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Townsend’s attached eddy hypothesis (AEH) gives an accurate phenomenological de-
scription of the flow kinematics in the logarithmic layer, but it suffers from two major
weaknesses. First, AEH does not predict the constants in its velocity scalings, and second,
none of the predicted velocity scalings can be obtained from the Navier-Stokes (NS)
equations under AEH’s assumptions. These two weaknesses separate AEH from more
credible theories like Kolmogorov’s theory of homogeneous isotropic turbulence, which,
despite its phenomenological nature, has one velocity scaling, i.e., 〈�u3〉 = −(4/5)εr, that
can be derived from the NS equation. Here, 〈�u3〉 is the longitudinal third-order structure
function, ε is the time-averaged dissipation rate, and r is the displacement between the
two measured points. This work aims to address these two weaknesses by investigating
the behavior of the third-order structure function in the logarithmic layer of boundary-
layer turbulence. We invoke AEH and obtain 〈�u3〉 = D3 ln(r/z) + B3, where �u is the
streamwise velocity difference between two points that are displaced by a distance r in
the streamwise direction, z is the wall-normal location of the two points, D3 is a universal
constant, and B3 is a constant. We then evaluate the terms in the Kármán-Howarth-Monin
(KHM) equation according to AEH and see if NS equations give rise to a nontrivial result
that is consistent with AEH. Last, by resorting to asymptotic matching, we determine
D3 = 2.0 (at sufficiently high Reynolds numbers).

DOI: 10.1103/PhysRevFluids.6.074602

I. INTRODUCTION

Boundary-layer turbulent flows are ubiquitous and essential for numerous engineering appli-
cations and natural phenomena. In the vicinity of a solid boundary, there is a layer where the
production and dissipation of turbulence kinetic energy approximately balance [1–4]. This layer is
known as the logarithmic layer and is the focal point of many modeling works [5,6]. For example, in
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his early work, Townsend [2] hypothesized that the flow in the logarithmic layer could be modeled
as a collection of wall-attached eddies. Townsend’s attached eddy hypothesis (AEH) provides an
accurate phenomenological description of the flow kinematics in the logarithmic layer [7–11], and
it gives accurate predictions of velocity scalings in the logarithmic layer [12–15]. However, AEH
suffers from two major weaknesses. First, AEH does not predict the constants in velocity scalings.
For example, AEH predicts the second-order structure function as the following expression, i.e.,
〈�u2〉 = 2A1 ln(r/z) + B2, but the Townsend-Perry constant A1 is undetermined (let alone the
flow-dependent constant B2). Here, �u is the streamwise velocity difference between two points
in the logarithmic layer that are displaced by a distance r in the streamwise direction, z is the
wall-normal location of the two points. Here and throughout the paper, velocity normalization by
the friction velocity uτ is implied. The second weakness of AEH is that the predicted velocity
scalings cannot be obtained from the Navier-Stokes (NS) equations. For example, the correctness
of 〈�u2〉 = 2A1 ln(r/z) + B2 relies solely on empirical data [16,17].

Davidson et al. [18,19] proposed to address the first weakness, i.e., the prediction of the constants
in the velocity scalings, by giving up on AEH altogether. The authors pointed out that AEH is only
one of the many possible rationalizations of the experimental data. They argued that rather than
hypothesizing about the spatial organization of the eddies, it would be more fruitful to hypothesize
about the energy density E of l-sized eddies in the logarithmic layer. The authors proceeded by
hypothesizing E (l ) ∼ u2

τ /l for l in the logarithmic layer. By matching the hypothesized log-layer
energy density to that in the inertial range, the authors were able to get 〈�u2〉 = 2A1 ln(r/z) + B2

and, more importantly, a prediction of the Townsend-Perry constant A1 = 1.81 (the measured value
is, however, A1 = 1.25). Although Davidson and company did not explicitly resort to AEH, the
hypothesized energy density E (l ) ∼ u2

τ /l is consistent with AEH: according to AEH, E (l ) scales as
u2

τ P(l ) [2]; it then follows that E (l ) ∼ u2
τ /l because P(l ) ∼ 1/l is the eddy population density.

