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The probability density function p(k) of the turbulent kinetic energy k is investigated
for diabatic atmospheric surface layer (ASL) flows. When the velocity components are
near-Gaussian and their squared amplitudes are nearly independent, the resulting p(k) is
shown to be y-distributed with exponents that vary from 0.8 to 1.8. A nonlinear Langevin
equation that preserves a y-distributed p(k), but allows linear relaxation of k to its mean
state, is proposed and tested using multiple ASL data sets. The three parameters needed
to describe the drift and nonlinear diffusion terms can be determined from the ground
shear stress and the mean velocity at height z. Using these model parameters, the Langevin
equation reproduces the measured p(k) with minimal Kullback-Leibler divergence.
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I. INTRODUCTION

The significance of turbulent kinetic energy (TKE) and its variations in the atmospheric surface
layer (ASL) is rarely in dispute given its relevance to a plethora of applications. Descriptions of the
mean TKE are required in wind energy applications [1], dispersion of pollutants [2], eddy-viscosity
formulations for weather forecasts and climate models [3-5], seed or pollen dislodging and spread
[6-8], among others. Over the past 2 decades, variability in TKE has also gained attention in studies
linking turbulence and super-statistics given the connections to nonextensive entropy measures
[9-11]. However, the geophysical and engineering turbulence literature has been rather silent on
models and theories describing excursions in TKE from their mean state, despite the wide set of
experimental analyses focusing on turbulence intermittency [12-22]. This knowledge gap motivates
the present paper.

The instantaneous (k) and mean (k) TKE are defined as

k=L, k=G, (1)

L

where u; = u, u = v, and u3 = w are the longitudinal, lateral, and vertical components of the
velocity aligned along x; = x, x, =y, and x3 = z, respectively, with x3 or z being the distance
from the surface or zero-plane displacement. Primed quantities are turbulent quantities defined
as departures from an “ensemble mean.” Operationally, these primed quantities are determined
as departures from the time-averaged state (hereafter indicated by overbar) as common in field
experiments. Meteorological and index notations are used throughout. The budget of k has been
extensively studied and forms the basis of Monin-Obukhov similarity theory (MOST) in the ASL
for stationary and planar homogeneous flow in the absence of subsidence [23]. The k is also used in
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eddy-viscosity (v;) calculations, usually expressed in the form v; = ¢; \/Elm (where ¢ is a similarity
constant and /,, is a mixing length), as reviewed elsewhere [24]. Surprisingly, much less is known
about the probability density function of k, hereafter referred to as p(k). What is the probability
law describing p(k) in the ASL? How do the parameters of this law vary with boundary conditions
(e.g., the atmospheric stability parameter { = z/L, where L is the Obukhov length [25])? How can
this probability law be used in model simulations of k time series? Answering these three questions
frames the scope of the work here.

The derivation of a probabilistic model for p(k) and the dependence of its parameters on ¢ are
explored using published data sets collected in the ASL across a wide range of heights and ¢, and
over two contrasting land-cover types. Data from two field experiments, one over ice in Utqgiagvik
(Barrow), Alaska [26], and the second over a grass-covered forest clearing at Duke forest near
Durham, North Carolina [27], are analyzed in this context. The former site is representative of a
canonical ASL where Earth’s surface is planar-homogeneous. The latter location is characterized
by advective distortions to k arising from adjustments as the flow transitions from a forest into the
clearing or conversely. The paper begins by deriving the probability law p(k), which then serves
as the basis of a Langevin equation model for k that can be employed in simulations and models
alike. This Langevin equation is presented from a theoretical and modeling perspectives, where its
limitations are further addressed.

