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Representing rectangular jet dynamics through azimuthal Fourier modes
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Rectangular propulsion nozzles offer thrust-vectoring and air-frame-integration advan-
tages over their more commonly studied circular counterparts. However, they display
many distinguishing features which violate assumptions, such as azimuthal homogeneity,
typically used in prediction tools for circular jets. In the present paper, we examine the
utility of an azimuthal Fourier decomposition for rectangular Mach 1.3 jets of aspect
ratio (AR) 1, 4, and 8 using large-eddy simulations, with a circular jet of the same
equivalent diameter for reference. The simulations manifest key features of rectangular
jets, including higher spreading rates and shorter potential cores with increasing AR, axis
switching (AR=4), and azimuthal variation in peak acoustic intensity (AR=8). We show
that, after projection on a cylindrical frame, a sine-cosine ansatz for the azimuthal Fourier
series affords a more convenient representation of nonaxisymmetric flow features than
the commonly used complex exponential ansatz. Fluctuation magnitudes of the higher
azimuthal modes show rapid reduction in amplitude, similar to those observed in circular
jets, especially if an acoustic fluctuation field based on momentum potential theory is
chosen instead of pressure fluctuations. The leading modes differ, however, from those
of a circular jet in two important aspects, namely, the mechanisms represented by the
sine and cosine coefficients of the first azimuthal mode and the rate of streamwise decay
of all modes with increasing AR. These differences are traced to the near- and far-field
rectangular jet asymmetry by examining azimuthal inhomogeneity, the implications of
which are assessed with a generalized expression for acoustic intensity based on energies
of leading modes. The significant simplicity of circular plumes is recovered as a special
case of the analysis. Invocation of the twofold mirror symmetry property of rectangular
jets eases the prediction procedure so that only two extra terms, representing mechanisms
unique to rectangular jets, specifically preferential flapping in the minor axis direction
and coupling of axisymmetric and second azimuthal modes, are sufficient to recover the
advantages of azimuthal decomposition.
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I. INTRODUCTION

Increasing engine power requirements for commercial and military aircraft have continued
to raise concern about acoustic radiation from jets. This has motivated new research on noise
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production and propagation mechanisms in both perfectly and imperfectly expanded conditions.
Several review articles provide overview snapshots of the state-of-the-art research [1–5]. Major
recent advances have leveraged the better understanding to derive low-rank models of turbulent
fluctuations [6–9] and relatively simple tools for noise predictions [2,10–13]. These efforts are
interrelated since the growth and decay of large scale turbulent structures, which are the dominant
dynamic feature of jet turbulence, have also been linked to the peak turbulent mixing noise emitted
in the downstream shallow angle direction [1].

Most studies in this vein have addressed jets issuing from circular nozzles, which display inherent
symmetries that can be exploited for model simplification. A cylindrical coordinate system is a
natural choice for these jets and it simplifies the application of the azimuthal periodicity property
of the statistics through an azimuthal Fourier series decomposition, offering several advantages. For
example, Michalke and Fuchs [14] showed that the fluctuating pressure field of a turbulent circular
jet could be represented to reasonable accuracy with only the first three azimuthal modes, since
they contain most of the fluctuation energy, allowing for significant data reduction by a truncation
of the Fourier series beyond the leading terms. Moreover, Schmidt et al. [7] used spectral proper
orthogonal decomposition (SPOD) to show that the axisymmetric and first azimuthal mode exhibit
pronounced low-rank behavior for a range of acoustically significant frequencies. In addition to
these advantages, an azimuthal homogeneity arising out of the polar symmetry of circular jets
further simplifies their modeling [6,15].

Besides data driven methods like Fourier analysis or proper orthogonal decomposition (POD),
the linear Navier-Stokes operator can also be used to model the dominant dynamic features of the
jet [16]. Gudmundsson and Colonius [8] used the linear framework of the parabolized stability
equations (PSE) to model coherent fluctuations in the jet and demonstrated close agreement with
the near-field low frequency turbulent statistics for the first three azimuthal modes. The assumption
of mean flow homogeneity in the azimuthal direction, used in several earlier linear analyses, can
also be relaxed as shown by Lajús et al. [17] who used Floquet theory to model the axisymmetric
instability waves of corrugated jets. While such studies lay the groundwork for a linear analysis
of the azimuthal modes of more complex rectangular jet flow fields, the turbulence statistics of the
azimuthal Fourier modes in rectangular jets have not yet been analyzed.

In addition to modeling turbulent fluctuations in the jet, the azimuthal Fourier basis is also
particularly suited to the problem of jet aeroacoustics because higher azimuthal modes have lower
acoustic efficiency [18], and thus have a progressively smaller impact on the peak acoustic radiation
in the downstream shallow angle direction. This is also corroborated by experimental results, where
the peak jet noise field is found to be predominantly axisymmetric. Cavalieri et al. [19] further
showed that higher azimuthal Fourier modes (m = 1 and 2) of circular jets contribute progressively
less with increasing Mach number, and have a relatively minor influence in transonic and supersonic
jets.

These favorable properties of azimuthal Fourier modes, coupled with an improved understanding
of jet turbulence, have led to the development of a variety of models for jet acoustic radiation. These
can be broadly categorized into dynamic and kinematic models. The former educe the far-field
acoustic radiation based solely on the dominant dynamical features of the jet. For instance, Sinha
et al. [20] were able to capture the two leading azimuthal modes of the far-field acoustics of a circular
supersonic jet with appreciable accuracy using both a PSE framework established by Gudmundsson
and Colonius [8], as well as the leading SPOD modes of the jet. Kinematic models, on the other
hand, employ carefully chosen statistics within the core of the jet, with some empiricism, to model
the acoustic source field and have received significant attention in recent years [2,10,13,21]. Some of
these kinematic models have shown that the statistics of the fully turbulent flow can yield erroneous
far-field acoustics [22]. Given the acoustic significance of the axisymmetric azimuthal mode, better
results are obtained when quantities such as the amplitude envelope [11], two point coherence length
[22], and cross spectral density are evaluated for the axisymmetric azimuthal mode alone instead of
the full turbulent data. Thus, azimuthal mode decomposition of fluctuation data is a key component
of most acoustic models for circular jets.
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While much of the literature cited above has focused on circular jets, interest in rectangular
jets has grown in recent years. Among their advantages are higher rates of entrainment [23,24],
thrust vectoring potential, and easier airframe integration. The near-field dynamics of rectangular
jets, however, are more complex than those of circular jets, and can include axis switching [25,26],
preferential flapping in the minor axis direction [27,28], warping of azimuthal vortex rings [29,30],
and different forms of streamwise vorticity generation [26]. These features can manifest their
signature in the far-field acoustics as well. In addition to the variables that affect the dynamics
and acoustics of circular jets such as operating conditions, rectangular jets are characterized by their
aspect ratio (AR) [31] and upstream duct geometry [26].

Bridges [31] performed a detailed comparison of the acoustics of circular and rectangular
jets. Key findings were that the far-field acoustics of low AR rectangular jets were essentially
axisymmetric and closely matched those of a similarly sized circular jet. However, at high AR such
as AR = 8, several distinct features emerged relative to circular jets. While qualitative features such
as superdirectivity were retained, the minor axis direction exhibited 2-dB excess far-field acoustic
radiation compared to the major axis direction, marking a loss in the acoustic axisymmetry.

The rectangular jet aeroacoustic field is also affected by imperfect expansion in a manner distinct
from circular jets. For example, Veltin and McLaughlin [32] found the minor axis plane of an AR =
1.75 jet to be 3 dB louder than the major axis plane in the sideline direction due to the shock
component of the noise. This disparity, however, did not significantly affect the peak noise in the
downstream shallow angle direction which remained axisymmetric for this AR. Heeb et al. [33]
also measured noise in the downstream shallow angle direction to be axisymmetric for an AR=2
shock-containing jet. Thus, although there are a variety of flow field differences, the peak noise from
low AR jets in the downstream shallow angle direction is similar to that of circular jets for a range
of operating conditions [34].

Despite qualitative similarities such as superdirectivity and acoustic axisymmetry (for low AR),
many of the sophisticated analyses tools developed for the circular jet acoustics have not been
extended to rectangular jets. One of the difficulties encountered is that, unlike the azimuthal
Fourier modes for circular jets, there is no obvious set of spatial functions in which to expand
the instantaneous statistics of rectangular jets. Kinzie and McLaughlin [35] address the related
problem for elliptical jets by considering Mathieu functions, which have an elliptical variation in
the azimuthal direction, in line with the shape of the nozzle exit. The sharp corners of rectangular
jets pose an even greater difficulty in the isolation of such functions. Additionally, the form of the
plume can change quite drastically downstream of the nozzle exit due to axis switching, rendering
spatial functions derived for a specific nozzle exit shape less useful in these regions. Even if such
functions are found, they may not possess the many simplifying characteristics of Fourier modes,
such as mutual orthogonality and decreasing acoustic efficiency.