Addressing the second weakness requires the derivation of a known velocity scaling from the
NS equation under the basic assumptions of AEH. This is nontrivial, and there is not too much
literature on the topic. Marginally relevant studies are those that try to connect the basic assumptions
of AEH to the NS equations. For example, Klewicki et al. [20,21] analyzed numerical solutions to
the NS equations and showed the presence of self-similar flow structures; Del Álamo and Jiménez
[22], Sharma and McKeon [23], Moarref et al. [24], McKeon [25,26], and Hwang and Eckhardt
[27] showed that the (linearized/partly linearized) NS equations admit self-similar modes; Lozano-
Duran and Bae [28] analyzed the length and velocity scales in the logarithmic layer and showed that
they are consistent with AEH; Cheng et al. [29] identified attached eddies in low Reynolds number
flows. The fact that one cannot obtain any AEH’s velocity scaling from the Navier-Stokes equations
separates AEH from the more credible theories like Kolmogorov’s theory of small-scale turbulence.
Despite its phenomenological nature, Kolmogorov’s theory of small-scale turbulence has a velocity
scaling in the inertial range, i.e.,

〈�u3〉 = − 4
5εr, (1)

that can be derived from the three-dimensional NS equations under the assumption of high Reynolds
number and flow isotropy [30–33]. Here, ε is the time-averaged dissipation rate, r is the two-point
displacement, and the coefficient −4/5 is a direct result of the NS equations. In terms of coefficients
in turbulence scalings, also relevant is the recent work by de Silva et al. [34]. The authors matched
velocity scalings at small and large scales and determined the constants in the velocity scalings of
〈�un〉 for r > z.

This work aims to address the above-mentioned two weaknesses. We study the behavior of
the third-order structure function. From a fundamental standpoint, the third-order structure is a
useful statistical tool and have been used in the studies two-dimensional turbulence [35–37],
turbulence with bidirectional energy transfer [38–40], and anisotropic sheared turbulence [41–43].
Hence, studying the third-order function would lead to better understandings of the boundary-layer
turbulence. Also, because Eq. (1) is exact, matching to Eq. (1) will allow us to determine the
constants in our expression of the third-order structure function in the logarithmic layer. The rest of
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FIG. 1. (a) A schematic of the attached eddies. An attached eddy is represented as an inclined line. The
two points are at a distance z from the wall and are displaced by a distance r in the streamwise direction.
(b) Computing the induced velocity of an attached eddy at a location in the flow field. The induced velocity is
modeled by adding up the induced velocities from eddies 1, 2 and 1′, 2′. Here, eddy 1′ is the mirror of eddy 1,
and eddy 2′ is the mirror of eddy 2. w1,2 and w1′,2′ are the wall-normal velocities induced by eddies 1, 2 and
1′, 2′, and u1,2 and u1′,2′ are the streamwise velocities induced by eddies 1, 2 and eddy 1′, 2′. For a large eddy,
here eddy 1, w1 is approximately balanced by its mirror w1′ , and the wall-normal velocity at z is determined
by the local wall-attached eddy only, for which w2 is much larger than w2′ .

the paper is organized as follows. We present the theory in Sec. II followed by empirical evidence
in Sec. III. Concluding remarks are given in Sec. IV.

II. THEORY

In this section, we investigate the behavior of the third-order structure function via AEH and the
NS equations.

A. Attached eddy hypothesis

We derive the scaling of the third-order structure function from AEH. Per AEH, the flow in
the logarithmic layer can be modeled as a collection of wall-attached eddies [2,6], as sketched in
Fig. 1(a). The velocity at a generic location in the flow field is modeled as a sum of the attached-
eddy-induced velocity increments [13,14,44]

u(z) =
Nz∑

i=1

ai, w(z) = bNz , Nz =
∫ δ

z
P(z)dz, P(z) ∼ 1/z. (2)

Here, u(z) and w(z) are the instantaneous stream and wall-normal velocity fluctuations at a dis-
tance z from the wall in the logarithmic layer. ai and bi are the δ/2i-sized attached-eddy-induced
streamwise and wall-normal velocity. Obviously, because both ai and bi are due to an eddy of size
δ/2i, ai and bi are correlated. That is, 〈aiai〉 ∼ 〈bibi〉 ∼ 〈aibi〉 �= 0. Figure 1(b) sketches how one
can go about computing the attached eddy induced velocity. The streamwise velocity results from
an additive process that adds up contributions from attached eddies whose heights are larger than z.
The wall-normal velocity contains the contribution from the attached eddy of size z only. Nz is the
number of wall-attached eddies that contribute to u(z). By definition, Nz equals the integration of
the eddy population density P(z) from z, the height of the smallest wall-attached eddy that affects
the velocity at the wall-normal height z, to δ, the height of the largest wall-attached eddy in the
flow. Because the sizes of the wall-attached eddies scale as their distances from the wall, the eddy
population density P(z) is proportional to 1/z.
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It follows from Eq. (2) that the third-order moments in the logarithmic layer is

〈
u3

〉 =
〈(

Nz∑
i=1

ai

)3〉
=

Nz∑
i=1

〈
a3

i

〉 ∼ Nz〈a3〉 ∼ ln(δ/z). (3)

Here, the cross terms 〈aia jak〉 = 0, for i �= j �= k, and 〈aia2
j 〉 = 0 for i �= j because differently sized

eddies are not statistically correlated; ai’s are statistically similar and 〈a3
i 〉 = 〈a3〉. Single-point log-

arithmic scalings like the one in Eq. (3) have two-point counterparts. For example, the single-point
logarithmic scaling in 〈u2〉 ∼ ln(δ/z) has the two-point counterpart 〈[u(x + r) − u(x)]2〉 ∼ ln(r/z)
[34]. While the 〈[u(x + r) − u(x)]3〉 ∼ ln(r/z) does exist, its derivation will be slightly different
from its second-order counterpart.

