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Turbulence in a wedge: The case of the mixing layer
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The ultimate goal of a sound theory of turbulence in fluids is to close in a rational way
the Reynolds equations, namely, to express the tensor of turbulent stress as a function of
the time average of the velocity field. Based on the idea that dissipation in fully devel-
oped turbulence is by singular events resulting from an evolution described by the Euler
equations, it has been recently observed that the closure problem is strongly restricted,
and that it implies that the turbulent stress is a nonlocal function in space of the average
velocity field, a kind of extension of classical Boussinesq theory of turbulent viscosity. This
leads to rather complex nonlinear integral equation(s) for the time-averaged velocity field.
This one satisfies some symmetries of the Euler equations. Such symmetries were used by
Prandtl and Landau to make various predictions about the shape of the turbulent domain
in simple geometries. We explore specifically the case of the mixing layer for which the
average velocity field only depends on the angle of the wedge behind the splitter plate. This
solution yields a pressure difference between the two sides of the splitter which contributes
to the lift felt by the plate. Moreover, because of the structure of the equations, one can
satisfy the Cauchy-Schwarz inequalities for the turbulent stress, also called the realizability
conditions. In the limit of small velocity differences between the two merging flows behind
the splitter, we predict an angular spreading of the turbulent domain proportional to the
square root of the velocity difference, in agreement with experiments.

DOI: 10.1103/PhysRevFluids.6.074603

I. INTRODUCTION

One fundamental result in fluid mechanics goes back to Newton’s Principia and states that at
large constant velocity (large Reynolds number in modern terms) the drag force on a blunt body is
proportional to the product of the square of its velocity, the cross section, and the mass density of
the fluid. This remarkable result is not trivial, because it is fully independent of the viscosity, that
is a priori responsible for the dissipation in fluids. An explanation is that dissipation takes place
in singular events [1] resulting from the evolution described by Euler inviscid equations. Although
viscosity becomes relevant in the final stage of this evolution, the amount of energy dissipated there
is independent of the viscosity, because it is the energy present both initially and in the final stage
of the singular solution which is fully described by the energy-conserving Euler dynamics [2,3].
This explanation based on singular events is the one we adopt here following Ref. [4], where it
was shown that this approach leads to an expression of the turbulent stress tensor formulated in
terms of the time-averaged velocity field, which is nonlocal in space. The nonlocality follows from
the constraint that all physical parameters depend on the average velocity field; i.e., they are not
adjusted to experiments. This constraint is the key leading to our model for the Reynolds stress
tensor (RST), defined by the correlation of the velocity fluctuations U′ by the relation (neglecting
the contribution of the viscous stress)

σ Re
i j (X) = ρ〈U ′

i (X)U ′
j (X)〉, (1)
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where 〈·〉 means a time average. Defining U (X) (without brackets in order to lighten the writing) as
the time average of the velocity, our nonlocal model for the Reynolds stress belongs to the class of
equations written as the sum of two contributions

σ Re
i j (X) = σ̃ Re

i j (X) + σ
Re,p
i j (X), (2)

where the second term is the nondiagonal tensor

σ̃ Re
i j (X) = γ̃ ρ|∇ × U(X)|1−α

∫
dX′|∇ × U(X′)|α

(
1

|X − X′| − 1

|X′|
)

(Ui, j + Uj,i )(X′) (3)

and the second term on the right-hand side (rhs) of Eq. (2) is the diagonal tensor

σ
Re,p
i j (X) = δi jγ ρ|∇ × U(X)|1−α

∫
dX′|∇ × U(X′)|α+1

(
1

|X − X′| − 1

|X′|
)

. (4)

In Eqs. (3) and (4) the exponent α is such that 0 < α < 1, and γ̃ and γ are dimensionless constants.
Those three quantities have to be found either by analyzing experimental results and/or numerical
simulations. In Eq. (2) the indices i and j are for the Cartesian coordinates, and δi j is the Kronecker
symbol. They should not be confused with the two indices 1 and 2 attributed to the two sides of
the mixing layer later in this paper. Above and elsewhere we use the notation with a comma in the
subscript to denote derivation, so that Ui, j is for ∂Ui

∂Xj
.

Our model is not derived from the full unclosed rate equation for the Reynolds stress tensor
because this would require to know how singular events appear in incompressible Newtonian flows,
an open question to date. Let us explain the way the Reynolds stress σ Re

i j is built. As one can check
it has the same scaling properties as the turbulent stress imagined long ago by Boussinesq; namely,
it scales like velocity square times ρ. However, it has some features requiring to be explained. The
first obvious feature of this equation is that it is obviously not invariant under spatial translation,
because the counter term 1

|X′ | in the integral kernel introduces an (unspecified) origin of coordinates
from which the vector X′ is measured. This breaking of the translational invariance is not surprising
by itself, because the turbulent Reynolds stress depends on the average properties of the turbulent
fluctuations (see below), which depend on the geometry of the walls limiting the fluid. In the case of
a fluid bounded by walls, an extended version of the integral kernel is to take the Green’s function of
the Laplace operator with Dirichlet boundary conditions. This would amount to replace in Eqs. (3)
and (4) the integral kernel ( 1

|X−X′ | − 1
|X′| ) by K (X, X′), where K is the solution of Laplace’s equation

with respect to the variable X :

∇2K (X, X′) = δD(X − X′), (5)

where δD is Dirac’s delta function. The solution of Eq. (5) must satisfy the boundary condition that
the turbulent stress vanishes on the solid surfaces limiting the fluid. Generally speaking, one of the
many questions raised by turbulence modeling is precisely the way boundary conditions for the
stress are imposed. In the present theory this is done thanks to the (nontrivial) choice of the kernel
K (X, X ′), which depends on the geometry of the turbulent flow.

Here we deal with the mixing layer setup where a half-infinite splitting plate ends up on the line
defined by the Cartesian equation x = y = 0 (see Fig. 1). Because this mixing layer has a simple
geometry it is natural to take as the origin of the coordinates a point on the edge of the splitter,
as we do. This is justified by the fact that, without this counter term in the integral equation, the
integral (over the variable z, along the edge of the splitter) diverges logarithmically. Subtracting
this counter term one finds a converging result because the divergence of the two terms cancels
each other. Moreover, including this counter term, the turbulent stress scales like the product of ρ

by the square of a velocity square. More complex physical situations, like the one of a turbulent
flow around an obstacle like a sphere or a turbulent Poiseuille pipe flow, require to introduce the
more complex integral kernel K (X, X′) defined by Eq. (5), because a significant question is the
convergence of the integral in Eq. (3). Given that the integrand of Eq. (3) is proportional to the
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FIG. 1. Cross section of a mixing layer in the plane (x, y). The obstacle is a semi-infinite plane, located in
the domain (x < 0, −∞ < z < ∞); the incident flow has different velocities U1 and U2 above and below the
obstacle. Behind the obstacle, a turbulent wedge is formed, materialized by the two rays making angles θ1 and
θ2 with the x axis (in Landau’s description the flow is nonpotential inside this wedge).

fraction 1/|X − X′|, this integral may be diverging at large values of |X′| depending on how the rest
of the integrand behaves in this limit. For instance, if this integrand depends on a single Cartesian
coordinate of X′, the integral diverges logarithmically, a divergence that is canceled by subtracting
1/|X′| from 1/|X − X′| as done here. However, this implies a choice of origin of coordinates that
is not always possible in other geometries. For a Poiseuille flow in a circular pipe or between two
parallel plates, any choice of the origin of coordinates along the pipe will break the translational
symmetry in the direction of the flow. Therefore, one has to replace in those cases 1/|X − X′| by
the Green’s function K (X, X′) solution of Eq. (5) [5].

Another property of expressions (3) and (4) for the turbulent stress is the explicit occurrence
of the vorticity. Vorticity is known to play a central role in nonhomogeneous and nonisotropic
turbulence, because once vorticity is present, it is amplified by vortex stretching. Moreover, our
model agrees with Landau’s description of wakes (Sec. 35 in Ref. [6]), made up of two domains,
one potential and the other rotational. In the rotational (nonpotential) domain there is a kind of
equilibrium on average between the growth of vorticity, by vortex stretching and by injection from
the boundaries, and its damping in singular events. About the potential domain, Landau states that
“outside the region of rotational flow, the turbulent eddies must be damped and must be so more
rapidly for small eddies which do not penetrate far away in the potential domain (Sec. 36, p. 146,
2nd ed.).”

