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Experimental investigation of flow around a 45◦ oriented cube
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Flow around an oriented cube is experimentally studied using particle image velocimetry
measurements. The cube is rigidly suspended and oriented at an angle of 45◦ with respect
to the freestream flow. Instantaneous and mean flow fields in the wake have been examined
at 16 different values of Reynolds numbers between 500 and 50 000. Vorticity identified
using swirling strength shows a chaotic wake at higher Re. A wider wake and a longer
wake length are noted as compared to flow around a normal cube. The wake width
collapses to nearly the same value for all Re beyond the wake length. Unlike a cube, an
oriented cube has a recirculation region with multiple peaks for velocity deficit, which
is a signature of many smaller eddies present in the wake. The range of investigated
Reynolds numbers shows behavioral changes in the wake, hinting at the possibility of
critical Reynolds numbers (or different regimes) based on a maximum velocity deficit,
maximum vorticity magnitude, and energy content of the first mode extracted using proper
orthogonal decomposition. Proper orthogonal decomposition has been used to understand
the contribution of different modes in the formation of coherent structures in the wake. An
oriented cube is an extreme case for nonspherical objects and has marked differences from
the wake of a cube and other regular-shaped objects. The present work is an attempt to
provide an understanding of and improve upon the scarce investigation performed for the
wake of an oriented cube.

DOI: 10.1103/PhysRevFluids.6.074606

I. INTRODUCTION

Flow around obstacles, whether mounted or freely suspended, are not always simplistically
oriented normal to the body. The orientation of the body varies with respect to the flow direction.
Orientation plays a significant role in the fluid dynamics of the wake. Wakes of two-dimensional
bluff bodies are affected by the orientation or inclination in the plane of the flow, but finite-size
three-dimensional bluff bodies have a volumetric effect on the flow. Square cylinders and cubes
are the simplest model examples of bluff bodies with noncircular cross-sectional geometry whose
orientation affects the flow. Orientation of a cube with respect to the flow is the bluff body considered
for the present work. This work is an extension of our earlier work [1], which investigated flow
around a cube.

Flow around a cube has a square cylinder as the nearest counterpart in two-dimensional flows.
References [2–4] are a few of the representative works done for flow around square cylinders. Vortex
shedding for a square cylinder starts around Reynolds number Re = 50 [4] and the flow becomes
three dimensional between Re = 150 and Re = 175 [5]. The inclination of a square cylinder affects
the wake dynamics. Sohankar et al. [6] reported unsteady flow for an oriented square cylinder for Re
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between 45 and 200. They reported a smooth increase in Strouhal numbers for angles of incidence
from 0◦ to 45◦. The drag coefficient for an angle of 45◦ is more than a normally placed square
cylinder. Ozgoren [7] compared the flow physics of a circular cylinder, a square cylinder, and a
45◦ oriented square cylinder for 550 � Re � 3400 and reported larger wakes with more rotational
fluid motion in the wake of the oriented square cylinder. Ozgoren [7] reported that the wake of
an oriented cylinder has a higher number of small-scale vortices. Dutta et al. [8] also showed an
increase in wake size for inclinations greater than zero and reported that the separation points moved
downstream for Re = 1340, 4990, and 9980. Dutta et al. [9] showed the dependence of wake size
on orientation, proposing 22.5◦ as the critical orientation for lower drag coefficient Cd and higher
Strouhal number. They reported a decrease in drag coefficient with an increase in aspect ratio and
showed that Cd for aspect ratio 16 is greater for an orientation of 45◦ as compared to the normal
arrangement of a square cylinder. van Oudheusden et al. [10] used proper orthogonal decomposition
for particle image velocimetry (PIV) measurement of flow around a square cylinder at Re = 4000,
10 000, and 20 000 to report the dependence of vortex shedding on different angles of incidence. van
Oudheusden et al. [11] reported the flow topology and wake behavior for angles of orientation 0◦, 5◦,
10◦, and 15◦. Tong et al. [12] used PIV measurements at different orientation in the unsteady regime
for Re between 60 and 350 to identify two modes of instabilities in the wake of an inclined square
cylinder. Huang et al. [13] proposed three critical regimes for different angles of orientation (α) for
a square cylinder: (i) subcritical (0 � α < 15◦), (ii) supercritical (15◦ � α < 45◦) and (iii) wedge
(α = 45◦). Yoon et al. [14] showed an enhanced heat transfer in a channel flow by using a square
cylinder oriented at 45◦. Similar heat transfer enhancement was also shown by Moussaoui et al. [15]
using a multiple-relaxation-time lattice Boltzmann equation for a 45◦ oriented square cylinder in a
horizontal channel. A finite-size square cylinder has a three-dimensional wake and cube is a special
case of square cylinder with aspect ratio 1.

Flow around surface mounted cubes and cuboids, which served the purpose of understanding
flow around finite-size three-dimensional obstacles near a surface, were presented by, e.g., Castro
and Robins [16], Hunt et al. [17], and Hosker [18]. Surface mounted obstacles have horseshoe
vortices due to a shear layer interacting with the boundary layer. The present work provides
an understanding of the flow around an oriented cube suspended with all sides free to the flow
except for a mount on one side. Earlier works for flow around a normal cube include a cube
drop experiment [19], numerical simulations [20–22], and PIV measurements [1,23]. Saha [21]
identified three flow regimes at moderate Reynolds numbers: (i) steady symmetric (Re < 215),
(ii) steady asymmetric (218 � Re � 265), and (iii) unsteady flow (Re > 270). Khan et al. [24] used
three-dimensional lattice-Boltzmann-method-based numerical simulation to categorize the flow in
four regimes based on flow structures for Re between 84 and 770. Khan et al. [25] explained the
hairpin vortex shedding for a cube and elucidated the flow structures for Re in different regimes
identified by Khan et al. [24]. A PIV measurement was done by Klotz et al. [23] for flow around a
cube at moderate Reynolds number between 100 and 400 confirming two flow bifurcations. All the
previous work for flow around a suspended cube was limited to moderate Reynolds numbers. Khan
et al. [1] presented the flow behavior for the cube at higher Re between 500 and 55 000. Unlike flow
around an oriented square cylinder, there is a dearth of work on flow around a cube oriented with
respect to the freestream.

The non-normal fluid-cube interaction becomes an important domain of investigation with the
cube oriented at 45◦ as a special case. Richter and Nikrityuk [26] investigated the effects of the
orientation of a cube on the force coefficients for Re between 10 and 200. Klotz et al. [23] briefly
mentioned their preliminary study on the effect of cube rotation with respect to the freestream at
Re = 250 and 330. Hölzer and Sommerfeld [27] explained that the nonspherical particles have
higher drag for an arrangement with a maximum projected area normal to the flow, which for the
cube is an orientation of 45◦ with respect to the freestream flow. This creates a need to investigate
the physics in detail for a cube oriented at 45◦ with respect to the freestream.