Given two points that are displaced by a distance r in the streamwise direction, we have

u(x, z) =
Nz∑

i=1

ai, u(x + r, z) =
Nz∑

i=1

a′
i, (4)

where ai’s are velocity increments that contribute to (x, z) and a′
i’s are velocity increments that

contribute to (x + r, z). It follows from Eq. (4) that the velocity difference is

u(x, z) − u(x + r, z) =
Nz∑

i=1

(ai − a′
i ). (5)

A large-scale attached eddy [colored yellow in Fig. 1(a)] contributes the same increment to both
(x, z) and (x + r, z), and a small-scale attached eddy [colored red in Fig. 1(a)] contributes to neither
(x, z) nor (x + r, z). Hence, u(x, z) − u(x + r, z) contains contributions from intermediate-sized
eddies only:

u(x, z) − u(x + r, z) =
Nz∑

i=Nr

(ai − a′
i ), Nr ∼ ln(δ/r). (6)

Squaring both sides of Eq. (6) and taking ensemble average, we have the logarithmic scaling of the
second-order structure function

〈[u(x, z) − u(x + r, z)]2〉 ∼ (Nz − Nr )
(〈

a2
i

〉 + 〈
a′2

i

〉 − 2〈aia
′
i〉
)

∼ (Nz − Nr )(
〈
a2

〉 − 〈aa′〉) ∼ (Nz − Nr ) ∼ ln(r/z) = D2 log(r/z) + B2, (7)

where D2 and B2 are two constants. The two constants are usually thought to be independent of
z, and D2 is usually considered to be universal [17,34,45]. Here, 〈aia′

j〉 = 0 for i �= j, 〈aia j〉 =
〈a′

ia
′
j〉 = 0 for i �= j because differently sized eddies are statistically uncorrelated; a and a′ are

statistically similar to ai and a′
i. We can get an estimate of the third-order structure function

following the same steps. Raising both sides of Eq. (6) to the third power and taking ensemble
average, we have

〈[u(x, z) − u(x + r, z)]3〉 ∼ (Nz − Nr )
(〈

aia
′2
i

〉 − 〈
a′

ia
2
i

〉)
∼ (Nz − Nr )

(〈
aa′2〉 − 〈

a′a2
〉) ∼ Nz − Nr ∼ ln(r/z) = D3 ln(r/z) + B3. (8)

Again, differently sized eddies are not statistically correlated. The two terms 〈aa′2〉 and 〈a′a2〉 do
not cancel because correlation in one direction is different from that in another direction. (In fact,
in isotropic turbulence, we have 〈aa′2〉 = −〈a′a2〉 due to symmetry.) The exact value of the two
terms depend on the exact topology of an attached eddy and therefore is left undetermined in the
present framework. AEH itself gives only the scaling but not the constants D3 and B3. Following
previous studies [34,46], the constant D3 is expected to be universal, and the constant B3 is expected
to be flow dependent. Following the same steps, one can also get a logarithmic scaling for the
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third-order structure function of the spanwise velocity 〈�v3〉 ∼ ln(r/z), whose behavior will not
be the focus of this work. The complex anisotropic nature of the flow cannot be fully captured by
the streamwise velocity’s streamwise structure function. However, measuring velocity correlations
for ry �= 0 and rz �= 0 is not as straight-forward as measuring velocity correlations for ry = rz = 0
in an experiment, the latter requires one-point hot-wire measurements whereas the former requires
simultaneous measurements at two points for various two-point displacements. Considering a lack
of validation data for more general statistics and given the purpose of this work, we would study
〈�u3(rx )〉 only.

In anticipation of the discussion in Sec. II B, we discuss a few implications of AEH. First,
the wall-normal velocity is solely determined by the local wall-attached eddy (see Fig. 1(b) and
Ref. [2] for a detailed discussion). Second, at a wall normal height z, the number of attached
eddies that contribute to �ui is proportional to ln(r/z) (see Fig. 1(a) and Ref. [47] for detailed
discussion), and therefore any statistics that comprises �ui is a function of r/z only. It follows
that d[ui(x, z) − ui(x + r, z + rz )]/drz|rz=0 = 0 and d[ui(x, y, z) − ui(x + r, y + ry, z)]/dry|ry=0 =
0, because slightly displacing either point in the wall-normal or the spanwise direction does not
change the number of wall-attached eddies that contribute to the velocity difference �ui. In fact,
following the discussion in Refs. [9,47], if given a streamwise distance rx, the spanwise and the
wall normal displacements make a difference only when ry > rxARy and rz > rxARz, where ARy