Expression (3) agrees with the basic constraints derived from the structure of Euler fluid
equations, except for the one of reversibility (which constrains smooth solutions but not singular
ones). We emphasize that a strong point of our paper is to introduce irreversibility in the Reynolds
stress tensor associated to Euler equations, because our starting point is that dissipation occurs
at singular events. This approach differs from standard Reynolds-averaged Navier-Stokes (RANS)
models where irreversibility is introduced via the dynamics of a dissipation field, which is question-
able for Euler equations. Indeed, as is well known, this dissipation field yields a nonsmooth velocity
field of Holder exponent 1/3 which excludes the writing of differential equation for its dynamics,
particularly because the (u · grad u) term becomes very singular at short distance if this scaling is
correct (something we do not believe; see our study based on Modane’s data in Ref. [2]).

Irreversibility is attached to expression (14) of the full stress tensor, where the first term of the
RST is the product of absolute value of the vorticity by the strain tensor components, which makes
the turbulent stress σ̃ Re

i j change sign when changing the sign of U , whereas the inertia stress ρUiUj

and σ
Re,p
i j do not change sign. In our picture of turbulence the irreversibility is due to the evolution

toward finite time singularities of the Leray type [1], the solution disappearing close to the collapse
time due to molecular dissipation at small scales, so that dissipation will ultimately yield the friction
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of Newton’s drag law. This picture of dissipation at collapse time is analogous to Maxwell’s theory
of the molecular viscosity of gases [7], where the velocity difference between two colliding particles
induced by a macroscopic shear flow reduces to zero when the particles collide, transforming the
energy of this velocity difference into heat. As just written, σ Re,p

i j does not change sign as U changes
sign. Therefore, the addition of σ Re,p to turbulent stress will represent a contribution to this stress
that does not participate in friction, that is possible a priori. In particular in the geometry of the
mixing layer, the σ Re

zz component of the stress cannot enter into the friction which, by symmetry, is
a force directed along the x axis. Therefore, dissipation must depend only on the σ Re

i j components
with at least one index i or j equal to x, that excludes σ Re

zz .
Let us return to the nonlocal property of our model. The nonlocality has a double origin: one is

the time-averaging process that defines the RST components 〈U ′
i (X)U ′

j (X)〉 and the velocity U; the
other is related to the nonlocal equation for the pressure. However, the latter point (pressure) is not
essential in our model (see below), although it is so in the strategy for closure in RANS models.
Our interpretation is rather than nonlocality is due to the time-averaging process which amounts to
considering that the velocity fluctuations U ′

j propagate information from one point to others, which
give expressions of the RST components depending on the mean velocity U (time average) at spatial
points different from those where the RST is calculated.

Let us now explain why we add the diagonal tensor σ
Re,p
i j to the tensor σ̃ Re

i j (σ Re,p
i j was not added in

our previous paper [4]). This is done because the trace of σ̃ Re
i j is proportional to the divergence of the

velocity field, ∇ · U = Ui,i (with summation on repeated indices), which is zero for incompressible
fluids. The null trace of the tensor σ̃ Re

i j is not compatible with the definition of the Reynolds stress
tensor in Eq. (1) which implies that all diagonal elements must be positive, and must be related to the
off-diagonal elements by the Schwarz inequality [see Eq. (F7) in Appendix F, these two conditions
being named realizability condition [8]).

In our model the diagonal tensor σ
Re,p
i j plays the role of a time-averaged pressure, called turbulent

pressure below. Let us notice that the trace of the diagonal tensor σ
Re,p
i j , which is twice the turbulent

kinetic energy, is caused by the vorticity and depends on the spatial coordinates, although it is
assumed to be constant, equal to the dissipation rate ε, in the case of homogeneous and isotropic
turbulence, giving rise, for instance, to the eddy-viscosity-based models like the k-ε and the k-ω
models. This tensor σ

Re,p
i j has to be added to the usual time-averaged pressure (also spatially

dependent) which exists without vorticity. Recall that in dynamical equations for incompressible
inviscid flows the pair (U, p) is not unique, because p is a scalar gauge field defined up to an
additive constant. In other words the pressure is not an independent variable, but a Lagrangian
multiplier necessary to ensure the compressibility, since it fulfills the relation ∇p = Ui, jU j,i. In
the mixing layer case with quasiequal incoming velocities the conditions are fulfilled by taking
equal coefficients γ̃ = γ in Eqs. (3) and (4). In other cases we expect that the factor γ in turbulent
pressure can be adjusted to satisfy the constraints of the realizability. Actually the turbulent pressure
is not used below for the calculation of the components Ui; it is just introduced to ensure that the
realizability conditions are fulfilled (see Sec. III B 2).

In summary, our model of the Reynolds stress contains a part which is linear with respect to the
strain tensor τi j plus the turbulent pressure,

pturb = σ
Re,p
ii , (6)

whose source is the vorticity [see Eq. (4)]. The link between the pressure and the vorticity is also
in agreement with the fact that turbulence is characterized by vorticity in real turbulent flows. Note
that it is well known that vorticity is a source of low pressure in incompressible fluids, irrespective
of the sign of the vorticity, which makes the turbulent wake domain suck part of the flow of the
potential domain, leading for example to the Coanda effect [9]. The interest of introducing this
turbulent pressure will hopefully be more obvious in the case of the turbulent mixing layer studied
below. First we solve the equation for the balance of momentum by eliminating the scalar pressure,
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which allows to obtain an analytical expression for the average velocity field. In a second step we
set an expression for the total scalar pressure,

pt = pturb + p, (7)

including the average of the standard thermodynamical pressure p (associated to the so-called RANS
equation) and the turbulent pressure. The latter is computed by using Eq. (4), and the standard
pressure is the difference between the total pressure and the turbulent pressure.

The present work is mainly devoted to the application of the model of turbulence, Eqs. (3) and
(4), to a given situation, and so we leave aside a discussion about their validity as compared to
existing models of turbulence [10] developed after the seminal paper of Launder et al. [11]. We
emphasize that conventional Reynolds-averaged Navier-Stokes modeling for the Reynolds stress
is mostly designed for numerical applications although we present here analytical results for the
mixing layer (with two incident velocities along the plate) where turbulence is localized in a thin
wedge behind a semi-infinite plate. As written above, the lack of knowledge of singular solutions
for Euler equations, which are (in our opinion) responsible for the dissipation in the limit of large
Reynolds number, impedes to derive a Reynolds stress model directly from Navier-Stokes or Euler
equations. One can hope that one day the understanding of singular events will be good enough to
derive a model from the Reynolds stress tensor full equation, but one has to be patient since it took
about 300 years to progress from Newton’ s viscosity idea, to Stokes and Navier’s formatting and
finally complete justification by Enskog (for gas) and by Green-Kubo for dense fluids.

Let us notice that a first difficulty met when trying to compare the present model with other
models of turbulence with transport equations for averaged quantities is that those models give
access in principle to time-dependent fluctuations. As our model is essentially a model for time-
averaged quantities, a comparison would imply to choose to compare with the time average of the
transported quantities or their instantaneous value. Another difficulty is that we aim at modeling the
infinite Reynolds number limit whereas the Reynolds number of the time-dependent simulations is
finite, usually in the range of a few hundreds, arguably quite different from the infinite Reynolds
limit. Lastly many different models of turbulence exist with fairly different equations, showing
perhaps that the last word has not been said in this field. In this respect a comparison of our results
for the mixing layer with experiments and/or direct numerical simulations without modeling would
be significant. Note in particular our clear prediction for the dependence of the spreading angle with
respect to small velocity differences.

Below we consider the case of the mixing layer where the equations written in polar coordinates
depend on one variable only, the angle. Section II is devoted to the relatively nontrivial task of
writing Eq. (3) fully explicitly and to derive the equation for the balance of the total stress �i j

resulting from it, this tensor being the sum of the turbulent stress, the pressure, and the inertia stress
[see Eq. (14)]. In Sec. III we solve this problem for a small velocity difference of the two merging
flows. The details of the calculations are postponed to the Appendixes in order to lighten the main
part of the paper.

II. FORMULAS IN POLAR COORDINATES

In this section we derive in polar coordinates the explicit equation for the balance of stress. The
whole calculation is fairly complex and is done by using mixed coordinates, polar coordinates for
the argument of the functions, and Cartesian coordinates for the velocity field and the stress tensor.