II. THEORY

A. Background and definitions

In a near-neutral ASL, the statistics of u; do not deviate appreciably from Gaussian [28-31] so
that their p(u}) is given by

ps) = G(s) =

exp|—=(—) |,

V2no? 2\ o;

where s’ is a turbulent flow variable representing velocity excursions (i.e., u’, v’, or w'), oy = (s's")1/2
is the root-mean-squared value of a turbulent flow variable s’, and G(s) is the Gaussian distribution
of 5" used for notational simplicity. When u}?, u7, and uf are independent and are such that o, =
o, = 0y, (i.e., equipartitioning of the energy as expected in isotropic turbulence), it directly follows,
after normalizing the latter to unit variance, that the sum of these squared normalized instantaneous
variables (e, = 2k,) must be x-squared distributed given by

2920 (t/2) "

where « is the number of degrees of freedom (=3). For the ASL, 0, # o, # 0y, and the anisotropy
in energy distribution varies with z and ¢. In addition, with changes in ¢, G(s") may no longer be an
acceptable descriptor of p(u;). Nonetheless, it may still be possible to arrive at a reference shape for
p(k) that accommodates some of these departures.

The first step is to derive the distributions of u?, v'?, and w'?> separately by considering the
transformation r = g(s’) or its inverse s’ = g~ ! (r). Momentarily, it is assumed that G(s") remains an
acceptable descriptor of p(u). Here, r = s’ so that s’ = /7. Then, p(r) is related to p(s’) by

1 1
plen) = —5——¢%*""exp <—§en), 3)

/

|ds
p(r) =2G(s") Il “4)

r
where the factor 2 arises due to symmetry considerations. Because ds’ /dr = —(1/2)r~'/2, it follows

that
r = — [ L } 5)
ry= ——exp|—=— |
P o 27y P72 o?
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The x-squared p(r) becomes evident when noting that I'(1/2) = /7 and that the mean of each
normalized variance is ¢ = GSZ = 1. In its normalized form with o, = 1, this distribution is a special
case of the more general y distribution given by

Y
" Lexp (=Br), (6)
I'(y)
where the case § = 1/2 and y = 3/2 recovers the x-squared distribution. It is to be noted that
when y = 1, p(r) is exponential. The y distribution in Eq. (6) has a mean of y /8, variance of
y/B?, skewness of 2/ /v and excess Kurtosis of 6/y, and is hereafter assumed to represent the
individual (nonnormalized) velocity components p(s’?).

p(r) =

B. The basic model

As a first approximation, it is assumed that u?, v'?, and w'? are each y-distributed with their
own f, and y,, B, and y,, and B,, and y,, (instead of x-squared). Moreover, the squared velocity
components are assumed to remain independent even when u' may be correlated with w’ due to
finite turbulent stresses. It is worth noting that the squares of random correlated variables are much
less correlated than the original variables (as illustrated later). What is now sought is the distribution
of 2k = u’? + v"> + w'? knowing that the squared velocity components are each y distributed.

The Welch-Satterthwaite approximation [32,33] leads to p(2k) that is y distributed given by

B
p(2k) = ———(2k)"*" exp [— B (2k)], )
C(ve)
where B, and y; are related to 8, and y,, B, and y,, and B,, and y,, via

2 2 2 2

vk yuﬂu + yl)ﬂu + ywﬂu)
= N = 5 = . 8
Vi = BuVu + BoVo + Buww Yk %;/33 n VUIBE n Vw,Bs, B " ()

The work here explores variations of y; and g of this composite p(k) in the ASL. It is to be noted
that fitting a y distribution to each squared velocity component, inferring the individual 8, and y,,
B, and y,, and B, and y,,, and then using Eq. (8) to compare this outcome to y; and S obtained by
directly fitting a y distribution to the k time series, allows an indirect assessment of the assumptions
used to arrive at Eq. (7).