and ARz are the aspect ratio of a wall-attached eddy. We note that the discussion here concerns the
scales that are relevant to the logarithmic layer only. These derivatives, ∂/∂ry, ∂/∂rz, are 0 under
the basic assumptions of AEH and for ry/z � 1 and rz/z � 1. These derivatives are not necessarily
0 at other scales [48]. In fact, the term ∂〈|�u|2�w〉/∂rz equals 2d〈kw〉/dz and is certainly nonzero
(〈kw〉 only depend on z hence the total derivative). Here, by arguing that they are 0, we are arguing
that the attached eddies, i.e., the large scales, do not contribute to these terms. In this particular
case here, the term d〈kw〉/dz and the pressure-strain term are negligible as the dissipation and
the production balance in the logarithmic layer [16]. Also, one can plot 〈kw〉’s and 〈wp/ρ〉’s
spectra to confirm/repute the AEH’s conclusion, where k is the turbulent kinetic energy and p is
the pressure fluctuation. Lee & Moser [49] reported these spectra in channel, and we see that both
〈kw〉 and 〈wp/ρ〉 are small and large scale contributions to these two terms are also small. Last,
for some statistics that involve the wall-normal velocity, e.g., 〈w1w2〉, AEH only gives estimate for
sufficiently large r/z. The behavior of 〈w1w2〉 for r/z ≈ 1 cannot be known unless one specifies the
geometry of the attached eddies. Nevertheless, the behavior of 〈w1w2〉 for intermediate r/z (e.g.,
r/z = 2, 3) should not depend on the exact geometry of the attached eddies and can be obtained from
the Biot-Savart law [7,50,51]. To elaborate, as w(x, z) is solely determined by the attached eddy at
(x, z), the correlation between w(x, z) and the velocity at any location in the flow field is solely
determined by the eddy at (x, z). For sufficiently large r/z, AEH predicts 〈w(x, z)w(x + r, z)〉 = 0.
For intermediate r, the Biot-Savart law gives 〈w(x, z)w(x + r, z)〉 ∼ 1/(r/z). A more detailed dis-
cussion of the application of the Biot-Savart law could be found in Ref. [7]. The authors found that
the intensity of an attached eddy decays as a function of ∼1/r(r2 + const). Taking the leading-order
term directly leads to 1/r. Figure 2(a) shows 〈w(x, z)w(x + r, z)〉 as a function of r/z in a channel
flow at the Reynolds number Reτ = 5200, and a −1 scaling is indeed found. Similarly, AEH predicts
〈w(x, z)u(x + r, z)〉 = 0, 〈w(x, z)u(x, z)u(x + r, z)〉 = 0 for sufficiently large r/z, but for interme-
diate r/z, 〈w(x, z)u(x + r, z)〉 ∼ 〈w(x, z)w(x + r, z)〉 ∼ 1/(r/z), 〈u(x, z)u(x + r, z)w(x + r, z)〉 ∼
〈w(x, z)w(x + r, z)w(x + r, z)〉 ∼ 1/(r/z)—as correlations among these velocity fluctuations are
due to the same attached eddy at (x, z). Figure 2(b) shows 〈w(x, z)w(x + r, z)w(x + r, z)〉 +
〈w(x, z)w(x, z)w(x + r, z)〉 as a function of r/z, and a −1 scaling is also found at r/z values that
are relevant to the logarithmic range.

B. Navier-Stokes equations

We evaluate the terms in the Kármán-Howarth-Monin (KHM) equation according to AEH and
show that the remaining terms in the NS equations give rise to consistent results. Writing the
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FIG. 2. (a) Auto-correlation of the wall-normal velocity in a Reτ = 5200 channel [16]. The subscript 1 and
2 denote the two points. (b) Same as panel (a) but for 〈w+

1 w+
2 w+

2 〉 + 〈w+
1 w+

1 w+
2 〉.

transport equation for the second-order structure function in a fully developed plane channel and
time averaging [52], we have

∂〈|�u|2�ui〉
∂ri

+ 2〈�u�w〉dU

dz
+ ∂〈wc|�u|2〉

∂zc

= −4〈ε〉 + 2ν
∂2〈|�u|2〉

∂ri∂ri
− 2

ρ

∂〈�p�w〉
∂zc

+ ν

2

∂2〈|�u|2〉
∂z2

c

. (9)

Here, u = (u, v,w) is the instantaneous velocity fluctuation vector. v and w are the instantaneous
spanwise and wall-normal velocity fluctuations. U is the mean streamwise velocity profile. x, y,
and z are the streamwise, spanwise, and wall-normal directions. � denotes the difference between
two points that are displaced by r = (rx, ry, rz ) direction, e.g., �u = u(x + r) − u(x) = u2 − u1

with the subscripts 1 and 2 denote point 1 at x1 = x and point 2 at x2 = x + r. wc = (w1 + w2)/2,
zc = (z1 + z2)/2, and we will later set zc = z1 = z2 = z as we consider horizontal displacement
only. ε is the dissipation rate, ν is the kinematic viscosity. ri is the displacement between the two
points in the three Cartesian directions. ρ ≡ 1 is the fluid density. p is the pressure.