A. Stress balance in polar coordinates

We consider the turbulent wake behind a semi-infinite plane board (the splitter) supposed to
be horizontal in the plane (x, z), limited to the domain x < 0, and submitted to two inviscid
parallel flows with different velocities in the x direction, the upper one with velocity U1 and the
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lower one with velocity U2, schematized in Fig. 1. No fluid parameter depends on the coordinate
z perpendicular to the plane (x, y).

Because of symmetries of the equations and of the geometry, the time average of the velocity
depends on the angle only, which leads us to use cylindrical coordinates (r, θ, z). The present
derivation can be extended to other flow geometries where the velocity field depends on an angle
only, like, for instance, a uniform parallel flow impinging an inclined plate at high Reynolds number.
This assumption of a large Reynolds number implies that we consider what happens at distances
from the splitter large enough to make the corresponding Reynolds number large. In this limit
viscous effects as negligible so that, as had been shown by Prandtl, the average velocity in this
plane depends on the polar angle θ only, with θ increasing from θ = 0 on the x axis, to π/2 on
the vertical axis y, to π on the upper part of the plate and symmetrically to −π on the lower part.
Setting θ = 0 on the x axis, the coordinates x and y are related to the angle θ and the radius r by

x = r cos θ, (8)

y = r sin θ. (9)

The incompressible time-averaged velocity field U is in the plane (x, y) and is given by the
stream function � = rg(θ ), where the function g(θ ) is to be found. Let the Cartesian components
of the velocity U be Ux = u and Uy = v in the directions x and y, respectively. From u = −�,y and
v = �,x where the comma denotes partial derivatives, one has

u = −(g sin θ + g′ cos θ ), (10)

v = gcos θ − g′ sin θ, (11)

where g′ = dg
dθ

. Hopefully, no confusion will arise between this symbol of derivation and the primed
notation X ′ for coordinates in Eqs. (3) and (4) and below in Eq. (13). The z component of the curl
of the velocity field is the only nonvanishing component of the vorticity given by

∇ × U(X) = 1

r
(g + g′′)ez, (12)

where g′′ = d2g
dθ2 and ez is the unit vector along z.

The integration over the coordinate z′ in Eqs. (3) and (4) can be performed because the variable
z′ occurs only in the denominators in 1

|X−X′ | − 1
|X′ | . The result is

∫
dz′

(
1

|X − X′| − 1

|X′|
)

= ln

[
a(r, r′, θ − θ ′)
a(0, r′, θ − θ ′)

]2

, (13)

where

a2(r, r′, θ − θ ′) = r2 + r′2 − 2rr′ cos(θ − θ ′).

The next step in this calculation is to write explicitly the condition of balance of momentum. Let
us define the full stress tensor �i j , which is the sum of three terms involving the contribution of
inertia, Reynolds stress, and pressure pδi j :

�i j = ρ UiUj + σ Re
i j + pδi j . (14)

Within our model (2) it can also be written in the form

�i j = ρ UiUj + σ̃ Re
i j + (p + pturb)δi j, (15)

which is the one used below in order to get the expression of the average velocity as a function of
θ . In Cartesian coordinates the balance of momentum, which does not depend on z, is given by the
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two conditions

�xx,x + �xy,y = 0 (16)

and

�yy,y + �xy,x = 0. (17)

In polar coordinates Eqs. (16) and (17) become the two following ordinary differential equations
(ODEs) with respect to the variable θ :

−(sin θ )�xx,θ + (cos θ )�xy,θ = 0, (18)

(cos θ )�yy,θ − (sin θ )�xy,θ = 0. (19)

Let us consider the contributions of the first two terms in Eq. (15) up to a global multiplication by
the mass density ρ that will not be written explicitly. The contribution of UiUj is expressed simply
in terms of the stream function as

U 2
x = u2 = (g sin θ + g′ cos θ )2, (20)

U 2
y = v2 = (gcos θ − g′ sin θ )2, (21)

UxUy = uv = sin θ cos θ (g′2 − g2) + gg′(sin2 θ − cos2 θ ). (22)

At this step the unknown functions are g(·) and the pressure p, depending both on θ only. It is
possible to eliminate the pressure by taking the curl of the two ODEs for the stress tensor, as usually
done in this kind of problem. However, in the present case one more step can be made because the
tensor �i j and the pressure p depend on θ only. It follows that the pressure appears by its derivative
with respect to θ only, in Eqs. (18) and (19). Therefore, one can eliminate the pressure from those
equations by algebraic handling, without increasing the order of derivation in the final equation. Let
us define �̃i j as �i j without the total pressure term defined in Eq. (7):

�i j = �̃i j + ptδi j . (23)

After straightforward algebra the components of �̃i j satisfy the following single equation without
the pressure, and with g(θ ) as the single unknown function:

sin θ cos θ (�̃yy,θ − �̃xx,θ ) + (cos2 θ − sin2 θ )�̃xy,θ = 0, (24)

which is the basic equation to be solved. Recall that the stress �̃i j is the sum of the inertia term
UiUj plus the stress tensor σ̃ Re

i j given in Eq. (3), both being a function of the time-averaged velocity
field and ultimately of the stream function of the same averaged velocity � = rg(θ ), g(·) being the
unknown function to be found by solving Eq. (24). From the computational point of view, Eq. (24)
is formally independent of the isotropic part of the stress, coming from the pressure. Either Eq. (18)
or Eq. (19) can be used to find the total pressure, both equations being compatible because of the
way Eq. (24) is derived. Using polar coordinates, Eqs. (18) and (19) lead to the relation

1

ρ
(pt ),θ = − sin2 θ �̃xx,θ − cos2 θ �̃yy,θ + 2 sin θ cos θ �̃xy,θ . (25)

Looking at the literature on the theory of the mixing layer one finds often a somewhat expeditious
treatment of the pressure gradient which is set rather arbitrarily to zero. This seems not justified at
least for a number of reasons. First, pressure in the equations of incompressible fluid mechanics
is necessary to impose incompressibility. In the present problem, if p,θ is set to zero arbitrarily,
there is a conflict because one has the two Eqs. (18) and (19) for one unknown function [g(·) here].
Neglecting the pressure term is also unphysical because this pressure depends on θ in such a way
that it tends to different values as θ tends to π and −π . This nonzero pressure difference yields the
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lift force on the semi-infinite plate that is the integral along the surface of the plate of the pressure
difference given by the following expression:

pt (π ) − pt (−π ) =
∫ π

−π

dθ (pt ),θ . (26)

where (pt ),θ is given by Eq. (25). Furthermore, this pressure difference is also needed to balance
the loss of energy in the turbulent mixing layer.

B. Stress tensor σ̃i j

As defined in Eq. (3), the stress tensor σ̃i j depends (linearly) on the rate of strain tensor τi j

defined as

τi j = Ui, j + Uj,i. (27)

Introducing the stream function � = rg(θ ) in Eq. (27), the components of the strain tensor τi j

become

τxx = 2

r′ sin θ ′ cos θ ′(g + g′′) = −τyy, (28)

τxy = sin2 θ ′ − cos2 θ ′

r′ (g + g′′). (29)

The relation τyy + τxx = 0 is a straight consequence of the incompressibility in two dimensions. As
explained in the Introduction, it shows that the contribution σ̃i j to the stress tensor σi j does not meet
the requirement of realizability by itself, because the trace of the Reynolds stress has to be positive,
whereas the tensor σ̃i j has a vanishing trace. Recall that the diagonal tensor σ

Re,p
i j called turbulent

pressure has been added to σ̃ Re
i j in Eq. (2) in order to correct this point.

To lighten the coming algebra, let us introduce a new tensor τ̃i j defined by

τi j = 1

r
τ̃i j (θ ) (30)

in order to split the integrals in Eqs. (3) and (4) into one involving the angle only, multiplied by
another one involving r′ which can be carried explicitly. The problem of writing explicitly the
momentum balance is now reduced to an integral equation for θ -dependent functions only.