C. A Langevin model for k

With p(k) being y distributed and assuming an approximate autocorrelation function pi(7) =
exp(—t/7) that decays with a characteristic time t; (yet to be determined), a Langevin equation
for k can now be formulated and is given by [34]

—.dt 202kk

dk=—-k - + ( i )dw, 9)
Tk Tk

where dw is the Wiener increment (with zero mean and variance dt), 0*2 = ok2 /%2 is the variance of

k/k, and dr is the time step used in the time integration of k. The exponential p;(7) here ensures
that 7, = fooo ox(t')dt’. The three parameters (k, oy, and ) appearing in Eq. (9) must be externally
supplied. Because the Langevin equation is evaluated using both measured and modeled parameters
for k, oy, and T, it is convenient to distinguish the version with modeled parameters by writing
another Langevin equation given as

— dt 202k,uk
dk = —(k —ky)— +,/| =" |dw. (10)

m m

Estimates for k,,, 0,,, and 7,, are sought from the mean velocity, turbulent shear stress, and .
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D. An alternative model

In classical models of turbulence closure (e.g., k — €), the mean turbulent kinetic energy dissi-
pation rate € is related to k using 7y ~ k/€, where 7; is known as the relaxation timescale. When
7 does not vary appreciably, such a closure may (naively) suggest that p(k) resembles p(e), which
is log-normally distributed. If so, then the alternative model to p(k) is not y but a log-normal. An
associated Langevin model for a log-normal k can be derived as commonly done for € [34,35].
However, the relation between the means of the distributions of k and € does not necessarily
constrain the relations of their PDFs. Therefore, whether a y or log-normal model best represents k
in the ASL will be explored using the two data sets featured here.

III. FIELD DATA AND METHODS

As briefly mentioned in the Introduction, data from two field experiments are analyzed. One
data set is collected over an ice sheet in Utqiagvik (Barrow), Alaska [26], and the second data set
is collected over a grass-covered forest clearing at Duke forest near Durham, North Carolina [27].
The sampling frequency at the Barrow experiment was 10 Hz whereas the sampling frequency at
the Duke forest clearing was 56 Hz. The data at the Barrow site were collected at two heights
(zmw = 5.7 m and 11.6 m), whereas at the Duke forest site, data were acquired only at one height (z,,
= 5.6 m) from the ground surface. The post-processing involved de-spiking and linear detrending
before k statistics were determined.

For the Barrow experiment, de-spiking was conducted as follows: data were separated into
5-min running windows and any measurement value with absolute value larger than six times the
corresponding standard deviation in this window was flagged. All flagged variables corresponding
to that timestamp were removed and replaced with NaNs so they would not affect the statistics.
Double rotation of wind components based on 15-min time averages is applied here only over the
Barrow site, the same Barrow period used for Reynolds time-averaging throughout. It is to be noted
that k is a scalar quantity computed from the trace of the stress tensor and thus is independent of the
coordinate system.

Similarly, over the Duke grass site, data were separated into 1-min running windows, and if
any fluctuating data point had an absolute value larger than five times the corresponding standard
deviation in this current window, all measured variables corresponding to that timestamp were
removed and replaced with NaNs. For defining the turbulent fluctuations over Duke, a 20-min
averaging period was used.

Non-stationarity was assessed by computing the integral timescale of TKE and comparing it to
60 s. Almost all the selected runs at both sites had integral timescales not exceeding 60 s. In what
follows, the instantaneous data were collected from a single block of data, i.e., real-time measure-
ment run, and not aggregated over multiple runs. The standard deviation of TKE is o = v/ (k — k)2.
This is the same standard deviation used to define the coefficient of variation CV}, = oy /E discussed
later.

IV. RESULTS

The results and discussion are structured to evaluate assumptions and approximations leading to
the final outcome of p(k) (i.e., a composite y) and the associated Langevin form in Egs. (9) and
10).