The present work explains the object-flow configuration where the cube is oriented at 45◦ at
various higher Reynolds numbers and gives a comparison with flow around a cube [1]. Nonspherical
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TABLE I. Tunnel specifications.

Tunnel component Value

Induction (main) motor 5.5 kW, 722 rpm
Geared motor 0.37 kW, 29 rpm
Contraction ratio 9:1
Test section (glass) 1500 × 400 × 400 mm3

Flow parameter Value

Velocity range 0.011–2 m/s
Turbulent intensity <2%

objects are predominant for applications based on immersed obstacles in a flow and their orientation
defines the wake behavior. A 45◦ oriented cube is the extreme case of cube orientation with respect
to the freestream. A larger-size wake with better mixing ability, higher drag coefficient, and different
turbulent statistics, which can be of immense technological use, provide reasons for a detailed
investigation. The present work has been done with the specific objectives to (i) examine the wake of
an oriented cube, (ii) examine the mean and turbulent flow behavior at different axial locations, (iii)
analyze the effect of various Reynolds numbers in the unsteady regime, (iv) compare the wake of an
oriented cube with the wake of a normal cube, and (v) analyze the energy content of various modes
along with their role in coherent structure reconstruction using proper orthogonal decomposition.
Particle image velocimetry measurements were conducted in a water tunnel for Re ∈ (500, 50 000)
for a cube oriented at 45◦ to the streamwise flow.

II. EXPERIMENTAL SETUP AND DATA ANALYSIS

Particle image velocimetry measurements were performed for flow around an oriented cube
mounted in a closed circuit water tunnel. A description of the water tunnel was presented earlier
in Ref. [1] for measurements of flow around a rigidly suspended normal cube. The specifications
are listed in Table I.

The present work focuses on flow around an oriented cube and draws a comparison with the
earlier work on flow around a normal cube [1]. Experiments were conducted for 16 different
Reynolds numbers using a cube oriented at 45◦ with respect to the flow. The cube has side length of
40 mm and is made of transparent acrylic. When seen from the top, the oriented cube appears as a
rhombus aligned with the axis along the flow direction and mounted at the center of the top face. This
arrangement kept the separating edge free from any obstruction due to the holder used as a mount.
The wedge-shaped separation edge and the sides were of interest for the flow investigation, so the
cube was mounted with a thin straight rod from the top. Images obtained from PIV measurements
were analyzed using cross correlation and the obtained result was calibrated to get the flow field
in physical dimensions. The extracted flow field was analyzed to explain the physics in the wake
of an oriented cube. The swirling strength was calculated from velocity data to study the vortical
structures quantitatively [defined later through Eq. (7)]. Proper orthogonal decomposition was used
to extract various modes and get insight into the coherent structures corresponding to the extracted
modes. The following sections explain the PIV measurement system employed, PIV image analysis,
and proper orthogonal decomposition used to analyze the flow field.

A. The PIV measurement system

Particle image velocimetry (specifications in Table II) employed for the present case was similar
to that used in Refs. [1,28–30]. Figure 1(a) shows schematically an arrangement of the oriented
cube in the test section of the water tunnel along with the laser sheet, camera, and flow direction.
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TABLE II. Particle image velocimetry specifications.

PIV hardware and accessories

Laser Nd:YAG
532-nm wavelength

Pulse widths of 7.7 and 6.8 ns
Beamtech Vlite-200

Synchronizer Beamtech
Camera CCD, PCO, Germany

1024 × 1392 pixels
Frame rate of 10 Hz

Particle Fused borosilicate glass
Size of 8–9 μm

Specific gravity 1.1

PIV evaluation
PIVLAB [31,32] MATLAB-based open-source package

The laser sheet passes through the midplane of the cube [Figs. 1(b) and 1(c)]. A CCD camera is
placed normal to the sheet. The laser and camera are controlled using transistor-transistor logic
signals from a synchronizer connected to a personal computer. A total of 907 pairs of images were
recorded at 1 Hz, which is a data set of more than 15 min. The flow was checked for statistical
convergence using a cumulative mean field and it was found to converge for an ensemble data

FIG. 1. (a) Schematic of the test section and PIV setup with the mounted cube arrangement. Also shown
are (b) the alignment of the camera and (c) the alignment of the laser and camera.
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of 250 images recorded at 1 Hz. In order to have lower sampling error, the present work uses an
amount of ensemble data more than three times that required for statistical convergence. Since the
data acquisition was done at 1 Hz, we have not been able to estimate the Strouhal number using the
present set of measurements.

B. The PIV image analysis

PIVLAB, a MATLAB-based open-source package [31,32], was used to analyze the images. In-
house-developed MATLAB scripts were used for postprocessing the data and for estimating various
parameters reported in this article. Cross correlation was done using an interrogation window of
32 × 32 pixels and an overlap of 50%. Around 5400 velocity vectors were identified with a vector
separation of 2 mm in the measured field of view of 13 × 18 cm2. The Stokes number is of the
order of 10−3 (i.e., much less than unity), showing that the tracer particles faithfully follow the
streamlines.

The uncertainty in measurement of the velocity was estimated for image processing, particle lag,
sampling, and the equipment [33]. The algorithm processing uncertainty is 0.5%. The particle lag is
negligibly small given that the Stokes number is approximately 10−3. Sampling uncertainty is esti-
mated to be 0.9% for lower Reynolds number and 0.6% for higher Re. Since sampling uncertainty is
dependent on the standard deviation and average velocity, differences in the estimated uncertainties
are noted with Re. Equipment uncertainty in the scaling factor is 0.6%, whereas uncertainty in the
separation of time is negligibly small (of order 10−6–10−8 %). The total uncertainty in the velocity
measurement is 1.7–2 %.

C. Proper orthogonal decomposition of flow fields

Since particle image velocimetry measurements give data which are whole field and are recorded
for a finite time, deconstructing the complexity of the flow in individual units becomes important to
understand the flow better. Proper orthogonal decomposition (POD) provides the basis to decompose
the flow field in different modes with a certain portion of the total energy in each mode. The basic
idea is to take a field U and extract the fluctuating component as

U(x, t ) = umean(x) + u′(x, t ). (1)

Proper orthogonal decomposition creates a set of projections for an uncorrelated data set u′(x, t )
onto an orthogonal set {φ1, φ2, . . . , φN } such that the difference between the fluctuating component
and the summation of N orthonormal basis projections calculated as

ε =
√√√√‖u′(x, t )‖2 −

N∑
m=1

c2
m‖φm‖2 (2)

is a minimum. The orthogonal basis should satisfy the criterion that 〈φi, φ j〉 = 0 for all i �= j. For
ε → 0, i.e., when the projection converges to the given functions (Parseval’s equality), Eq. (2) gives

u′(x, t ) =
N∑

m=1

cmφm. (3)

Using the variational approach, Holmes et al. [34] showed that when ε → 0, Eqs. (2) and (3) are an
eigenvalue problem where

Rφ = λφ, (4)

where Ri, j = 〈u′
iu

′
j〉, whereas for a degenerate case Ri, j = 1

N

∑
u′

iu
′
j .