1. Momentum balance

Because the dependence on z and z′ is only in the denominators of ( 1
|X−X′ | − 1

|X′ | ), the integral
over z′ can be carried explicitly. Now concerning the integration over the variable r′ in the defi-
nition of σ̃ Re

i j (X), the integral written in Eq. (3) reduces to |(g + g′′)(θ ′)|ατ̃i j (θ ′)
∫ ∞

0 dr′r′−α ln(1 +
(r/r′)2 − 2(r/r′) cos(θ − θ ′)), where τ̃ is defined in Eq. (30). Setting ζ = r′/r allows to get rid of
the variable r, and we get

σ̃ Re
i j (X) = ρ γ̃ |(g + g′′)|1−α

∫
dθ ′ τ̃i j (θ

′) |(g + g′′)(θ ′)|αI (θ − θ ′), (31)

where the kernel I is defined by the relation

I (θ − θ ′) =
∫ ∞

0

dζ

ζ α
ln(

1 + ζ 2 − 2ζ cos(θ − θ ′)
ζ 2

). (32)

This integral converges if 0 < α < 1 as assumed. Integrating by parts one obtains

I (θ − θ ′) = 2

1 − α

∫ ∞

0

ζ−αdζ

1 + ζ 2 − 2ζ cos(θ − θ ′)
(1 − ζ cos(θ − θ ′)). (33)
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(b)(a)

FIG. 2. (a) Functions Î(ξ ) versus ξ = cos(θ − θ ′) for α = 1/2; the numerical curve (solid line) is very well
fitted by 8.88577

√
1 − ξ (dashed line). (b) Behavior of Î(ξ ) versus ξ = cos(θ − θ ′) for small values of θ − θ ′,

and various values of the exponent α written explicitly close to the curves. In the full domain −1 � ξ � 0 the
coefficients in Eq. (36) are a = −21.5, b = 9.3, and c = 16 for α = 1/10, and for α = 3/4 the coefficients are
a = 25.2, b = 8.4, and c = −0.8.

The equation to be satisfied by g(·) will be deduced by putting all the above results into Eq. (24).
Consider first the contribution of the term of inertia, namely, the tensor UiUj when dropping the
factor ρ. Defining by C its contribution to the left-hand side of Eq. (24), which can be written as a
quantity quadratic with respect to g and its derivatives, we get the simple looking result

C = −g(g + g′′) (34)

(see Appendix A for details). Let us call D the other contribution to the left-hand side of Eq. (24)
which comes from the turbulent stress. Using the expressions given above, one obtains

D = −γ̃
d

dθ

(
|(g + g′′)(θ )|1−α

∫ π

−π

dθ ′I (θ − θ ′)
)

|(g + g′′)(θ ′)|α (g + g′′)(θ ′) cos 2(θ − θ ′) (35)

as detailed in Appendix B. The integral over θ ′ is carried over the full angle, namely, from −π to π ,
even though the mixing layer is expected to be concentrated near θ = 0. However, we assume that
the perturbation to the incoming potential flow, which extends itself to the full angular domain, has
a very small amplitude far from the angular wedge of the mixing layer. This view is confirmed by
the calculation done in Sec. III in the limit of a small velocity difference between the two sides of
the mixing layer, and by experiments. Looking at the literature it is not obvious to see if a strictly
bounded turbulent wedge is predicted, which poses the problem of the condition across the limit
of this region or if a smooth continuity exists between the potential flow and the turbulent layer.
Practically the matter is not that meaningful since a turbulent domain penetrating into the potential
flow with an exponentially decaying amplitude does not make much difference with an exactly
bounded nonpotential domain.

Setting ξ = cos(θ − θ ′) and Î (ξ ) = I (θ − θ ′), we observe (see Fig. 2) that the function Î(ξ ) is
very well fitted by a low-order polynomial in powers of

√
1 − ξ ,

Î (ξ ) = aα + bα

√
1 − ξ + cα (1 − ξ ) (36)

or I (θ − θ ′) = aα + bα|θ − θ ′| + · · · , where the numerical coefficients aα, bα, . . . depend on the
exponent α (see Fig. 2 caption). The curves in Fig. 2(b) display the behavior of Î (ξ ) for ξ close to
unity, namely, for small values of θ − θ ′, and for three different values of α.
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The problem of computing the average properties of the turbulent mixing layer has been reduced
to the search of solutions of the equation

C + D = 0, (37)

where C and D, given by Eqs. (34) and (35), are functions of g(θ ) and its derivatives. Those
equations have an interesting and nontrivial structure reflecting the fundamental principles from
which they have been derived. Of course they do not at all include explicit dependence on quantities
like a length or a time. Moreover, they are both quadratic with respect to g(·), as a consequence
of the fact that no velocity scale should be introduced, besides the one arising from the average
velocity itself. Equation (37) has an obvious solution g = −U sin(θ − θ0) with arbitrary constants
U and θ0, coming from

g + g′′ = 0. (38)

However, this solution corresponds to a uniform velocity of strength U in a direction depending
on the arbitrary angle θ0 that does not correspond to the case of the mixing layer treated here. The
problem of the mixing layer corresponds to a solution of Eq. (37) with a boundary condition for
g(θ ) deduced from the condition that u tends to U1 and U2 respectively as θ tends to ±π (U1,2

being the incident velocities above and below the board; see Fig. 1), and v tends to zero because
the incident flow is parallel to the board. Were those two values U1,2 the same, the solution is just
g = −U sin θ , namely, a uniform flow on both sides of the splitter. Below we look at the case where
the two different values U1 and U2 are close to each other. Because of the nonlinear character of
Eq. (37), this makes already a nontrivial question.

2. Pressure difference on the two sides of the plate

Let us return to the general relation (26) for the difference of pressure between the upper and
lower parts of the plate. Equation (14) without the pressure term is

�̃i j = ρ UiUj + σ̃ Re
i j (X). (39)

We show in Appendix C that the derivative of the pressure with respect to the angle θ is given by
the integral

(pt ),θ (θ ) = −ρ γ̃

∫ π

−π

dθ ′ d

dθ

(|(g + g′′)(θ )|1−αdθ ′I (θ − θ ′)
)|(g + g′′)(θ ′)|α sin 2(θ − θ ′). (40)

Looking at the definition of �̃i j in Eq. (39), we emphasize that the gradient of the total pressure is
caused by the effect of the stress tensor, σ̃ Re

i j , since the first term UiUj yields a null contribution to
relation (25) leading to the expression of (pt ),θ in Eq. (40). Integrating by parts Eq. (40), we get the
following relation for the pressure difference between the two sides of the board:

pt (π ) − pt (−π ) = 2ρ γ̃

∫∫ π

−π

dθ dθ ′|(g + g′′)(θ )|1−αI (θ − θ ′)

× |(g + g′′)(θ ′)|α (g + g′′)(θ ′) cos 4(θ − θ ′). (41)

III. LIMIT OF SMALL VELOCITY DIFFERENCE

A. Scaling law between δθ and η

From the way the turbulent mixing layer is described, there is one dimensionless number in the
data, the relative velocity difference

η = U1 − U2

U1 + U2
. (42)
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Therefore, besides scaling parameters like the mean velocity U = (U1 + U2)/2, every observable
quantity of the mixing layer depends on the ratio U1−U2

U1+U2
, especially the angle δθ of the turbulent

wedge. The relation between the angle δθ and the dimensionless velocity difference η is the most
obvious function to be investigated. It would be used to test theories.

After looking at various possibilities for the relationship between η and δθ in the limit where
both quantities are small, we found only one way to derive such a relation. It is based upon the fact
that the balance of stress depends on the unknown function g(θ ) only. Moreover, g appears both in
C and in D through the combination (g + g′′), except for the prefactor g in C which is crucial for
finding the relation between δθ and η. All the analysis relies on the behavior of u, v, and g for small
values of the two small parameters δθ and η.

In the present section we derive an estimate of the scaling relation between δθ and η, leaving the
quantitative study to the next section. Let us expand the functions u, v, and g in powers of η in the
form f (θ ) = f (0) + η f1 + · · · .

Assume first that η = 0 which is the case of a uniform velocity flow incident on the board in the
x direction. In this case there is no turbulent flow behind the board. It follows that the zero-order
solution is {

u(0) = U and v(0) = 0
g(0)(θ ) = −U sin θ, (g + g′′)(0) = 0.

