m. The red dashed line indicates βavg

at (a) x∗ = 0.77 and (b) x∗ = 1.54 respectively. The former has βavg = 1.51 and latter has βavg = 1.13.

which indicate the similarity of hierarchical structures. The slopes, e.g., β(5, 1) and β(5, 4), are 1.8
and 1.76, respectively. We expand the calculation of β to all p and m at x∗ = 0.77 and 1.54 where
the inertial subrange is approximately a decade long. The statistical results of β is plotted in Fig. 9.
It can be seen that almost all β(p, m) is above 1, which supports the existence of β > 1 in turbulent
flows. The overall averaged β, which is

βavg = 1

MN

N∑
p=1

M∑
m=1

β(p, m), (13)

are 1.51 and 1.13 at x∗ = 0.77 and 1.54 separately. Their influence on the PDF of velocity increment
can be inferred from Fig. 4(a) and (b) respectively. Besides, decreasing of βavg with x∗ implies the
decreasing of intermittency along the streamwise direction.

IV. DISCUSSIONS

β > 1 indicates a stronger relationship between Pl and Pl0 , compared to the conventional hy-
drodynamic turbulence, turbulent thermal convection and even MHD. As have been shown above,
when β > 1, even a low intermittency PDF of velocity increment at large scale l0 can induce a
larger intermittency of PDF of velocity increment at smaller scale l , with much higher probability
of large velocity increment. These findings are qualitatively consistent with the recent theoretical
[19,20] and experimental investigations (on the PDF of velocity gradient) in EK turbulence [15].
Zhao and Wang [19,20] show that the scaling subrange controlled by EBF locates on the smaller
scale side of inertial subrange, if two subranges coexist. Although the scalar field (e.g., electric
conductivity) experiences direct cascade, the turbulent kinetic energy experiences a coexistence of
direct and inverse cascades. EBF relies on electric conductivity gradient, it injects kinetic energy on
small scales (relevant to electric conductivity gradient) and causes inverse cascade to form inertial
subrange. In the meanwhile, the initially 2D interface of electric conductivity [19,20] is disturbed
and forms fractal 3D interfaces after mixing. Electric conductivity gradients also exist on large
scales, where EBF is induced and disturbs the flow field on large scales accordingly. Then, this
part of turbulent kinetic energy cascades from large to small scales and contributes to the formation
of inertial subrange. The coexistence of both direct and inverse cascades could be the reason for
stronger relationship between Pl and Pl0 . When l approaches lek (a critical length scale between
the inertial subrange and the EBF dominant subrange) [19,20] from inertial subrange, the velocity
fluctuations could be inevitably affected by the EBF, which contributes to the deviation of Pl from
Gaussian distribution, and in turn, leads to stronger intermittency. The finding of β > 1 in this
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investigation supports the conjecture of Dubrulle [10] that the conservation laws dominate the value
of β.

From SL94 model, if β > 1, the most singular dissipation structures could not be necessarily
bound at very small scales. Nevertheless, since the existence of SL94 law is limited to inertial
subrange, the truncation of l ∼ lek prevents the unbound event from being present. Also, by
combining Eqs. (1) and (12) and let m = p−1, it is simply seen that

β = ξp+2 + ξp − 2ξp+1

ξp+1 + ξp−1 − 2ξp
. (14)

After Taylor expansion on ξp+q according to the subscript, ξp+q ≈ ξp + qξ ′
p + q2

2! ξ
′′
p + q3

3! ξ
′′′
p +

O(q4), where ξ ′
p = dξp/d p and so forth. By applying the result in Eq. (14), β can be expressed

alternatively as β ≈ 1 + ξ ′′′
p /ξ ′′

p . Apparently, the geometrical factor ξ ′′′
p /ξ ′′

p determines whether β is
smaller or larger than unity. In conventional cases, ξ ′′′

p /ξ ′′
p is a negative constant along with p, and

thus, the constant β < 1. In EK turbulence, ξ ′′′
p /ξ ′′

p exhibits positive values. Furthermore, ξ ′′′
p /ξ ′′

p is
sensitive to the quantity of experimental data under large p. Although the data in this investigation is
sufficient to calculate ξp up to p = 6, the calculated β exhibits scattering around its averaged value,
as can be seen from Fig. 9.

V. CONCLUSIONS

In the present work, the intermittency of a typical ac EK turbulence is investigated based on
the scaling exponent function ξp of velocity structure functions according to the SL94 model.
Remarkably, β > 1 was experimentally observed in electrokinetic turbulence. We theoretically
analyzed the probable influence if β > 1. It is found that when 0 < β � 1, the probability density
function of velocity increment at small scale l is only determined by Pl0,>[�u(l0)] on large scale
l0. When β > 1, the probability density function of velocity increment at small scale l can be
determined by both Pl0,>[�u(l0)] and Pl0,<[�u(l0)], which makes a significant contribution to the
intermittency of turbulence. A strong intermittency can be predicted from β > 1, and accompanied
by the probability density function of velocity increment at small scale l , which exhibits abnormally
ascending from Gaussian distribution at large �u(l ).

This study provides insight into the cause of intermittency in micro-EK turbulence. The result
β > 1 implies there exists a new route to turbulence, through a different but tighter relationship
between large and small scale velocity structures. It is also inspiring for studying other turbulence
in an open system, where energy infill is directly executed in a wide subrange of wavelengths.
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