Techniques to deploy an azimuthal Fourier decomposition for rectangular jets have the potential
to vastly simplify their analyses and facilitate adaptation of key modeling procedures from those
evolved for circular jets. The utility of any azimuthal mode decomposition for rectangular jets can be
broken down into a test for two features. First, a rapid convergence of the instantaneous statistics of
the jet in the azimuthal Fourier space is desired, since this fosters a simplified error bound truncation
of the Fourier series beyond the dominant modes. Unlike for circular jets, this property is not
guaranteed for rectangular jets since a projection on a cylindrical coordinate system, necessary for
the azimuthal Fourier decomposition, may not be well suited due to a lack of polar symmetry. This
is especially true for the region near the nozzle exit where such jets are predominantly rectangular
in cross section; sharp corners immediately downstream of the nozzle exit may require infinitely
many Fourier modes for a complete representation. Nonetheless, instabilities arising at the corners
of rectangular jets in the near nozzle region smooth out mean flow gradients [36], which may
help ameliorate this difficulty. Recently, Chakrabarti et al. [37] demonstrated promising preliminary
results in reconstructing the instantaneous statistics of an AR = 4 rectangular jet using the leading
azimuthal modes.
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The second, related, desired feature is an ability to reconstruct the overall sound pressure levels
(OASPLs) using the leading Fourier modes. In circular jets, azimuthal homogeneity of the statistics
enables a reconstruction of the root mean square (RMS) of fluctuations as the sum of squares of
the RMS of individual modes; this greatly reduces the complexity of modeling [15,19]. The lack
of azimuthal statistical homogeneity in rectangular jets introduces additional complication, since
it implies that constructive interference between all pairs of azimuthal modes must be accounted
for while reconstructing the RMS. However, some simplification is afforded by leveraging mirror
symmetry of rectangular jets along the minor and major axis planes. Verifying the applicability of
such simplifying techniques for rectangular jets is thus nontrivial.

The present paper thus examines ways of using azimuthal decomposition approaches to facilitate
the description of rectangular jet evolution for a range of aspect ratios. Specifically, we examine the
statistics of the leading azimuthal modes of rectangular jets and assess their features relative to those
of a circular jet. To that end, large-eddy simulations (LESs) are performed for rectangular jets of AR
1, 4, and 8 along with a circular jet of equivalent diameter. The details of the numerical algorithm
and flow conditions used are described in Sec. II. Key differences between the rectangular and
circular jets, including critical mean flow parameters and the far-field acoustics, are highlighted in
Sec. III. Although the pressure field is typically employed for such procedures, we rely primarily on
an acoustic variable derived from a physics-based fluid thermodynamic (FT) component (vortical,
acoustic, and entropic) decomposition of the turbulent fluctuation field [38]. The FT decomposition
provides greater insights into the acoustic dynamics and improves the convergence of modal
decomposition techniques [39]; a summary of this decomposition and dominant features of the
individual FT components of the rectangular jets are presented in Sec. IV. The effectiveness of
azimuthal decomposition is investigated by mapping fluctuation fields onto a cylindrical mesh. The
consequences of the departure from axisymmetry are then evaluated in Sec. V by examining the
dynamics of higher azimuthal Fourier modes of the acoustic fluctuations. The implications of the
azimuthal inhomogeneity of rectangular jets as well as some specific dynamic features associated
with their near-field asymmetry are discussed in Sec. VI. Using these considerations, a reduced
order model for rectangular jets is developed in Sec. VII using only three leading azimuthal modes.
Finally, a summary of the paper is presented in Sec. VIII.

II. METHODOLOGY

The nondimensionalized compressible Navier-Stokes equations cast in the strong conservation
form are solved in a curvilinear coordinate (ξ, η, ζ ) frame with J being the Jacobian of the

curvilinear transformation given by (J = ∂ (ξ,η,ζ ,τ )
∂ (x,y,z,t ) ) [40]:

∂
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where −→q refers to a vector composed of the conserved variables. Thus, −→q = [ρ, ρu, ρv, ρw, ρE ]T .
The vectors F̂ , Ĝ, and Ĥ correspond to the inviscid fluxes and the vectors F̂ν, Ĝν, and Ĥν constitute
the viscous fluxes. For example,
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The contravariant velocity component is given by Û = ξxu + ξyv + ξzw and the specific energy
density is

E = T

γ (γ − 1)M2
j

+ 1

2
(u2 + v2 + w2). (3)

The deviatoric stress (σi j) and heat flux vector (
i) are given by
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(
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− 2
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)
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j

(
μ
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)
∂ξ j

∂xi

∂T

∂ξ j
. (5)

Stokes’s hypothesis is assumed for the bulk viscosity coefficient, i.e., λ = −2/3μ. Further details
of the derivations may be found in Vinokur [41]. Flow velocities and density are normalized by
the jet exit velocity (uj) and density (ρ j), respectively, while the pressure is nondimensionalized by
ρ jU 2

j ; the perfect gas relationship then reads (p = ρT/γ M2
j ), where Mj refers to the jet exit Mach

number. A constant Prandtl number of 0.72 is assumed along with a constant ratio for the specific
heats (γ = 1.4). Sutherland’s law is used to model the temperature dependence of viscosity.

To ensure consistency with the literature for circular jets, and an even basis of comparison, the
length scale is chosen as the diameter of a circular nozzle with an equal exit area as the rectangular
nozzles being studied (equivalent diameter De). The nondimensional length of the major axis (l) as
a function of the AR is given by

l

De
=

√
π (AR)

4
. (6)

For reference, Fig. 1(a) shows the nozzle exit cross sections of the jets being studied. In order
to preserve a constant exit area, the minor axis length of the nozzle progressively decreases with
increasing AR, the impact of which is assessed with the results.

The flow parameters are chosen to be representative of conditions examined in the literature.
For concreteness, perfectly expanded conditions are chosen at a design Mach number of 1.3 and
a Reynolds number 106, patterned after extensive experimental [42–44] and numerical studies
[45–48]. Furthermore, the goal of evaluating distinctions between the different ARs and the cir-
cular nozzles necessitates similar nozzle exit conditions for all cases, since these can affect the
downstream growth of the plume [49–51]. For this reason, a uniform laminar nozzle exit velocity
profile is chosen for all cases, similar to those of Gaitonde [45] and Gaitonde and Samimy [46]. This
approach has previously provided good agreement with the circular jet data of Samimy et al. [42].
Additionally, lower inflow turbulence levels enhance phenomena specific to rectangular jets, such
as axis switching [23,49], and thus provide a suitable testbed for the azimuthal Fourier analysis. The
far-field and downstream boundaries are at 10De and 40De from the nozzle exit, respectively. The
mesh is gradually stretched out starting at 5De from the individual shear layers in the cross stream
direction and 35De from the nozzle exit in the streamwise direction to provide a suitable sponge
condition. A method of characteristics boundary condition is used on the outflow boundary [52].

The Roe scheme is used for the inviscid fluxes [53] with a third-order reconstruction using
the monotonic upstream-centered scheme for conservation laws (MUSCL) approach [54]. Viscous
terms are discretized with a second-order central differencing technique. Following Pulliam and
Chaussee [55], the temporal integration is performed using an approximately factored second-order
Beam Warming scheme with two subiterations. The rectangular jets are simulated using stretched
Cartesian meshes, shown for example for the AR = 4 jet in Figs. 1(b)–1(d). The circular reference
jet mesh has been presented in the literature [46]. The streamwise (�x = 0.023De at the nozzle
exit) and cross-streamwise mesh spacing (�y = 0.005De along the lipline) are chosen based on
numerous prior studies using the same solution procedure at similar Mach (1.3) and Reynolds (106)
numbers. The meshes employed for the rectangular jets comprise 15 × 106 points while that for
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FIG. 1. Characteristics of inflow and spatial discretization.

the circular jet uses 18 × 106. Note that the internal structure of the nozzle, such as considered in
Chakrabarti et al. [56], is not simulated since differences between plume development cannot then
be ascribed solely to the nozzle exit profiles of interest. Prior mesh-converged results using similar
grid sizes have successfully reproduced experimental measurements of mean centerline velocity
fields, near-acoustic field, turbulent kinetic energy, and shallow-angle and far-field noise for both
circular [45,48] and rectangular jets [56].

III. OVERALL FLOW FIELD FEATURES

Figure 2 shows instantaneous snapshots of each simulated flow field using isosurfaces of the
Q criterion (Q = 1) colored by the streamwise velocity component. The wide spectrum of scales
resolved by the LES can be clearly discerned. The figures also show increased jet spreading rate
with AR, similar to the observations of Grinstein [23] and Gutmark and Grinstein [24], who linked
this behavior to higher entrainment than in circular jets; this also results in large scale structures
spreading further from the axis in higher AR jets.

The mean flow field facilitates a more systematic assessment of the spatial development with
implications to the unsteady dynamics. For instance, in circular jets, the potential core length is
correlated with the length scale across which coherent structures grow and decay prior to turbulent
breakdown and is significant for jet aeroacoustic modeling [11]. Figure 3 shows contours of mean
streamwise velocity at several axial stations for each jet. The square jet (AR = 1) cross section
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FIG. 2. Isosurfaces of the Q criterion (Q = 1) colored by streamwise velocity.

undergoes a 45◦ rotation downstream of the nozzle exit, so that the diagonals are reoriented along
the initially flat sides of the jet; this is most clearly evident at x = 5De. Similar phenomena observed
in triangular jets have been associated with corners in nozzle shapes [24]. For square jets, the effect
is more pronounced for lower inflow turbulence levels [57]. By x = 10De, however, the square
jet (AR = 1) displays an axisymmetric cross section and is not very different from the circular
jet at the same axial station. The jets from the higher AR nozzles, however, develop differently,
since they combine the effects of the corners in the nozzle geometry with the influence of unequal
characteristic lengths as in elliptic jets [29]. Crucially, these jets do not evolve to an axisymmetric
form. Axis switching is evident in the AR = 4 and 8 jets, resulting in a predominantly elliptical
mean flow cross section that is wider along the minor axis plane by x/De = 10 and 12, respectively.
Axis switching of high AR rectangular and elliptic jets is also more pronounced for low nozzle exit
turbulence levels as noted in the previous section.