(43)

For small θ the approximation g(0) ≈ −Uθ has to be used with caution because we deal with
expressions having derivatives with respect to θ which are expected to change rapidly in a small
interval of width δθ . This fast dependence is linked to the need to extrapolate the velocity field, from
its value U1 on one side of the mixing layer to U2 on the other side. The corresponding correction to
u(·) of order η is

u(θ ) = U (1 + ηu1(θ )) + · · · , (44)

where u1 is of order unity because the velocity u(θ ) is equal to U for θ = 0 and equal to U (1 ± η)
for θ = ±π . Similarly we can set

g = g(0) + ηg1, (45)

having in mind that g1 is not necessarily of order unity, because the terms g1 and g′
1 are linked to u1

by the relation

g1 sin θ + g′
1 cos θ = −Uu1. (46)

Equation (46) can be approximated by taking into account the small angular spreading δθ of the
mixing layer which makes the successive derivatives of g1 bigger and bigger; more precisely we
have g′

1 ∼ g1/δθ , g′′
1 ∼ g1/(δθ )2. Therefore, Eq. (46) gives g′

1 ∼ U , or

g1 ∼ Uδθ, (47)

which proves that g1 is not of order unity, as announced above. In summary at first order with
respect to η one has (g + g′′)(1) ≈ ηg′′

1 ∼ ηg1/(δθ )2 which becomes (g + g′′)(1) ∼ U/δθ when using
relation (47), or

(g + g′′) ∼ ηU/δθ. (48)

Taking this order of magnitude for (g + g′′) in D, giving to θ the order of magnitude δθ , and
assuming that I (θ − θ ′) is constant in the small wedge, and nonzero, one can estimate D ∼ (g′′)2.
Consider now C, which has the magnitude g(g + g′′) ∼ g(0) (g + g′′). The relation C + D = 0 leads
naturally to the constraint that, if C and D are of the same order of magnitude, then g(0) ∼ g′′ or
using Eqs. (43) and (48),

δθ ∼ η1/2. (49)
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Note that in the peculiar case of the exponent α = 1/2 (and close to this value), discussed in
Appendix D, the above scaling is not valid because I (0) = 0 as shown in Fig. 2(a). Instead of
this approximation, we have to consider the solution I (θ − θ ′) = b|(θ − θ ′)| written in the caption
of this figure, which is of order bδθ . In that case the condition C + D leads to the linear relation

δθ ∼ η for α = 1/2. (50)

The estimate in Eq. (49) is interesting because it shows a kind of amplification of the fluctuations,
at least in this small-η limit. As far as the order of magnitude is concerned, η can be seen as a
dimensionless measurement of the given velocity difference driving the instability. It is quite natural
to compare it to the amplitude of the velocity fluctuations taking place inside the turbulent wedge.
As shown in Sec. III B 2, the variance of the velocity fluctuations 〈u′2〉 is of order η3/2U 2 [see
Eq. (63)], which is much larger (as η tends zero) than the square of velocity difference across the
mixing layer, (U1 − U2)2, of order η2U 2.

Another point of interest is the extension of the estimate of the angular width of the turbulent
wedge to other situations. We already noticed that such wedges should appear when a parallel flow
hits a half plane making a nonzero angle with the flow direction. Applying the same idea as above to
this situation one can find the order of magnitude of the angle of the turbulent wedge in the limit of
large Reynolds number. In this limit the perturbation (similar to η above) brought by the half plane
is the angle β of the half plane with respect of the incoming flow. Let us assume that this angle is
small. Because it enters in the boundary conditions in the equations for the function g(θ ) like the
boundary condition on the two sides of the splitter plate, we could conjecture that the relationship
between β and δθ displays the same power law as the one between β and δθ , namely,

δθ ∼ β1/2, (51)

which also involves geometrical quantities only.

B. Solution for small η and δθ

Here we go further than scaling relations, by deriving the solution for the time-averaged velocity
field for small values of η and δθ , that allows to give to Eq. (49) a quantitative expression. As usual
in this kind of analysis, once the relationship between the various quantities is found, one can get
a parameterless equation to be satisfied by the unknown function. In the present case it amounts to
finding the equation for u1 and g1 defined in Eqs. (44) and (46) as a function of the angle

θ̃ = θ/δθ, (52)

where δθ is positive, linked to η, and should agree ultimately with relation (49). In the final stage
of our derivation the small angle δθ will be defined as the half width at half height of the velocity
derivative u′(θ ) (see Fig. 4 in Appendix D). In order to handle functions of θ̃ which are of order
unity, we define g̃1(θ̃ ) and its derivative with respect to θ̃ by the relations

g1(θ ) = Uδθ g̃1(θ̃ ), g′
1(θ ) = Ug̃′

1(θ̃ ), g′′
1(θ ) = U

δθ
g̃′′

1(θ̃ ). (53)

The derivation of the solution of the equation for g′′
1(θ ) is detailed in Appendix D. This equation for

g′′
1(θ ) is deduced from C + D = 0 written in terms of the tilde quantities which becomes

θ̃ g̃′′
1 = γ̃I (0)J̃ 1 − α

α
|g̃′′

1(θ̃ )|−α d

d θ̃
|g̃′′

1(θ̃ )|. (54)

The solution of Eq. (54) is of the form

|g̃′′
1(θ̃ )| = G0

(
1 + (

θ̃

θ̃c
)2

)−1/α

, (55)
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(a) (b)

FIG. 3. (a) Profile of the x component of the velocity versus θ/θc, Eq. (57), for two values of the exponent,
α = 0.25 for the solid red line, α = 0.75 for the dashed blue line. The increment �u = u − U is scaled to
ηU = (U1 − U2)/2 and the polar angle θ is scaled to θc = δθ θ̃c with θ̃c given in Eq. (D20). The asymptotic
values of u are U1 (respectively U2) as θ tends to ±∞. (b) Profile of the y component of the velocity, Eq. (58)
versus θ/θc for α = 0.25; v is scaled to v(0) = −(1/2)η3/2k1/2(U/dα )α/(1 − α).

where θ̃c is a number which depends on the value of the exponent α [see Eq. (D25)], and G0 =
−g̃′′

1(0) is positive and depends on the solution itself. Indeed we point out that in order to solve
Eq. (54) one has to solve the bootstrap condition that J̃ is given by the value figuring in the solution,
and to take into account the behavior of the solution at the boundaries. This procedure allows to get
the following quantitative relation between the two small parameters δθ and η:

δθ2 = η

(
γ̃I (0)

4

θ̃2
c

1 − α

α

cα

dα

)
, (56)

where all coefficients in the parentheses, θ̃c, cα , dα , and I (0), are numerical ones and dimensionless.
The coefficient γ̃ has to be of opposite sign with respect to I (0), so it must be negative for α < 1/2
and positive for α > 1/2 [see Fig. 5(a), plotting I (0) versus α]. Note that besides this constraint,
the exponent α and coefficients γ̃ in front of the integral defining σ̃ Re

i j remain arbitrary and so need
to be fitted with experiments.

Unfortunately, few experiments have been made in the regime of small η, namely, with two
incident flows of quasiequal velocities U1 ≈ U2. Nevertheless, we found an experimental study
extending from η = 0.05 up to η = 0.6 [12], with many references to other works. In Table 3.2
of Ref. [12] the author compares his measurement of the turbulent wedge angle versus η with other
measurements. Only two experiments cover the range of small η values, the one of the author and

FIG. 4. Derivative of the velocity component, u,θ versus θ/θc, for η = 0.26, α = 3/4. The half width at
half height is indicated by the segment δθ = 0.02 (data of Ref. [12]) and Eq. (D20) yields θc = 0.025.
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(a) (b)

FIG. 5. (a) (1 − α)I(0) versus α [see Eq. (D27)]. (b) Ratio δθ2/ηγ̃ versus α given in Eq. (56). The product
γ̃I(0) has to be positive; then γ̃ < 0 for α < 1/2.

the one of Mehta [13]. In this domain both curves δθ versus η, display similar nonlinear behavior
[see Fig. 6(a)]. As detailed in Appendix E, in the range of small η, the two experiments agree with
the relation δθ ∼ η1/2 plotted in Fig. 6(b).

Let us recall that this scaling law was predicted (in the frame of our model) in the limit of small
η, and for α 
= 1/2, more precisely for I (0) much larger than bαδθ [see Eq. (36)], that would give
possible α values either close to unity, or close to zero. Moreover, from the curve in Fig. 6(b), one
may deduce the value of the ratio δθ/η1/2 that allows to fix the value of the free parameter γ̃ [see
Eq. (E1)], which depends on α as illustrated in Fig. 7.