Since the data in particle image velocimetry have more spatial values (grid data) than the number
of temporal images, the method of snapshots [35] becomes an optimum choice, as suggested
by Chen et al. [36]. In the method of snapshots, a discrete PIV data set taken at different time
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FIG. 2. Schematic showing the flow direction, the origin for all results for an oriented cube.

steps is used as snapshots. This process is quicker than the direct method. The snapshot method
uses an approximation of the eigenfunction as a linear combination of the observable velocity
field [35]. As each observation can be expressed as a linear combination of eigenfunctions with
positive eigenvalues, similarly each eigenfunction can be represented by a linear combination of
observations [34,37]:

φ =
N∑

i=1

Aiu
′(t ). (5)

Using this value of φ in Eq. (4), one gets an eigenvalue equation for the coefficients At ,

N∑
i=1

1

N
(u′

iu
′
j )Ai = λa j, j = 1, 2, . . . , N. (6)

Single-value decomposition is performed over the spatial correlation matrix generated using
fluctuations in u and v velocities as mentioned in [36,37]. The eigenvalues obtained using the
POD correspond to the kinetic energy of each mode. Proper orthogonal decomposition decomposes
the flow in modes where the eigenvalues give the fraction of kinetic energy content in each mode
(optimality). The eigenfunctions associated with a particular eigenvalue give an idea about the flow
structure associated with that mode.

III. RESULTS AND DISCUSSION

The cube side length D is taken as a characteristic length for calculating the Reynolds number
and for normalizing the axial and transverse distances. Figure 2 shows the axes for an oriented cube
oriented at an angle of 45◦ to the flow; x and y are streamwise and transverse directions. Notice from
the figure that the center of the cube has been chosen as the origin (0, 0) for ease of comparison
between a normal and an oriented cube.

The following section discusses the instantaneous velocity for a flow around an oriented cube.
The flow physics for an oriented cube is explained using time-averaged vector plots, isoregions of
swirling strength, and streamlines. The physics in the wake is further studied by observing the flow
behavior in the transverse direction at various axial locations. Time-averaged mean velocity profiles
and normalized root mean square velocity profiles are presented to understand the mean flow and
the effect of fluctuations in the flow. The centerline velocity plot in the wake gives an idea about the
recirculation length. Turbulent statistics are discussed using normalized root mean square velocities
(Urms and Vrms) and Reynolds shear stress (RSS).

Additional PIV measurements were performed to ascertain the flow condition in the water tunnel
before the start of the measurements. The velocity profiles (not presented) for the water tunnel
without any obstacle showed uniform flow at all Reynolds numbers. Flow for the tunnel without
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FIG. 3. Comparison of instantaneous streamlines for flow around an oriented cube at various Reynolds
numbers.

any mounted object had near-zero values for RSS at all Re. This established that the background
flow is uniform in the streamwise direction.

A. Instantaneous velocity

The nature of the wake is dependent on the obstacle geometry and the Reynolds number, which
accounts for both the inertia of the flow and the viscosity of the fluid. Generally wakes are noted
to have fully formed recirculating zones at lower Reynolds numbers for any bluff body in the
steady regime and are mostly dominated by the viscous effects. At higher Reynolds numbers the
inertial component dominates. The inertial component advects and stretches the recirculating zones.
Figure 3 shows how the instantaneous wake behavior changes as the Reynolds number increases.
We note larger eddies at Re = 533 (Fig. 4). The wake has longitudinally stretched structures
at Re = 784 (Fig. 3). The wake region is larger at this Re as compared to Re = 533 (Fig. 4).
Beyond Re = 784, the structures in the wake are smaller since at higher Re the stretching leads
to disintegration of the eddies into smaller ones. The wake for flow around an oriented cube blooms
with many smaller structures for Re � 2660, the wake has many smaller structures, and the wake
region is smaller than those at Re = 784 and 1500. The wake region for higher Reynolds numbers of
18 620, 37 900, and 46 800 are chaotic and have many small recirculating zones. Figure 3 presents
Re = 784 as a critical Reynolds number after which the wake is filled with relatively smaller
eddies and the axial distance with many smaller vortices is shorter compared to Re = 784. This
inference is further supported by the identified vortical structure in the wake (Fig. 7) and the trend
in recirculation length (Fig. 8). (Figure 11 will further elucidate the varying trends in the wake at
various Re.) The temporal flow behavior is further analyzed for the wake of an oriented cube at
Re = 784. It should be noted that the flow analysis in Fig. 3 and the following sections focuses on
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FIG. 4. Temporal variation of instantaneous streamlines for flow around an oriented cube at Re = 533.

the wake region only since the shadow region formed due to diffraction from the cube induces error
in the velocity field in the region near the corners as shown in Fig. 5.

Streamlines for the instantaneous velocity field for Re = 784 are shown in Fig. 6. Fig-
ures 6(a)–6(l) show the flow behavior for an arbitrarily chosen flow field of 12 s. For the presented
instantaneous time frame we note that the maximum vortical action happens only in the upper half
of the wake, i.e., towards one side of the centerline. The number of eddies found in the upper half
of the frames is higher than that for the lower half. At later time instants (not presented here) the
situation flips. This is due to the phased nature of the flow. Similar behavior was also observed for
Re = 533.

The flow is tilted towards one direction and later it flips towards the other. Similar periodic
nature has been reported for flow around a square cylinder placed normal to the flow direction
at Re = 14 000 [38]. Although the present measurements have been done for the midslice of the
three-dimensional flow around an oriented cube, the recirculating packets in the wake help explain
the flow behavior. Perry and Chong [39] provided a framework and methodology of using critical
points to explain the flow patterns in a three-dimensional flow. Almost all the frames have attracting

FIG. 5. Sample PIV image showing the wake region analyzed in this work and the shadow region on one
side of the oriented cube due to diffraction at the corners.
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FIG. 6. Temporal variation of instantaneous streamlines for flow around an oriented cube at Re = 784:
(a) t = 1 s, (b) t = 2 s, (c) t = 3 s, (d) t = 4 s, (e) t = 5 s, (f) t = 6 s, (g) t = 7 s, (h) t = 8 s, (i) t = 9 s,
(j) t = 10 s, (k) t = 11 s, and (l) t = 12 s.

(streamlines moving inward toward a common region) and repelling (streamlines moving outward
from a common region) nodes, along with focus (movement of streamlines is either inward or
outward at a particular point) and saddle points (location with singularities where all streamlines
are tangent). The rolling of the fluid in a three-dimensional space can be inferred from these
repelling and attracting centers. The rolling of fluid shows how the streamlines move in and out
of the plane. At the edge of the wake in the transverse direction the rolling of the shear layers into
smaller recirculating regions is seen. Smaller recirculating regions are formed which slowly grow
in size and are advected into the far wake region. The streamwise motion is added to the transverse
diffusivity in the wake, which at later time instants is tilted in the opposite direction.