The collapse of the potential core is examined using the mean streamwise velocity. Values along
the jet centerline are shown in Fig. 4(a). along with the experimental data of Samimy et al. [42]
for the circular jet; the undulations in mean streamwise velocity near the nozzle exit are caused by

FIG. 3. Contours of mean streamwise velocity at several axial stations showing the spatial development of
the jets.
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FIG. 4. Effect of the AR on the length of the potential core shown using streamwise mean velocity.

a weak shock train in the core of the jet and result from a slight mismatch between the reservoir
and ambient conditions [43]. Similar to previously reported computational studies where the inflow
conditions are not known [46,47,58], the experimental core length is employed as a reference to
highlight the decay rate downstream of the potential core collapse. The potential core length of the
rectangular jets is smaller than that of the circular jet, and decreases with AR. This is most evident
for the AR = 8 jet the potential core length of which (based on 90% of the jet exit velocity) is
about 3De shorter than the circular jet. The reason is evident from the cross-sectional plane data of
Fig. 4: increasing AR while maintaining the nozzle exit area results in a shortening of the minor axis
length [Fig. 1(a)] and thus the distance between the shear layers on the longer nozzle sides. These
growing shear layers converge at relatively shorter streamwise distances from the nozzle exit. This
effect was investigated by Chakrabarti et al. [56] in the context of an AR = 2 rectangular jet and by
Chakrabarti et al. [37] for an AR = 4 jet. These results are consistent with those of Krothapalli et al.
[59], who modeled the decay of the mean centerline streamwise velocity of a low speed, high AR
jet, with power laws for three distinct regions. For such jets, shear layers on the minor axis plane
converge to the centerline within a shorter streamwise distance compared to those on the major axis
plane, resulting in a streamwise velocity decay that follows the same power law as a planar jet. The
axisymmetric power law for streamwise velocity decay was recovered further downstream. While
the present, much higher velocity, rectangular jets do not exhibit these distinct decay regions, the
convergence effect of the shear layers on the minor axis plane towards the centerline is similar and
manifests as a decrease in the potential core length.

For subsequent reference, the OASPLs are examined to delineate the effect of the AR on acoustic
intensity and directivity. The Ffowcs-Williams and Hawkings (FWH) analogy [60] is used in the
frequency domain as in Mendez et al. [61]. Data over 100 characteristic times (defined based on
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FIG. 5. Variation of far-field OASPL with polar angle for jets of various AR.

the jet exit velocity and nozzle equivalent diameter) were interpolated on a cylindrical surface three
equivalent diameters away from the axis of each jet. The FWH surface extends to the downstream
end of the domain, where eddies are dissipated out using sponge zones, precluding the need for
end caps discussed by Mendez et al. [61]. The far-field acoustic spectra (sound pressure levels) are
obtained at several geometric points around the jet and the OASPL is then obtained by integrating
across the frequency band of interest (StDeε[0.1, 1]). A validation exercise for this procedure may
be found in Chakrabarti et al. [37].

The azimuthal and polar angles with respect to the nozzle exit are shown schematically in
Fig. 5(a). Figures 5(b)–5(d) display the variation of the OASPL with polar angle (θ ) at various
azimuthal angles (φ) for each jet simulated. The square jet [Fig. 5(b)] is acoustically similar to the
circular jet, as evidenced by its axisymmetric noise intensity and close correspondence with the peak
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radiation intensity and direction of the latter. With increasing AR, however, two key trends become
apparent. First, the axisymmetry of the far-field acoustic radiation is distorted; for the AR = 8 jet, a
2-dB variation in noise intensity is observed around the azimuth [Fig. 5(d)]. The minor axis plane of
this jet is louder than the major axis plane, matching the observations of several previous studies on
rectangular jets [31,62]. Second, with increasing AR, the peak acoustic radiation decreases slightly
and its direction moves progressively to lower polar angles (towards the sideline direction), similar
to the results of Bridges [31].

IV. FLUCTUATION FIELDS EXAMINED

The most common variable used for azimuthal mode decomposition of circular jets is typically
the pressure fluctuation, p′ [7,11,14,20,63]. In regions far from the turbulent fluctuations, the
relationship of p′ to the acoustics is direct. In the near-acoustic field, however, p′ is characterized
by both acoustic and hydrodynamic content [64,65]. A direct observable consequence is the scale
disparity between the pressure fluctuations in the near versus far fields of jets [10]. This property
of p′ can affect conclusions on the convergence of azimuthal modes, and motivates approaches
to isolate an acoustic component for analysis. p′ splittings have been derived through several
data driven techniques [65–67]. An alternative definition of an acoustic field, that avoids user-
defined criteria, has recently been obtained through the physics-based decomposition provided
by momentum potential theory [38]. The approach, summarized below, splits the turbulent field
into FT components, i.e., hydrodynamic, acoustic, and thermal fluctuations. Application to LES
of circular jet flows [48] reveals several attractive properties. The acoustic component displays
a jittering, spatiotemporally modulated wave-packet form with radial decay rate, far-field power
spectral density, and phase speeds that are consistent with those expected from the literature. More
pertinent to this paper, the acoustic component also yields better convergence of parameters for
kinematic far-field noise models than p′ [39]. In order to extract the FT components, a Helmholtz
decomposition of the “momentum-density” field (ρu) is used to define (vector) acoustic (irrota-
tional and isentropic fluctuations, −∇ψ ′

A), thermal (irrotational and isobaric fluctuations, −∇ψ ′
T ),

and vortical/hydrodynamic solenoidal fluctuation (B′) components. The vector fields satisfy the
following governing equations [38]:

∇2ψ ′
A = − 1

c2

∂ p′

∂t
, (7)

∇2ψ ′ = −∂ρ ′

∂t
, (8)

B′ = ρu − ρu − ∇ψ ′, (9)

ψ ′
T = ψ ′ − ψ ′

A. (10)

The spatiotemporally resolved fluctuation fields from the LES are used as the source fields of the
Poisson equations (7) and (8) to obtain the acoustic potential (ψ ′

A) as well as the total irrotational
potential (ψ ′). The latter, along with the LES data for the momentum-density field (ρu), is then used
to evaluate the hydrodynamic fluctuations per Eq. (9). Finally, the thermal fluctuation potential (ψ ′

T )
is obtained using Eq. (10). Algorithmic details and additional properties of the decomposition may
be found in [48,68].

Figure 6 shows instantaneous isosurfaces of the the acoustic, hydrodynamic, and pressure
fluctuations for each case. Here and below, the streamwise components of acoustic and hydrody-
namic fluctuations ( ∂ψ ′

A
∂x and B′

x) are plotted; these are the largest components, and facilitate better

contrast because of their positive and negative values. For simplicity, ∂ψ ′
A

∂x will be referred to as the
acoustic fluctuations (or component). The magnitudes of the isolevels are chosen to elicit the main
components of the jet; these confirm that even in the rectangular cross-section cases, the hydrody-
namic fluctuation magnitude is much larger than the acoustic component. The circular jet results
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FIG. 6. Isosurfaces of three-dimensional snapshots of the pressure fluctuations (first row) from the LES
compared with those of the acoustic (second row) and hydrodynamic fluctuations (third row) extracted from
the simulated flow fields.

are similar to those described in the literature [39,48]. The rectangular jets show corresponding
features: hydrodynamic fluctuations are dominated by axially extended structures, reflective of a
broad spatial wave-number range and chaotic underlying jet turbulence, while acoustic fluctuations
exhibit a more organized wave-packet structure with greater coherence and a compact radial support.
Indeed, the acoustic fluctuations for all cases resemble a spatially modulated wave packet with an
envelope marking the growth, saturation, and decay of the waves downstream of the nozzle exit. The
differences in spreading characteristics with change in AR are captured primarily by hydrodynamic
fluctuations.

The pressure field shows elements of both hydrodynamic and acoustic components. The initial
region has the nature of a spatially growing wave packet, similar to the acoustic fluctuating field.
However, further downstream, the disorganized structure more closely resembles the hydrodynamic
component. A key distinction between the acoustic fluctuations ( ∂ψ ′

A
∂x ) and p′ is thus that the former

diminish rapidly beyond the potential core, whereas the latter continue to grow. This has significant
implications in statistical convergence of the azimuthal decomposition properties of interest, as
discussed further below. In the results below, ∂ψ ′

A
∂x will be used most frequently, though select results

with p′ will also be put forth for reference purposes.

V. AZIMUTHAL MODES IN RECTANGULAR JETS

The advantage of rapid convergence of fluctuation statistics for circular jets, which allows mod-
eling with only a few modes, motivates an examination of these statistics for near-field rectangular
jet behavior.

A. Decomposition ansatz

The Fourier decomposition is introduced in the azimuthal direction (φ) in a different manner
than for circular jets. Specifically, rather than the more commonly used complex exponential form
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FIG. 7. Polar plots depicting spatial distributions of the two leading azimuthally varying Fourier modes,
with nozzle outline for orientation.