A. The statistics of u/, u/?, and k

Figure 1 reports one sample period’s measured p(s'/oy) for s’ =i/, s’ = v/, and s’ = w’ along
with a zero mean and unit variance G(s'/o) across three atmospheric stability regimes (unstable
“top row” ¢ < 0, neutral “middle row”¢ & 0, stable “bottom row”’¢ > 0) at the two different sites
(Duke Grass “left column,” Barrow Ice “right column”). The velocity components deviate from
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FIG. 1. The probability density function p(s’/o;) for s’ = ', s’ = v’ and s’ = w’, with a zero mean and unit
variance Gaussian distribution G(s’/ay) for reference. The measurements are collected at z,, = 5.1 m above the
grass surface at the Duke Forest, and at z,, = 5.7 m and z,, = 11.6 m above the ice sheet in Barrow Alaska.

Gaussian, albeit moderately, with ' being more skewed and w’ being more intermittent. The
derivations for p(k) assumed that the squared velocity components are independent. For a numerical
illustration, one run from the Duke Forest site is used as an example. In this run, the correlation
coefficient p, ,, = —0.34, whereas p,2 ,,» = 0.08 and is much smaller in magnitude. That is, while
the individual velocity components are significantly correlated, their squared components are much
less so. Deviations in the tails from Gaussian are expected at the Duke forest even for near-neutral
conditions due to site nonuniformity (unlike the case of Barrow).

Figure 2 shows that the y distribution describes reasonably the individual normalized velocity
components (1’ /a,)?, (v'/0,)? and (w’ /o, )* even though deviations from Gaussian have been noted
in Fig. 1. This finding implies that the y distribution is a robust model for the energy in the individual
velocity components across all atmospheric stability regimes, and at the two different sites. The
periods analyzed here are the same as in Fig. 1.

Figure 3 compares the empirically determined p(k) with the best-fitted y distribution (for p(k)
itself, not its variance components) and in a similar fashion the best-fitted log-normal distribution to
the same data presented in Fig. 1. It is evident that the y distribution describes p(k) better than the
alternative log-normal p(k), consistent with the expectations proposed earlier. This finding is also
suggestive that a Langevin equation recovering a y p(k) is superior to one recovering a log-normal
distribution for k.

B. Gamma distribution prediction for k

Figure 4 shows predictions of y; and B; from Eq. (8) when B, and y,, 8, and y,, and B8, and
Y are obtained by fitting separately a y distribution to each u’2, v, and w'?, compared against y;
and B obtained by directly fitting a y distribution to measured k (for each run at each site). The
agreement is acceptable and suggests that the compound y distribution for k is, in fact, the outcome
of a super-position of independent y fits to the squared anisotropic turbulent velocity components

074601-5



ALLOUCHE, KATUL, FUENTES, AND BOU-ZEID

' Duke Grass Barrow Ice
(5}
=z 10° 10° N 1
0
= 10?2 1072
= .l |
104 5 ; 10
10° 10° 10° 10’ 1072 107" 10° 10’
ey pype— T,
— |
£ 100 F 100 l
2
=~ 1072 1072
E: 4
107 10
1072 107 10° 10’ 1072 107 10° 10’
> [
éﬁ 10° F 4 10° J
A
i 2 B
=10 102
ISY
10 104 L /
1072 107 10° 10’ 102 107 10° 10’

r= ()’

FIG. 2. The empirical distribution of r = (s'/o;)* for s> = u?, * = v"2, and s> = w'? along with a fitted
y distribution for each velocity component. The y fit was obtained using a maximum likelihood estimation.

(especially for neutral and mildly stable/unstable scenarios). While the probability law for p(k)
appears to be robust, the y; € [0.8, 1.8] is not constant and implies that p(k) can be reduced to a
near-exponential distribution at y; = 1 (a condition to be considered later on).
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FIG. 3. A comparison between the empirically determined p(k/k), a y fit and a log-normal fit to p(k/k)

for the same runs featured in Figs. 1 and 2.

074601-6



PROBABILITY LAW OF TURBULENT KINETIC ENERGY ...

-0.5 0 0.5
L
25 10"
¢ Barrow Ice 5
1.5 10°
> = O
= 1 s /
& O 5 = o oA
O 4
0.5 1024 5
0.5 1 1.5 2 25 10 10
~i(model) Br.(model)

FIG. 4. The evaluation of Eq. (8) using individually determined g, and y,, 8, and y,, and B, and y,,.