074606-9



KHAN, SOORAJ, SHARMA, AND AGRAWAL

Notice that the region behind the cube experiences a reverse flow, while the flow is in the forward
direction outside the wake. This shearing between the movement of oppositely flowing streams leads
to the formation of vortices in the shear layer. The shear layer forms vortices at around 1.5D from
the center of the cube. Smaller vortices are formed for all the Re investigated in the present work.
Since the flow is at higher Re = 784, many small vortical structures are formed, giving a sense of
chaotic flow. The three dimensionality of the flow also leads to stretching and tilting of vortices. At
Re = 533 the vortical structures are bigger; they break down into smaller ones at Re � 784. The
outer region of the wake (in the transverse direction as marked in Fig. 6 for t = 1 s) has single
vortices, whereas the inner region shows the presence of both paired and single vortices. The sizes
of the vortices and recirculating region become smaller at higher Reynolds numbers. A broader
wake is observed as compared to the wake of a normal cube [1].

The comparison of wake at different Re necessitates a discussion on how the mean velocity and
vorticity fields behave. The following section presents the time-averaged velocity and vorticity fields
to explain the behavior of the mean flow field in the wake of an oriented cube.

B. Time-averaged velocity and vorticity

The deviation from the freestream flow marks the character of the wake. Understanding and an-
alyzing the flow patterns of the streamwise velocity components aid in the kinematic understanding
of the wake. Figure 7 shows the time-averaged velocity vectors for an oriented cube at various Re
along with contours of swirling strength.

The region with velocity magnitude lower than the freestream velocity component gives an
idea about the geometry of the wake. The streamwise velocity pattern of the wake explains the
recirculation region and the region of velocity deficit. It helps us understand the rate of gain in the
velocity deficit with respect to the axial location. The geometry of the wake is deciphered using
the streamwise velocity vector plots.

Flow around an oriented cube has a blunter velocity deficit zone at Re = 533, as compared to the
flow around a cube placed normal to the flow direction. At Re = 784 the deficit zone increases in
size and then decreases for higher Re. Similar behavior was noted for the instantaneous streamlines
shown in Fig. 3. The geometry of the deficit zone differs from that of flow around a cube in terms
of both shape and size. The zone around an oriented cube has multiple peaks of streamwise velocity
and even the wake has more areal spread (Fig. 10). The wake for flow around a cube converges
beyond the bluff body [1], whereas the wake for an oriented cube is initially bulged and then it
closes to form a deficit zone with a flatter end or an end with multiple peaks. The shape of the lower
velocity i.e., the negative zone for Re = 530, is flatter and has multiple peaks at Re = 18 600. Such
deficit zones of multiple peaks lose their symmetry at higher Re.

There is a change in velocity direction as one moves away from the cube in the axial direction. As
explained in Ref. [1], the wake tapers to conserve momentum for flow around a cube. The change in
sign of velocity at higher Re is at a lower x/D (closer axial distance) due to the higher inertia of the
flow. The velocity vectors for flow around an oriented cube help us understand the flat profile and
further elucidate profiles of multiple peaks of the velocity vector field of Fig. 7 and time-averaged
streamwise velocity profiles of Fig. 10. The taper in the near wake region is not as sharp as that of
flow around cube (shown in Ref. [1]). This implies that the wake area in which the flow recovers the
momentum is larger than that for a cube placed normal to the flow. The velocity vectors change sign,
but they show two distinct recovery regions in the wake for Re � 784. Unlike flow around a cube,
the gain in momentum happens with two peaks of recovered velocity vectors after the recirculation
region.

The wake has two distinct regions: the recirculation region and the postrecirculation region. The
axial distance along the centerline at which the streamwise velocity changes its sign is defined as
the recirculation length. Figure 7 shows the change in the direction of velocity vectors in the wake.
The recirculation length for both the cube and the oriented cube increases between Re = 533 and
Re = 784; then there is a sharp drop in the recirculation length of the cube (Fig. 8). The recirculation
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FIG. 7. Time-averaged streamwise velocity vectors at various Reynolds numbers and contours of vor-
tices identified using swirling strengths: (a) Re = 533, (b) Re = 784, (c) Re = 2200, (d) Re = 5300,
(e) Re = 18 620, and (f) Re = 46 800.

length for Re � 784 is lesser for oriented cube and at all higher Re the magnitude is greater than
the length for flow around a cube. The recirculation length increases with Re at lower Reynolds
numbers due to the dominant effect of viscous diffusion [6,24] which influences the flow separation.
At higher Re (greater than 784), the effect of viscosity decreases and flow separates at a wider angle
and travels a larger distance for an oriented cube as compared to the flow separated at the leading
edge of the cube. The recirculation lengths for a cube varies within a range of 25% of the cube
dimension for Re > 1200, whereas for an oriented cube the range is 30% of the cube dimension at
higher Reynolds numbers.
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FIG. 8. Variation of recirculation length with Reynolds numbers for a cube and an oriented cube.

A symmetry is observed at Re = 784 with two similar lobes of the deficit zone around the
centerline of the wake for the oriented cube. This symmetry around the centerline is lost at higher
Re. Ensemble averages taken over the entire data set show asymmetry for the wake at lower Re,
but when a smaller ensemble is used a symmetric mean field is obtained. Since the images for PIV
measurements are taken at 1 Hz, we believe that this loss in symmetry might be due to the captured
phases in the overall data set which might not necessarily be integral multiples of 1 s. In addition, the
presence of many smaller eddies in the wake contributes to the phased nature of the mean velocity
field. So average velocity fields at certain Re show small asymmetries for a few cases and not for
others. Asymmetry in the wake is persistent at higher-Reynolds-number flows due to the higher rate
of shedding in the flow with many smaller eddies. This is appreciated when one looks at the vortical
structures in the mean vorticity field, identified using the swirling strength as shown in Fig. 7.

The swirling strength (first introduced by Zhou et al. [40]) was used to identify the vortical struc-
tures in the flow using the eigenvalues of the velocity gradient tensors. The imaginary eigenvalue
λci represents the strength of the local swirling motion. Adrian et al. [41] proposed the use of the
two-dimensional velocity gradient tensor J defined as

J =
[

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

]
, (7)

where x and y are directions and u and v are velocities. The eigenvalues of J are estimated and the
vorticity is identified as the isoregions of λci > 0.

The superimposed swirling strength (isoregions of λci > 0) in Fig. 7 shows the nature of the
vortex in the wake. Since the flow is three dimensional the identified vortex structures at various
Reynolds numbers help elucidate the behavior of the wake. The identified swirling core at Re = 533
is a thicker blob, but this is stretched at Re = 784. The stretching is expected due to the increased
inertia in the flow. The vortex gets sheared by the flow and is stretched. This process of stretch and
tilt breaks the vortices at higher Re (greater than 784), leading to a wake filled with smaller vortical
structures. Many smaller vortices are seen all over the wake for Re > 18 000. Khan et al. [24]
discussed the fluctuating field for Re > 770 for flow around a cube. The flow becomes chaotic due
to breaking of larger vortices in smaller ones at higher Re. Smaller vortical structures for near wall
flow at higher Re were identified by Khan et al. [42].