[14,18,19],

q(x, r, φ, t ) =
∞∑

m=−∞
q̂m(x, r, t )eimφ, (11)

the following closely related ansatz provides a more convenient representation and interpretation of
nonaxisymmetric mechanisms:

q(x, r, φ, t ) = q0
a(x, r, t ) +

∞∑
m=1

qm
a (x, r, t )cos(mφ) + qm

b (x, r, t )sin(mφ) (12)

where qm
a (x, r, t ) and qm

b (x, r, t ) refer to the two-dimensional (2D) spatiotemporal cosine and sine
Fourier coefficients, respectively; m refers to the azimuthal mode number; and

q0
a = 1

2π

∫ π

−π

q(x, r, φ, t )dφ, qm
a = 1

π

∫ π

−π

q(x, r, φ, t ) cos(mφ)dφ,

qm
b = 1

π

∫ π

−π

q(x, r, φ, t ) sin(mφ)dφ. (13)

The relationship between the coefficients of Eqs. (11) and (12) is

q̂m = qm
a + iqm

b

2
, q̂m = q̂∗

−m. (14)

Thus, while the complex exponential ansatz for the Fourier series uses a single complex
amplitude to retain both the magnitude and phase information of the mth azimuthal mode, the
sine-cosine ansatz of Eq. (12) introduces two real coefficients to retain the same information.
For instance, the first azimuthal mode (m = 1) is given by the superposition of two waves,
q1

a(x, r, t ) cos(φ) + q1
b(x, r, t ) sin(φ). These will be individually referred to as m = 1a and 1b,

respectively, in the subsequent text. Similarly, the two waves associated with m = 2 will be referred
to as m = 2a and 2b.

The mechanisms associated with each of the above modes can be deduced from their spatial
distributions, similar to the use of Mathieu functions for elliptical jets by Kinzie and McLaughlin
[35]. For illustration, Fig. 7 shows the components of the first and second azimuthal modes
(m = 1a, 1b and 2a, 2b, respectively), together with a high AR nozzle exit for orientation. The
mode shapes and, by extension, their individual physical interpretations necessarily depend on the
choice of the azimuthal origin, φ = 0◦, with respect to the major or minor axes. Choosing one
of these for φ = 0 greatly simplifies the analysis because of symmetry considerations, as shown
below. Following Bridges [31], φ = 0◦ is assigned to the minor axis plane of the nozzle exit
(positive y direction). Thus, mode 1a represents fluctuations that are out of phase on either side
of the minor axis [Fig. 7(a)], and are associated with flapping motion in the minor axis direction.
Correspondingly, mode 1b [Fig. 7(b)] captures flapping motion along the major axis direction.
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FIG. 8. Contours of pressure perturbations (p′, left column) and acoustic fluctuations (
∂ψ ′

A
∂x , right column)

of the circular jet on a 2D cross section along with their leading azimuthal Fourier modes.

Modes 2a and 2b are associated with more complex mechanisms. For elliptical jets, Kinzie and
McLaughlin [35] associate mode 2a [Fig. 7(c)] to “pinched” elliptical fluctuations and mode 2b
[Fig. 7(d)] to off-axis fluctuations.

B. Rectangular modal dynamics

The well-known azimuthal modes of the circular jet [6,14] are summarized for subsequent
reference. The left column of Fig. 8 shows, starting from the top, instantaneous snapshots of p′
on a 2D slice of the circular jet and the leading azimuthal Fourier modes, axisymmetric (m = 0),
1a, 1b, 2a, and 2b, respectively. A coherent wavelike structure related to the Kelvin-Helmholtz
shear layer instability is apparent near the nozzle exit. Further downstream, however, the jet breaks
down into finer scale turbulence. Mode m = 0 exhibits more coherence and filters out the finer
scale turbulence downstream. The increased coherence illustrates the advantages afforded by the
azimuthal mode decomposition in general, and the m = 0 mode in particular for round jets; its use
in the construction of two-point wave-packet model parameters is discussed in Jaunet et al. [22]. In
contrast, the finer scales in the raw pressure field, which are not as acoustically efficient, are retained
in the higher azimuthal modes of the jets. No clear qualitative differences are evident between
the higher azimuthal wave-number pairs, m = 1a, 1b, or 2a, 2b. The similar spatial distributions
and fluctuation amplitudes of each pair are consistent with the discussion of Fig. 7 and are the
consequence of polar symmetry of circular jets, which is lacking in the rectangular jets examined
below.

The right column of Fig. 8 displays the corresponding results with the streamwise acoustic fluctu-
ation variable ( ∂ψ ′

A
∂x ). Even without azimuthal decomposition, ∂ψ ′

A
∂x displays a more organized spatial

distribution and greater coherence compared to the raw pressure perturbation field; this readily
highlights the advantage of this FT component over p′, particularly in the region downstream of the
potential core collapse. The m = 0 mode has the form of a spatially localized wave packet with a
growth and decay envelope representing, in the aggregate, acoustic sources for downstream shallow
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FIG. 9. The streamwise acoustic fluctuations (
∂ψ ′

A
∂x ) of the AR = 1 jet on the symmetry plane and its leading

azimuthal modes.

angle noise radiation. The dominant axial length scale of this wave packet is a few jet diameters
larger than the potential core length, beyond which the fluctuations diminish. Higher modes of the
acoustic fluctuations, 1a, 1b, 2a, and 2b, also display decay in the fluctuation magnitudes, evident
from the decreasing saturation of the contours in the figure. Furthermore, these higher modes also
show successively sharper cutoff with streamwise distance from the nozzle exit. Both the decreasing
fluctuation magnitude and shorter streamwise lengths of the higher modes are crucial in the acoustic
source modeling of circular jets [19].

Figure 9 shows ∂ψ ′
A

∂x contours on the symmetry plane of the AR = 1 jet together with the three
leading azimuthal modes (since p′ fluctuations are less illustrative, they are not shown). As in
the case of the mean flow, the AR = 1 fluctuation data also show similarities with round jets,
including the initial wavelike structure near the nozzle exit followed by a breakdown into more
chaotic finer scale structures further downstream. Likewise, the m = 0 shows more coherence than
the raw data, and a rapid fluctuation decay downstream of the potential core. The higher azimuthal
modes exhibit progressively more rapid streamwise decay. These similarities with the circular jet
are not unexpected given the rapid transformation of the square jet to an axisymmetric mean cross
section [Fig. 3(b)].

The higher AR nozzles (AR = 4 or 8), however, do not transition to axisymmetric cross sections
in the domain of interest as discussed in the context of Fig. 3. Figure 10 shows the corresponding
∂ψ ′

A
∂x results on the major and minor axis planes of AR = 4 and 8 jet in the left and right columns,

respectively. The major (black) and minor (magenta) axis liplines are also marked with dashed
lines to provide a scale for reference. On the minor axis planes of both jets (Fig. 10 first row),
the structures associated with the initial breakdown along the lipline are similar to the circular and
AR = 1 jets, but significantly closer to the centerline of the jet. However, on the major axis plane
(second row), the fluctuation pattern is different. Two sets of structures are evident, marked A and
B, respectively. The former sequence is closer to the centerline, with phase similar to the structures
on the minor axis planes of the respective jets; these are the signatures of the lipline structures of the
minor axis shear layer that essentially protrude on the symmetry plane. The outer structures, marked
B, are those that evolve due to the major axis shear layers. This higher complexity is a consequence
of the disparity between the distances of the major and minor axis liplines from the centerline of
the jet, as the AR is increased. A similar effect in the context of an AR = 2 jet was discussed by
Chakrabarti et al. [56]. By an axial distance of x = 4De, however, these separate wave trains cannot
be clearly distinguished from each other.

The spatially localized wave-packet structure remains evident in the m = 0 modes. The shear
layer structures growing along the major axis lipline (designated B earlier) do not display a
discernible signature on the axisymmetric mode. Being further away from the axis, they subtend a
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FIG. 10. Contours of streamwise acoustic fluctuations (
∂ψ ′

A
∂x ) of the AR = 4 (left column) and AR = 8 (right

column) jets shown on the major and minor axis planes along with the leading azimuthal Fourier modes.

relatively small azimuthal angle on the centerline and thus have a small contribution to the azimuthal
averaging operation used to obtain the m = 0 mode [Eq. (13)]. Although qualitatively similar to the
m = 0 mode in the circular and square jets, the decay with streamwise distance is more rapid,
and the lobes become more radially extended. The former effect is related to the decrease in the
potential core length with increasing AR, as discussed previously, while the latter effect is due to
the effective averaging of the shear layer around the azimuth and is evaluated quantitatively in a
subsequent section.

Higher azimuthal modes exhibit significant differences from their circular and square coun-
terparts. The two components of m = 1 and m = 1a and 1b, respectively, in Fig. 10, are distinct
from each other, and emphasize fluctuation distributions from shear layers on the minor and major
axis planes, respectively. This is consistent with the directivity inherent in the two coefficients as
discussed in the context of Fig. 7. The chosen ansatz [Eq. (12)] thus retains the dynamics of the two
symmetry planes of the rectangular jet for m = 1. As a consequence, m = 1b (the sine coefficient) is
chaotic and dominated by finer spatial scales. In contrast, m = 1a (the cosine coefficient) has a more
organized structure, with greater fluctuation magnitudes, which reflect the dominance of flapping
motions along the minor axis plane. This is the primary instability mechanism of rectangular and
elliptical jets as shown by theoretical [69] and experimental [27,28] studies. The manifestations of
these differences between the two coefficients of the first mode on the near-acoustic field asymmetry
are discussed in a subsequent section. The coefficients of the second mode m = 2a and 2b, however,
exhibit more chaotic structures that do not resemble the fluctuation pattern on either of the symmetry
planes of the jets. This is consistent with the higher complexity of the m = 2 mode discussed in the
context of Fig. 7.
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FIG. 11. Isosurfaces (
∂ψ ′

A
∂x = ±0.007) showing the reconstructed 3D azimuthal mode shapes of an instan-

taneous snapshot of the acoustic fluctuations in the near field of the various AR jets.