Finally the profile of the longitudinal and transverse velocity components, deduced from solution
(55), are given by the expressions

u(θ ) − U = ηU

dα

∫ θ/θc

0
dy (1 + y2)−1/α, (57)

(a) (b)

FIG. 6. Angular width δθ from experimental data summarized in Table 3.2 of Ref. [12]: (a) Half angle of
the turbulent domain as a function of η and (b) same measure as a function of η1/2. In (a) the red points on the
solid line correspond to measurements made by the author of Ref. [12]. Their behavior surprisingly agrees with
that of data deduced from Ref. [13] (purple points, with ordinate enhanced by a factor of 2 for comparison).
In (b) the data reasonably agree with the prediction of our model, δθ ∼ η1/2 for small values of η and even
medium values. The blue line of (b) is drawn to compare experimental points with our prediction.
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FIG. 7. 103γ̃ versus the exponent α. The numerical value of the prefactor γ̃ is deduced from the data of
Ref. [12] and from relation (E1). Recall that in a domain close to α = 1/2, the approximation I(θ − θ ′) ≈ I(0)
is not valid because I(0) = 0 [see Fig. 2(a)].

where dα is the value of the integral for θ/θc = ∞, given in Eq. (D23), and

v(θ ) = − η3/2Uk1/2θ̃c

dα

α

2(1 − α)

(
1 + θ2

θ2
c

)− 1−α
α

, (58)

where θc = θ̃cδθ and k = δθ2/η is a constant deduced from Eq. (56),

k = γ̃I (0)
4

θ̃2
c

1 − α

α

cα

dα

, (59)

which is positive because the product γ̃I (0) must be positive. The profiles are drawn in Fig. 3. In
Fig. 3(a) the role of the exponent α appears artificially because of the scaled abscissa, although the
two curves have the same half width δθ by definition.

Let us notice that the solution found above for the velocity field is a solution of the third-order
ordinary differential equation (37) deduced from the model of Eqs. (3) and (4), although the velocity
field satisfies four boundary conditions (u − U = ±ηU and v = 0 on the slider sides). This was
possible because of the symmetry of the solution for small η values. But it could happen that for
η of order unity, one has to modify Eqs. (3) and (4) by including a kernel satisfying Eq. (5), as
written in the Introduction, a problem not treated here.

1. Pressure difference on the plates

Let us finally consider the order of magnitude of the pressure difference between the two plates.
As shown in Appendix C, we get

p(π ) − p(−π ) ∼ (ηU )2. (60)

Therefore, the difference of pressure reflects the lift force which is quadratic with respect to (U2 −
U1), as expected.

2. Order of magnitude of σ̃Re
i j and σ

Re,p
ii

As detailed in the Appendix F, the orders of magnitude of the components of σ̃ Re
i j are

{
σ̃ Re

xx = −σ̃ Re
yy ∼ η5/2

σ̃ Re
xy ∼ η3/2.

(61)

As expected these relations do not satisfy the realizability conditions (F7), because one diagonal
component is negative; moreover, σ 2

xy > σxx σyy which is invalid for correlation functions.
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Let us now consider the order of magnitude of the diagonal elements of the tensor σ
Re,p
i j defined

in Eq. (4). In the mixing layer case they become

σ
Re,p
ii (θ ) = ρ γ̃ |(g + g′′)|1−α

∫
dθ ′I (θ − θ ′)|(g + g′′)(θ ′)|α (g + g′′)(θ ′). (62)

They are of order (g′′)2 times δθ (which comes from the integration), which gives

σ
(Re,p)
ii ∼ η3/2, (63)

which is of the same order as σ̃ Re
xy . Therefore, the realizability conditions (F7) can be fulfilled by

the sum of the two tensors in Eq. (1). Moreover, the off-diagonal element σ̃ Re
xy contains an integrand

smaller than the diagonal one σ
(Re,p)
ii because of the presence of cos 2(θ − θ ′) in σ̃ Re

xy , compared to

unity in σ
(Re,p)
ii . It follows that the realizability conditions are fulfilled by taking the same constant

for the two tensors in Eqs. (3) and (4), namely, γ = γ̃ , that correspond to on-axis fluctuations 〈u′v′〉,
〈u′2〉, and 〈v′2〉 of quasiequal amplitude for small η within the frame of our model. However, the
ratio γ /γ̃ has to be adjusted with experimental results, which could give a value larger than unity,
although we have not found any profile of velocity fluctuations for small values of η, most of them
being concerned about ratios U1/U2 of order of a few units.

In summary, starting with a model including three free parameters, α, γ̃ , and γ , we have been
able to specify that the exponent α is different from 1/2 and to deduce the value of the two factors
γ̃ ≈ γ from the experimental slope of δθ/η1/2.

IV. CONCLUSIONS AND PERSPECTIVES

In this paper we wrote fully explicitly the integral equation for the balance of momentum
including the closure of the turbulent stress introduced in Ref. [4] on the basic assumption that
dissipation is caused by singular events described by solutions of Euler’s equation.

Notice that this fully explicit closure yields equations with all the expected scaling laws, which
is not surprising because the equations are derived to this end. In addition we emphasize that
quantitative properties can be put in evidence, including the effect of boundary conditions. This
point is nontrivial because the boundary conditions make often a nontrivial issue for integral
equations.

Our detailed analysis, applied to the turbulence behind the plate in the mixing layer setup, is
performed in the limit of a small velocity difference η. In this limit we have found only few
experiments reported; nevertheless, they agree with our prediction that the angular spreading of
the turbulent domain δθ scales as η1/2 for any values of the exponent α (except α ≈ 1/2 leading to
δθ ∼ η). From this agreement one is able to extract the value of one of the three free parameters α,
γ̃ , and γ of our model. The more general case of η of order unity is in progress. We hope it would
yield a deeper comparison between our model and numerical or experimental data. In particular this
would allow to give the value, even approximate, of the exponent α.

Of course one can also hope to get solutions of the momentum balance in situations more
complex than the one considered here. We think first to an axisymmetric wake like the one behind a
disk perpendicular to the incoming flow. In this case one has to consider two variables, the position
in the flow direction and the radius in the perpendicular direction, although the mixing layer study
deals with a single variable (the angle, which is the ratio of these two variables) , but the question
of imposing the boundary condition is nontrivial. We plan to study those flows in the near future.
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APPENDIX A: CONTRIBUTION OF THE INERTIA TO EQ. (24)

Here we derive Eq. (34) which represents the contribution of the inertia to Eq. (24). We have to
insert in Eq. (24) the first term UiUj of the tensor

�̃ = UiUj + σ̃ Re
i j . (A1)

With Ux = u and Uy = v, we get

C = sin θ cos θ
(
(v2),θ − (u2),θ

) + (cos2 θ − sin2 θ )(uv,θ + vu,θ ). (A2)

By definition of (u, v) in polar coordinates,{
u(θ ) = −(g sin θ + g′ cos θ )
v(θ ) = gcos θ − g′ sin θ,

(A3)

we have {
u,θ = −(g + g′′) cos θ

v,θ = −(g + g′′) sin θ.
(A4)

Inserting these derivatives in Eq. (A2) we obtain

C

g + g′′ = sin 2θ (−g sin 2θ − g′ cos 2θ ) + cos 2θ (−gcos 2θ + g′ sin 2θ ), (A5)

which reduces to

C

g + g′′ = −g, (A6)

or Eq. (34).

APPENDIX B: CONTRIBUTION OF THE STRESS TENSOR σ̃Re
i j TO EQ. (24)

Here we derive Eq. (35) which represents the contribution of the nondiagonal Reynolds stress
tensor σ̃ Re

i j to Eq. (24). We have to insert in Eq. (24) the second term of the tensor �̃ defined in
Eq. (A1), which gives

D = 1

2
sin 2θ (σ̃ Re

yy − σ̃ Re
xx ),θ + cos 2θ (σ̃ Re

xy ),θ . (B1)

Using Eq. (30) and Eqs. (28) and (29), the components of τ̃i j become{
τ̃xx = sin 2θ (g + g′′) = −τ̃yy

τ̃xy = − cos 2θ (g + g′′) = τ̃yx.
(B2)

Inserting these latter expressions in the integrand of Eq. (31), we get

D = B1 sin 2θ + B2 cos 2θ, (B3)

where

B1 = −γ̃
d

dθ

(
|(g + g′′)(θ )|1−α

∫ π

−π

dθ ′I (θ − θ ′)
)

|(g + g′′)(θ ′)|α (g + g′′)(θ ′) sin 2θ ′ (B4)

and

B2 = −γ̃
d

dθ

(
|(g + g′′)(θ )|1−α

∫ π

−π

dθ ′I (θ − θ ′)
)

|(g + g′′)(θ ′)|α (g + g′′)(θ ′) cos 2θ ′. (B5)

Equations (B3)–(B5) are equivalent to the compact form of Eq. (35).
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APPENDIX C: PRESSURE DIFFERENCE BETWEEN THE TWO SIDES OF THE PLATE

Here we derive expression (40) for the pressure gradient and the pressure difference (41) between
the two sides of the plate. Looking at the equation

(pt ),θ = − sin2 θ �̃xx,θ − cos2 θ �̃yy,θ + 2 sin θ cos θ �̃xy,θ (C1)

already written in Eq. (25), with �̃ defined in Eq. (A1), let us first consider the contribution of the
inertia term UiUj to this expression for p,θ . This contribution is the sum c1 + c2 with

c1 = −2uu,θ sin2 θ − 2vv,θ cos2 θ (C2)

and

c2 = 2(v u,θ + u v,θ ) sin θ cos θ. (C3)

Using Eqs. (10), (11), and (A4), we get the relation

c1/(g + g′′) = g sin 2θ cos 2θ − g′(sin 2θ )2 = − c2/(g + g′′), (C4)

which shows that the inertia term does not contribute to the gradient of pressure in such two-
dimensional (2D) geometry, as written in the text.