Before we examine the various terms in Eq. (9), we briefly review the literature on pressure
fluctuations in the logarithmic layer. In an early paper [53], Jiménez and Hoyas examined channel
flow DNS at Reτ = 2000 and argued that pressure and spanwise velocity fluctuations have similar
behaviors. In the past decade, higher Reynolds number data become available, and these data have
led to new insights. In two recent works [54,55], the authors examined data at higher Reynolds
numbers and came to the conclusion that spanwise velocity fluctuations are large scale quantities
and pressure fluctuations are small-scale quantities. Specifically, at sufficiently high Reynolds
numbers, velocity fluctuations in the logarithmic layer are dominated by the scales near the so-called
“outer” peak (note that an outer peak exists in both the spanwise and the streamwise velocities’
premultiplied spectra), and pressure fluctuations are dominated by the scales near the inner peak.
Hence, correlation between velocity and pressure should be small at sufficiently high Reynolds
numbers. Now, we examine Eq. (9). For r/z < 1, the flow is approximately isotropic, and Eq. (9)
reduces to the KHM equation (see Sec. II C 1 for more details). For r/z and z values that are relevant
to the logarithmic layer, the viscous terms are negligible, the pressure/velocity correlation is close
to 0 because of the scale separation at high Reynolds numbers [54,55], and the production balances
the dissipation [1,2],

ε ≈ −〈uw〉dU

dz
= u3

τ

κz
, (10)
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where −〈uw〉 = u2
τ in the constant-stress layer (logarithmic layer), U = 1/κ ln(z+) + B is assumed

with B ≈ 5.0, and κ is the von Kármán constant. Hence, for r/z and z in the logarithmic layer,
Eq. (9) becomes

∂〈|�u|2�ui〉
∂ri

+ ∂〈wc|�u|2〉
∂z

= 2〈u1w2 + w1u2〉uτ

κz
. (11)

Per AEH, 〈�u2�ui〉, 〈wc�u2〉, and 〈u1w2 + w1u2〉 are only function of rh/z with rh =
√

r2
x + r2

y

(see the discussion in Sec. II A). Defining r′
x = rx/z, r′

y = ry/z, r′
z = rz, z′ = z, and r′

h =
√

r′2
x + r′2

y ,
we have

∂

∂rx
= ∂

∂r′
x

∂r′
x

∂rx
+ ∂

∂r′
y �

�
�∂r′
y

∂rx
+ ∂

∂r′
z�

��
∂r′

z

∂rx
+ ∂

∂z′�
��

∂z′

∂rx
= 1

z

∂

∂r′
x

∂

∂z
= ∂

∂r′
x

∂r′
x

∂z
+ ∂

∂r′
y

∂r′
y

∂z
+ ∂

∂r′
z�

��
∂r′

z

∂z
+
�
��
∂

∂z′
∂z′

∂z
= − r′

x

z

∂

∂r′
x

−
�
��

r′
y

z

∂

∂r′
y

∂

∂r′
h

= ∂

∂r′
x

∂r′
x

∂r′
h

+ ∂

∂r′
y

∂r′
y

∂r′
h

+ ∂

∂r′
z �

�
�∂r′
z

∂r′
h

+ ∂

∂z′
�
�
�∂z′

∂r′
h

= cos(θ )
∂

∂r′
x

+���sin(θ )
∂

∂r′
y

= r′
x

r

∂

∂r′
x

. (12)

Here, we have invoked ry = r′
y = 0, ∂/∂rz = 0, ∂/∂ry = 0, and ∂/∂z′ = 0. Again, these derivatives

are 0 under the basic assumptions of AEH and for ry/z � 1 and rz/z � 1. The angle θ is such that
r′ cos(θ ) = r′

x, r′ sin(θ ) = r′
y. It follows that Eq. (11) becomes

∂〈|�u|2�u〉
∂r′

x

− r′
x

∂〈|�u|2wc〉
∂r′

x

= 2〈u1w2 + w1u2〉uτ

κ
. (13)