C. Three-dimensional reconstruction of modes

Overall, both circular and rectangular jets display similar decreases in the fluctuation magnitudes
of the higher azimuthal modes. The greater influence of lower modes suggests that procedures
developed for circular jets, that consider only a few dominant Fourier modes, may also apply to high
AR rectangular jets. This convergence of instantaneous statistics in the azimuthal Fourier space, as
well as the dynamics of the individual modes, is now clarified by considering three-dimensional
(3D) reconstructions of the leading azimuthal modes. Qualitative considerations are presented first,
followed by more quantitative evaluations.

Three-dimensional mode shapes are reconstructed using the 2D Fourier coefficients [pm
a (r, x, t )

and pm
b (r, x, t )] and their corresponding azimuthal variations (cos mφ and sin mφ) according to

Eq. (12). Figure 11 shows the instantaneous 3D snapshots of the three leading rectangular jet
azimuthal modes using isosurfaces of the same value ( ∂ψ ′

A
∂x = ±0.007) and compares them to those

of the circular jet. For the AR = 1 jet, a steep drop in higher azimuthal mode content is evidenced
by the reduced spatial support of the isosurfaces and the higher azimuthal modes become further
restricted to the near nozzle regions. These observations are quite similar to those by Cavalieri
et al. [70] in the context of the higher azimuthal modes of circular jets. This reiterates a crucial
observation, since the streamwise noncompactness of the acoustic source field is a necessary
criterion for superdirective acoustic radiation from a jet [19,21].

More interestingly, despite the persistent mean asymmetry of the higher AR jets, their higher
azimuthal modes (Fig. 11) also show similar characteristics and, indeed, an even steeper drop off in
amplitudes. This observation is associated with the relative simplicity of the acoustic fluctuations
in the high AR rectangular jets (Fig. 6 second row), compared to the hydrodynamic content of the
turbulent eddies (Fig. 6 third row). While the former is spatially localized with distributions that
are relatively independent of the AR, the latter clearly highlights the greater spreading rate and the
more chaotic nature of the higher AR jets. The 3D mode shapes at higher AR also further highlight
the progressively diminishing streamwise extent of the azimuthal modes of the rectangular jets
compared to the circular jet as discussed previously in the context of the 2D Fourier coefficients.
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FIG. 12. A comparison of partial reconstructions using a few leading azimuthal modes to the original
instantaneous snapshot of the acoustic fluctuations in the AR = 8 rectangular jet. The reconstruction error for
each of the partial reconstructions is also shown.

These results show promise regarding the potential suitability of the cylindrical coordinate system,
and by extension the Fourier basis in the azimuthal direction, in describing the instantaneous
dynamics of rectangular jets.

As an additional qualitative assessment, the compact support in the chosen Fourier basis is
evaluated by reconstructing the flow using only a few leading modes. A partial reconstruction
considering only the leading M azimuthal modes is obtained from

q̂M (x, r, φ, t ) =
M∑

m=0

qm
a (x, r, t )cos(mφ) + qm

b (x, r, t )sin(mφ). (15)

These partial reconstructions are compared with the instantaneous fluctuation snapshot of the AR =
8 rectangular jet in Fig. 12. The first row of Fig. 12 shows the partial reconstructions of ∂ψ ′

A
∂x using

progressively larger numbers of azimuthal modes up to M = 5. The original 3D snapshot of acoustic
fluctuations is repeated below each partial reconstruction for comparison purposes in the second
row. The reconstruction error is obtained as the difference between the partial reconstruction and
the LES snapshot:

εM (x, r, φ, t ) = q(x, r, φ, t ) − q̂M (x, r, φ, t ) (16)

is plotted in the third row of Fig. 12. The reconstruction error decreases rapidly with M, evident
from the close correspondence between the five mode reconstruction (q̂5) and the original snapshot.
Similar results for the AR = 4 jet are shown in Chakrabarti et al. [37]. Interestingly, with the
consideration of additional modes, the streamwise extent of the reconstruction error also reduces
rapidly and the error is restricted to only the near nozzle regions for reconstructions with four or
five azimuthal modes.

D. RMS reconstruction accuracy

A quantitative assessment of the reconstruction is performed to compare the convergence rates
of the azimuthal Fourier series for different AR, as well as to differentiate between the rates of
convergence of p′ and ∂ψ ′

A
∂x for a given jet. A meaningful comparison is predicated on an appropriate

error norm; here we choose the volume integrated mean square error given as

||εM || =
∫

V
1
T

∫ T
0 εM (x, r, φ, t )2dtdV∫

V
1
T

∫ T
0 q(x, r, φ, t )2dtdV

. (17)
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FIG. 13. Comparison of the rates of convergence for the circular jet (a) and the AR = 4 (b) and AR = 8
(c) rectangular jets.

The denominator is the RMS of the fluctuation field being analyzed; it normalizes the error to yield
the fraction of the total fluctuation energy of the field. The volume of integration is a cylinder
containing all acoustically significant regions within the jet. Thus, the streamwise and radial extents
are x/De = 25 and 3De, respectively, which coincides with the radial location of the FWH surface.

Figure 13 compares the reconstruction error norm as a function of number of modes used for
reconstruction for the AR = 4 and 8 rectangular jets with the reference results for the circular jet.
The error norm decreases with number of modes as anticipated. In each case, the axisymmetric
mode of ∂ψ ′

A
∂x exhibits a lower reconstruction error than p′ and the error drops at a sharper rate,

indicating a more rapid convergence in the azimuthal Fourier space. To highlight this, the figures
also include a plot of the ∂ψ ′

A
∂x error, shifted to match the pressure fluctuation reconstruction errors

for m = 0 alone. Thus, the acoustic fluctuations exhibit lower-rank behavior in azimuthal Fourier
space with lower reconstruction errors compared to the pressure fluctuations. This confirms that
the advantage of employing the acoustic fluctuations instead of the raw pressure fluctuation field in
circular jets carries over to rectangular jets.

Second-order statistics provide further insights into the behavior of the individual Fourier modes
in establishing the acoustic field. The modal energies (mean squared magnitudes) of the leading
azimuthal Fourier modes are defined as

qMS
m (x, r) =

{
q2

a0 if m = 0
q2

am+q2
bm

2 if m > 0
. (18)

For completeness, a derivation of the above expression is given in the Appendix [Eq. (A6)]. A
similar definition for the modal energies has been adopted by Faranosov et al. [71].

Figure 14 compares the spatial energy distribution of the leading azimuthal modes of ∂ψ ′
A

∂x in
the different jets. The circular jet (Fig. 14 first row) clearly exhibits the two major trends of
decreasing modal energy and diminishing spatial support with increasing mode numbers, which
have facilitated reduced order modeling. Results for rectangular jets (third and fourth rows) also
confirm the progressively smaller energies of the higher azimuthal modes, at rates that are generally
commensurate with those for the circular jet. Thus, the property of rapid convergence of statistics
with number of modes holds even for high AR rectangular jets which display features such as axis
switching. Two trends of interest may be identified. First, modal energies exhibit a greater radial
spread with increasing AR; this is most evident from a comparison of the m = 0 energy distribution
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FIG. 14. Modal energies of the three leading azimuthal modes of the acoustic fluctuations in the nonax-
isymmetric jets. The dashed line in the figure represents the lipline of the circular jet (y/De = 0.5) for scale.

at the lipline (marked with a dashed line) of the circular jet (y/De = 0.5). This is consistent with the
azimuthal averaging effect; the major axis shear layers are geometrically further away from the axis,
similar to the effect in Fig. 10. The second trend concerns the decrease in the streamwise extent of
all azimuthal modes with increase in the AR, again most clearly evidenced by the marked decrease
in the streamwise extension of the m = 0 mode of the AR = 8 jet (see the first column of Fig. 14).
It has been previously shown in the context of circular jets [11] that the streamwise extent of the
acoustic sources is correlated with the length of the potential core. This result holds for rectangular
jets as well, since the decrease in the streamwise length scale of the acoustic sources [39] of the
high AR jets is correlated with a progressive reduction in their potential core lengths of the higher
AR rectangular jets (Fig. 4).

A suitable measure for a direct quantitative comparison of modal energies may be obtained
as follows. Since the radial distributions of modal energies vary with AR, comparing the energy
magnitudes along a specific streamwise line (as is common in circular jets) is not illuminating. This
is evident from Fig. 14, where the dashed lines in the figures mark the radial distance corresponding
to the lipline of the circular jet (r = 0.5De). In contrast to the circular jet, where most of the
energy for all azimuthal modes is concentrated around the r = 0.5D line, higher AR jets exhibit
a significantly greater spatial spread with only a fraction of the energy being contained along the
r = 0.5De line. An integrated measure of energy magnitude, qiMS

m , with radial distance at each axial
station is thus employed:

qiMS
m (x) =

∫ 3

0
qMS

m (x, r)rdr (19)

where q is the flow variable of interest ( ∂ψ ′
A

∂x or p′). The radial domain of integration is again chosen
from the axis to r = 3De, which is the location of the FWH surface and is sufficiently distant from
the turbulent core for all modal energies to have decreased by two orders of magnitude.