As seen above, the vorticity decays due to the breakdown and dissipation of larger vortices into
smaller ones as one moves downstream in the wake. In order to quantify it, we plot the magnitude of
normalized vorticity. Figure 9 shows the variation of clockwise and counterclockwise vorticity with
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FIG. 9. Maximum vorticity at different axial distances from the oriented cube at various Re. Open markers
represents counterclockwise vorticity and closed markers represents clockwise vorticity.

x/D. The near wake shows a larger vorticity magnitude at Re = 2400 as compared to Re = 46 800.
The magnitude is lowest for Re = 533.

C. Velocity profiles in the wake

The time-averaged velocity in the wake is presented in this section to understand the kinematics
of the wake. The velocities are presented for flow around an oriented cube at various axial locations.
These velocities are normalized using the freestream velocity in the tunnel. The axial distances and
transverse distances are normalized using the cube dimension D. The axial locations chosen are
x/D = 1, 1.5, 2, 2.5, and 3. Except for Re = 533 and 784, all other Re have a recirculation length
less than 2D. So the axial locations presented here cover both regions, within the recirculation zone
and outside it.

1. Variation with axial locations

Normalized streamwise velocities at various axial locations for different Reynolds number are
presented in Fig. 10. The streamwise velocity contour for an oriented cube has comparatively flatter
profiles for Re = 533. A shorter recirculation region with a wider wake width creates a flat profiled
recirculation region as observed from Fig. 7. The velocity profiles for Re = 533 have single peaks
(Fig. 10). There is a rapid gain of around 18% in the streamwise velocity component between
x/D = 1.5 and x/D = 2. After x/D = 2 the rate of gain in velocity is reduced, but asymmetry
is noted in the velocity profile. At Re = 784 the axial locations x/D = 1 and 1.5 fall within the
recirculation region and they have similar velocity deficits. At axial locations of x/D = 2 and higher,
two peaks are observed; the central region is accelerated relative to the outer wake region. The
variation in the streamwise profile in the y direction at various axial locations is an indication of the
three dimensionality in the flow. Streamwise velocity profiles at various axial locations show that the
central portion has higher velocity. At higher Re (greater than or equal to 5300) the peaks become
less dominant. The gain between x/D = 1.5 and 2 is more than 25%. At higher Re multiple peaks
are observed at x/D = 1.5. This axial location is within the recirculation region (Fig. 12). Moving
beyond the recirculation region, for x/D � 2 the streamwise velocity profile has two asymmetric
peaks due to longer shear layers and the notable presence of transverse velocity components. The
wake for an oriented cube is noticeably different from that of a cube [1]. The wake of the cube
has a single peak at all Re ∈ (500, 55 000). Both the cube and the oriented cube have a maximum
velocity deficit at Re = 784. The trend shown by the maximum velocity deficit is a characteristic of
the wake behavior at various Reynolds numbers.
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FIG. 10. Time-averaged normalized streamwise velocity at various axial locations for different Reynolds
numbers: (a) Re = 533, (b) Re = 784, (c) Re = 2200, (d) Re = 5300, (e) Re = 18 620, and (f) Re = 46 800.

Figure 11 shows the variation of the minimum of the streamwise velocity (i.e., maximum velocity
deficit) at different axial locations in the wake of an oriented cube at various Reynolds numbers.
Based on the maximum velocity deficit at different axial locations, six Re bands (A, B, C, D E, and
F) are noted with the deficit profile with respect to Re as shown in Fig. 11. Using the variation of
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FIG. 11. Velocity deficit peak for different axial locations at various Reynolds numbers.

the maximum velocity deficit at various axial locations for different Reynolds numbers, transitions
in the slopes are noted. The identified values are around Re = 800, 1200, 2000, 18 600, and 28 000.
This minimum velocity is the deficit peak of the streamwise velocity profile at any axial location.
The profile at different axial locations for all Re follows a similar trend: The deficit decreases further
from Re = 533 to Re = 784. There is a gain noted between Re = 800 and 1200. After Re = 1200,
the value of the velocity deficit decreases until Re = 2600. The velocity profile then has a very
slow increase until Re = 18 600 and then another small dip is noted at Re = 28 000. These profiles
explain the trend in velocity deficit at various Reynolds numbers. These are the direct outcome of
the momentum exchange in the wake and are associated with the drag forces. The nature of the
profiles gives an impression of probable transition points at Re ∼ 800, 1200, 2000, 18 600, and
28 000. It should be noted that bands A and B are only rough estimates due to fewer data points
below Re � 1200.

FIG. 12. Variation of normalized time-averaged velocity at the centerline.
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FIG. 13. Wake width at various axial locations for different Reynolds numbers.

2. Variation of velocity at the centerline and wake width

The centerline velocity profiles for the wake give an idea about the size of the wake and the
rate and nature of velocity recovery with respect to the axial distance in the wake. Figure 12 shows
the centerline streamwise velocity profile at various Reynolds number. The velocities at higher Re
converge within a narrower band compared to that around a cube [1]. The gain in centerline velocity
is 78% of the freestream velocity at x/D = 3.2. At higher Re there is a rapid gain as compared
to that of a cube placed normal to the flow. The gain in the streamwise velocity component at
higher Re is from 59% to 75% between x/D = 2.5 and 3.2. At higher Re (greater than 18 000) and
x/D = 2.5 the velocity is in a band of 5%. This rapid gain in the centerline velocity hints at better
mixing for flow around an oriented cube. Most of the changes in the velocity flow pattern happen
within an axial location of x/D = 2, which is roughly the wake length (the axial distance along the
centerline after which the velocity changes direction). Beyond x/D = 2, velocity profiles collapse
for Re = 784 and 1020. Similarly, the profiles collapse to a single value at higher Re (greater than
1020). A trend similar to the wake length is noted for the wake width too (Fig. 13).

Figure 13 shows the wake width at various axial locations for different Reynolds numbers.
The wake width is estimated as the transverse distance from the center of the wake where 50%
of the deficit is recovered. Since the centerline velocity is also recovered farther away from the
body, the velocity gradient is less steep in the transverse direction at these locations. Therefore,
the transverse length required to recover the 50% of the deficit increases with axial distance. The
near wake width (for x/D < 2) at higher Re is lesser compared to those at lower Re. This is due
to the inertia at higher Re which washes the separated shear layer farther downstream before it
can exchange velocity in the transverse direction and grow. At higher Re the wake width becomes
independent of Re because the residence time for the separated shear layer is reduced and vortices
are convected downstream. Similar behavior was noted for flow around a cube [1].