Observe that the z′ dependence is removed from Eq. (13). For sufficiently large r′, r′
x, all the terms

in Eq. (13) are 0 and the equation is trivial. For intermediate r′, r′
x,

〈u1w2 + w1u2〉 ∼ 1

r′
x

, 〈|�u|2wc〉 ∼ 1

r′
x

, (14)

following the discussion in the previous subsection. Again, the question we hope to answer here
is: what would these velocity correlations be under the basic assumption of AEH? While there are
different theories in the existing literature that give rise to somewhat different scaling estimates
[56,57], and studying the effect of these scalings would be an interesting topic, here, we would
focus on Townsend’s attached eddy hypothesis and refrain from invoking scaling estimates that are
not consequences of AEH. Substituting Eq. (14) into Eq. (13), we have

∂〈|�u|2�u〉
∂r′

x

∼ 1

r′
x

, (15)

which in turn gives rise to

〈|�u|2�u〉 ∼ ln(r/z) + C, (16)

where C is a constant. Computing 〈|�u|2�u〉 requires simultaneous measurement of the stream-
wise, spanwise, and wall-normal velocity components, which is usually not trivial in a laboratory
experiment. If 〈�u3〉 � 〈�v2�u〉, 〈�w2�u〉, Eq. (16) reduces to Eq. (8). We will discuss this issue
in Sec. III in greater detail.
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C. Asymptotic matching

Next, we determine the two constants D3 and B3 in Eq. (8) via asymptotic matching. We show that
our procedure connects the constants in small-scale velocity scalings and large-scale (logarithmic-
layer) velocity scalings.

1. Kolmogorov’s theory of small-scale turbulence

According to Kolmogorov [58], in three-dimensional homogeneous and isotropic turbulence, the
viscous scale and the integral scale do not play an important role in the inertial subrange, and the
velocity structure function is a function of r and ε only, that is

〈�un〉 = Cn(εr)n/3, (17)

where �u is the longitudinal velocity difference of two points with a distance r, n is an integer, and
Cn is a universal constant. Specifically, the third-order structure function

〈�u3〉 = C3εr, C3 = −4/5, (18)

is a direct result of Eq. (9) [31]. It is worth noting that if r is only in the x direction, we have

∂〈�u3〉
∂ry

= d〈�u3〉
dr

∂r

∂ry
= d〈�u3〉

dr

2ry

r
= 0,

∂〈�u3〉
∂rz

= d〈�u3〉
dr

∂r

∂rz
= d〈�u3〉

dr

2rz

r
= 0,

(19)

as well. Hence, ∂/∂ry = ∂/∂rz = 0 is not a consequence of AEH but a consequence of limiting
the displacement in one of the three Cartesian directions. In addition to the third-order structure
function, the second-order structure function is

〈�u2〉 = C2(εr)2/3, C2 ≈ 2.0. (20)

Sreenivasan [59] concluded from pipe, channel, grid turbulence, wake turbulence, mixing layer, and
jet data that the Kolmogorov constant C2 = 4CK ≈ 2.0 is universal at high Taylor micro Reynolds
numbers, i.e., Reλ > 50, where CK ≈ 0.5 is the Kolmogorov constant in the −5/3 energy spectral
law. The universality of Cn for n other than 2 and 3 has received much less attention. A naive
estimation of Cn can be obtained by assuming Gaussianality for �u2,

C2n = C2[(2n − 1)!!], (21)

where (2n − 1)!! = (2n − 1)(2n − 3) · · · 1. This, of course, is only a very rough approximation of
the reality.

2. Matching Townsend’s attached eddy hypothesis and Kolmogorov’s theory of small-scale turbulence

The small-scale velocity scalings hold in boundary-layer flows for r/z < 1 [34,60–62], and these
small-scale velocity scalings connect to Townsend’s scalings of energy-containing momentum-
transferring scales without much of a transitional region. For example, the energy spectrum follows
the −5/3 scaling for 1/z < k and the −1 scaling for k < 1/z [61,62]. de Silva et al. [34] reported
〈�u2〉 = C2(εr)2/3, i.e., small-scale velocity scaling, for r/z < 1 and the logarithmic scaling of the
streamwise velocity variance, i.e., Townsend’s scaling, for r/z > 1, in a Reτ = 13, 000 boundary
layer. To determine B3 and D3, we match AEH’s scalings and Kolmogorov’s velocity scalings.

Define

r′ = r/z. (22)
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Equations (18) and (8) give

〈�u3〉 = C′
3r′, 〈�u3〉 = B3 + D3 ln (r′), (23)

where C′
3 = C3εz/u3

τ . Again, the dissipation rate ε balances the production and ε ≈
−〈uw〉(dU/dz) = u3

τ /(κz) [1,2]. Taylor expanding the two expressions in Eq. (23) at r0 where
Eqs. (18) and (8) match, we have

〈�u+3〉 = C′
3r0 + C′

3dr′, (24a)

〈�u+3〉 = B3 + D3 ln (r0) + D3
dr′

r0
+ h.o.t., (24b)

where h.o.t. denotes higher-order terms. Matching the leading-order term in the two expressions in
Eq. (24), we have

C′
3 = 1

r0
D3. (25)

Because Eqs. (18) and (8) match at r/z = 1, i.e., r0 = 1, Eq. (25) leads to

D3 = C′
3 = 1

κ
C3. (26)

Taking κ = 0.4 we obtain that D3 = C′
3 = −2, which we later justify using experimental and

numerical data. Up to this point, we have obtained an estimate of 〈�u3〉 for r and z that are relevant
to the logarithmic layer without explicitly referring to empirical evidence.