Figure 15 shows the integrated energies of the leading azimuthal modes of ∂ψ ′
A

∂x (a) together with
corresponding results for p′ (b) of the circular jet for reference. Near the nozzle exit, the separation
of the energies between the azimuthal modes is quite small for pressure, but not so for the acoustic
component, the m = 0 content of which is already much larger than the others. Further downstream,
the content of all modes increases; however, the increase is largest for the lower modes. This
reiterates the low-rank nature of fluctuation statistics in the azimuthal Fourier space and, therefore, a
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FIG. 15. Streamwise variation of the radially integrated modal energies of five leading azimuthal modes
for the circular jet.

rapid convergence in the three leading azimuthal modes. Figure 15 quantifies some of the previously
noted features and distinctions between pressure and acoustic fluctuations. While all azimuthal
modes of ∂ψ ′

A
∂x exhibit clear growth and subsequent decay with streamwise distance, the integrated

modal energies of p′ continue to increase for much longer streamwise distances. This growth and
decay envelope of acoustic fluctuations reveals a characteristic streamwise acoustic source length
scale, which is a critical component of jet acoustic emissions, as discussed in Unnikrishnan et al.
[39]. Further, acoustic fluctuations exhibit a more rapid convergence in the azimuthal Fourier space
as manifested by the larger differences in modal energies with increasing mode numbers, most
evident around x/De = 5. Azimuthal modes of p′ do not show as pronounced a drop off in energy.

The convergence properties of ∂ψ ′
A

∂x are inherent in the defining Poisson equation (7), the solution
of which may be distinguished into homogeneous and particular components. The homogeneous
solution component is relatively small, since it depends on relatively distant far-field boundary
conditions, where ψA = 0. The particular solution component is dependent on the nature of the
source term, which connects pressure fluctuations, ∂ p′/∂t , to the acoustic potential, ψA, and may
be analyzed in Fourier space. To illustrate in two dimensions (x − θ ) for simplicity, Eq. (7) may be
written in cylindrical coordinates as

1

r2

∂2ψA

∂θ2
+ ∂2ψA

∂x2
= − 1

c2

∂ p′

∂t
(20)

or, in wave-number-frequency space,(
m2

r2
+ k2

x

)
ψ̂A = − ω

c2
p̂′ (21)

where ψ̂A(kr, kx, m, ω) is the Fourier transform of ψA. ψ̂A is thus directly dependent on p̂′ by a
wave-number-dependent scaling factor:

ψ̂A = − ω

c2

p̂′(
m2

r2 + k2
x

) . (22)

In the quiescent far field, where the speed of sound is constant, this relationship is greatly simplified
[72]. While the connection is not as straightforward in the near field, a key observation is that as the
radial distance decreases, the sensitivity of this relationship to azimuthal wave numbers increases.
Near the centerline of the jet, the higher azimuthal modes have very low weights as the quantity
m2/r2 in the denominator becomes large. In this region, therefore, the acoustic fluctuations filter
out the higher azimuthal modes that may dominate the fully turbulent dynamics, i.e., including
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FIG. 16. Streamwise variation of the radially integrated RMS (iRMS) of the five leading azimuthal modes
of the acoustic (row 1) and pressure fluctuations (row 2) for the AR = 1 (a, d), AR = 4 (b, e), and AR = 8
(c, f) jets.

nonacoustic components. Moving radially outward from the jet, the higher azimuthal modes are
dissipated faster owing to the physics of acoustic propagation. The combined result of these two
effects manifests in the superior convergence of the acoustic fluctuations in the azimuthal Fourier
spectrum when compared to the pressure fluctuations.

The integrated modal energies of ∂ψ ′
A

∂x and p′ for the rectangular jets are compared in Fig. 16.
The same trends as observed for the circular jets persist; in particular, the energy content decreases
for higher mode numbers. As such, acoustic fluctuations of even high AR rectangular jets have
appreciably low-rank representation in the azimuthal Fourier basis. This result further verifies the
observation that despite the nonaxisymmetric nature of the rectangular nozzle plume significant
simplifications of the rectangular jet may be achieved by considering only the leading azimuthal
Fourier modes, especially if ∂ψ ′

A
∂x is employed instead of p′ as discussed previously in the context of

Fig. 13. Additionally, with increasing AR, (i) the m = 0 mode becomes relatively more energetic
compared to m = 1 and (ii) for all azimuthal mode numbers the streamwise location corresponding
to the peak value of the RMS shifts progressively upstream and the postpeak reduction becomes
steeper, especially when compared to the circular jet, consistent with the decrease in potential core
length with AR.

VI. AZIMUTHAL HOMOGENEITY CONSIDERATIONS

The fluctuations in an azimuthal Fourier basis retain the rapid convergence property even for
rectangular jets, implying that despite their higher complexity, the cylindrical coordinates are well
suited to represent their acoustic dynamics. However, as noted earlier in the context of the mean flow
description, rectangular jets exhibit several differences from circular jets, including axis switching
and nonaxisymmetric far-field radiation. Given the relatively negligible contribution of the higher
azimuthal Fourier modes in all of the jets, these differences between the dynamics of high AR
rectangular and circular jets can only be associated with key differences in the dynamics of the
leading azimuthal modes. Indeed, a major point of distinction between circular and rectangular jets

074605-21



CHAKRABARTI, GAITONDE, AND UNNIKRISHNAN

is that the former exhibit azimuthal statistical homogeneity that greatly simplifies their modeling
[14,15,19]. This section examines the advantages afforded by the azimuthal homogeneity property
in the context of the chosen Fourier decomposition ansatz, and evaluates its applicability to rectan-
gular jets.

The implication of azimuthal homogeneity in the context of Eq. (12) may be examined in the
simpler notation that suppresses explicit x and r dependence:

q(φ, t ) = a0(t ) +
∞∑

m=1

am(t ) cos mφ + bm(t ) sin mφ. (23)

Homogeneity in the φ direction requires that the two point cross-correlation function depend only
on the angular separation, �φ = φ1 − φ2, and not on φ itself [14]:

q(φ1, t )q(φ2, t ) = g(φ1 − φ2). (24)

Here, (.) refers to an averaging operation in time. A direct consequence of this, as shown in the
Appendix, is that the individual Fourier modes obey the following constraints:

a2
m = b2

m, (25)

aman = bmbn = ambn = 0. (26)

These may be interpreted by considering the sense of direction associated with the azimuthal modes,
based on the locations of the extrema of the sine and cosine functions, as discussed in the context
of Fig. 7. The first constraint [Eq. (25)], therefore, reflects the polar symmetry property of circular
jets; specifically, both cosine and sine coefficients (am and bm, respectively) have identical statistics
due to azimuthal statistical invariance.

The second constraint [Eq. (26)] reflects the property that in the homogeneous and periodic
direction, the Fourier modes diagonalize the cross correlation matrix and are the spatial POD
modes [15]. As a result, the decomposition Eq. (23) has correspondence to the space-time variable
separation achieved by POD, where the sine and cosine functions represent the spatial POD modes
and are mutually orthogonal in space by construct. By extension, the Fourier coefficients (am and
bm) correspond to the temporal POD modes and must be mutually orthogonal in time, as indicated
by the above noted constraint.

These properties have simplified circular jet noise modeling efforts. For instance, POD analyses
of the individual azimuthal modes (instead of the full 3D dataset) are routinely used to develop
reduced-order models [6,20]. The calculation of OASPL levels using azimuthal modes is also
simplified because the mutual incoherence of the individual azimuthal modes dictated by the
statistical homogeneity [Eq. (26)] permits fluctuation RMS value to be represented as the sum of
squares of the RMS values of the individual azimuthal Fourier modes [15,19]. Thus, by considering
only the three leading modes for a circular jet, the energy of the overall fluctuation field is given as
(see the Appendix)

q2(φ, t ) = a2
0 + a2

1 + b2
1

2
+ a2

2 + b2
2

2
. (27)

The azimuthal invariance of the fluctuation RMS value, as evidenced by the absence of the azimuthal
angle φ on the right-hand side of the above expression, implies that even if infinitely many azimuthal
modes are considered, the overall RMSs of the fluctuations retain their axisymmetric form for a
circular jet [15].