Fixed separation points for flow around a cube make it distinct from spherical or circular bluff
bodies with the separation point dependent on Re. The orientation of the cube gives different
trajectories to the shear layers formed after the flow separation happens at the fixed corners. The
wake width for an oriented cube is greater than

√
2D. The shear layers for a cube interact in the

wake but for an oriented cube they roll up in small vortices which are shed in the wake.

D. Streamwise variation in turbulence statistics

The wake of an oriented cube in the investigated range of Reynolds numbers is turbulent. An
understanding of the fluctuating velocity field is necessary to comprehend the wake behavior. The
following sections examine the normalized root mean square velocities and Reynolds shear stress.
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FIG. 14. Normalized Urms at various axial locations for different Reynolds numbers: (a) Re = 533,
(b) Re = 784, (c) Re = 2200, (d) Re = 5300, (e) Re = 18 620, and (f) Re = 46 800.

1. Normalized root mean square velocity profiles

Root mean square velocities are normalized with the freestream velocity and plotted at different
axial locations to get an idea about the temporal effect of the fluctuations in the flow. Figures 14
and 15 show the normalized rms velocities for both the streamwise (Urms) and transverse (Vrms)
velocity components.
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FIG. 15. Normalized Vrms at various axial locations for different Reynolds numbers: (a) Re = 533, (b) Re =
784, (c) Re = 2200, (d) Re = 5300, (e) Re = 18 620, and (f) Re = 46 800.

Normalized Urms profiles for flow around a cube have two peaks [1] due to the presence of
shear layers. At any Re, the Urms decreases as one moves in the axial direction away from the cube
since the shear layers weaken and the fluctuations are absorbed in the momentum exchange with the
freestream velocity. The turbulent action is predominant in the near wake of the cube and it weakens
farther away from the bluff body.
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For flow around an oriented cube the Urms action is noted in four different categories: (i) the
magnitude of the rms velocity, (ii) the transverse stretch in y/D, i.e., width of the velocity profile at
any axial location, (iii) the behavior of the rms in the axial direction, and (iv) the number of peaks
in the rms velocity profiles at various axial locations in the wake. The magnitude of Urms is greater
than those for flow around a cube at various x/D and Reynolds numbers. The rms velocity stretch in
the transverse direction is greater owing to the obstructing cross section along with the wider wake
which was observed in the swirling strength isoregions velocity vector plots (Fig. 7). Along axial
locations the average value of Urms at x/D = 1 is lower for all Re since this location lies within
the recirculation region. At higher axial locations for x/D � 1.5, we notice two or more peaks.
Multiple peaks indicate the presence of shear layers and their breakdown into many smaller vortices
which create packets of fluctuating components in the wake. These multiple peaks are limited until
x/D � 2 and then a flatter profile with a maximum of two peaks is observed. This flattening is
due to the exchange of momentum between the freestream and the wake. The two weak peaks are
remnants of the shear layer, which is carried downstream in the far wake by the streamwise flow
component.

Normalized Vrms profiles are shown in Fig. 15 at different axial locations and Reynolds numbers.
These profiles for flow around an oriented cube are wider than that for flow around a cube [1]. At
Re = 533 two peaks are present at x/D greater than 1.5D. At Re = 784 double peaks develop at
x/D = 2.5 and 3, before which the flatter Vrms profiles depict lesser transverse momentum exchange.
The Urms profiles of Fig. 14 show the presence of multiple peaks at higher Re, to which is added the
presence of transverse fluctuations as shown in Fig. 15. The central portion of the rms profiles in the
range from y/D = −0.5 to 0.5 peaks at x/D = 1.5, where the Urms has a local minimum. The effect
of the shear layer is more dominant in the Urms profiles since the flow is in the streamwise direction
and the shear layer also moves in the same direction.

The ratio of Urms and Vrms (not shown) gives an estimate of the equivalence of the fluctuating
components in the flow. At Re = 533 and 784 the flow has directional fluctuations with Urms/Vrms

profiles showing larger peaks at x/D = 1 and 1.5, which are axial locations within the recirculation
region. The streamwise component of the rms is dominant for the normal cube as compared to that of
an oriented cube. Beyond the recirculation region, lower peaks are noted. At higher Re, the dominant
peaks are washed away due to many smaller vortices. This shifts the flow towards being more
isotropic, hinting at enhanced transverse fluctuations. The width of the wake with isotropic flow,
i.e., Urms ∼ Vrms, is larger and prevalent for an oriented cube. This indicates more homogenizing
and a better mixing ability of an oriented cube as compared to a cube placed normal to the flow.

2. Reynolds shear stress

The turbulent wake behavior for advection is understood using the Reynolds shear stress (RSS).
Figure 16 shows the RSS profiles at various axial locations at different Reynolds numbers for flow
around an oriented cube. The RSS profiles are symmetric about the centerline with one half showing
a positive flux and the other showing negative flux for flow around a cube. At the axial locations
x/D = 1 and 1.5 at Re = 784 the profiles are flatter and two opposite-sign peaks appear at higher
x/D. These peaks explain the transverse momentum exchange due to v′. The flow around an oriented
cube has RSS profiles with peaks at larger y/D, which is expected due to a wider wake as compared
to a cube placed normal to the flow. The presence of many smaller vortices in the near wake and
larger recirculation lengths explains the relative irregularity in the RSS profiles. The magnitude of
advection is larger than that of a normal cube. For all higher Re the RSS profiles are flatter with
multiple peaks. Many small eddies are created in the wake but most of them are washed in the
streamwise direction. A wider wake with a longer recirculation region (x/D ∼ 2) along with flatter
streamwise wake as shown in Fig. 7 is the reason for such RSS profiles at all axial locations and all
higher Re.
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FIG. 16. Reynolds shear stress at various axial locations for different Reynolds numbers: (a) Re = 533,
(b) Re = 784, (c) Re = 2200, (d) Re = 5300, (e) Re = 18 620, and (f) Re = 46 800.

E. Insights from proper orthogonal decomposition

Proper orthogonal decomposition (briefly explained in Sec. II C) was used to investigate the wake
of the oriented cube. This process helped identify coherent structures by separating modes based on
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FIG. 17. Energy fraction (percent energy) for different modes estimated using eigenvalues. (a) Snapshot
independence test done at Re = 533 showing the number of snapshots greater than 230 converging to the
percentage of the energy distribution across various modes, (b) percentage of energy captured for different
modes at various Re, and (c) percentage of energy captured for the first mode at different Reynolds numbers.

turbulent kinetic energy. Decomposition of the flow domain into different modes helps in choosing
modes which have higher energy content and which contribute to the coherent structures. Coherent
structures evolve over time and space. In addition, the obtained POD coefficients help explain the
turbulent kinetic energy in the wake at various Reynolds numbers.

A snapshot independence test was done using 90, 150, 180, 230, and 300 image frames. The
percentage of energy content for each mode using different sets of image frames as snaps is shown
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in Fig. 17(a). It was found that beyond 230 the highest share of the energy fraction is almost the
same. The inset in Fig. 17(a) shows how the energy distribution collapses for different sets of snaps
more than 230 for higher modes.