C. The Langevin equation

Having described the probability law for p(k), the relaxation of TKE fluctuations to k are now
considered. These relaxations are discussed in the context of the autocorrelation function shape.
Figure 5 shows the measured pr(t) of k with time lags T along with the approximation by an
exponential model p;(7) = exp(—t/7;). The integral timescale (= t;) is determined here in Fig. 5
by integrating the measured p;(7) up to the first zero-crossing from the measured k time series. The
near-exponential decay at large lags is suggestive that a Langevin model with a linear drift (but a
nonlinear diffusion term) may be plausible. The stationary continuously turbulent periods analyzed
here are the same as those described in Fig. 1 for illustration.

Figure 6 shows—without loss of generality—sample trajectories of k computed using the
Langevin Eq. (9) and measured k/E, where the mean, variance, and integral timescale are based
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FIG. 5. The autocorrelation p,(7) as a function of normalized time lag 7 /7, for the same runs featured in
Fig. 1. The integral timescale of k (= 7;) was determined by integrating the measured p;(7) up to the first
Zero-crossing.
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FIG. 6. The measured k/k (top left) and sample trajectories from the proposed Langevin equation of k/k
(top right) with normalized time (). The comparison between measured and Langevin modeled p(k) (bottom
left) and their autocorrelation function p(7) (bottom right) is also shown.

on the TKE of Barrow’s stable ASL period in Fig. 1 (bottom right). The Langevin equation with a
linear drift reproduces the main distributional and autocorrelation properties of measured k.

With the assumptions and simplifications leading to Eq. (9) supported by the experiments, the
parameters of the Langevin equation are now discussed. The Langevin equation requires the external
specification of k, oy, and ;. A link between these three quantltles and basic flow properties is now
analyzed. Figure 7 shows the relation between k and u? and the variability o} versus k. In ASL
flows, the squared friction velocity (u2) represents the kmematlc ground shear stress and forms a
logical basis for normalizing all second-order velocity statlstlcs including k. The data suggests that
oy is proportional to k, which is reasonably predicted from u2. Unstable and stable data points lie off
the neutral-limit line (discussed below) as expected. The coefficient of variation CV; = oy /k ~ 1.1.
In a near-neutral ASL, it is usually observed that A, = o, /u, = 2.7, A, = 0, /u, ~2.4,and A,, =
0w/t & 1.3 [36], which then yields k/u? = Ay = (1/2)(2.7% 4 2.1% + 1.3%) = 7.4. This estimate
(i.e. k= Aku Ay = 7.4) is in agreement with the measurements here as depicted in Fig. 7.

The parameters of the y distribution y; and By can also dlrectly inferred from u,. Using
a moment matching approach, k= Aku = v/PBr and ok = (CViAru 22 = w/ ﬁk, yielding By =
(CVZ2Awu?)~" as well as y, = (CVi)~? independent of u,. When CVy =1, y, =1 and the y
distribution for p(k) reduces to an exponential. That is, u, and a specification of CV; suffices to
describe the parameters of the Langevin model for k as well as the parameters of the y -distributed
p(k). When CV;, < 1, y > 1, and conversely. The y, reported in Fig. 4 ranges between 0.8 and
1.8, resulting in a concomitant range in CV; between 1.1 to 0.74. This CV; range is narrow and
suggestive that o} can be pragmatically inferred from k in ASL flows. To summarize, the friction
velocity u, (or equivalently the ground-shear stress) describes two of the three parameters in the
Langevin equation for k. The remaining parameter is 7, which also requires characterization.