Consider now the effect of the tensor σ̃ Re
i j , defined in Eq. (3). Separating, as above, the diagonal

and nondiagonal terms of this tensor gives

(pt ),θ = d1 + d2, (C5)

with

d1 = −(σ̃ Re
xx ),θ sin2 θ − (σ̃ Re

yy ),θ cos2 θ = cos 2θ (σ̃ Re
xx ),θ (C6)

because τxx = −τyy, and

d2 = sin 2θ (σ̃ Re
xy ),θ . (C7)

Inserting in these relations Eqs. (28)–(30), we get

d1 = γ̃ ρ cos 2θ
d

dθ
[|(g + g′′)|1−α

∫
dθ ′I (θ − θ ′)] |(g + g′′)(θ ′)|α (g + g′′)(θ ′) sin(2θ ′) (C8)

and

d2 = −γ̃ ρ sin 2θ
d

dθ
[|(g + g′′)|1−α

∫
dθ ′I (θ − θ ′)] |(g + g′′)(θ ′)|α (g + g′′)(θ ′) cos(2θ ′). (C9)

By integration of d1 and d2 over the variable θ running from −π to +π , we obtain the presure
difference on the plate. Integrating by parts the two terms in Eq. (C5), and taking into account the
condition g + g′′ = 0 at the boundary which allows to cancel the constant term of this integration
(the term depending on the boundary values), we obtain

pt (π ) − pt (−π ) = 2γ̃ ρ

∫∫ +π

−π

dθ ′ θ ′ cos 2(θ − θ ′) |(g + g′′)(θ )|1−αI (θ − θ ′)

× |(g + g′′)(θ ′)|α (g + g′′)(θ ′). (C10)

From this expression we can derive the difference of pressure on the two sides of the plate in the
limit of small difference between the two incident velocities. Using the arguments developed in
Sec. III, we have (g + g′′) ∼ ηU/δθ in the turbulent domain of angular extension δθ . It follows
that the order of magnitude of the integrand in Eq. (C10) is of order (ηU/δθ )2, which has to be
multiplied by (δθ )2 to represent the order of magnitude of the pressure difference. We obtain

pt (π ) − pt (−π ) ∼ (ηU )2. (C11)
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We find that the lift force is quadratic with respect to (U2 − U1), as expected from the Kutta-
Zhukovsky theorem.

APPENDIX D: DERIVATION OF THE VELOCITY PROFILE AND RATIO δθ2/η

Here we derive the solution of C + D = 0 for small values of the two parameters η and θ .
Assuming that I (θ − θ ′) = I (0) and cos(θ − θ ′) = 1 in the integrand of Eq. (35) (see below for
the justification), we have to solve

−g(θ )(g + g′′) = γ̃I (0)J d

dθ
|(g + g′′)|1−α, (D1)

where

I (0) = 2

1 − α

∫ ∞

0
dζ

1

ζ α (1 − ζ )
, (D2)

J =
∫ ∞

−∞
dθ ′(g + g′′)(θ ′)|(g + g′′)(θ ′)|α. (D3)

In a second step, after having found the solution for g + g′′, we have to integrate{
u′(θ ) = −(g + g′′) cos θ

v′(θ ) = −(g + g′′) sin θ
(D4)

together with the four boundary conditions

u(±π ) = U (1 ± η), v(±π ) = 0. (D5)

Solution for g(0) ≈ −Uθ

For η = 0, the velocity components are

u(0) = U and v(0) = 0 (D6)

and the g function is

g(0)(θ ) = −U sin θ or (g + g′′)(0) = 0. (D7)

Using these expressions for the leading-order solution we have to expand all functions in powers
of η and θ , which will allow to get finally a scaling relation between the two small parameters θ and
η. Let us define the dimensionless parameter

θ̃ = θ/δθ, (D8)

where δθ (a positive quantity) is the small angular aperture of the turbulent domain. More precisely
δθ will be defined below as the half width at half height of the velocity derivative u′(θ ) (see Fig. 4).
We can use relations (47) and (48) to define functions of θ̃ which are of order unity. We set

g1(θ ) = Uδθ g̃1(θ̃ ), (D9)

which leads to

g′
1(θ ) = Ug̃′

1(θ̃ ), g′′
1(θ ) = U

δθ
g̃′′

1(θ̃ ), (D10)

where g̃′
1, g̃′′

1 are the derivatives of g̃1 with respect to the variable θ̃ . Using the rescaling in (D8),
the boundaries in the integral defining D are set to plus and minus infinity. In terms of the tilde
quantities, the left-hand side of Eq. (D1) is

C/ρ = − ηU 2θ̃ g̃′′
1(θ̃ ). (D11)
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The right-hand side,

−D/ρ = γ̃I (0)η2 d

dθ

(|g′′
1(θ )|1−α

) ∫ ∞

−∞
dθ ′g′′

1(θ ′)|g′′
1(θ ′)|α, (D12)

becomes in tilde variables

−D/ρ = γ̃I (0)(1 − α)
(Uη

δθ

)2

J̃ |g̃′′
1(θ̃ )|−α d

d θ̃
|g̃′′

1(θ̃ )|, (D13)

where we introduced

J̃ =
∫ ∞

−∞
d θ̃ ′g̃′′

1(θ̃ ′)|g̃′′
1(θ̃ ′)|α. (D14)

In these expressions the sign of g′′
1 is known because one has

u′(θ ) = −η
U

δθ
g̃′′

1 (D15)

and we expect that the slope of the velocity profile u(θ ) is positive for η > 0 (the case schematized
in Fig. 1) and negative for η < 0, which imposes g̃′′

1(θ̃ ) < 0 in both cases. Setting g̃′′
1(θ̃ ) = −|g̃′′

1(θ̃ )|,
and J̃ = −|J̃ |, Eq. (D1) becomes

θ̃ = η

δθ2

1 − α

α
γ̃ |J̃ |I (0)

d

d θ̃
|g̃′′

1(θ̃ ))|−α. (D16)

By integration we obtain

|g̃′′
1(θ̃ )| = G0

(
1 + (

θ̃

θ̃c
)2

)−1/α

, (D17)

where G0 = − g̃′′
1(0) is positive, and

θ̃2
c = 2(η/δθ2) ((1 − α)/α) |γ̃ J̃ I (0)| G−α

0 . (D18)

Now we have to take into account that the solution (D17) for g̃′′
1 has to be put in J̃ defined in

Eq. (D3). We get |J̃ | = (2θ̃cGα+1
0 cα ) where

cα =
∫ ∞

0
dy (1 + y2)−(1+α)/α = √

π
�( α+1

α
− 1

2 )

2�( α+1
α

)
, (D19)

and �(·) is the usual gamma function. Putting the latter relations in Eq. (D18) gives

θ̃c = 4
η

δθ2

1 − α

α
γ̃I (0)G0cα. (D20)

Equation (D20) implies that the product γ̃I (0) has to be positive; it follows that the factor γ̃ in front
of σ̃ Re

i j must be positive when the exponent α is bigger than 1/2, and negative in the opposite case.
Now we have to take into account the boundary conditions of the velocity field which can be

written as ∫ ∞

0
dθ u′(θ ) = ηU . (D21)