1. Interpretation of energy content in the flow

The energy content of different modes for flow around an oriented cube is shown in Fig. 17(b).
The highest energy of 22.64% for the first mode is for Re = 533. The share of energy for different
modes asymptote at the 20th mode, after which modes have a negligible share of energy (below
0.7%). The energy share for all Reynolds numbers falls within 2–3.5 % for modes greater than 6.
Figure 17(c) shows the percentage of energy in the first mode at various Re. Here Re = 5300 is an
interesting aberration for mode 1 with a local maximum of 19.72% for an oriented cube [Fig. 17(c)].
All the modes converge to energy less than 1% after the 15th mode. The change in nature of the
profile in Fig. 17(c) correlates with the Reynolds numbers noted as critical points in Fig. 11. The
POD coefficients further help elucidate the energy content of each mode over a cycle. At higher Re,
the total energy is distributed over many modes due to energy cascading into smaller eddies present
in the decomposed flow field of higher modes. This causes the first mode for a fluctuating velocity
field to have a lower share of the total energy content for flow at higher Re.

Figure 17(b) explains the energy content (using eigenvalues) for various modes. Coherent struc-
tures associated with different modes containing different energy fractions will help us understand
the flow behavior. The following section explains the flow structure for different modes.

2. Flow structure for different modes

Proper orthogonal decomposition done over instantaneous velocity fields decomposes various
modes. Since the coherent structures are dictated by the fluctuating component of velocity field,
decomposition is performed on the fluctuating velocity fields estimated after subtracting the mean
velocity field from the instantaneous velocity fields. Figures 18 and 19 show the streamwise flow
structures for the first four modes (1, 2, 3, and 4) at various Reynolds numbers and the phase
dependence of POD time coefficients. The POD time coefficients represent the temporal behavior
of the flow in a particular mode. The POD time coefficients, when visualized along with the flow
structure of the mode, help us understand mode-based growth of coherent structures.

The fluctuations in u′ for mode 1 indicate the presence of shear layers (Fig. 18). The decomposed
u′ for Re = 533 and 1735 are not symmetric, but at higher Re symmetry is restored for the two
directions of fluctuations. The rear side of the oriented cube shows opposite-sign fluctuations at
Re = 5300 (although a weaker pattern is noted at Re = 2400 too). The growing asymmetry with
Reynolds number disappears at higher Re since the inertia dominates the flow and we note a
Reynolds number independence at higher Re. A similar observation was noted for flow around
a cube at higher Re [1]. The similarity in the flow patterns of the first mode for Re = 1735 and
1980 emphasizes the earlier proposition of possible regime between Re = 1200 and 2000 (shown
in Fig. 11). Bigger structures for mode 1 hint at the larger energy content of the first mode (Fig. 18).
The size of the structures decreases at higher Re. For Re = 1735 and 1980 mode 2 has two big
lobes (of a denser velocity region) in the wake. We notice that these lobes are complementary to the
pattern in mode 1 for these two Reynolds numbers. At all higher Re, these structures are smaller for
mode 2. The sizes become smaller for higher modes at all Reynolds numbers. Higher modes have
an irregular distribution of u′ with noticeable action in the near wake. Similar breaking of planar
symmetry for higher modes at Re = 3000 for flow around a disk was reported by Yang et al. [43]
using three-dimensional POD.

Reconstruction of u′ for each mode is done using the orthogonal basis function and POD time
coefficients as mentioned in Eq. (3). Figure 19 shows the time coefficient phase plots to ascertain the
role of each time coefficient over a cycle in the reconstruction of the mode. This helps in figuring out
how in-phase or out-of-phase time coefficients contribute to the growth or distortion of structures
generated using the summation of modes. The normalized time coefficients c1/λ

1/2
1 vs c2/λ

1/2
2
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FIG. 18. Four different modes of u′ at various Re.

and c3/λ
1/2
3 vs c4/λ

1/2
4 have been plotted for modes 1, 2, 3, and 4. The coefficients c1/λ

1/2
1 and

c2/λ
1/2
2 are highly uncorrelated for Re = 533 [Fig. 19(a)]. The coefficients are relatively correlated

for modes 3 and 4. This is evident from the contours of the streamwise fluctuating component as
well (Fig. 18). Mode 1 has shearing regions, whereas mode 2 is only directed in the streamwise
direction. Modes 3 and 4 have regions whose structures overlap and would help in the growth of
reconstructed structures. Table III gives the percentage energy distribution in each mode.

The POD coefficients c1/λ
1/2
1 and c2/λ

1/2
2 are out of phase but are correlated for Re = 1735

[Fig. 19(b)] within a radius of 40. The radii are drawn as limit circles enclosing the scatter plot
of POD coefficients. Yang et al. [43] used limit circles for scatter plots of POD coefficients to
categorize vortex shedding modes. The coefficients c3/λ

1/2
3 and c4/λ

1/2
4 are spread until a radius

of 60. The zone between r = 40 and 60 shows a higher influence of modes 3 and 4, which are
well correlated in the inner radius of 40 too. Although the percentage of energy content in modes
3 and 4 is lower, we note the directionally similar regions in modes 2, 3, and 4 that help in their
constructive superposition to form a coherent structure. This is also indicated by the uniform scatter
of coefficients in the limit circles.
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FIG. 19. Scatter plot for POD coefficients for modes 1, 2, 3, and 4 at various Re: (a) Re = 533, (b) Re =
1735, (c) Re = 1980, (d) Re = 9080, and (e) Re = 46 800.

Figure 19(c) shows an elliptic distribution of the coefficients. It is observed that the amplitudes of
c1/λ

1/2
1 and c3/λ

1/2
3 are larger as compared to the other two coefficients. The structures of the modes

and phases of the POD time coefficients indicate the formation of smaller coherent structures, when
the modes will be superimposed for reconstruction of the field. The energy content for the first two
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TABLE III. Percentage of energy content in various modes for Fig. 18.

Energy (%)

Reynolds number Mode 1 Mode 2 Mode 3 Mode 4

533 22.64 12.79 6.72 4.65
1735 10.93 7.74 4.36 3.75
1980 10.48 7.04 4.53 3.22
9080 15.75 3.96 3.38 2.70
46800 9.32 3.95 2.92 2.77

modes is double the energy content of modes 3 and 4. The amplitudes of c2/λ
1/2
2 and c3/λ

1/2
3 are

larger as compared to the other coefficients at Re = 9080 [Fig. 19(d)]. The distribution of the two
cases c1/λ

1/2
1 vs c2/λ

1/2
2 and c3/λ

1/2
3 vs c4/λ

1/2
4 is elliptic with major axes at an angle of 90◦. There

are regions of no overlap for the scatter plots due to the mode 1–mode 2 and mode 3–mode 4 time
coefficients. The behavior of coefficients explains the formation of smaller coherent structures on
the summation of these modes. This can also be appreciated by adding the first four modes of Fig. 18
at Re = 9080.