These considerations do not hold when two point correlations depend on the azimuthal angle; for
example, in the case of a rectangular jet, points on the y (φ = 0◦) and z (φ = 90◦) axes [Fig. 5(a)],
respectively, display different correlations with each other than those along φ = 45◦ and 135◦. This
aspect manifests in the near- and far-field asymmetry of the rectangular jet dynamics, regardless of
the rapid convergence in the azimuthal Fourier basis shown previously. A generalized expression for
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the fluctuation RMS, applicable for azimuthally nonhomogeneous data, may be written as a function
of the individual modal contributions as follows [derivation in the Appendix, Eq. (A5)]:

q2(φ, t ) = a2
0 + a2

1 + b2
1

2
+ a2

2 + b2
2

2

+ a2
1 − b2

1

2
cos 2φ + a2

2 − b2
2

2
cos 4φ

+ 2a0a1 cos φ + 2a0b1 sin φ + 2a0a2 cos 2φ + 2a0b2 sin 2φ

+ 2a1b1 sin φ cos φ + 2a1a2 cos φ cos 2φ + 2a1b2 cos φ sin 2φ

+ 2b1a2 sin φ cos 2φ + 2b1b2 cos φ sin 2φ + 2a2b2 cos 2φ sin 2φ. (28)

The complications associated with lack of homogeneity require consideration of additional terms

to account for the inequality of sine and cosine coefficients ( a2
m−b2

m
2 ) as well as modal interactions

(aman), that must be modeled.
The generalized RMS expression [Eq. (A5)] aids in identifying physical mechanisms related to

azimuthal inhomogeneities and asymmetry. For example, the term a2
1−b2

1
2 is related to the dominance

of flapping motions along the major or minor axes planes. This is linked to the directivity given by
cos 2φ and is visualized in Fig. 7(c). Thus, the dominance of flapping motions along one axis results
in the increase of the RMS in that direction and a reduction on the other axis.

Equation (28) is generalized and does not take into account the specifics of the problem. Some
simplification is afforded by exploiting horizontal and vertical symmetry of rectangular jets about
the minor and major axes, respectively. The directivity of their radiation can then only assume
azimuthal harmonics of the form 2nφ. To elucidate this point, the coupling between the axisymmet-
ric and first azimuthal mode is reflected in the term 2a0a1 cos φ, the associated directivity of which,
given by cos φ, is shown graphically in Fig. 7(a). This yields an increase in acoustic intensity on one
side of the minor axis plane of the jet along with a reduction on the other, violating the underlying
symmetry of the problem. Further, among the even harmonics, the sine function (sin 2nφ) results in
a spatial variation that is antisymmetric about the major and minor axis planes of symmetry. Thus,
by exploiting the symmetry of the rectangular jet problem, all terms resulting in directivities given
by odd harmonics in φ as well as those containing even harmonics of the sine function may be
removed from the expression. This simplification is a direct result of the choice of the particular
ansatz for the Fourier decomposition used in this paper [Eq. (12)]. Thus, the simplified expression
for the fluctuation RMS is given by

q2(φ, t ) = a2
0 + a2

1 + b2
1

2
+ a2

2 + b2
2

2

+ a2
1 − b2

1

2
cos 2φ + a2

2 − b2
2

2
cos 4φ + 2a0a2 cos 2φ. (29)

The terms related to azimuthal inhomogeneity are evaluated for the three nonaxisymmetric jets
in Fig. 17. The modal energy of the leading m = 0 mode is also shown (first row) to highlight the
importance of inhomogeneous processes relative to the dominant acoustic sources. Clearly, one of
the most important contributors to the asymmetry are the differences between the sine and cosine
coefficients of the first azimuthal mode (modes 1a and 1b). The preferential flapping in the minor
axis direction noted in the context of Fig. 10 manifests in larger values for a2

1 compared to b2
1.

Indeed, in rectangular jets, the cosine and sine coefficients (a1 and b1, respectively) represent distinct
physical processes on the major and minor axis planes. The preferential growth of instabilities and
flapping motions along the minor axis plane has been shown to be a dominant dynamic feature of
higher AR rectangular jets, and hypothesized as a cause of asymmetries in the far-field acoustic
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FIG. 17. Contours showing the leading m = 0 azimuthal mode and spatial distributions of the dominant
terms associated with azimuthal inhomogeneity and acoustic radiation asymmetry for all simulated rectangular
jets.

radiation of jets [62]. In addition to the above, the AR = 8 jet also exhibits a coupling between
the axisymmetric and second azimuthal mode (a0a2) although it is much weaker than the flapping
mechanism.

Other important features evident in Fig. 17 may be summarized as follows. The preferen-
tial flapping motion manifested in the disparity between the sine and cosine coefficients of
m = 1 (a2

1 − b2
1) occurs over a larger spatial spread for the AR = 4 jet compared to the AR = 8 jet.

This is similar to the reduction in the streamwise length scale of the higher AR jets due to a reduction
in the potential core length. However, in both these rectangular jets, the relative magnitudes and
spatial spread of the flapping motions are much smaller compared to the m = 0 azimuthal mode
(a0a0). Furthermore, the square jet shows a very small difference between the two coefficients of
the first mode. This is due to the added symmetry of the problem; i.e., in addition to symmetry
about the major and minor axes, the square (AR = 1) jet is also symmetric along its diagonals
(fourfold mirror symmetry). Thus, any departure from axisymmetry for the square jet must be of
the form cos 4nφ. Preferential flapping along either of the planes bisecting the sides in a square jet
would result in an unacceptable asymmetry given by cos 2φ. Interestingly, several terms that are not
identically zero in square jets are found to be negligible, for example, a2

2 − b2
2, which would result

in a fourth harmonic in the azimuthal direction. This is consistent with the axisymmetric far-field
acoustic radiation obtained for the case of the square jet.

VII. REDUCED NEAR-FIELD MODEL

The above findings may be used to inform a reduced order model for the nonaxisymmetric
near field of rectangular jets; for completeness the corresponding results for circular jets are also
presented. Figure 18 displays the polar plot distribution of azimuthal acoustic fluctuation RMS on
the FWH surface for the circular (a) and the AR = 8 (b) rectangular jets at the streamwise location
of x/De = 5, which corresponds to the peak acoustic radiation (in the downstream shallow angle
direction). As anticipated, the circular jet exhibits no variation in acoustic intensity with respect
to the azimuthal angle. In this case, due to the azimuthal homogeneity, the overall RMS obtained
from the LES can be faithfully reproduced by directly adding the modal energies of the individual
azimuthal modes per Eq. (27). The cumulative sum of the modal energies of the four leading
azimuthal modes is shown using dashed black lines. The m = 0 energy, shown by the dotted line,
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FIG. 18. Azimuthal distributions of the acoustic intensity on the FWH surface at the streamwise location
of the maximal jet noise shown using polar plots for the circular and AR = 8 rectangular jets. Reconstructions
of the acoustic intensity using the cumulative sum [Eq. (27)] of the m leading modal energies (indicated by the∑

m value) are shown for both jets.

closest to the center of the plot accounts for 78% of the observed acoustic intensity. The sum of
the two leading modes, namely, m = 0 and 1, constitutes 94% of the total acoustic intensity and is
quite close to overall RMS observed from the LES. Adding higher azimuthal modes progressively
recovers the LES results; for example, the sum of the first three azimuthal modes, i.e., �m = 2,
yields 97% of the observed acoustic intensity. However, higher modal contributions diminish in
consistency with the above noted rapid convergence of fluctuation statistics.

Figure 18(b) shows the azimuthal variation of the near-field acoustic intensity of the AR = 8 jet
to highlight its near-field asymmetry. A schematic of the nozzle exit is also shown for orientation.
A peak in the acoustic intensity is distinctly visible on the minor axis plane which was shown
previously (Sec. III) to be the direction of the maximum acoustic intensity of the AR = 8 jet.
The difference between the minimum and maximum acoustic intensity (shown in the figure using
green and orange dashed lines) is about 15% of the average RMS around the azimuth. Bridges
[31] and Kantola [62] also observed the minor axis plane of high AR rectangular jets to be
louder. Figure 18(c) shows reconstructions of the near-field acoustic intensity of the rectangular
jet following a procedure similar to that used for the circular jet in Fig. 18(a), i.e., using Eq. (27).
This approach fails to capture the near-field asymmetry of the rectangular jet and results in under-
and overpredictions along the major and minor axis directions, respectively.

Thus, the terms associated with nonhomogeneity, discussed in Sec. VI, are crucial to the
reconstruction of the higher aspect ratio rectangular jets. This is shown in Fig. 19 for all the
nonaxisymmetric jets. The near-field asymmetry of AR = 8 [Fig. 19(c)] is recovered by adding
only two additional terms associated with inhomogeneity in Eq. (29): 0.5(a2

1 − b2
1) cos 2φ and

a0a2, incorporating preferential flapping and the coupling of the axisymmetric and second az-
imuthal modes, respectively. This corrected reconstruction shown using the magenta hatched line
successfully reproduces the asymmetry in the near-field acoustic intensity. A similar situation is also
visible for the AR = 4 jet [Fig. 19(b)].

Interestingly, in line with its overall similarity to the circular jet, the square jet exhibits an
azimuthally uniform near-field acoustic intensity [Fig. 19(a)]. As a result, a near-field acoustic
reconstruction assuming azimuthal homogeneity [following Eq. (27)] gives a close approximation of
the measured acoustic field. Adding the terms related to the inhomogeneity has a negligible effect on
the reconstruction. This is consistent with the relatively negligible magnitudes of the inhomogeneity
terms in the square jet (as shown in Fig. 17). The near-field RMS acoustic intensity for AR = 4 and
8 jets displays preferential flapping along the minor axis direction [0.5(a2

1 − b2
1) cos 2φ]; this is the

dominant mechanism related to the near-field asymmetry as evidenced by Fig. 17. The differences
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FIG. 19. Comparison of the near-field acoustic intensity reconstruction without [Eq. (27)] and with
[Eq. (29)] a consideration of the terms representing the inhomogeneity of the nonaxisymmetric jets.

between the AR = 4 and 8 jets may be highlighted by examining the flapping term in both as
a fraction of the axisymmetric modal energy. Figure 20 shows the importance of the primary
term representing flapping for both the AR = 4 and 8 jets along a ray following the direction of
maximum acoustic radiation (θ = 150◦ from the upstream). The flapping effect term is dominant
relatively close to the jet and is commensurate with the axisymmetric modal energy. Further out
along the shallow angle direction, clear differences emerge between the two jets. While the relative
importance of the flapping term decays rapidly for the AR = 4 jet, it remains a dominant term for
the AR = 8 jet accounting for approximately 10% of the axisymmetric modal energy.