Using Eq. (D15) this relation becomes

G0dαθ̃c = 1, (D22)

where

dα =
∫ ∞

0
dy(1 + y2)−1/α = √

π
�(1/α − 1/2)

2�(1/α)
. (D23)
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Finally, we point out that the width of the solution g′′(θ ) ∝ u′(θ ) depends on the value of the
exponent α. In order to take this dependence into account we can define the angular width of the
turbulent wedge as the half width at half height of u′(θ ) (see Fig. 4), which amounts to setting

u′(δθ ) = 1

2
u′(0). (D24)

Putting this expression in solution (55) equivalent to u′(θ ) = u′(0)(1 + θ2/θ2
c )−1/α , with θc =

δθ θ̃c, we get

θ̃2
c = 1

2α − 1
, (D25)

which yields a quantitative expression for relation (49),

δθ2 = η

(
γ̃I (0)

4

θ̃2
c

1 − α

α

cα

dα

)
, (D26)

where all coefficients in parentheses are numerical ones and dimensionless, θc, cα , and dα are defined
just above, I (0) is deduced from Eq. (33),

I (0) = 2

1 − α

∫ ∞

0
dζ

1

ζ α (1 − ζ )
, (D27)

and the coefficient γ̃ in front of the integral defining σ̃ Re
i j is arbitrary, but must have an opposite

sign with respect to I (0), namely, it must be negative for α < 1/2 and positive for α > 1/2, as
illustrated in Fig. 5(a) plotting I (0) versus α. Figure 5(b) displays the ratio δθ2/(ηγ̃I (0)) versus α

[see Eq. (56)].
The velocity component u can now be expressed from Eq. (D15) and the component v from

v′(θ ) = −ηU

δθ
g̃′′

1(θ̃ )θ, (D28)

where we set sin θ ≈ θ . It follows that v is of order η3/2, although u is bigger, of order η (the
integration over θ amounts to multiply the prefactor ηU/δθ by δθ ). Inserting in Eq. (D17) the
relations (D22) and (D25), and defining k = δθ2/η in Eq. (56), the integration of Eqs. (D15) and
(D28) gives the velocity profiles

u(θ ) − U = ηU

dα

∫ θ/θc

0
dy (1 + y2)−1/α (D29)

and

v(θ ) − v(0) = ηUθc

dα

∫ θ/θc

0
dy y(1 + y2)−1/α, (D30)

where θc = θ̃cδθ = θ̃c
√

kη, which gives

v(θ ) = − η3/2Uk1/2θ̃c

dα

α

2(1 − α)

(
1 + θ2

θ2
c

)− 1−α
α

, (D31)

where

k = γ̃I (0)
4

θ̃2
c

1 − α

α

cα

dα

is a positive constant because the product γ̃I (0) has to be positive.
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APPENDIX E: COMPARISON WITH THE MIXING LAYER EXPERIMENT OF SODJOVI

Let us first recall that when using the Boussinesq model for turbulent stress tensor, (σ Re = νt u,y

where the turbulent viscosity νt is a linear function of x, independent of y), one finds that the width
of the turbulent domain scales as η for small values of this ratio η [12–14]. In the literature we
found few experimental works devoted to small values of η, most of them being concerned by ratios
U1/U2 of order of a few units. Nevertheless, we found in Ref. [12] a measurement extending from
η = 0.05 up to η = 0.6 which displays a peculiar nonlinear behavior of the curve δθ versus η, at
small η values, although the author concludes that the width of the turbulent domain grows linearly
with η in agreement with the Boussinesq model.

Using the data published in Table 3.2 of Ref. [12] we have plotted δθ versus η1/2 (see Fig. 6). It
appears that the plot agrees quite well with our prediction [Eq. (51)], for η smaller than 0.26, which
is not a small domain (η = 0.26 corresponds to U1 = 1.7U2).

From Fig. 6 we deduce the experimental value of the ratio δθ/
√

η. The experiment provides√
k = 0.036 defined in Eq. (56) or Eq. (D26), which allows to obtain a numerical value for the

prefactor γ̃ in Eq. (3):

γ̃ (α) = k
1 − α

α
θ̃2

c

dα

cα

1

4I (0)
. (E1)

It depends on the exponent α, as illustrated in Fig. 7 (see caption for the divergence for α = 1/2).
Close to this peculiar value, one may use the approximation I (θ − θ ′) ≈ I (δθ ), or solve more
precisely the equation C + D = 0, something not done here.

APPENDIX F: ORDER OF MAGNITUDE OF σ̃Re
i j

From Eq. (31) and the hypothesis I (θ − θ ′) = I (0), we have

σ̃ Re
xx = γ̃ ρI (0)|g + g′′(θ )|1−α

∫
dθ ′ |g + g′′(θ )|α τ̃xx(θ ′), (F1)

where τ̃xx(θ ′) = (g + g′′) sin 2θ ′ [see Eq. (28)]. Because τxx = − τyy we have

σ̃ Re
xx = − σ̃ Re

yy . (F2)

The nondiagonal element of the tensor σ̃ Re
i j is

σ̃ Re
xy = γ̃ ρI (0)|g + g′′(θ )|1−α

∫
dθ ′ |g + g′′(θ )|α τ̃xy(θ ′), (F3)

where τ̃xy(θ ′) = −(g + g′′) cos 2θ ′ is an even function. Using the same argument as above, we have
σ̃ Re

xy ∼ δθ (g′′)2 or σ̃ Re
xy ∼ η3/2U 2. The integral in Eq. (F3) does not vanish because the integrand is

an even function; then

σ̃ Re
xy ∼ η3/2. (F4)

A priori the diagonal elements σ̃ Re
xx = −σ̃ Re

yy are of order (δθ )2(g′′)2 ∼ η2U 2 under the condition that
the integrand is even. But τ̃xx is an odd function; then we have σ̃ Re

xx = −σ̃ Re
yy = 0 at order η2. To go

further we have to notice that the results of this section are obtained within the rough approximation
I (θ − θ ′) = I (0) which greatly simplifies the calculation. This approximation is valid for small
values of the angles, except for α = 1/2 where I (0) = 0. This point is considered below.

1. Case α �= 1/2

More generally, close to θ = θ ′, for any α values we have shown in Eq. (36) that

I (θ − θ ′) ≈ I (0) + b|θ − θ ′|, (F5)
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where b is a factor quasi-independent of α (b ≈ 9), whereas I (0) changes a lot with α [more
precisely it grows from −5 up to 25 when α increases from −1/4 to 3/4; see Fig. 2(b)]. The second
term in Eq. (F5) changes the above results as follows: all odd terms which have been considered as
providing a null contribution to the integral over θ ′ in σ Re

i j will now bring a nonzero contribution
and provide a component having an order of magnitude equal to the same order of magnitude as
before times bδθ ∼ η1/2 [the approximate value of I (θ − θ ′)] for small argument. In summary, for
α 
= 1/2 we get {

σ̃ Re
xx = − σ̃ Re

yy ∼ η5/2

σ̃ Re
xy ∼ η3/2

}
(F6)

which confirms that the tensor σ̃ Re
i j does not satisfy the realizability conditions{

σii � 0
σ 2

i j � σiiσ j j for i 
= j

}
. (F7)

Indeed both conditions in Eq. (F7) are not fulfilled; one diagonal element of σ̃ is negative, moreover,
Eq. (F6) show that the orders of magnitude of the components are inconsistent with the Schwarz
inequality, a binding constraint of the Reynolds stress defined by Eq. (1).

2. Case α = 1/2

In the case α = 1/2, one has I (0) = 0 and I (θ − θ ′) ≈ b
√

1 − cos(θ − θ ′) ∼ b|θ − θ ′| where
b ≈ 8.9. For the tensor σ I

xx, the components are respectively of order{
σ̃ Re

xx = −σ̃ Re
yy ∼ I (δθ )(g′′)2δθ sin θ ∼ η5/2U 2

σ̃ Re
xy ∼ I (δθ )(g′′)2δθ ∼ η2U 2,

(F8)

which does not satisfy the realizability conditions because the second equation yields σ 2
xy > σxx σyy

as in the general case of 0 < α < 1. But the realizability conditions are satisfied by adding the
diagonal tensor (4) to the tensor σ̃ Re

i j because

σ
Re,p
ii ∼ (ηU )2,

which is positive, of the same order as σ̃ Re
xy , and satisfies the Schwarz inequality when taking γ = γ̃

as in the general case.
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