After experimenting with various choices of timescales in the stationary continuously turbulent
periods, an advective timescale formed by z and AU = U (z) — U (zo) that represents the momentum
deficit at height z relative to the surface roughness height zo, hereafter labeled as 7, = (kz/AU)
appears to provide the best description to the variations in the measured decorrelation timescale.
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FIG. 7. The measured k versus measured u, (left, neutral-limit has a slope Ay = 7.4) and k versus the
variability in k (=0y) (right). Note that k ~ u2 and o} ~ k implies a o} ~ u?.

Figure 8 shows the relation between t; determined here from the exponential decay of the auto-
correlation function during its first e-folding “z, :e-folding time” and 7, at both sites and under
all atmospheric stability conditions. Ideally, 7, would determined from the decay up to the first
zero-crossing of the autocorrelation function as we have done till this point in the paper, but this
new calculation that focuses on the first e-folding, t; ~ 7, is found to better characterize the integral
timescale of most relevance to the TKE dynamics by eliminating longer timescales associated with
weakly-energetic eddies at higher lags. It is also better related to 7, and yields smaller model errors
as we will later show. The good relation between t; and 7, underlines the fact that fixed sensors,
under relatively high wind conditions when the turbulence field is approximately frozen, measure
the length of the eddies. The decay of the correlation in k can therefore be linked to the speed of
advection of the eddies past the sensor. It is also clear from Fig. 8 that 7 is greater than t,, especially
for the Duke site, and such overestimation might be attributed to the way t is determined. The role
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FIG. 8. The variations in measured t; versus measured t,. The solid black line is the one-to-one reference.
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FIG. 9. The measured k/k (top left) and sample trajectories from the proposed Langevin model of & /k (top
right) with normalized time (t;). The comparison between measured and Langevin modeled p(k) (bottom left)
and their autocorrelation function p(t) (bottom right) is also shown.

of stability in modulating the drop of the autocorrelation function when estimating 7; at both sites
warrants further inquiry, but for simplicity it is assumed here that t; ~ 7., independent of stability.
As depicted in the measured autocorrelation plots of Figs. 6 and 9, the sustained mild nonstationarity
at higher lags might justify the long 7; relative to t, as the latter describes the measured p(k) rather
well (illustrated later). With that, Eq. (10) can now be expressed as

dt 2 2\2coulk
dk~ —h - ey 44 \/(%)dw an
C3Ty C3Ty

where the approximations o, ~ cluﬁ, ko ~ czui, and 1,, & c37, are used. From Fig. 8, it is noted
that the quantitative agreement between 7; and 7, leaves much to be desired, and the trends appear to
be site-specific and stability dependent. However, 7, is found to be the best timescale that correlates
with 7, and approximating t,, &~ c37, here means that all time variables could be scaled with
respect to 1, or 7 (as shown in the modeled plots). Later analysis on the exponential decaying
autocorrelation functions using a constant relaxation timescale reveals that such assumption warrant
further inquiry.

Figure 9 shows once again—without loss of generality—sample trajectories of kK computed using
the modeled Langevin Eq. (10) or Eq. (11) and measured k/E for the same period considered in
Fig. 6, where the mean, variance, and integral timescale are all modeled and determined from u,
and AU. This modeled Langevin equation with a linear drift reproduces the main distributional
and autocorrelation properties of the measured k as faithfully as the results in Fig. 6. It will
be shown in the discussion that this Langevin model with the introduced modeled parameters
described in Egs. (10) and (11) in fact captures the simultaneous description of the distributional and
autocorrelation properties of measured k£ when compared to Eq. (9). It even improves the agreement
statistics if the timescale to be modeled is solely based on t,, =~ 1,.