VIII. CONCLUSIONS

The advantages of azimuthal Fourier decomposition, the benefits of which are well established
for circular jet analysis, are evaluated for rectangular jets using large eddy simulations and by
projecting the fluctuations on a cylindrical coordinate system. A related goal is to examine the
effectiveness of such a decomposition for near-field acoustic reconstruction with a reduced order
model. The three ARs chosen, AR = 1, 4, and 8, incorporate several flow phenomena pertinent to
rectangular jets, including rapid transition to axisymmetric cross section (AR = 1), axis switching

FIG. 20. Comparison of the relative importance of preferential flapping motions in rectangular jets along
the direction of peak acoustic radiation.
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(AR = 4), and azimuthal nonuniformity in far-field acoustic radiation (AR = 8). They also contain
other important features such as potential core length reduction and jet spreading rate increase with
AR.

The utility of azimuthal Fourier decomposition is examined by replacing the commonly used
complex exponential ansatz with separate coefficients for sine and cosine modes; this provides a
more convenient representation of features that do not display axisymmetric behavior. Fluctuations
from all AR jets show rapid declines in higher azimuthal mode content; as such, the convergence
observed in circular jet data remains valid for rectangular jets. Even for the AR = 8 jet, the use of the
three leading azimuthal wave numbers yields relatively small error in the instantaneous fluctuation
field as well as volume integrated measures. Consistent with circular jet modeling, the acoustic field
from a fluid-thermodynamic decomposition exhibits lower-rank behavior than pressure.

The primary differences in plume evolution between rectangular and circular jets are evident in
the first azimuthal mode, the sine and cosine coefficients of which contain the qualitatively distinct
processes on the major and minor axis planes of the rectangular jets. Further, a comparison of the
spatial variation of the RMS acoustic fluctuation magnitudes of the individual azimuthal modes
indicates that the streamwise extent reduces with increase in the AR, consistent with a similar trend
in the length of the potential core found in the corresponding mean flow fields.

Finally, the loss of azimuthal homogeneity in rectangular jets and the nonaxisymmetric RMS
fluctuations is analyzed with a generalized expression for second-order statistics in terms of the
azimuthal modal energies. This expression highlights, as a special case, the appreciable simplifi-
cation afforded by an azimuthal homogeneity, as in circular jets. For rectangular jets, significant
simplifications are also shown to be possible by incorporating their twofold mirror symmetry. By
analyzing individual terms, preferential flapping along the minor axis direction is confirmed as the
dominant effect in loss of axisymmetry in rectangular jets. Rectangular jet modeling is, thus, greatly
aided by the rapid convergence of the fluctuation statistics in azimuthal Fourier space, as well as
features of the general expression for acoustic reconstruction as a function of the individual modal
energies. These findings should facilitate more advanced acoustic models for rectangular jets that
leverage many of the mature techniques developed for circular jets.
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APPENDIX: CONSTRAINTS ON FOURIER MODES DUE TO HOMOGENEITY

To highlight some properties associated with azimuthal homogeneity we consider a spatiotem-
poral function f (φ, t ), with φ being periodic over 2π . f (φ, t ) may be written as a Fourier series:

f (φ, t ) = a0(t ) +
∞∑

m=1

am(t ) cos(mφ) + bm(t ) sin(mφ). (A1)

Rapid convergence of the instantaneous statistics in the Fourier basis allows simplification by
truncation of the series beyond the dominant leading terms. If only the axisymmetric (m = 0) and
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first azimuthal (m = 1) modes are considered, we have

f (φ, t ) = a0(t ) + a1(t ) cos(φ) + b1(t ) sin(φ). (A2)

Azimuthal homogeneity imposes constraints on the Fourier coefficients am and bm and may be
written as

f (φ1, t ) f (φ2, t ) = g(φ1 − φ2). (A3)

Here, (.) refers to an averaging operation in time. Substituting the truncated Fourier series [Eq. (A2)]
in the expression for the cross correlation leads to

f (φ1, t ) f (φ2, t ) = a2
0 + a2

1 cos (φ1) cos (φ2) + b2
1 sin (φ1) sin (φ2) + a0a1(cos φ1 + cos φ2)

+ a0b1(sin φ1 + sin φ2) + a1b1(sin φ1 cos φ2 + sin φ2 cos φ1).

The resulting expression is arranged such that terms involving the product of similar Fourier
modes appear on the first line and are referred to as self-terms (S). The terms on the second line
represent interactions between Fourier modes and are, thus, referred to as cross terms. The self-terms

may be further simplified by adding and subtracting two terms, namely, a2
1

2 sin (φ1) sin (φ2) and
b2

1
2 cos (φ1) cos (φ2), to read

S = a2
0 + a2

1 cos (φ1) cos (φ2) + b2
1 sin (φ1) sin (φ2)

= a2
0 + a2

1 + b2
1

2
[cos (φ1) cos (φ2) + sin (φ1) sin (φ2)]

+ a2
1 − b2

1

2
[cos (φ1) cos (φ2) − sin (φ1) sin (φ2)],

which may be simplified to

S = a2
0 + a2

1 + b2
1

2
cos (φ1 − φ2) + a2

1 − b2
1

2
cos (φ1 + φ2).

On substituting the above form of the self-terms in the expression for the cross-correlation matrix,
the following expression is obtained:

f (φ1, t ) f (φ2, t ) = a2
0 + a2

1 + b2
1

2
cos (φ1 − φ2) + a2

1 − b2
1

2
cos (φ1 + φ2) + a0a1(cos φ1 + cos φ2)

+ a0b1(sin φ1 + sin φ2) + a1b1(sin φ1 cos φ2 + sin φ2 cos φ1).

The right-hand side of the above expression is a function of angular separation (φ1 − φ2) alone; all
terms on the second and third line are zero for all values of φ1 and φ2. This leads to two important
classes of constraints on the individual Fourier coefficients (a0, a1 and b1).

(1) a2
m = b2

m: The sine and cosine coefficients of a given wave number have equal RMS.
(2) aman = bmbn = ambn = 0: The individual azimuthal Fourier coefficients are mutually uncor-

related.
Under these conditions, the cross-correlation function is given by

f (φ1, t ) f (φ2, t ) = a2
0 + a2

1 + b2
1

2
cos (φ1 − φ2)

and thus also satisfies the condition for circumferential isotropy, in that it is independent of the sign
of the angular displacement [14]. Thus f (φ1, t ) f (φ2, t ) = g(φ1 − φ2) = g(φ2 − φ1).

The constraints imposed on individual Fourier coefficients due to the statistical homogeneity also
significantly simplify the reconstruction of the RMS fluctuations using Fourier modes. In general,
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the RMS of f (φ, t ) in terms of the three leading Fourier coefficients is given by

f 2(φ, t ) = a2
0 + a2

1 cos 2φ + b2
1 sin 2φ + a2

2 cos 22φ + b2
2 sin 22φ

+ 2a0a1 cos φ + 2a0b1 sin φ + 2a0a2 cos 2φ + 2a0b2 sin 2φ

+ a1b1 sin φ cos φ + a1a2 cos φ cos 2φ + a1b2 cos φ sin 2φ

+ b1a2 sin φ cos 2φ + b1b2 cos φ sin 2φ + a2b2 cos 2φ sin 2φ. (A4)

The terms on the right-hand side of the above relation can again be split into self-terms consisting
of contributions from the sine and cosine coefficients of the same azimuthal mode number (first two
lines) and cross terms representing modal interactions. Using trigonometric identities, the self-terms
in the above expression can be rearranged to

f 2(φ, t ) = a2
0 + a2

1 + b2
1

2
+ a2

2 + b2
2

2

+ a2
1 − b2

1

2
cos 2φ + a2

2 − b2
2

2
cos 4φ

+ 2a0a1 cos φ + 2a0b1 sin φ + 2a0a2 cos 2φ + 2a0b2 sin 2φ

+ 2a1b1 sin φ cos φ + 2a1a2 cos φ cos 2φ + 2a1b2 cos φ sin 2φ

+ 2b1a2 sin φ cos 2φ + 2b1b2 cos φ sin 2φ + 2a2b2 cos 2φ sin 2φ. (A5)

This form facilitates an understanding of the physical mechanisms that contribute to an asymmetry,
that is, a dependence on φ. All the terms in this expression, apart from those on the first line,
represent physical processes that are a direct result of the inhomogeneity of the statistics in the
azimuthal direction.

The constraints due to homogeneity derived previously simplify the expression for the RMS to

f 2(φ, t ) = a2
0 + a2

1 + b2
1

2
+ a2

2 + b2
2

2
. (A6)

Thus, the RMS of the function is given as the summation of the contributions of the individual
azimuthal modes in the homogeneous direction, and is independent of the angular position φ. This
crucial result implies that azimuthal invariance of the RMS holds no matter how many individual
azimuthal modes are retained.
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