Although it is not the focus of this work, the above procedure may well be used to get the
constants in the second-order structure function, i.e., D2 and B2 in

〈�u2〉 = D2 ln(r/z) + B2. (27)

Again, define

r′ = (r/z)2/3. (28)

It follows from Eqs. (20) and (27) that

〈�u+2〉 = C′
2r′, (29a)

〈�u+2〉 = B2 + 3
2 D2 ln (r′), (29b)

where C′
2 = C2(εz)2/3/u2

τ . Taylor expanding at r0 and matching the leading-order term in the two
expressions in Eq. (29), we have

C′
2 = 3

2r0
D2. (30)

Again, r0 = 1, and Eq. (30) gives

D2 = 2

3

(εz)2/3

u2
τ

C2 = 2

3
κ−2/3C2. (31)

In the above expression, taking the von Kármán constant as κ = 0.4 and the Kolmogorov constant
as C2 = 2, we obtain that D2 ≈ 2.5. Because D2 equals two times the Townsend-Perry constant, the
above estimate leads to an estimate of the Townsend-Perry constant A2 = 1.25, which is consistent
with experimental and numerical evidence [45].

Following roughly the same steps, we can also get

D2n = 2
3κ−2/3C1/n

2n . (32)
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TABLE I. Details of the dataset. Here �y+ for experiments refers to the hotwire filtration.

Figure Facility Ref. Technique ≈Reτ ≈�x+ ≈�y+ ≈�z+

Fig. 3(a) Melbourne [64] Hotwire 13 000 – 20 –
Fig. 3(c) Melbourne [67] PIV 19 000 15 30 15
Fig. 3(b) – [16] DNS 5 200 12.7 6.4 0.5 ∼ 10.3
Fig. 3(d) SLTEST [66] Hotwire 3 × 106 – 15 –

If one invokes Eq. (21), then Eq. (32) gives

D2n = D2[(2n − 1)!!]1/n, (33)

i.e., the estimates in Ref. [46]. This shows that the Gaussianality of velocity statistics in the
logarithmic layer, or the non-Gaussianality of the velocity statistics in the logarithmic layer for that
matter, is a direct consequence of the Gaussianality of the velocity statistics in the inertial range.

III. EMPIRICAL EVIDENCE

Empirical evidence for many of the velocity statistics has already been reported. For example,
de Silva et al. [34] presented empirical evidence for the velocity scalings in Eqs. (20) and (27) in
boundary-layer flows as well as the transition from Eq. (20) to Eq. (27) at r/z = 1. Here, we present
empirical evidence for the logarithmic scaling of the third-order structure function, i.e., Eq. (8).

To this end, four databases are used to cover several decades of Reynolds number and two
canonical boundary-layer flow geometries with the key parameters summarised in Table I. We note
databases that have friction Reynolds numbers that exceed Reτ � 5000 or higher are chosen in the
present analysis such that the flow can be considered to be at high Reynolds numbers [5], where
there is sufficient scale separation to decouple the viscous and energetic scales [63], and over a
decade of logarithmic velocity variation in z+.

Two datasets are acquired from the high Reynolds number boundary-layer wind tunnel (HRN-
BLWT) at the University of Melbourne. The wind tunnel has a test section of 27 m, which provides
a high Reynolds number at low flow speeds with a large viscous scale that leads to less acute spatial
resolution issues. The hotwire database from this facility is acquired using a 2.5-μm-diameter Wol-
lasten wires operated by an in-house constant-temperature anemometer (MUCTA) with sufficient
spatial resolution to resolve the turbulence intensity accurately within the log-region [64]. The
second database from the same facility is obtained using two-dimensional two-component particle
image velocimetry (PIV) measurements. These measurements utilize a multicamera arrangement
to capture both a large field-of-view (FOV) in the order of δ and a highly magnified FOV. For the
present analysis we utilize the high magnification view which has sufficient spatial resolution to
resolve spatial scales of the order of η. Moreover, the PIV measurements provide direct spatial
information hence we do not need to invoke Taylor’s Frozen Hypothesis to compute structure
functions which is necessary for all the hotwire datasets.