V. DISCUSSION

Returning to Egs. (9) and (10), we now ask how well the two Langevin equations reproduce
the measured p(k) and how well a relaxation to k is captured by an exponential model for the
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FIG. 10. The Kip between measured p(k) and theoretical p(k);, based on 7, (left), the K p between
measured p(k) and proposed p(k)., based on 7, only (middle), and the K;p between measured p(k) and
proposed p(k).,, based on o, k,,, and 7, (right). The K, metrics between measured p(k) versus predicted
p(k)rr and p(k)., based on time series from Eqs. (9) and (10), respectively, are scattered with respect to u,
and ¢.

autocorrelation function. To answer the first question, the time evolution of k across all periods is
modeled using Eqgs. (9) and (10) and compared separately with the measured p(k). To assess this
comparison quantitatively, the KullbackLeibler divergence (also called relative entropy)—which
is a distance measure of how one probability distribution deviates from a reference probability
distribution—is used [37]. The Kullback-Leibler divergence metric [38] is given by Egs. (12)
and (13), where I"(Yim, Brm) represents (“measured/analytical” distribution), I'(yrx, Brr) represents
[“Langevin modeled/approximating” distribution based on Eq. (9)], and I'(yLm, BL») represents
[“Langevin modeled/approximating” distribution based on Eq. (10) or Eq. (11)]. For clarity, these
measures are listed as

r
Kip(measured|[Langevin,) = (Vim — Y)W (Vim) + log <r8,/:k;>
IBkm ,BLk — IBkm
log [ 2= m——, 12
+VLk|:0g(IBLk>:| + Vi o (12)

and

. T'(vim)
Kip(measured||Langevin,,) = (Y — Yem)¥ (Vim) +10g (| ———

F(ykm)
Bim Brm — Bim
m 1 m ) 13
+yL |:og <:3Lm>:|+yk ﬂkm ( )

A Kaullback-Leibler divergence of 0 indicates that the two distributions being compared are
identical (zero-distance between them). Figure 10 shows that the Kjp metric of measured p(k)
versus predictions of p(k) from time series runs using Eqs. (9) and (10) are not highly sensitive
to u, and ¢. Equation (11) captures the predicted distributions where the Kjp is still minimal as
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FIG. 11. PACF(lag,) (top left), PACF(lag, ) (top right), PACF(lag;) (bottom left), and PACF(lag,) (bottom
right) are scattered with respect to u, and ¢.

illustrated in Fig. 10 (right), but it under-performs for extreme stable ({ > 0) or extreme unstable
scenarios (¢ < 0) where the K| increases significantly. Surprisingly, Eq. (9) (with modeling only
the timescale 1; =~ 1,) outperforms Eq. (9) (with modeling only the timescale t; &~ t,), where Ki p
is reduced significantly as illustrated in Fig. 10 (middle). This comparison may indicate that t,
is a better measure of linear relaxation than estimates of 7; based on one exponential decay of the
measured autocorrelation function, at least in this context. This is clear in the exponential model with
7 and 7, that overpredicts the measured autocorrelation function at small lags but underpredicts the
measured autocorrelation function at large lags (Figs. 6 and 9). The reason the Langevin model with
7, yields smaller K p compared to the case with 7; ~ 1, is that 7, is smaller than 7; for most of
the periods. This is justified in the Langevin model where the nonlinear diffusion term (that scales
with 71/2) will lead to faster decorrelation (consistent with measured autocorrelation), but the final
decay phases at large lags of the measured autocorrelation is dictated by the drift (think of mild
nonstationarity) which then becomes large (again consistent with the data).

To answer the second question, the sample partial autocorrelation function (PACF) is tested at
the first 4 lags [39]. The PACF is used to determine the complexity (or order) of an equivalent
autoregressive model that best describes the autocorrelation function of data, i.e., the partial autocor-
relation function at a set lag is the correlation that results after removing the effect of any correlations
due to terms at shorter lags. It is entirely determined from the shape of the autocorrelation function.
The approach used here solves the so-called Yule-Walker equations described elsewhere [40,41]. A

p-order autoregressive model for variable }(¢) takes the form
@) =adt — 1) +adt—2)+---+a,0 1 —p)+ @), (14)