Table III shows that modes 2 and 3 have similar energy content. At higher Reynolds numbers the
limit circle for the scatter of coefficients asymptotes to the one shown for Re = 46 800 in Fig. 19(e).
The time coefficients for mode 2 have higher amplitude, so all c1/λ

1/2
1 vs c2/λ

1/2
2 plots have elliptic

patterns. In addition, c3/λ
1/2
3 and c4/λ

1/2
4 are well correlated with a limit circle of radius r between

60 and 80.
In summary, proper orthogonal decomposition has improved our understanding of the energy

content in the flow and helps establish the evolution of coherent structures. Using POD, an idea of
the energy content in various modes was established along with the variation of maximum energy,
i.e., energy content in mode 1 with Reynolds number. In addition, POD helped identify how the
wake changes with mode and how its structure at a particular mode changes with Re.

F. Coefficient of drag Cd

A modified wake survey method was used to calculate the coefficient of drag for the experimental
data as

Cd = 2

D

∫
l

{
Umean

U∞

(
Umean

U∞
− 1

)
+ ε

(
Umean

U∞
− 1

)
+

(
Urms

U∞

)2

−
(

Vrms

U∞

)2

+ 1

2

(
1 − U 2

0

U 2∞

)}
dl,

(8)
where D is the cube dimension for a cube and

√
2 times the cube dimension for an oriented cube, U∞

and U0 are upstream and downstream freestream velocities, respectively, ε = 0.5(1 − U0
U∞

), l is the
perpendicular length across the wake, and dl is the differential length. An explanation for the choice
of this method for estimating drag coefficients is provided in Ref. [1]. The wake survey method
suffers a limitation when used with highly unsteady flows [44]. Bohl and Koochesfahani [45]
suggested a modified wake survey method to account for the fluctuations, pressure deficit, and
streamwise velocity changes in the wake. The estimate of Cd presented here can be used to
benchmark and validate computational fluid dynamics results. Figure 20 shows the variation of
Cd with Re for the configuration investigated here.

The wake shape and recirculation length affect the forces around the bluff body. Unlike the steady
regime where Cd and the recirculation length are inversely related, Cd and recirculation lengths are
independent at higher Reynolds number. The streamlining effect of the near wake recirculation
region observed at lower Reynolds number is replaced by the inertial effect and the recirculation
region is smaller at higher Re. The contribution of viscous force is lesser at higher Re and the
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FIG. 20. Coefficient of drag for a cube and an oriented cube at various Reynolds numbers compared with
correlations for a sphere and a cube.

projected obstacle area dominates the force dynamics around the body, i.e., form drag contributes
more in the net drag around the body.

A cube can be considered as a special case of a square cylinder with an aspect ratio equal to
1. Dutta et al. [9] (working at Re = 410) showed that for a lower aspect ratio (equal to 16) of the
square cylinder Cd at an angle of incidence 45◦ is more than a 0◦ angle of incidence. The present
case shows that an oriented cube, which is a cube placed at an angle of incidence of 45◦, has Cd

greater than that of a normal cube at all Re. Thus one can conjecture that the Cd for all lower aspect
ratios is more for a 45◦ oriented square cylinder.

The estimated coefficients have been plotted along with Eqs. (9) [46] and (10) [47]. The drag
coefficient for flow around a cube for Re < 106 is given by

Cd = 8

Re

1√
�‖

+ 16

Re

1√
�

+ 3√
Re

1

�3/4
+ 0.42100.4(−log�)0.2 1

�⊥
, (9)

where �, �‖, and �⊥are sphericity, cross-sectional sphericity, and longitudinal sphericity, respec-
tively. The correlation of the drag coefficient for flow around a sphere in 10 < Re < 106 is

Cd =
(

1

(φ1 + φ2)−1 + (φ−1
3 )

+ φ4

)1/10

, (10a)

with

φ1 = (24 Re−1)10 + (21 Re−0.67)10 + (4 Re−0.33)10 + (0.4)10, (10b)

φ2 = 1

(0.148 Re0.11)−10 + (0.5)−10
, (10c)

φ3 = (1.57 × 108Re−1.625)10, (10d)

φ4 = 1

(6 × 10−17Re2.63)−10 + (0.2)−10
. (10e)

Estimated values of drag coefficients for flow around a cube match closely with the correlation
proposed by Hölzer and Sommerfeld [46]. The Cd for an oriented cube is larger than Cd for a cube
which is larger than the Cd for the sphere obtained using correlation given by Almedeij [47]. This
shows that the bluffness of these three bodies decreases in the following order: oriented cube >

cube > sphere for Re ∈ (500, 50 000).
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IV. CONCLUSION

Flow around an oriented cube was investigated using two-dimensional particle image velocime-
try measurements performed at 1 Hz. The present experimental investigation provided a detailed
understanding of the wake of an oriented cube and compared it with a cube placed normal to the
flow. The Re ∈ (500, 50 000) investigated in the present work were in the unsteady regime.

The oriented cube shed smaller eddies in the wake. The number of recirculating zones in the
wake increased with Re and the wake was distributed with many smaller recirculating zones for
Re > 2660. The time-averaged streamwise velocity for flow around an oriented cube was flatter at
Re = 533 and had multiple peaks for Re � 784. Velocity vectors for flow around an oriented cube
showed two lower peaks (trough) for velocities at all axial locations, while there was recovery of the
velocity deficit. The recovery of velocity deficit was faster for an oriented cube due to the presence of
many small eddies in the wake, which help achieve better diffusion and mixing. Centerline velocities
showed that the gain in velocity is more for flow around an oriented cube, i.e., 78% as compared to
66% for flow around a cube at x/D = 3.2.

The transitions in the slopes for maximum velocity deficit at various Re were noted around
Re = 800, 1200, 2000, 18 600, and 28 000.

Reynolds shear stress had negative and positive peaks showing the transverse direction of
momentum flux with wider wake. Normalized Urms profiles have double peaks at Re = 533 and
multiple peaks at higher Re. Asymmetry was noted in the Vrms profiles at different axial locations.
A flatter profile was noted in some cases (Re = 533 and 784) at smaller axial locations followed by
double or multiple peaks at larger axial locations. In addition, Urms ∼ Vrms, which is evidence of a
homogenizing fluctuating field with a better mixing ability.

Proper orthogonal decomposition analysis of the fluctuating velocity field was used to extract
different modes and examine the coherent structures associated with each mode. Energy fraction
associated with each mode at a particular Re helped us understand the distribution of energy in
the modes. The phase portraits of consecutive time coefficients along with structures of streamwise
components for the first four modes helped elucidate the nature and evolution of coherent structures
at various Re.

This work has presented experimental results for flow around an oriented cube and has reported
a comparison with flow around a normal cube. Further work can be done to capture images at higher
frequency for better time resolution. Three-dimensional measurements of flow around an oriented
cube is an open area for detailed experimental investigation using three-dimensional PIV and/or
simultaneous measurements in orthogonal planes.
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