A direct numerical data is also utilised from a channel flow geometry with a friction Reynolds
number Reτ = 5200 [16]. For this database, the computation domain is 8π × 2 × 3π in the stream-
wise (x), wall-normal (y), and spanwise (z) directions, respectively. The half channel height is unity
(=1). The dataset was generated and maintained by the University of Texas at Austin, and the raw
field data can be accessed through the Johns Hopkins Turbulence Database [65].

The final dataset is captured using hot-wire anemometry at the Surface Layer Turbulence and
Environmental Test facility (SLTEST) located in the Utah salt flats [66]. The measurements involved
a vertical array of 2.5-μm-diameter platinum-coated tungsten wires mounted from z = (0.005 −
2) m, which are predominantly located in the logarithmic region of the flow. The database is valuable
for this analysis as it provides a significantly higher friction Reynolds number of O(106).
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FIG. 3. Third-order longitudinal structure functions in (a) a turbulent boundary layer at Reτ ≈ 13000 at
z+ = 400, 700, 1000, (b) a turbulent channel at Reτ ≈ 5200 at z+ = 400, 600, 800, (c) a turbulent boundary
layer at Reτ ≈ 19000 at z+ = 300, 800, 1200, and (d) the atmospheric boundary layer at Reτ ≈ 3 × 106 at
z+ ≈ 6100, 11100, 15400. The blue solid lines correspond to C3 = 4/5. The red solid lines correspond to
D3 = 2.0. The von Kármán constant κ is set to 0.40 here.

Figure 3(a) shows 〈�u3〉 as a function of r/z in the Reτ = 13000 boundary layer at z+ ≈ 400,
700, 1000. Figure 3(b) shows 〈�u3〉 in the Reτ = 5200 channel at z+ ≈ 400, 600, 800. Figures 3(c)
and 3(d) show the PIV data and the SLTEST data. We note, the PIV data is limited in terms
of its r range and the SLTEST atmospheric boundary-layer data is somewhat affected by its
statistical convergence (getting statistically converged data at the neutral condition in the atmosphere
is challenging), and is also affected by the uncertainty in estimating the friction velocity (see
Ref. [34]). Nevertheless, comparing the PIV data in Fig. 3(c) and the hotwire data in Fig. 3(a),
we see that the Taylor’s hypothesis does not seem to have an impact on the statistics. Comparing
the SLTEST data in Fig. 3(d) and the PIV data in Fig. 3(c), we see that the logarithmic scaling
of the third-order structure function is persistent at high Reynolds numbers. In the following, we
focus on the results in Figs. 3(a) and 3(b), where we have statistically converged data at several
heights and across a (relatively) large r range. The data follows Eq. (18) for r/z < 1 and exhibit a
logarithmic behavior as indicated in Eq. (8) between 1 < r/z � 10. The high Reynolds number
of the boundary layer in Fig. 3(a) pushes the data toward the prediction with C3 = −4/5 and
D3 = −2.0, but there is still a notable difference between the prediction of the KHM equation
and the data, suggesting local anisotropy at even the Reynolds number of Reτ = 13000. Last, Fig. 4
compares 〈|�u|2�u〉 and 〈�u3〉 in a channel. For r/z ∼ O(1), the streamwise component does
dominate and 〈|�u|2�u〉 ≈ 〈�u3〉.
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FIG. 4. −〈�u3〉 and −〈|�u|2�u〉 at z/δ = 0.11 in a Reτ = 5200 channel.

IV. CONCLUSIONS

AEH suffers from two weaknesses. First, AEH does not predict the constants in log-layer velocity
scalings; and second, AEH’s predictions cannot be obtained from the NS equations. These two
weaknesses separate AEH from more credible theories like Kolmogorov’s theory of small-scale
turbulence. This work attempts to address the above two weaknesses by investigating the behavior
of the third-order structure function in the logarithmic layer. First, we show that both AEH and
the NS equations lead to a logarithmic scaling of the third-order structure function: 〈�u3〉 =
D3 ln(r/z) + B3. Second, we determine the constant D3 via asymptotic matching. Specifically,
the matching procedure relates the universal constants in boundary-layer velocity scalings to the
constants in Kolmogorov’s phenomenology of small-scale turbulence, and it gives D3 = −2. In
addition to D3, we show that our matching procedure gives an estimate to the Townsend-Perry
constant, i.e., A1 = 1.25, which is very close to the existing measurements.

Last, we note that even at the Reynolds number Reτ = 13 000, the third-order structure function
deviates from the exact relation 〈�u3〉 = −4/5εr = −4/5(u3

τ /κ )(r/z) for small r, suggesting either
an imbalance between the production and the dissipation or flow anisotropy at small scales, both of
which are usually considered to be finite Reynolds number effects. Hence, for this problem and a
number of other problems in the recent literature [68,69], there is still a need for high-quality high
Reynolds number flow data.
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