where €,(t) is a white-noise process with an arbitrary variance (the noise term), a;, as, ... are the
coefficients of the autoregressive process that can be inferred from the PACF, and ¢t — 1,1 — 2, etc...
are lag-1, lag-2, and so forth. First-order autoregressive models are associated with exponentially de-
caying autocorrelation functions where the PACF is only finite at lag 1 and insignificant everywhere
else. Figure 11 shows that PACF(lag;) dominates the rest of the lags, meaning an exponential decay
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of the autocorrelation using a constant relaxation timescale is a leading-order estimate. However,
PACF(lag,) and PACF(lag;) are, by no means, insignificant. The PACF(lag, ) shows less variability
for the unstable data points unlike the case for the stable ones; however, PACF(lag;) shows less
variability for the stable data points unlike the case for the unstable ones. The PACF(lag, ) exhibits a
similar behavior as PACF(lag;), but the stable data points are consistently zero now. Thus, nonlinear
relaxation or deviations from exponential autocorrelation function decay warrant further inquiry.
How to accommodate these features in a nonlinear drift term is a topic better kept for future work

VI. SUMMARY AND CONCLUSIONS

The probability density function of k, p(k), in a diabatic atmospheric surface layer is analyzed.
When the component-wise velocity fluctuations are Gaussian and their squares are un-correlated
with each other, p(k) follows a x-squared distribution as expected. Deviations from Gaussian
velocity components revise the x-squared to a y-distributed p(k). Experiments support the y-
distributed p(k) with shape parameters bounded between 0.8 and 1.8. Variations in k around k can
be represented by a Langevin equation with a linear drift characterized by a relaxation time 7; and
a nonlinear diffusion term characterized by 7y, k and the standard deviation of k, Ok.

At two sites that differ in surface cover type and homogeneity, it was shown that k and oy
scale primarily with the friction velocity u,. The t; is best approximated by an advection time
kz/AU. The parameters of the Langevin equation are not explicitly sensitive to the range of
atmospheric stability ¢ observed in the experiments except for extreme stable/unstable scenarios.
Hence, exploring other sites with a wider range of synoptic conditions and stabilities is needed for
a more conclusive analysis of the role of buoyancy. The AU needed in the integral timescale does
vary with atmospheric stability {. When %, o, and 7, are modeled from AU and u,, the Langevin
equation describes the stationary p(k) reasonably at both sites. This was concluded with the aid of
the Kullback-Leibler divergence metric test, which was shown to be acceptable when applied to all
the periods at the two sites. When 7y is solely modeled, the Kullback-Leibler divergence metric was
almost null across all stabilities.

Analysis of the partial autocorrelation function (PACF) suggests that lag, remains the most
significant (i.e., exponential decay). Numerous runs exhibit nontrivial PACF at lags up to 4, implying
nonexponential decay in the autocorrelation function cannot be entirely ignored for all runs. Such
adjustments need not revise the linearity of the drift term and can be accommodated by assuming
a relaxation timescale that is not constant, but rather time dependent. A nonconstant relaxation
time is one possibility to bridge the Langevin equation for k£ here and arguments employed in
super-statistics. For example, it has been known for quite some time now that a system with a
micro-state V evolving as

dv
o = nV todo, 15)

and with a nonconstant B; = y /o> sampled from a certain class of probability density functions
p(By) result in an entropy that does not abide by the standard BoltzmannGibbs form (i.e., Tsallis) as
discussed elsewhere [9]. Returning to the Langevin model proposed for k, a t; that is itself derived
from a distribution can also be interpreted in a similar manner.

Future work will explore p(k) in the roughness sublayer of urban and vegetated canopies alike
to assess whether there is a signature of roughness on k, oy, and ;. Also, the presence of patchy
turbulence regimes expected in extremely stably stratified flow characterized by a flux Richardson
number Riy > 0.21 are conjectured to introduce substantial deviations from a y distributed p(k).
Such patchiness in turbulence resembles an on-off TKE dissipation rate time series and may shift
p(k) to a log-normal shape given the large sporadic ‘bursts’ in k dominating such stability regimes.
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